SUPPORTING INFORMATION

A Quantitative Definition of Hypervalency

M. C. Durrant

CONTENTS

1.	Test set of molecules and ions used for evaluation of charge calculations	2
2.	Observed and calculated charge values	4
3.	Graphs of calculated versus observed charges	13
4.	Data for fluorides XF ^{n^{m-}, Figure 1}	14
5.	Data for chlorides XCIn ^{m-} , Figure 2	25
6.	Data for oxides XOn ^{m-} , Figure 3 and Table 2	32
7.	Thermodynamic data for atoms and ions	42
8.	Data for species in Table 3	43
9.	Data for species in Scheme 5	48
10	. Data for species in Scheme 7	54
11	. Miscellaneous species mentioned in the text	61
12	. Worked examples of γ calculations	63
13	. Plots of $\gamma(X)$ versus $\Delta G(X-O)$ for different charge schemes	72

1. Test Set of Molecules and lons used for Evaluation of Charge Calculations

References are given in square brackets.

Note; Geometry optimization of **13** from the X-ray crystal structure gave an imaginary frequency. Therefore, the calculated geometries were obtained from a separately constructed model which eliminated the imaginary frequency. The crystal structure is compared with the optimized geometries in Figure S1 below.

Fig. S1 Experimental and theoretical structures of molecule **13**; (a) X-ray geometry; (b) method 1; (c) method 5; (d) method 7; (e) method 8.

2. Observed and Calculated Charge Values

Quantum methods are defined in Table 1. Columns 'expt. charge', 'expt. charge 1' and 'expt. charge 2' are experimental values; 'mean expt. charge' is the mean of the experimental values (where applicable).

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
C3	0.009	-0.006	0.012	0.017	0.006	-0.033	0.001	-0.032	-0.049
C2	0.108	-0.003	0.012	0.018	0.015	-0.020	0.025	-0.018	-0.033
C1	0.175	0.315	0.322	0.313	0.315	0.251	0.257	0.250	0.254
C6	-0.053	0.001	0.016	0.023	0.019	-0.015	0.032	-0.015	-0.028
C5	0.066	-0.003	0.015	0.020	0.009	-0.030	0.005	-0.030	-0.045
C4	0.167	-0.009	0.009	0.014	0.006	-0.042	-0.018	-0.040	-0.052
N1	-1.192	-1.227	-1.211	-1.172	-1.244	-1.200	-1.454	-1.140	-1.155
C7	0.720	1.002	0.978	0.953	0.898	0.966	1.102	0.925	0.866
N2	-0.957	-1.097	-1.061	-1.039	-0.916	-1.105	-1.260	-1.066	-1.016
C8	0.623	0.792	0.771	0.755	0.648	0.825	0.992	0.800	0.791
C9	0.304	0.472	0.475	0.468	0.507	0.483	0.614	0.470	0.456
C91	0.844	0.923	0.941	0.929	0.872	0.915	0.988	0.896	0.771
N91	-1.160	-1.080	-1.105	-1.095	-1.031	-1.110	-1.238	-1.089	-0.948
N8	0.189	0.405	0.447	0.445	0.322	0.390	0.355	0.364	0.340
O81	-0.390	-0.436	-0.455	-0.453	-0.387	-0.432	-0.465	-0.421	-0.400
O82	-0.384	-0.467	-0.485	-0.483	-0.441	-0.462	-0.504	-0.449	-0.434
C71	0.233	0.015	0.085	0.101	0.110	-0.035	0.117	-0.027	-0.052
H3	0.156	0.046	0.027	0.022	0.035	0.082	0.059	0.079	0.094
H2	0.055	0.052	0.033	0.027	0.042	0.087	0.065	0.084	0.102
H6	0.118	0.060	0.042	0.035	0.049	0.095	0.073	0.089	0.110
H5	0.120	0.049	0.030	0.025	0.037	0.084	0.061	0.080	0.097
H4	-0.008	0.045	0.026	0.021	0.034	0.080	0.058	0.078	0.092
H73	0.116	0.069	0.044	0.037	0.053	0.093	0.065	0.089	0.099
H71	0.065	0.043	0.019	0.013	0.025	0.067	0.037	0.062	0.072
H72	0.079	0.039	0.016	0.010	0.020	0.064	0.033	0.061	0.068

2.1 Molecule 1

2.2 Molecule 2

atom	expt. charge 1	expt. charge 2	mean expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
C1	0.180	0.209	0.195	0.322	0.323	0.315	0.311	0.301	0.358	0.291	0.281
C2	-0.187	-0.203	-0.195	-0.004	0.013	0.018	0.026	-0.033	-0.009	-0.030	-0.032
C3	-0.064	0.088	0.012	-0.016	-0.001	0.004	-0.013	-0.027	0.037	-0.028	-0.056
C4	-0.061	-0.087	-0.074	-0.006	0.012	0.016	0.019	-0.048	-0.040	-0.045	-0.047
C5	0.020	0.027	0.024	-0.020	-0.006	0.001	-0.021	-0.024	0.043	-0.024	-0.054
C6	0.245	0.283	0.264	0.438	0.435	0.425	0.412	0.376	0.398	0.367	0.375
N1	-0.974	-0.933	-0.954	-1.258	-1.242	-1.203	-1.278	-1.232	-1.485	-1.172	-1.189
N6	-1.217	-1.200	-1.209	-1.132	-1.133	-1.096	-1.093	-1.096	-1.176	-1.065	-1.081
C7	0.650	0.705	0.678	0.982	0.957	0.933	0.872	0.948	1.087	0.907	0.849
N2	-0.736	-0.814	-0.775	-1.108	-1.074	-1.053	-0.933	-1.115	-1.269	-1.076	-1.026
C8	0.482	0.486	0.484	0.738	0.719	0.707	0.580	0.754	0.892	0.735	0.723
C9	0.150	0.177	0.164	0.410	0.422	0.416	0.458	0.363	0.473	0.353	0.323
N8	0.296	0.237	0.267	0.384	0.426	0.425	0.310	0.370	0.342	0.344	0.336
O82	-0.537	-0.539	-0.538	-0.449	-0.468	-0.466	-0.402	-0.446	-0.480	-0.435	-0.412
O81	-0.505	-0.458	-0.482	-0.491	-0.510	-0.508	-0.468	-0.487	-0.532	-0.476	-0.457
C71	-0.242	-0.345	-0.294	0.013	0.083	0.100	0.108	-0.038	0.110	-0.029	-0.055
H2	0.153	0.152	0.153	0.049	0.031	0.024	0.041	0.085	0.065	0.079	0.097
H3	0.166	0.127	0.147	0.036	0.017	0.012	0.027	0.072	0.049	0.069	0.088
H4	0.111	0.129	0.120	0.037	0.018	0.012	0.028	0.073	0.053	0.070	0.084
H5	0.149	0.131	0.140	0.028	0.009	0.003	0.020	0.064	0.039	0.059	0.081
H61	0.553	0.526	0.540	0.401	0.405	0.392	0.396	0.390	0.390	0.382	0.391
H62	0.538	0.514	0.526	0.393	0.397	0.385	0.387	0.385	0.385	0.377	0.385
H9	0.250	0.246	0.248	0.126	0.109	0.103	0.139	0.163	0.160	0.158	0.175
H72	0.177	0.180	0.179	0.037	0.013	0.007	0.017	0.061	0.029	0.056	0.066
H73	0.163	0.170	0.167	0.029	0.006	-0.001	0.010	0.053	0.020	0.049	0.061
H71	0.172	0.273	0.223	0.062	0.037	0.031	0.046	0.087	0.058	0.083	0.093

2.3 Molecule 3

atom	expt. charge 1	expt. charge 2	mean expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
S	4.27		4.270	3.745	3.858	3.799	3.307	3.871	4.226	3.716	3.798
01,2 03	-1.37 -1.39	-1.43	-1.405	-1.393	-1.421	-1.402	-1.308	-1.441	-1.536	-1.398	-1.423
K1/2	0.72	0.77	0.745	0.913	0.914	0.904	0.962	0.946	0.958	0.939	0.947

2.4 Molecule 4

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
S	2.57	2.291	2.407	2.368	2.122	2.374	2.638	2.290	2.175
0	-1.22	-1.146	-1.204	-1.184	-1.061	-1.187	-1.319	-1.145	-1.087

2.5 Molecule 5

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
S1	2.358	2.470	2.592	2.553	2.357	2.534	(a)	2.430	2.693
S2	0.144	0.112	0.109	0.117	0.236	0.110		0.105	0.157
01	-1.220	-1.315	-1.356	-1.337	-1.240	-1.346		-1.305	-1.447
02	-1.359	-1.287	-1.333	-1.314	-1.206	-1.318		-1.278	-1.425
N1	-1.287	-1.155	-1.180	-1.167	-1.110	-1.185		-1.164	-1.236
N2	-1.258	-1.195	-1.187	-1.149	-1.195	-1.172		-1.131	-1.322
C1	0.042 (b)	-0.110	-0.121	-0.109	-0.204	-0.020		-0.009	0.081
C2	0.643	0.452	0.446	0.427	0.366	0.400		0.391	0.387
C3	0.842	0.878	0.897	0.881	0.826	0.851		0.830	0.825
C4	0.049	-0.102	-0.027	-0.015	-0.079	-0.151		-0.144	-0.047
C5	0.608	0.356	0.425	0.426	0.442	0.278		0.271	0.436
C6	-0.217	-0.164	-0.173	-0.170	-0.285	-0.196		-0.181	-0.236
C7	0.046	-0.005	0.013	0.018	0.037	-0.033		-0.027	-0.005
C8	0.154	-0.011	0.005	0.010	0.001	-0.039		-0.037	-0.012
C9	-0.172	-0.016	0.003	0.007	0.004	-0.054		-0.050	-0.043
C10	-0.010	-0.006	0.010	0.015	0.006	-0.033		-0.032	-0.005
C11	0.145	0.004	0.020	0.026	0.046	-0.021		-0.015	0.011

Notes:

(a) This molecule proved to be intractable using Method 6.

(b) The experimental value for C1 of -0.916 in Table 7 of the Supporting Information for reference [11c] is incorrect; the correct value is +0.042.

(S. Grabowsky, personal communication).

