Supporting Information for:

Mesoscopic superstructures of flexible porous coordination polymers synthesized *via* coordination replication

Kenji Sumida,^a Nirmalya Moitra,^b Julien Reboul,^a Shotaro Fukumoto,^b Kazuki Nakanishi,^b

Kazuyoshi Kanamori,^b Shuhei Furukawa,*^a and Susumu Kitagawa*^a

Structure and Flexibility of the Cu(bdc)(MeOH) and Cu(bdc)(bpy)_{0.5} Frameworks

The structure of the Cu(bdc)(MeOH) framework shown in Fig. S1 is one consisting of two-dimensional square grids consisting of dinuclear Cu²⁺ paddlewheels bridged by the bdc²⁻ ligands, with MeOH solvent molecules occupying the axial binding sites. The framework exhibits the reversible accommodation of guest molecules in the interlayer spaces, which results in a change in the distance between adjacent layers. The installation of bpy units results in the formation of the microporous Cu(bdc)(bpy)_{0.5} compound *via* the displacement of the coordinated MeOH molecules, which features an interpenetrated structure in which the pillars span the axial Cu²⁺ sites of every second layer such that the pillars are threaded through the cavities of the square grids. The Cu(bdc)(bpy)_{0.5} compound features a reversible transition between a closed phase in the evacuated state, to an open phase in the solvated state (see Fig. S2).

Fig. S1 A structural model showing a portion of the structure of the Cu(bdc)(MeOH) compound. Green, gray and red spheres represent Cu, C and O atoms, respectively, while H atoms and the methyl group of the coordinated methanol molecules the have been omitted for clarity.

Fig. S2 Diagrams showing the interpenetrated structures of $Cu(bdc)(bpy)_{0.5}$ (purple and green), and the structural transition between closed and open pore forms upon guest inclusion and removal.

Fig. S3 Powder X-ray diffraction patterns as simulated for the open (green) and closed (blue) phases of $Cu_2(bdc)_2(bpy)$, and experimental data for a $Cu(OH)_2$ -derived $Cu_2(bdc)_2(bpy)$ sample after 150 °C evacuation (red), resolvation in methanol (orange), and reactivation at 150 °C (purple).

Fig. S4 An SEM of Cu(OH)₂-derived Cu₂(bdc)₂(bpy), showing a thin, plate-like morphology.

Fig. S5 N₂ adsorption data for Cu(OH)₂-derived Cu₂(bdc)₂(bpy) collected at 77 K. Closed and open symbols represent adsorption and desorption, respectively.

Fig. S6 N₂ adsorption data for the parent Cu(OH)₂-PAAm composite collected at 77 K. Closed and open symbols represent adsorption and desorption, respectively.

Fig. S7 SEM images of a cross section of a $Cu_2(bdc)_2(MeOH)_2$ monolith after replication showing a (left) a wide view and (right) a zoomed-in view.

Fig. S8 Thermogravimetric data for the parent $Cu(OH)_2$ -PAAm monolith (green), bulk Cu(bdc)(MeOH) (red), and the Cu(bdc)(MeOH)-PAAm monolith (pink) collected under an N₂ flow using a temperature ramp rate of 2 K/min. The dotted line represents the weight transition used to estimate the composition of the replicated monolith.

Fig. S9 A BET plot of the adsorption isotherm for N_2 in the Cu(bdc)(MeOH)-PAAm monolith at 77 K, where *x* represents the quantity (P/P₀) and *V* is the volume of N_2 adsorbed. The blue line represents a linear best fit of the data points. Inset: parameters for the linear best fit and resulting constants for calculation of the BET surface area.

Fig. S10 N_2 adsorption data collected at 77 K for the $Cu_2(bdc)_2(MeOH)_2$ replicate in monolith form (circles) and after mechanical grinding (triangles). Closed and open symbols represent adsorption and desorption, respectively.

Fig. S11 Field-emission SEM image of the $Cu_2(bdc)_2(MeOH)_2$ monolith after mechanical grinding. The scale bar represents a distance of 10 μ m.

Fig. S12 Infrared spectra for a $Cu_2(bdc)_2(MeOH)_2$ monolith prepared by coordination replication (black), and a $Cu_2(bdc)_2(MeOH)_2$ powder prepared by reaction of a mechanically ground sample of the same parent phase (red). The shaded region indicates the amide C=O stretch, which reflects the presence of polyacrylamide within the sample.

Fig. S13 N₂ adsorption isotherms collected at 77 K for a $Cu_2(bdc)_2(MeOH)_2$ bulk powder (green), a $Cu_2(bdc)_2(MeOH)_2$ monolith (orange), and a $Cu_2(bdc)_2(MeOH)_2$ powder sample prepared from a ground sample of the parent monolith (blue). Closed and open symbols represent adsorption and desorption data, respectively.

Fig. S14 MeOH adsorption data for a monolithic $Cu_2(bdc)_2(bpy)$ replicate at 298 K for three adsorption and desorption cycles. Closed and open symbols represent adsorption and desorption, respectively.

Fig. S15 MeOH adsorption data collected at 298 K for the $Cu_2(bdc)_2(bpy)$ replicate in monolithic form (pink) and after mechanical grinding (brown), and a bulk $Cu_2(bdc)_2(bpy)$ sample prepared from $Cu(OH)_2$ (blue). Closed and open symbols represent adsorption and desorption, respectively.

Fig. S16 Thermogravimetric data for the parent $Cu(OH)_2$ -PAAm monolith (green), bulk $Cu(bdc)(bpy)_{0.5}$ (brown), and the $Cu(bdc)(bpy)_{0.5}$ -PAAm monolith (blue) collected under an N₂ flow using a temperature ramp rate of 2 K/min. The dotted line represents the weight transition used to estimate the composition of the replicated monolith.

Fig. S17 A BET plot of the adsorption isotherm for N_2 in bulk $Cu(bdc)(bpy)_{0.5}$ prepared from $Cu(OH)_2$ at 77 K, where *x* represents the quantity (P/P₀) and *V* is the volume of N_2 adsorbed. The blue line represents a linear best fit of the data points. Inset: parameters for the linear best fit and resulting constantsfor calculation of the BET surface area.

Fig. S18 A BET plot of the adsorption isotherm for N_2 in the Cu(bdc)(bpy)_{0.5}-PAAm monolith at 77 K, where *x* represents the quantity (P/P₀) and *V* is the volume of N_2 adsorbed. The blue line represents a linear best fit of the data points. Inset: parameters for the linear best fit and resulting constants for calculation of the BET surface area.

Fig. S19 Field-emission SEM images showing the Cu₂(bdc)₂(bpy) monolith after evacuation-adsorption-evacuation cycling.

Fig. S20 TGA data for a $Cu_2(bdc)_2(MeOH)_2$ monolith (black) and after soaking in methanol for 2 weeks (orange), and the $Cu(OH)_2$ -polyacrylamide monolith soaked in methanol for 2 weeks (green) and in a bpy solution in methanol (blue). Data collected at a ramp rate of 2 K/min.