2.6 Molecule 6

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
S	0.01	-0.002	-0.024	-0.010	-0.052	-0.021	0.007	-0.018	0.045
01	-1.17	-1.179	-1.213	-1.193	-1.144	-1.181	-1.307	-1.157	-1.289
02	-1.13	-1.114	-1.151	-1.122	-1.098	-1.114	-1.278	-1.071	-1.254
N1	-1.12	-1.194	-1.181	-1.139	-1.187	-1.171	-1.356	-1.130	-1.331
N3	-1.10	-1.165	-1.154	-1.117	-1.155	-1.144	-1.323	-1.100	-1.291
C2	0.68	0.638	0.634	0.601	0.612	0.645	0.786	0.614	0.713
C4	0.28	0.392	0.422	0.415	0.455	0.357	0.473	0.341	0.464
C4'	-0.21	-0.002	0.062	0.077	0.067	-0.072	0.052	-0.063	0.042
C5	-0.13	-0.008	-0.026	-0.016	-0.043	0.072	0.176	0.070	0.151
C5'	1.27	1.540	1.603	1.560	1.451	1.525	1.700	1.465	1.658
C6	0.24	0.405	0.408	0.392	0.414	0.303	0.264	0.305	0.283
C6'	0.08	0.018	0.085	0.103	0.103	-0.036	0.109	-0.029	0.099
C7	0.23	0.460	0.533	0.527	0.501	0.412	0.534	0.396	0.509
C8	0.05	0.022	0.085	0.099	0.092	-0.051	0.077	-0.044	0.069
H1	0.49	0.426	0.433	0.419	0.443	0.420	0.431	0.411	0.428
H3	0.43	0.420	0.425	0.410	0.431	0.414	0.421	0.404	0.419
H4	0.10	0.056	0.031	0.026	0.035	0.083	0.056	0.080	0.063
H41'	0.15	0.031	0.009	0.003	0.010	0.057	0.021	0.055	0.021
H42'	0.15	0.004	-0.018	-0.024	-0.017	0.029	-0.011	0.024	-0.007
H43'	0.16	0.010	-0.013	-0.019	-0.012	0.035	-0.006	0.031	-0.001
H61'	0.04	0.055	0.030	0.022	0.041	0.081	0.053	0.074	0.054
H62'	0.01	0.009	-0.013	-0.020	-0.011	0.034	-0.001	0.029	0.003
H63'	0.04	0.062	0.037	0.030	0.052	0.084	0.057	0.082	0.065
H71	0.11	0.041	0.015	0.012	0.019	0.065	0.035	0.064	0.041
H72	0.12	0.038	0.013	0.009	0.016	0.063	0.032	0.061	0.039
H81	0.07	0.014	-0.010	-0.015	-0.004	0.039	0.001	0.036	0.005
H82	0.06	0.010	-0.013	-0.018	-0.008	0.036	-0.003	0.033	0.000
H83	0.07	0.014	-0.009	-0.014	-0.011	0.040	0.000	0.037	0.002

2.7 Molecule 7

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
0	-1.177	-1.201	-1.235	-1.213	-1.152	-1.205	-1.325	-1.181	-1.164
С	1.667	1.862	1.884	1.835	1.691	1.846	2.114	1.789	1.796
N	-1.214	-1.128	-1.130	-1.091	-1.070	-1.101	-1.181	-1.070	-1.106
H1	0.482	0.410	0.414	0.401	0.412	0.400	0.403	0.393	0.404
H2	0.493	0.387	0.391	0.378	0.388	0.381	0.383	0.373	0.386

2.8 Molecule 8

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
N	0.72	0.746	0.782	0.771	0.613	0.742	0.797	0.708	0.656
0	-0.36	-0.373	-0.391	-0.385	-0.306	-0.371	-0.398	-0.354	-0.328

2.9 Molecule 9

atom	expt. charge	mean expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
к	0.90	0.900	0.928	0.929	0.923	0.967	0.962	0.968	0.958	0.958
Mn	1.60	1.600	1.917	2.043	1.996	2.026	1.958	2.224	1.915	1.948
02	-0.70	-0.625	-0.615	-0.650	-0.639	-0.647	-0.632	-0.701	-0.624	-0.532
O3	-0.60	-0.625	-0.807	-0.837	-0.820	-0.850	-0.829	-0.895	-0.813	-0.920

2.10 Molecule 10

atom	expt. charge	mean expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
К	0.7	0.700	0.938	0.938	0.931	0.973	0.962	0.970	0.956	0.940
CI	2.2	2.200	2.627	2.731	2.672	2.191	2.485	2.545	2.214	2.553
01	-0.8	-0.725	-0.904	-0.907	-0.889	-0.750	-0.840	-0.862	-0.756	-0.854
O2, O3	-0.7	-0.725	-0.879	-0.928	-0.913	-0.833	-0.884	-0.896	-0.830	-0.893

2.11 Molecule 11

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
S1	0.203	0.219	0.223	0.225	0.386	0.231	(a)	0.220	0.249
S2	0.070	0.171	0.172	0.177	0.320	0.181		0.168	0.223
P1	0.636	1.030	1.042	1.047	0.993	0.988		0.990	1.040
N1	-1.133	-1.242	-1.235	-1.194	-1.245	-1.202		-1.160	-1.168
N2	-1.210	-1.194	-1.165	-1.141	-1.097	-1.197		-1.159	-1.106
C1	-0.057	-0.209	-0.226	-0.243	-0.283	-0.202		-0.211	-0.273
C2	-0.157	-0.155	-0.157	-0.155	-0.280	-0.183		-0.174	-0.196
C3	-0.092	0.008	0.028	0.032	0.050	-0.009		-0.008	-0.027
C4	-0.148	-0.009	0.005	0.010	0.001	-0.032		-0.032	-0.054
C5	-0.163	-0.006	0.011	0.014	0.012	-0.036		-0.035	-0.046
C6	-0.136	-0.002	0.013	0.018	0.018	-0.005		-0.007	-0.034
C7	0.314	0.412	0.412	0.403	0.397	0.351		0.350	0.364
C8	0.046	-0.046	-0.066	-0.080	-0.182	-0.027		-0.046	-0.145
C9	-0.148	-0.178	-0.180	-0.178	-0.304	-0.217		-0.204	-0.226
C10	-0.080	0.002	0.022	0.027	0.042	-0.017		-0.015	-0.034
C11	-0.171	-0.014	0.002	0.006	-0.001	-0.042		-0.042	-0.059
C12	-0.133	-0.016	0.002	0.006	-0.002	-0.047		-0.045	-0.057
C13	-0.098	-0.014	0.003	0.008	0.012	-0.032		-0.030	-0.049
C14	0.283	0.421	0.412	0.403	0.363	0.407		0.400	0.396
H1	0.778	0.517	0.526	0.510	0.565	0.498		0.487	0.508
H3	0.163	0.047	0.028	0.022	0.040	0.083		0.078	0.094
H4	0.180	0.037	0.018	0.012	0.027	0.073		0.069	0.085
H5	0.161	0.037	0.018	0.012	0.028	0.073		0.069	0.083
H6	0.188	0.045	0.026	0.020	0.037	0.081		0.076	0.095
H10	0.164	0.041	0.022	0.016	0.034	0.077		0.072	0.090
H11	0.194	0.030	0.012	0.005	0.020	0.066		0.062	0.080
H12	0.177	0.029	0.010	0.004	0.019	0.065		0.061	0.078
H13	0.181	0.038	0.018	0.012	0.030	0.073		0.068	0.090

Note: (a) This molecule proved to be intractable using Method 6.

2.12 Molecule 12

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
S	1.759	2.072	2.180	2.139	1.979	2.153	2.420	2.117	2.162
0	-1.255	-1.289	-1.337	-1.315	-1.226	-1.328	-1.452	-1.265	-1.212
С	0.893	1.142	1.131	1.110	1.043	1.131	1.275	1.084	0.993
N	-1.452	-1.209	-1.221	-1.184	-1.219	-1.183	-1.292	-1.166	-1.194
H1	0.671	0.414	0.419	0.404	0.431	0.407	0.417	0.387	0.386
H2	0.707	0.476	0.483	0.470	0.502	0.461	0.480	0.443	0.442

2.13 Molecule 13

atom	expt. charge 1	expt. charge 2	mean expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
N1	-0.229	-0.092	-0.161	-0.256	-0.248	-0.239	-0.225	-0.224	-0.203	-0.206	-0.195
N2	0.648	0.639	0.644	0.667	0.704	0.692	0.555	0.655	0.687	0.622	0.638
N3	0.709	0.594	0.652	0.693	0.732	0.720	0.569	0.673	0.706	0.637	0.660
02	-0.604	-0.525	-0.565	-0.597	-0.616	-0.608	-0.563	-0.585	-0.616	-0.569	-0.600
01	-0.472	-0.575	-0.524	-0.450	-0.469	-0.467	-0.391	-0.440	-0.461	-0.424	-0.441
O3	-0.422	-0.639	-0.531	-0.534	-0.555	-0.549	-0.500	-0.555	-0.594	-0.543	-0.569
04	-0.341	-0.590	-0.466	-0.445	-0.464	-0.460	-0.392	-0.437	-0.460	-0.424	-0.438
N6	-0.981	-1.134	-1.058	-1.219	-1.193	-1.166	-1.073	-1.259	-1.424	-1.220	-1.358
C1	1.385	1.296	1.341	1.604	1.571	1.532	1.411	1.613	1.856	1.558	1.803
C2	1.418	1.296	1.357	1.614	1.582	1.543	1.419	1.609	1.863	1.550	1.801
N5	-1.410	-1.167	-1.289	-1.168	-1.172	-1.134	-1.131	-1.139	-1.241	-1.103	-1.241
N4	-1.355	-1.287	-1.321	-1.156	-1.159	-1.121	-1.097	-1.117	-1.209	-1.086	-1.206
N7	-1.435	-1.167	-1.301	-1.146	-1.150	-1.113	-1.099	-1.114	-1.201	-1.081	-1.183
N8	-1.320	-1.287	-1.304	-1.188	-1.193	-1.153	-1.156	-1.160	-1.262	-1.127	-1.246
H3	0.636	0.623	0.630	0.471	0.479	0.466	0.486	0.459	0.475	0.452	0.478
H4	0.552	0.619	0.586	0.435	0.441	0.428	0.445	0.424	0.430	0.415	0.435
H2	0.568	0.635	0.602	0.492	0.500	0.486	0.507	0.462	0.477	0.454	0.483
H1	0.469	0.602	0.536	0.422	0.427	0.414	0.425	0.415	0.420	0.407	0.423
H6	0.591	0.668	0.630	0.411	0.417	0.404	0.415	0.401	0.406	0.393	0.406
H5	0.578	0.619	0.599	0.434	0.439	0.426	0.447	0.424	0.431	0.416	0.430
H8	0.536	0.635	0.586	0.418	0.422	0.409	0.431	0.401	0.407	0.392	0.410
H7	0.481	0.602	0.542	0.497	0.506	0.492	0.516	0.493	0.515	0.486	0.508

2.14 Molecule 14

atom	expt. charge 1	expt. charge 2	mean expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
S1	-0.150	-0.200	-0.175	-0.052	-0.072	-0.060	-0.090	-0.069	-0.037	-0.064	-0.007
N1	-0.680	-0.810	-0.745	-0.674	-0.671	-0.650	-0.621	-0.661	-0.648	-0.652	-0.675
N2	-1.100	-0.980	-1.040	-0.799	-0.792	-0.764	-0.799	-0.784	-0.881	-0.752	-0.757
N3	-1.150	-1.160	-1.155	-1.198	-1.188	-1.150	-1.188	-1.180	-1.351	-1.140	-1.170
C1	0.910	0.860	0.885	0.671	0.670	0.638	0.631	0.675	0.807	0.640	0.582
C2	-0.100	0.080	-0.010	0.372	0.439	0.440	0.453	0.291	0.465	0.285	0.273
H2	0.470	0.450	0.460	0.415	0.420	0.405	0.425	0.404	0.413	0.393	0.400
H3	0.440	0.400	0.420	0.425	0.429	0.415	0.446	0.422	0.433	0.413	0.435
H12	0.400	0.410	0.405	0.364	0.363	0.350	0.345	0.357	0.353	0.349	0.355
H11	0.360	0.380	0.370	0.371	0.370	0.357	0.356	0.367	0.365	0.360	0.371
H21	0.340	0.140	0.240	0.017	-0.008	-0.012	-0.006	0.041	0.006	0.039	0.048
H22	0.010	0.240	0.125	0.043	0.020	0.014	0.022	0.066	0.034	0.064	0.070
H23	0.300	0.170	0.235	0.044	0.021	0.015	0.023	0.071	0.041	0.065	0.073

2.15 Molecule 15

atom	expt. charge	mean expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
Mn1	1.084	1.084	0.827	0.883	0.908	0.864	0.890	(a)	0.936	1.153
01	-1.159	-1.159	-1.148	-1.187	-1.164	-1.127	-1.160		-1.139	-1.021
02, 03, 04, 05	-1.183, -1.240, -1.232, -1.188	-1.211	-1.143	-1.180	-1.157	-1.129	-1.157		-1.136	-1.034
C1	0.941	0.941	0.987	1.014	0.989	0.993	0.984		0.955	0.692
C2, C3, C4, C5	1.017, 0.928, 1.049, 1.013	1.002	0.977	1.003	0.975	0.947	0.978		0.948	0.828

Note: (a) This molecule proved to be intractable using Method 6.

2.16 Molecule 16

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
01	-1.227	-1.202	-1.237	-1.216	-1.158	-1.202	-1.323	-1.179	-1.301
02	-1.015	-1.109	-1.150	-1.120	-1.084	-1.111	-1.269	-1.073	-1.246
O3	-1.303	-1.165	-1.201	-1.181	-1.123	-1.168	-1.293	-1.148	-1.273
04	-1.063	-1.108	-1.149	-1.119	-1.082	-1.111	-1.269	-1.070	-1.244
O5	-1.349	-1.166	-1.202	-1.182	-1.125	-1.170	-1.296	-1.151	-1.276
N1	-1.222	-1.170	-1.166	-1.127	-1.159	-1.150	-1.325	-1.103	-1.296
N2	-1.224	-1.145	-1.140	-1.102	-1.125	-1.124	-1.291	-1.087	-1.256
C1	1.901	1.882	1.903	1.851	1.754	1.871	2.166	1.809	2.106
C2	0.200	0.389	0.415	0.413	0.443	0.369	0.500	0.357	0.487
C3	-0.208	0.037	0.079	0.091	0.100	-0.003	0.093	0.004	0.085
C4	0.132	0.400	0.427	0.424	0.457	0.376	0.510	0.367	0.496
C5	1.622	1.581	1.642	1.604	1.470	1.566	1.739	1.524	1.697
C6	0.021	0.446	0.538	0.535	0.498	0.383	0.541	0.367	0.514
C7	1.516	1.555	1.617	1.580	1.440	1.541	1.707	1.500	1.662
C8	0.111	0.447	0.539	0.536	0.499	0.385	0.543	0.368	0.515
H01	0.607	0.436	0.442	0.429	0.457	0.427	0.439	0.418	0.437
H02	0.598	0.412	0.415	0.401	0.421	0.406	0.413	0.397	0.409
H2	0.166	0.046	0.020	0.014	0.028	0.065	0.033	0.071	0.044
H3A	0.127	0.050	0.025	0.018	0.039	0.077	0.049	0.068	0.052
H3B	0.106	0.034	0.009	0.003	0.015	0.061	0.027	0.057	0.035
H4	0.199	0.050	0.023	0.017	0.041	0.076	0.050	0.073	0.059
H6A	0.234	0.046	0.019	0.017	0.032	0.068	0.037	0.067	0.041
H6B	0.215	0.054	0.029	0.026	0.035	0.076	0.047	0.075	0.053
H6C	0.235	0.053	0.029	0.025	0.034	0.076	0.046	0.076	0.054
H8A	0.186	0.048	0.024	0.021	0.028	0.073	0.042	0.071	0.048
H8B	0.219	0.046	0.019	0.016	0.033	0.068	0.037	0.067	0.043
H8C	0.216	0.054	0.029	0.026	0.035	0.075	0.046	0.075	0.054

2.17 Molecule 17

atom	expt. charge	method 1	method 2	method 3	method 4	method 5	method 6	method 7	method 8
01	-1.060	-1.169	-1.201	-1.181	-1.134	-1.171	-1.294	-1.147	-1.119
N1	-0.930	-1.157	-1.129	-1.107	-1.040	-1.152	-1.322	-1.117	-1.068
N2	-0.910	-0.821	-0.819	-0.787	-0.824	-0.810	-0.930	-0.778	-0.810
N3	-0.750	-0.637	-0.638	-0.617	-0.560	-0.622	-0.598	-0.615	-0.629
C1	-0.110	-0.017	-0.001	0.006	0.003	-0.033	0.022	-0.030	-0.055
C2	0.070	-0.031	-0.028	-0.024	-0.034	-0.055	-0.091	-0.043	-0.048
C3	-0.110	-0.044	-0.025	-0.016	-0.024	-0.068	-0.023	-0.063	-0.088
C4	0.290	0.543	0.548	0.538	0.481	0.510	0.613	0.492	0.456
C5	0.210	0.534	0.540	0.532	0.473	0.498	0.594	0.481	0.447
C6	1.120	1.439	1.468	1.431	1.336	1.424	1.621	1.374	1.368
H1	0.170	0.078	0.060	0.054	0.079	0.113	0.099	0.110	0.124
H2	0.560	0.408	0.412	0.399	0.417	0.402	0.406	0.393	0.411
H3	0.190	0.039	0.021	0.015	0.040	0.077	0.057	0.071	0.094
H4	0.170	0.045	0.025	0.019	0.046	0.079	0.062	0.075	0.091
H5	0.150	0.048	0.027	0.022	0.048	0.081	0.064	0.078	0.093
H3A	0.390	0.366	0.365	0.353	0.341	0.360	0.355	0.352	0.363
НЗВ	0.420	0.375	0.375	0.364	0.350	0.368	0.366	0.367	0.371

3. Graphs of Calculated Versus Observed Charges

4. Data for fluorides XF_n^{m-1}

Table S1. Data for graph shown in Fig. 1

species	explicit Rb	implicit Rb	ΔH kcal/mol	T∆S kcal/mol	ΔG (Rb.F) kcal/mol	ΔG (X-F) kcal/mol	γ(X)
XeF2	0	0	47.38	15.2	0	16.1	7.54
SF2	0	0	156.78	14.6	0	71.1	5.51
KrF2	0	0	12.08	15.4	0	-1.7	7.99
SeF2	0	0	151.89	14.4	0	68.8	5.67
Rb+ [F3]-	0	1	41.7	16.7	-3	11.1	8.11
Rb+ [CIF2]-	0	1	85.5	15.8	-3	33.4	7.42
Rb+ [BrF2]-	0	1	97.31	17.8	-3	38.3	7.19
Rb+ [IF2]-	0	1	110.38	15.7	-3	45.9	6.94
OF2	0	0	84	14.9	0	34.6	7.45
XeF3	0	0	50.29	20.8	0	9.8	8.11
PF3	0	0	329.94	23.8	0	102.1	3.29
SF3	0	0	204.98	22.6	0	60.8	5.37
CIF3	0	0	96.43	23.5	0	24.3	7.39
AsF3	0	0	300.57	23.2	0	92.4	4.06
SbF3	0	0	298.98	22.7	0	92.1	3.76
BrF3	0	0	126.33	23.2	0	34.4	6.86
IF3	0	0	162.62	22.0	0	46.9	6.29
AIF3	0	0	392.46	23.5	0	123.0	0.81
BF3	0	0	448.9	23.8	0	141.7	1.07
NF3	0	0	194.32	24.1	0	56.8	6.26
XeF4	0	0	84.03	30.6	0	13.4	7.45
Rb+ [AIF4]-	0	1	493.71	32.5	-3	114.6	0.78
Rb+ [PF4]-	0	1	363.96	33.0	-3	82.0	3.48
Rb+ [AsF4]-	0	1	345.04	32.2	-3	77.5	4.08
Rb+ [SbF4]-	0	1	357.36	31.6	-3	80.7	3.79
SiF4	0	0	521.99	33.3	0	122.2	1.34
GeF4	0	0	415.05	32.0	0	95.8	2.84
SF4	0	0	283.45	33.0	0	62.6	4.97
SeF4	0	0	286.31	32.4	0	63.5	5.25
TeF4	0	0	315.8	31.8	0	71.0	4.72
Rb+ [CIF4]-	0	1	145.47	32.3	-3	27.6	7.50
Rb+ [BrF4]-	0	1	185.16	32.5	-3	37.5	6.90
Rb+ [IF4]-	0	1	226.01	32.2	-3	47.8	6.26
Rb+ [BF4]-	0	1	515.95	33.7	-3	119.8	1.05
CF4	0	0	458.67	34.3	0	106.1	2.91
CIF5	0	0	123.93	42.9	0	16.2	8.10
PF5	0	0	493.05	42.8	0	90.1	2.29
AsF5	0	0	418	42.0	0	75.2	3.92
SbF5	0	0	424.53	40.7	0	76.8	3.44
SF5	0	0	312.41	43.0	0	53.9	5.07

species	explicit Rb	implicit Rb	ΔH kcal/mol	T∆S kcal/mol	ΔG (Rb.F) kcal/mol	ΔG (X-F) kcal/mol	γ(X)
Rb+ [SF5]-	0	1	328.61	42.1	-3	56.7	5.47
Rb+ [SeF5]-	0	1	346.47	42.4	-3	60.3	5.28
Rb+ [TeF5]-	0	1	388.83	41.8	-3	68.8	4.68
BrF5	0	0	188.3	42.6	0	29.1	7.02
IF5	0	0	267.15	41.8	0	45.1	5.94
Rb+ [XeF5]-	0	1	131.9	40.0	-3	17.8	7.55
XeF6	0	0	105.51	47.0	0	9.7	7.72
Rb+ [PF6]-	0	1	572.61	55.1	-3	85.8	2.30
Rb+ [AsF6]-	0	1	507.36	54.1	-3	75.1	3.77
Rb+[SbF6]-	0	1	531.61	52.6	-3	79.4	3.25
Rb+ Rb[SiF6]-	1	1	719.92	60.4	-4	109.2	1.30
Rb+ Rb[SnF6]-	1	1	639.82	45.8	-4	98.3	2.30
Rb+ Rb2[GaF6]-	2	1	673.14	42.2	-6	104.2	1.80
SF6	0	0	396.67	53.2	0	57.2	4.37
SeF6	0	0	382.59	54.1	0	54.7	5.37
TeF6	0	0	434.9	52.7	0	63.7	4.52
Rb+ [CIF6]-	1	1	173.84	46.9	-4	20.4	8.19
Rb+ Rb[SeF6]-	1	1	475.5	55.8	-4	69.2	5.26
Rb+ [BrF6]-	0	1	249.41	49.1	-3	32.9	7.09
Rb+ [IF6]-	0	1	323.74	45.6	-3	45.9	5.94
Rb+ Rb[XeF6]-	1	1	257.72	55.0	-4	33.1	7.57
IF7	0	0	311.82	60.3	0	35.9	6.25
Rb+ [TeF7]-	0	1	494.72	60.1	-3	61.7	4.56
Rb+ Rb[SbF7]-	1	1	650.82	67.6	-4	82.7	3.26
Rb+ [XeF7]-	0	1	172.36	58.0	-3	15.9	7.72
Rb+ Rb[XeF8]-	1	1	308.26	75.8	-4	28.5	7.77

Table S1 continued

Best fit parabolic curve:

 $\gamma = 8.57 - 0.04735(\Delta G) - 0.0001364(\Delta G)^2$ RMS: 0.581

Data for individual fluorides

4.1 XeF₂

Geometry: linear, Xe-F 2.032 Å Thermodynamics: H -7433.686202 Hartree S 61.839 cal mol⁻¹ K⁻¹ Charges: Xe +1.230 F -0.615 Reference: H. St. A. Elliott *et al., Inorg. Chem.* 2010, **49**, 8504–8523.

4.2 SF₂

Geometry: F-S-F angle 98.5°, S-F 1.619 Å Thermodynamics: H -597.736485 Hartree S 61.748 cal mol⁻¹ K⁻¹ Charges: S +1.244 F -0.622 Reference: B. Brupbacher-Gatehouse, *J. Mol. Struct.*, 2001, **599**, p. 51 - 55.

4.3 KrF₂

Geometry: linear, Kr-F 1.903 Å Thermodynamics: H -2952.762186 Hartree S 59.701 cal mol⁻¹ K⁻¹ Charges: QTAIM NBO Hirshfeld Mulliken +1.003+1.027 +0.441 +0.828Kr -0.502-0.514 -0.221-0.414ਜ Reference: C. Murchison et al., J. Am. Chem. Soc., 1968, 90, 5690 - 5690.

4.4 SeF₂

Geometry: F-Se-F angle 97.9°, Se-F 1.772 Å Thermodynamics: H -2600.747516 Hartree S 65.310 cal mol⁻¹ K⁻¹ Charges: Se +1.165 F -0.583 Reference: G. D. Brabson *et al.*, *Chem. Phys. Lett.*, 1996 , **254**, 94 - 97.

4.5 [F₃]⁻

Geometry: linear, F-F 1.716 Å Thermodynamics: H -299.365692Hartree S 58.763 cal mol⁻¹ K⁻¹ Charges: central F -0.056 terminal F -0.472 Reference: B. S. Ault and L. Andrews, *J. Am. Chem. Soc.*, **98**, 1591-1593.

4.6 [CIF₂]⁻

Geometry: linear, CI-F 1.886 Å Thermodynamics: H -659.798921 Hartree S 58.638 cal mol⁻¹ K⁻¹ Charges: CI +0.291 F -0.645 Reference: K. O. Christie and J. P. Guertin, *Inorg. Chem.*, 1965, **4**, p. 905 - 908.

4.7 [BrF₂]⁻

Geometry: linear, Br-F 1.995 Å Thermodynamics: H -2773.408934 Hartree S 54.335 cal mol⁻¹ K⁻¹ Charges: Br +0.405 F -0.702 Reference: R. Minkwitz *et al., Inorg. Chem.,* 1997 , **36**, 4280 - 4283.

4.8 [IF₂]⁻

Geometry: linear, I-F 2.131 Å Thermodynamics: H -7119.739523 Hartree S 62.844 cal mol⁻¹ K⁻¹ Charges: +0.531 F -0.865 Reference: K. O. Christe, *J. Am. Chem. Soc.*, 1998 , **120**, 4711 - 4716.

4.9 OF₂

Geometry: F-O-F angle 103.9°, O-F 1.394 Å Thermodynamics: H -274.623018 Hartree S 58.845 cal mol⁻¹ K⁻¹ Charges: O 0.273 F -0.136 (well known)

4.10 XeF₃

Geometry: T-shaped, F-Xe-F angle 90.3°, Xe-F (central) 2.427 Å, Xe-F (outer) 2.015 Å Thermodynamics: H -7533.409379 Hartree S 90.251 cal mol⁻¹ K⁻¹ Charges: Xe +1.444 F(central) -0.256 F(outer) -0.594 Reference: E. Y. Misochko *et al., Inorg. Chem.,* 2009, **48**, 8723 - 8728.

4.11 PF₃

Geometry: pyramidal, F-P-F 97.2°, P-F 1.597 Å Thermodynamics: H -640.884995 Hartree S 67.763 cal mol⁻¹ K⁻¹ Charges: P +2.353 F -0.784 (well known)

4.12 SF₃

Geometry: T-shaped, F-S-F angle 88.0°, S-F (central) 1.598 Å, S-F (outer) 1.691 Å Thermodynamics: H -697.531833 Hartree S 71.099 cal mol⁻¹ K⁻¹ Charges: S +1.816 F(central) -0.608 F(outer) -0.604 Reference: T. Kiang and R. N. Zare, *J. Am. Chem. Soc.*, 1980, **102**, 4024-4029.

4.13 CIF₃

Geometry: T-shaped, F-CI-F angle 87.2°, CI-F (central) 1.633 Å, CI-F (outer) 1.732 Å Thermodynamics: H -759.393001 Hartree S 67.653 cal mol⁻¹ K⁻¹ Charges: CI +1.304 F(central) -0.336 F(outer) -0.484 (well known)

4.14 AsF₃

Geometry: pyramidal, F-As-F angle 96.1°, As-F 1.753 Å Thermodynamics: H -2535.035168 Hartree S 72.123 cal mol⁻¹ K⁻¹ Charges: As +1.970 F -0.656 (well known)

4.15 SbF₃

Geometry: pyramidal, F-Sb-F angle 94.4°, Sb-F 1.942 Å Thermodynamics: H -6615.021862 Hartree S 75.427 cal mol⁻¹ K⁻¹ Charges: Sb +2.119 F -0.707 (well known)

4.16 BrF₃

Geometry: T-shaped, F-Br-F 86.2°, Br-F (central) 1.767 Å, Br-F (outer) 1.847 Å Thermodynamics: H -2873.029486 Hartree S 70.959 cal mol⁻¹ K⁻¹ Charges: Br +1.569 F(central) -0.442 F(outer) -0.564 (well known)

4.17 IF₃

 Geometry: T-shaped, F-I-F 83.4°, I-F (central) 1.930 Å, I-F (outer) 1.994 Å

 Thermodynamics: H -7219.397077 Hartree
 S 73.466 cal mol⁻¹ K⁻¹

 Charges: I +1.854
 F(central) -0.564 F(outer) -0.644

 Reference: S. Hoyer and K. Seppelt, Angew. Chem. Int. Ed., 2000, **39**, 1448-1449.

4.18 AIF₃

 Geometry: trigonal planar, Al-F 1.659 Å

 Thermodynamics: H -542.093337 Hartree
 S 66.698 cal mol⁻¹ K⁻¹

 Charges: Al +2.593
 F -0.865

 (well known)
 F

4.19 BF₃

Geometry: trigonal planar, B-F 1.322 Å Thermodynamics: H -324.513652 Hartree S 63.136 cal mol⁻¹ K⁻¹ Charges: B +2.463 F -0.821 (well known)

4.20 NF₃

Geometry: pyramidal, F-N-F 102.1°, N-F 1.371 Å Thermodynamics: H -354.038067 Hartree S 64.322 cal mol⁻¹ K⁻¹ Charges: N +0.870 F -0.290 (well known)

4.21 XeF₄

Geometry: square planar, Xe-F 2.001 Å Thermodynamics: H -7633.182049 Hartree S 82.668 cal mol⁻¹ K⁻¹ Charges: Xe +2.273 F -0.568 (well known)

4.22 [AIF₄]⁻

Geometry: tetrahedral, Al-F 1.717 Å Thermodynamics: H -642.117464 Hartree S 74.062 cal mol⁻¹ K⁻¹ Charges: Al +2.612 F -0.903 (well known)

4.23 [PF₄]⁻

Geometry: seesaw, F-As-F (ax-eq) 86.7°, (eq-eq) 98.7°, As-F (ax) 1.780 Å, As-F (eq) 1.647 Å Thermodynamics: H -740.801974 Hartree S 74.383 cal mol⁻¹ K⁻¹ Charges: P +2.260 F (ax) -0.820 F (eq) -0.809 Reference: K. O. Christe *et al., J. Am. Chem. Soc.,* 1994, **116**, 2850-2858.

4.24 [AsF₄]⁻

Geometry: seesaw, F-As-F (ax-eq) 86.6°, (eq-eq) 99.2° As-F (ax) 1.919 Å, As-F (eq) 1.798 Å Thermodynamics: H -2634.968804 Hartree S 79.534 cal mol⁻¹ K⁻¹ Charges: As +1.962 F(ax) -0.775 F(eq) -0.706 Reference: P. Klampfer *et al.*, *Coll. Czech. Chem. Comm.*, 2004, **69**, 339-350.

4.25 [SbF₄]⁻

Geometry: seesaw, F-Sb-F (ax-eq) 83.3°, (eq-eq) 103.6° Sb-F (ax) 2.051 Å, Sb-F (eq) 1.982 Å Thermodynamics: H -6714.977668 Hartree S 82.977 cal mol⁻¹ K⁻¹ Charges: Sb +2.103 F(ax) -0.795 F(eq) -0.756 Reference: V. Y. Kavun *et al.*, *Russ. J. Inorg. Chem.*, 2003, **48**, 874-879.

4.26 SiF₄

Geometry: tetrahedral, Si-F 1.582 Å Thermodynamics: H -689.021694 Hartree Charges: Si +3.332 F -0.833 (well known)

4.27 GeF₄

Geometry: tetrahedral, Ge-F 1.721 Å Thermodynamics: H -2476.061106 Hartree S 78.316 cal mol⁻¹ K⁻¹ Charges: Ge +2.581 F -0.645 (well known)

4.28 SF₄

Geometry: seesaw, F-S-F (ax-eq) 87.5°, (eq-eq) 101.4° S-F (ax) 1.681 Å, S-F (eq) 1.583 Å Thermodynamics: H -797.375423 Hartree S 72.381 cal mol⁻¹ K⁻¹ Charges: S +2.515 F(ax) -0.633 F(eq) -0.624 (well known)

S 71.065 cal mol⁻¹ K⁻¹

4.29 SeF₄

Geometry: seesaw, F-Se-F (ax-eq) 86.5°, (eq-eq) 101.4° Se-F (ax) 1.812 Å, Se-F (eq) 1.733 Å Thermodynamics: H -2800.398804 Hartree S 77.104 cal mol⁻¹ K⁻¹ Charges: Se +2.375 F(ax) -0.631 F(eq) -0.556 Reference: K. O. Christe *et al., J. Am. Chem. Soc.* 2001, **123**, 6338-6348.

4.30 TeF₄

Geometry: seesaw, F-Te-F (ax-eq) 83.0°, (eq-eq) 106.7° Te-F (ax) 1.959 Å, Se-F (eq) 1.914 Å Thermodynamics: H -7013.118518 Hartree S 80.785 cal mol⁻¹ K⁻¹ Charges: Te +2.641 F(ax) -0.682 F(eq) -0.639 Reference: S. A. Shlykov, *Dalton Trans.*, 2010, **39**, 3245-3255.

4.31 [CIF₄]-

Geometry: square planar, CI-F 1.900 Å Thermodynamics: H -859.331558 Hartree S 75.458 cal mol⁻¹ K⁻¹ Charges: CI +1.249 F -0.562 Reference: K. O. Christe and J. P. Guertin, *Inorg. Chem.*, 1966, **5**, 473–476.

4.32 [BrF₄]⁻

Geometry: square planar, Br-F 1.931 Å Thermodynamics: H -2972.986018 Hartree S 77.329 cal mol⁻¹ K⁻¹ Charges: Br +1.551 F -0.637 Reference: V. F. Sukhoverkhov and J. Moltasova, *Russ. J. Inorg. Chem.*, 1980, **25**, 1671 - 1673.

4.33 [IF₄]⁻

Geometry: square planar, I-F 2.074 Å Thermodynamics: H -7319.360866 Hartree S 79.915 cal mol⁻¹ K⁻¹ Charges: I +1.872 F -0.718 Reference: K. O. Christe and D. Naumann, *Inorg. Chem.*, 1973, **12**, 59-62.

4.34 [BF₄]⁻

Geometry: tetrahedral, B-F 1.417 Å Thermodynamics: H -424.483280 Hartree S 67.359 cal mol⁻¹ K⁻¹ Charges: B +2.475 F -0.869 (well known)

4.35 CF₄

Geometry: tetrahedral, C-F 1.325 Å Thermodynamics: H -437.436947 Hartree S 65.248 cal mol⁻¹ K⁻¹ Charges: C +2.545 F -0.636 (well known)

4.36 CIF₅

Geometry: square pyramidal, F-CI-F (ax-eq) 85.8° CI-F (ax) 1.650 Å, CI-F (eq) 1.704 Å Thermodynamics: H -958.873904 Hartree S 74.796 cal mol⁻¹ K⁻¹ Charges: CI +1.948 F(ax) -0.301 F(eq) -0.412 Reference: G. M. Begun *et al., J. Chem. Phys*, 1965, **42**, 2236-2242.

4.37 PF₅

Geometry: trigonal bipyramidal, P-F (ax) 1.598 Å, P-F (eq) 1.564 Å Thermodynamics: H -840.581998 Hartree S 76.261 cal mol⁻¹ K⁻¹ Charges: P +3.853 F(ax) -0.779 F(eq) -0.765 (well known)

4.38 AsF₅

Geometry: trigonal bipyramidal, As-F (ax) 1.733 Å, As-F (eq) 1.711 Å Thermodynamics: H -2734.659378 Hartree Charges: As +3.041 F(ax) -0.624 (well known)

4.39 SbF₅

Geometry: trigonal bipyramidal, Sb-F (ax) 1.911 Å, Sb-F (eq) 1.902 Å Thermodynamics: H -6814.659009 Hartree Charges: Sb +3.281 F(ax) -0.663 (well known)

4.40 SF5

Geometry: square pyramidal, F-S-F (ax-eq) 91.6°S-F (ax) 1.572 Å, S-F (eq) 1.642 ÅThermodynamics: H -897.140110 HartreeS 74.925 cal mol⁻¹ K⁻¹Charges: S +2.964F(ax) -0.638F(eq) -0.581Reference: P. Hassanzadeh and L. Andrews, J. Phys. Chem., 1992, **96**, 79-84.

S 81.567 cal mol⁻¹ K⁻¹

S 87.438 cal mol-1 K-1

F(eq) -0.597

F(eq) -0.651

4.41 [SF₅]⁻

Geometry: square pyramidal, F-S-F (ax-eq) 85.3° S-F (ax) 1.626 Å, S-F (eq) 1.764 Å Thermodynamics: H -897.310162 Hartree S 79.430 cal mol⁻¹ K⁻¹ Charges: S +2.263 F(ax) -0.648 F(eq) -0.654 Reference: J. Bittner, *Z. Anorg. Allg. Chem.*, 1988, **557**, 182-190.

4.42 [SeF₅]⁻

Geometry: square pyramidal, F-Se-F (ax-eq) 85.0° Se-F (ax) 1.767 Å, Se-F (eq) 1.881 Å Thermodynamics: H -2900.357439 Hartree S 81.298 cal mol⁻¹ K⁻¹ Charges: Se +2.362 F(ax) -0.607 F(eq) -0.689 Reference: K. O. Christe *et al.*, *J. Fluor. Chem.*, 2010, **131**, 791-799.

4.43 [TeF₅]⁻

Geometry: square pyramidal, F-Te-F (ax-eq) 82.0° Te-F (ax) 1.939 Å, Te-F (eq) 2.019 Å Thermodynamics: H -7113.097675 Hartree S 84.594 cal mol⁻¹ K⁻¹ Charges: Te +2.658 F(ax) -0.690 F(eq) -0.742 Reference: W. Abriel, *Mater. Res. Bull.*, 1989, **24**, 1515-1519.

4.44 BrF₅

Geometry: square pyramidal, F-Br-F (ax-eq) 84.9° Br-F (ax) 1.759 Å, Br-F (eq) 1.811 Å Thermodynamics: H -3072.565323 Hartree S 78.222 cal mol⁻¹ K⁻¹ Charges: Br +2.489 F(ax) -0.425 F(eq) -0.516 Reference: G. M. Begun *et al.*, *J. Chem. Phys.*, 1965, **42**, 2236-2242.

4.45 IF₅

Geometry: square pyramidal, F-I-F (ax-eq) 82.1° I-F (ax) 1.903 Å, I-F (eq) 1.947 Å Thermodynamics: H -7419.000736 Hartree S 82.223 cal mol⁻¹ K⁻¹ Charges: I +3.029 F(ax) -0.566 F(eq) -0.615 Reference: G. M. Begun *et al.*, *J. Chem. Phys.*, 1965, **42**, 2236-2242.

4.46 [XeF₅]⁻

Geometry: pentagonal planar, Xe-F 2.083 Å Thermodynamics: H -7733.120742 Hartree S 88.438 cal mol⁻¹ K⁻¹ Charges: Xe +2.226 F -0.645 Reference: K. O. Christe *et al., J. Am. Chem. Soc.* 1991, **113**, 3351-3361.

4.47 XeF₆

Geometry: octahedral, Xe-F 1.998 Å Thermodynamics: H -7832.652980 Hartree S 99.705 cal mol⁻¹ K⁻¹ Charges: Xe +3.140 F -0.523 (well known)

4.48 [PF₆]⁻

4.40 [1 1 6]							
Geometry: octahedral, P-F 1.639 Å							
Thermodynan	nics: H -940.5	71556 Hartree	S 72.280 ca	al mol ⁻¹ K ⁻¹			
Charges:	QTAIM	NBO	Hirshfeld	Mulliken			
Р	+3.851	+2.795	+0.517	+1.548			
F	-0.808	-0.633	-0.253	-0.425			
(well known)							

4.49 [AsF₆]⁻

Geometry: octahedral, As-F 1.771 Å Thermodynamics: H -2834.664556 Hartree S 78.527 cal mol⁻¹ K⁻¹ Charges: As +3.118 F -0.686 (well known)

4.50 [SbF₆]⁻

Geometry: octahedral, Sb-F 1.945 Å Thermodynamics: H -6914.692415 Hartree S 84.970 cal mol⁻¹ K⁻¹ Charges: Sb +3.374 F -0.729 (well known)

4.51 [RbSiF₆]⁻

Cartesi	an coordinates:		
Si	-0.575425	-0.321477	0.017761
F	-1.850296	-0.085600	-1.052285
F	0.843637	-0.400495	1.101168
F	0.562724	0.325741	-1.199788
F	-1.566302	-0.824669	1.279221
F	-0.254934	-1.883078	-0.515623
F	-0.729188	1.370840	0.572443
Rb	1.812902	1.923849	0.430858

 Thermodynamics:
 H -3828.702666
 Hartree
 S 94.539
 cal mol⁻¹ K⁻¹

 Charges:
 Si +3.348
 F -0.890 (x 3), -0.876 (x 3)
 Rb +0.953

 Reference:
 B. Neumüller and K. Dehnicke, Z. Anorg. Allg. Chem., 2008, 634, 2567-2571.

4.52 [RbSnF₆]⁻

Cartesian coordinates:

Sn	-0.614830	-0.353758	0.006779	
F	-2.108853	-0.042585	-1.266979	
F	1.042738	-0.395260	1.242537	
F	0.744189	0.437527	-1.337444	
F	-1.787031	-0.935670	1.502889	
F	-0.232000	-2.196802	-0.631766	
F	-0.707103	1.609904	0.650723	
Rb	1.906008	1.981756	0.467016	
Thermo	dynamics: H	-9564.087522 Har	tree S 106.895	cal mol ⁻¹ K ⁻¹
Charge	s: Sn +2.850	F -0.823	(x 3), -0.778 (x 3)	Rb +0.953

Reference: G. M. Begun and A. C. Rutenberg, Inorg. Chem., 1967, 6, 2212-2216.

4.53 [Rb₂GaF₆]⁻

Cartesian coordinates:
Ga -0.000070 -0.000591 0.000110
F 1.283129 0.687566 1.306897
F 0.962404 -1.702706 0.061065
F -1.239426 -0.567076 1.405505
F -0.961289 1.702482 -0.060865
F 1.238729 0.566364 -1.405792
F -1.283749 -0.688325 -1.306277
Rb -3.208514 0.413161 0.035876
Rb 3.208838 -0.410854 -0.036004
Thermodynamics: H -8403.523567 Hartree S 116.748 cal mol ⁻¹ K ⁻¹
Charges: Ga +2.098 F -0.829 Rb +0.937
Reference: G. A. Kirakosyan et al., Russ. J. Inorg. Chem., 1990, 35, 1314 - 1317.
4.54 SF₆ Geometry: octahedral, S-F 1.594 Å Thermodynamics: H -996.992922 Hartree S 76.963 cal mol ⁻¹ K ⁻¹ Charges: S +3.813 F -0.635 (well known)
4.55 SeF ₆ Geometry: octahedral, Se-F 1.728 Å Thermodynamics: H -2999.989311 Hartree S 76.516 cal mol ⁻¹ K ⁻¹ Charges: Se +3.317 F -0.553 (well known)
Geometry: octahedral, Te-F 1.892 Å Thermodynamics: H -7212.745396 Hartree S 82.903 cal mol ⁻¹ K ⁻¹ Charges: Te +3.740 F -0.623 (well known)
4.57 [CIF ₆] ⁻
Geometry: octahedral. CI-F 1.807 Å
Thermodynamics: H -1058.813845 Hartree S 90.480 cal mol ⁻¹ K ⁻¹ Charges: Cl +1.904 F -0.484 F -0.484 F -0.484 F -0.484
Reference: K. O. Christe et al., Inorg. Chem., 1990, 29, 3506-3511.
4.58 [RbSeF ₆] ⁻
Cartesian coordinates:
Se -0.006410 -1.014502 0.154743
F = -0.568679 = -2.259380 = 1.078417
F = 0.044957 = 0.451551 = 1.500249 F = 1.170710 = 0.000052 = 1.224021
F = -1.028274 = -1.871261 = 1.422921
F = 1.020274 = 1.071201 = 1.422921 F = 1.390874 = 2.133512 = 0.585119
F = -1.629612 0.297159 = 0.346998
Rb 0.179075 2.233334 -0.315086
Thermodynamics: H -5940 065849 Hartree S 112 834 cal mol ⁻¹ K ⁻¹
Charges: Se +2.376 F -0.789 (x 3), -0.650 (x 3) Rb +0.941 Reference: A. R. Mahjoub <i>et al.</i> , <i>Chem. Eur. J.</i> , 1995, 261-265.
4.33 [DIF6] Geometry: octabedral: Br E 1 901 Å
Deunieury, uuldheurdi, DI-F 1.301 A Thermodynamics: H 3172 525476 Hartroo S 02 022 cal mol-1 K-1
Charges: Br +2.456 F -0.576

Reference: A. R. Mahjoub *et al.*, *Chem. Eur. J.*, 1995, 261-265.

4.60 [IF₆]⁻ Geometry: octahedral, I-F 2.051 Å Thermodynamics: H -7518.953699 Hartree S 106.981 cal mol⁻¹ K⁻¹ Charges: I +3.032 F -0.672 Reference: A. R. Mahjoub and K. Seppelt, *Angew. Chem. Int. Edn. Engl*, 1991, **30**, 323-324.

4.61 [RbXeF₆]⁻

Full geometry optimization resulted in dissociation of one F from Xe. A stable geometry could only be obtained using a z-matrix, final geometry as follows;

Xe F1 Xe R1 F2 Xe R2 F1 A2 F3 Xe R3 F1 A3 F2 D3 F4 Xe R4 F1 A4 F2 D4 F5 Xe R5 F1 A5 F2 D5 F6 Xe R6 F1 A6 F2 D6 Rb Xe R9 F1 A9 F2 D9 optimized variables: R1 2.066105, R2 2.060195, R3 2.081407, R4 2.179316, R5 2.174397, R9 3.679195 A2 73.2623, A3 73.2405, A9 156.8631, D3 -180.1915, D9 79.7849, A4 143.1718, A5 144.7949, D4 -18.9291, D5 -174.6872, A6 108.903 constants (taken from the optimized [XeF]²⁻ ion): R6 2.6265, D6 79.822 This geometry gave no negative IR frequencies. Thermodynamics: H -10772.816027 Hartree S 112.297 cal mol-1 K-1 Charges: Xe +2.213 F(ax) -0.892, F(eq) -0.693, -0.697, -0.637, -0.620, -0.616 Rb +0.941 Reference: A. I. Popov and Y. M. Kiselev, Russ. J. Inorg. Chem., 1988, 33, 1307-1309.

4.62 IF₇

 Geometry: pentagonal bipyramidal, I-F (ax) 1.884 Å, I-F (eq) 1.935 Å

 Thermodynamics: H -7618.509007 Hartree
 S 92.720 cal mol⁻¹ K⁻¹

 Charges: I +3.874
 F(ax) -0.544
 F(eq) -0.557

 Reference: K. O. Christe *et al., J. Am. Chem. Soc.,* 1993, **115**, 1520-1526.

4.63 [TeF₇]⁻

 Geometry: pentagonal bipyramidal, Te-F (ax) 1.917 Å, I-F (eq) 1.970 Å

 Thermodynamics: H -7312.703503 Hartree
 S 95.369 cal mol⁻¹ K⁻¹

 Charges: Te +3.720
 F(ax) -0.666
 F(eq) -0.678

 Reference: K. O. Christe *et al., J. Am. Chem. Soc.,* 1993, **115**, 9461-9467.

4.64 [RbSbF₇]⁻

Carte	esian coordinate	S:		
Sb	0.166782	-0.071180	0.061854	
F	-0.494827	1.078035	1.637328	
F	-1.553500	0.745955	-0.721226	
F	1.805599	0.116907	1.140574	
F	-1.220407	-1.228818	0.848839	
F	0.822059	1.799338	-0.494975	
F	0.984041	-1.882891	-0.051902	
F	0.454527	-0.304891	-1.873984	
Rb	-1.290492	3.173895	0.258875	
Ther	modynamics: H	-9954.385184 H	artree S 111.212 cal	mol ⁻¹ K ⁻¹
Char	ges: Sb +3.371	F -0.7	94 (x 3), -0.734 (x 3), -0.7	745 Rb +0.958
Refe	rence: G. W. Dra	ake et al., J. Am.	Chem. Soc., 1998, 120,	8392-8400.

4.65 [XeF₇]⁻

Geometry: pentagonal bipyramidal, Xe-F (ax) 2.032 Å, Xe-F (eq) 2.061 Å Thermodynamics: H -7932.622294 Hartree S 100.584 cal mol⁻¹ K⁻¹ Charges: Xe +3.140 F(ax) -0.573 F(eq) -0.599 Reference: A. Ellern, *Angew. Chem. Int. Edn. Engl.,* 1996, **35**, 1123-1125.

4.66 [RbXeF₈]⁻

Carte	sian coordinates	S:		
Xe	-0.011562	-0.314763	-0.256325	
F	-0.177725	-1.208185	-2.084251	
F	-1.160831	0.735295	1.267541	
F	1.330155	0.885373	0.970313	
F	-1.472729	0.987165	-1.213417	
F	-1.680149	-1.487474	-0.164188	
F	1.019626	1.137805	-1.510504	
F	1.758479	-1.279683	-0.578425	
F	0.255974	-1.556453	1.341672	
Rb	-0.171857	3.053472	0.104958	

Thermodynamics: H -10972.341655 HartreeS 117.600 cal mol⁻¹ K⁻¹Charges: Xe +3.116F -0.685 (x 4), -0.582 (x 4)Rb +0.956Reference: K. O. Christe and W. W. Wilson, *Inorg. Chem.*, 1982, **21**, 4113–4117.

5. Data for chlorides XCI_n^{m-1}

Table S2. Data for graph shown in Fig. 2

species	explicit Rb	implicit Rb	ΔH kcal/mol	T∆S kcal/mol	ΔG (Rb.Cl) kcal/mol	ΔG (X-Cl) kcal/mol	γ(X)
SCI2	0	0	110.03	14.1	0	48.0	7.30
OCI2	0	0	85.97	14.5	0	35.8	8.00
SeCl2	0	0	114.63	13.9	0	50.4	6.84
TeCl2	0	0	117.58	13.6	0	52.0	6.36
Rb+ [BrCl2]-	0	1	74.55	14.8	25	42.6	7.78
Rb+ [ICl2]-	0	1	81.58	14.7	25	46.2	7.48
XeCl2	0	0	9.01	14.3	0	-2.6	8.47
Rb+ [Cl3]-	0	1	65.47	14.2	25	38.3	8.04
PCI3	0	0	207.89	22.7	0	61.7	5.50
NCI3	0	0	130.39	23.1	0	35.8	8.00
BCl3	0	0	315.04	22.6	0	97.5	2.19
AsCl3	0	0	212.31	22.5	0	63.3	5.44
SbCl3	0	0	217.71	21.9	0	65.3	4.99
GaCl3	0	0	245.88	21.7	0	74.7	3.08
InCl3	0	0	233.96	21.0	0	71.0	2.81
AICI3	0	0	291.65	21.7	0	90.0	1.33
SCI4	0	0	140.95	30.9	0	27.5	8.33
CCl4	0	0	292.82	32.5	0	65.1	7.15
Rb+ [BCl4]-	0	1	353.19	31.9	25	86.7	2.35
TeCl4	0	0	201.68	30.5	0	42.8	6.57
PCI4	0	0	223.33	30.4	0	48.2	6.13
Rb+ [ICl4]-	0	1	143.08	30.7	25	34.5	7.72
Rb+ [AsCl4]-	0	1	238.93	30.7	25	58.4	5.34
Rb+ [SbCl4]-	0	1	253.08	30.4	25	62.0	4.89
SiCl4	0	0	354.3	31.6	0	80.7	2.53
GeCl4	0	0	312.42	31.2	0	70.3	4.18
SnCl4	0	0	306.03	30.2	0	69.0	4.04
Rb+ [AlCl4]-	0	1	361.41	30.6	25	89.1	1.25
Rb+ [GaCl4]-	0	1	308.59	31.1	25	75.7	2.95
Rb+ [InCl4]-	0	1	303.63	29.6	25	74.9	2.71
XeCl4	0	0	0.78	30.3	0	-7.4	9.53
PCI5	0	0	262.89	41.0	0	44.4	6.47
AsCl5	0	0	261.81	40.8	0	44.2	6.46
SbCl5	0	0	292.66	39.5	0	50.6	5.60
Rb+ [SeCl5]-	0	1	212.78	40.0	25	39.6	7.41
Rb+ [GeCl5]-	0	1	336.67	39.8	25	64.5	4.34
Rb+ [SnCl5]-	0	1	352.62	39.0	25	67.8	3.91
Rb+ [TeCl5]-	0	1	249.43	39.8	25	47.0	6.47
Rb+ [PCl6]-	0	1	298.47	50.7	25	45.5	6.83
Rb+ [AsCl6]-	0	1	306.35	52.0	25	46.6	6.39

Table S2 continued

Rb+ [SbCl6]-	0	1	353.66	49.1	25	55.0	5.44
Rb+ Rb[GeCl6]-	1	1	445.66	56.8	5	65.7	4.29
Rb+ Rb[SnCl6]-	1	1	475.93	56.0	5	70.9	3.81
Rb+ Rb[SeCl6]-	1	1	337.97	55.1	5	48.0	7.34
Rb+ Rb[TeCl6]-	1	1	374.59	53.9	5	54.3	6.36
Rb+ Rb2[InCl6]-	2	1	545.28	62.9	-15	77.9	2.53

Best fit parabolic curve:

 $\gamma = 9.04 - 0.004542(\Delta G) - 0.0009708(\Delta G)^2$ RMS: 0.487

Data for individual chlorides

5.1 SCI₂

Geometry: bent, CI-S-CI 103.6° S-CI 2.044 Å Thermodynamics: H -1318.387626 Hartree S 67.282 cal mol⁻¹ K⁻¹ Charges: S +0.532 CI -0.176 (well known)

5.2 OCI₂

Geometry: bent, CI-O-CI 112.5° O-CI 1.711 Å Thermodynamics: H -995.351798 Hartree S 63.868 cal mol⁻¹ K⁻¹ Charges: O -0.459 CI +0.230 (well known)

5.3 SeCl₂

Geometry: bent, CI-Se-CI 101.1° Se-CI 2.178 Å Thermodynamics: H -3321.413782 Hartree S 70.486 cal mol⁻¹ K⁻¹ Charges: Se +0.580 CI -0.290 Reference: A. Maaninen *et al., Inorg. Chem.,* 1999, **38**, 4093-4097.

5.4 TeCl₂

Geometry: bent, CI-Te-CI 98.8° Te-CI 2.366 Å Thermodynamics: H -7534.091207 Hartree S 73.053 cal mol⁻¹ K⁻¹ Charges: Te +0.822 CI -0.411 Reference: G. H. Westphal *et al., J. Chem. Phys.,* 1980, **72**, 5192-5201.

5.5 [BrCl₂]⁻

Geometry: linear, Br-Cl 2.449 Å Thermodynamics: H -3494.098300 Hartree S 68.158 cal mol⁻¹ K⁻¹ Charges: Br +0.108 Cl -0.554 (well known)

5.6 [ICI₂]-

Geometry: linear, I-Cl 2.616 Å Thermodynamics: H -7840.419273 Hartree S 69.850 cal mol⁻¹ K⁻¹ Charges: I +0.263 Cl -0.631 (well known)

5.7 XeCl₂

Geometry: linear, Xe-Cl 2.511 Å Thermodynamics: H -8154.350690 Hartree S 68.682 cal mol⁻¹ K⁻¹ Charges: Xe +0.763 Cl-0.382 Reference: I. R. Beattie *et al. J. Chem. Soc., Dalton Trans.,* 1975, 1659-1662.

5.8 [Cl ₃] ⁻ Geometry: linear, CI-CI 2.357 Å Thermodynamics: H -1380.492632 Hartree Charges: QTAIM NBO Cl(central) -0.019 -0.053 Cl(terminal) -0.490 -0.474 (well known)	S 67.574 cal mol⁻¹ K⁻¹ Hirshfeld Mulliken -0.110 -0.039 -0.445 -0.481
5.9 PCI₃ Geometry: trigonal pyramidal, CI-P-CI 100.8° Thermodynamics: H -1721.778946 Hartree Charges: P +1.252 CI -0.418 (well known)	P-Cl 2.068 Å S 76.636 cal mol ⁻¹ K ⁻¹
5.10 NCI₃ Geometry: trigonal pyramidal, CI-N-CI 108.4° Thermodynamics: H -1435.024649 Hartree Charges: N -0.238 CI +0.080 (well known)	N-Cl 1.766 Å S 72.788 cal mol ⁻¹ K ⁻¹
5.11 BCI₃ Geometry: trigonal planar, B-Cl 1.748 Å Thermodynamics: H -1405.388801 Hartree Charges: B +1.904 Cl -0.635 (well known)	S 72.633 cal mol ⁻¹ K ⁻¹
5.12 AsCl₃ Geometry: trigonal pyramidal, CI-As-CI 99.2° Thermodynamics: H -3615.982977 Hartree Charges: As +1.280 CI -0.427 (well known)	As-Cl 2.193 Å S 80.208 cal mol ⁻¹ K ⁻¹
5.13 SbCl₃ Geometry: trigonal pyramidal, CI-Sb-CI 97.0° Thermodynamics: H -7695.980802 Hartree Charges: Sb +1.507 CI -0.503 (well known)	Sb-Cl 2.375 Å S 83.342 cal mol ⁻¹ K ⁻¹
5.14 GaCl₃ Geometry: trigonal planar, Ga-Cl 2.119 Å Thermodynamics: H -3305.062817 Hartree Charges: Ga +1.460 Cl -0.487 Reference: O. Grabandt <i>et al.</i> , <i>Chem. Phys.,</i> 19	S 81.124 cal mol ⁻¹ K ⁻¹ 90, 143 , 227-238.
5.15 InCl₃ Geometry: trigonal planar, In-Cl 2.334 Å Thermodynamics: H -7122.668082 Hartree Charges: In +1.596 Cl -0.532 Reference: A. Givan and A. Loewenschuss, <i>J. I</i>	S 85.003 cal mol ⁻¹ K ⁻¹ <i>Mol. Struct.,</i> 1979, 55 , 163-168.
5.16 AICI ³ Geometry: trigonal planar, AI-CI 2.079 Å Thermodynamics: H -1623.021140 Hartree Charges: AI +2.333 CI -0.778 (well known)	S 78.447 cal mol ⁻¹ K ⁻¹

5.17 SCI4

Geometry: seesaw, CI-S-CI (ax-eq) 93.0°, (eq-eq) 104.1° S-Cl(ax) 2.291 Å, S-Cl(eq) 2.035 Å Thermodynamics: H -2238.599606 Hartree S 86.786 cal mol⁻¹ K⁻¹ Charges: QTAIM NBO Hirshfeld Mulliken +0.833 +0.772 +0.426 +0.476 S Cl(ax) -0.369 -0.359 -0.256 -0.297 Cl(eq) -0.048 -0.027 +0.043 +0.059 Reference: R. Steudel et al., Z Naturforschung B, 1987, 42, 163-168. 5.18 CCI₄ Geometry: tetrahedral, C-Cl 1.780 Å S 78.582 cal mol-1 K-1 Thermodynamics: H -1878.623924 Hartree Charges: C +0.425 CI -0.106 (well known) 5.19 [BCI₄]-Geometry: tetrahedral, B-Cl 1.873 Å S 80.860 cal mol-1 K-1 Thermodynamics: H -1865.675175 Hartree Charges: B +1.825 CI -0.706 Reference: J. A. Creighton, J. Chem. Soc., 1965, 6589-6591. 5.20 TeCl₄ Geometry: seesaw, CI-Te-CI (ax-eq) 88.5°, (eq-eq) 101.0° Te-Cl(ax) 2.471 Å, Te-Cl(eq) 2.345 Å Thermodynamics: H -8454.387937 Hartree S 92.267 cal mol-1 K-1 Charges: Te +1.713 Cl(ax) -0.509 Cl(eq) -0.348 (well known) 5.21 PCI4 Geometry: seesaw, CI-P-CI (ax-eq) 100.7°, (eq-eq) 103.7° P-Cl(ax) 2.185 Å, P-Cl(eq) 2.037 Å Thermodynamics: H -2181.884912 Hartree S 88.832 cal mol-1 K-1 Charges: P +1.435 Cl(ax) -0.339 Cl(eq) -0.379 Reference: J. P. Michaut and J. Roncin, New J. Chem., 1997, 21, 547-556. 5.22 [ICI₄]-Geometry: square planar, I-Cl 2.558 Å S 92.081 cal mol⁻¹ K⁻¹ Thermodynamics: H -8760.679991 Hartree Charges: OTAIM NBO Hirshfeld Mulliken +1.103 Ι +1.142 +0.263 +0.708 Cl -0.535 -0.526 -0.316 -0.427 Reference: J. Shamir et al., Inorg. Chim. Acta, 1986, 114, 35-39.

5.23 [AsCl₄]⁻

Geometry: seesaw, Cl-As-Cl (ax-eq) 93.0°, (eq-eq) 98.4° As-Cl(ax) 2.482 Å, As-Cl(eq) 2.235 Å Thermodynamics: H -4076.250984 Hartree S 91.768 cal mol⁻¹ K⁻¹ Charges: As +1.331 Cl(ax) -0.675 Cl(eq) -0.491 Reference: L. A. Lesikar and A. F. Richards, *J. Organomet. Chem.*, 2006, **691**, 4250–4256.

5.24 [SbCl₄]⁻

Geometry: seesaw, Cl-Sb-Cl (ax-eq) 89.3°, (eq-eq) 98.1° Sb-Cl(ax) 2.605 Å, Sb-Cl(eq) 2.423 Å Thermodynamics: H -8156.262762 Hartree S 94.398 cal mol⁻¹ K⁻¹ Charges: Sb +1.553 Cl(ax) -0.707 Cl(eq) -0.570 Reference: N. Weslati *et al.*, *Physica B*, 2014, **441**, 42-46.

5.25 SiCl₄ Geometry: tetrahedral, Si-Cl 2.033 Å Thermodynamics: H -2130.205740 Hartree Charges: Si +2.734 Cl -0.684 (well known)	S 83.880 cal mol ⁻¹ K ⁻¹
5.26 GeCl₄ Geometry: tetrahedral, Ge-Cl 2.131 Å Thermodynamics: H -3917.348839 Hartree Charges: Ge +1.792 Cl -0.448 (well known)	S 88.376 cal mol ⁻¹ K ⁻¹
5.27 SnCl ₄ Geometry: tetrahedral, Sn-Cl 2.324 Å Thermodynamics: H -7865.641325 Hartree Charges: Sn +1.980 Cl -0.495 (well known)	S 92.851 cal mol ⁻¹ K ⁻¹
5.28 [AICI₄] - Geometry: tetrahedral, AI-CI 2.169 Å Thermodynamics: H -2083.357909 Hartree Charges: AI +2.377 CI -0.844 (well known)	S 87.721 cal mol ⁻¹ K ⁻¹
5.29 [GaCl₄] ⁻ Geometry: tetrahedral, Ga-Cl 2.210 Å Thermodynamics: H -3765.388331 Hartree Charges: Ga +1.522 Cl -0.631 Reference: T. Timofte and AV. Mudring, <i>Z. And</i>	S 88.873 cal mol ⁻¹ K ⁻¹ org. Allg. Chem., 2009, 635 , 840-847.
5.30 [InCl₄] ⁻ Geometry: tetrahedral, In-Cl 2.413 Å Thermodynamics: H -7583.004694 Hartree Charges: In +1.643 Cl -0.661 Reference: J. Trotter <i>et al.</i> , <i>Acta Cryst. B</i> , 1969,	S 95.538 cal mol ⁻¹ K ⁻¹ 25 , 603-604.
5.31 XeCl ₄ Geometry: square planar, Xe-Cl 2.504 Å Thermodynamics: H -9074.500299 Hartree Charges: Xe +1.237 Cl -0.309 Reference: G. J. Perlow and M. R. Perlow, <i>J. Cl</i>	S 90.821 cal mol ⁻¹ K ⁻¹ hem. Phys., 1964, 41 , 1157-1158.
5.32 PCI₅ Geometry: trigonal bipyramidal, P-CI(ax) 2.153 Å Thermodynamics: H -2642.029319 Hartree Charges: P +1.767 CI(ax) -0.383 (well known)	Å, P-Cl(eq) 2.051 Å S 91.479 cal mol⁻¹ K⁻¹ Cl(eq) -0.334
5.33 AsCl₅ Geometry: trigonal bipyramidal, As-Cl(ax) 2.242 Thermodynamics: H -4536.224577 Hartree Charges: As +1.769 Cl(ax) -0.401 Reference: S. Haupt and K. Seppelt, <i>Z. Anorg. A</i>	Å, As-Cl(eq) 2.170 Å S 94.741 cal mol ⁻¹ K ⁻¹ Cl(eq) -0.322 A <i>llg. Chem.</i> 2002, 628 , 729-734.
5.34 SbCl₅ Geometry: trigonal bipyramidal, Sb-Cl(ax) 2.381 Thermodynamics: H -8616.262956 Hartree Charges: Sb +2.199 Cl(ax) -0.471 Reference: S. Haupt and K. Seppelt, Z. Anorg. A	Å, Sb-Cl(eq) 2.335 Å S 100.319 cal mol ⁻¹ K ⁻¹ Cl(eq) -0.419 A <i>llg. Chem</i> . 2002, 628 , 729-734.

5.35 [SeCl₅]⁻

Geometry: square pyramidal, Se-Cl(ax) 2.200 Å, Se-Cl(eq) 2.406 Å Thermodynamics: H -4701.958499 Hartree S 98.357 cal mol⁻¹ K⁻¹ Charges: Se +1.293 Cl(ax) -0.264 Cl(eq) -0.507 Reference: R. J. Gillespie *et al.*, *Inorg. Chem.*, 1990, **29**, 1251-1259.

5.36 [GeCl₅]⁻

 Geometry: trigonal bipyramidal, Ge-Cl(ax) 2.310 Å, Ge-Cl(eq) 2.216 Å

 Thermodynamics: H -4377.613072 Hartree
 S 98.578 cal mol⁻¹ K⁻¹

 Charges: Ge +1.829
 Cl(ax) -0.609
 Cl(eq) -0.537

 Reference: C. J. Carmalt *et al.*, *Chem. Commun.*, 1997, 2095-2096.

5.37 [SnCl₅]⁻

 Geometry: trigonal bipyramidal, Sn-Cl(ax) 2.451 Å, Sn-Cl(eq) 2.399 Å

 Thermodynamics: H -8325.941156 Hartree
 S 102.888 cal mol⁻¹ K⁻¹

 Charges: Sn +2.044
 Cl(ax) -0.632
 Cl(eq) -0.593

 Reference: J. Shamir *et al., Inorg. Chem.,* 1985, **24**, 2301-2309.

5.38 [TeCl₅]⁻

 Geometry: square pyramidal, Te-Cl(ax) 2.386 Å, Te-Cl(eq) 2.539 Å

 Thermodynamics: H -8914.689619 Hartree
 S 100.525 cal mol⁻¹ K⁻¹

 Charges: Te +1.764
 Cl(ax) -0.417
 Cl(eq) -0.586

 Reference: T. Schöenherr, Z. Naturforsch. B, 1988, 43, 159-164.
 S 100.525

5.39 [PCI₆]-

 Geometry: octahedral, P-CI 2.182 Å

 Thermodynamics: H -3102.311600 Hartree
 S 98.203 cal mol⁻¹ K⁻¹

 Charges: P +1.582
 CI -0.431

 Reference: P. N. Gates *et al., J. Chem. Soc., Dalton Trans.,* 1995, 2719-2722.

5.40 [AsCl₆]⁻

Geometry: octahedral, As-Cl 2.279 Å Thermodynamics: H -4996.521141 Hartree S 96.278 cal mol⁻¹ K⁻¹ Charges: As +1.806 Cl -0.467 Reference: S. Haupt and K. Seppelt, *Z. Anorg. Allg. Chem.* 2002, **628**, 729-734.

5.41 [SbCl₆]⁻

Geometry: octahedral, Sb-Cl 2.2422 Å Thermodynamics: H -9076.585766 Hartree S 107.443 cal mol⁻¹ K⁻¹ Charges: Sb +2.279 Cl -0.547 Reference: G. R. Willey *et al., J. Indian Chem. Soc.,* 1998, **75**, 271-275.

5.42 [RbGeCl₆]⁻

Cartesian coordinates:

Ge	0.102911	-1.775202	0.107731	
Cl	-1.522223	-2.946760	-0.930620	
Cl	1.748406	-0.288593	1.173036	
Cl	1.805399	-2.906947	-0.847557	
Cl	-1.631797	-0.327232	1.088199	
Cl	0.070431	-3.018742	1.990164	
Cl	0.130301	-0.214530	-1.794699	
Rb	0.051789	2.169526	0.233045	
Ther	modynamics: H	H -7777.652359	Hartree S	120.324 cal mol-1
Chai	raes: Ge +1.854	L CI-(0.688 (x 3)0.5	71 (x 3) Rb

Charges: Ge +1.854 Cl -0.688 (x 3), -0.571 (x 3) Rb +0.919 Reference: P. N. Bartlett *et al.*, *Chem. Eur. J.*, 2014, **20**, 5019-5027.

K⁻¹

5.43 [RbSnCl₆]⁻

Cartes	sian coorunale		
Sn	-0.813116	-0.572513	-0.130983
Cl	-2.542293	0.010572	-1.735625
Cl	1.155161	-0.959839	1.492283
Cl	-0.646284	-2.889709	-0.843005
Cl	-0.714836	1.896172	0.611668
Cl	-2.362859	-1.027857	1.684276
Cl	0.978370	0.060915	-1.875294
Rb	2.425330	1.708772	0.390671

Thermodynamics: H -11726.003263 Hartree S 124.427 cal mol⁻¹ K⁻¹ Charges: Sn +2.094 Cl -0.713 (x 3), -0.625 (x 3) Rb +0.920 Reference: J. Shamir *et al.*, *Inorg. Chem.*, 1985, **24**, 2301-2309.

5.44 [RbSeCl₆]⁻

Cartesian coordinates:

Se	0.789721	-0.536806	-0.266572
Cl	0.654902	-2.496327	-1.431143
Cl	2.463001	0.246318	-1.608576
Cl	-1.014284	0.539165	-1.955551
Cl	-1.216691	-1.388694	1.314089
Cl	2.282506	-1.420826	1.217308
Cl	0.863641	1.781628	1.103929
Rb	-2.252783	1.528302	0.758600

Thermodynamics: H -8102.023608 Hartree S 126.094 cal mol⁻¹ K⁻¹ Charges: Se +1.317 Cl -0.703 (x 3), -0.374 (x 3) Rb +0.912 Reference: W. Abriel, *Acta Cryst. C*, 1986, **42**, 1113-1115.

5.45 [RbTeCl₆]⁻

Cartesian coordinates:

Ther	modynamics: H	-12314.754681 I	Hartree S 131.577 ca	al mol ⁻¹ K ⁻¹
Rb	-2.322444	1.576939	0.784885	
Cl	0.829578	1.885866	1.161716	
Cl	2.420873	-1.502833	1.298492	
Cl	-1.327742	-1.394515	1.379656	
Cl	-1.111013	0.602849	-2.000176	
Cl	2.608367	0.265474	-1.709441	
Cl	0.691252	-2.649312	-1.519154	
Те	0.781143	-0.531709	-0.263895	

Reference: W. Abriel, Z. Naturforschung B, 1986, 41, 592-598.

5.46 [Rb₂InCl₆]⁻

Cartesian coordinates:

Tn	-0 744431	0 491536	0 910288				
	2 404240	0 161256	0.910200				
CT	-2.494240	0.101230	2.011405				
Cl	1.005542	0.820999	-0.989585				
Cl	0.210412	2.557820	2.167535				
Cl	-1.701020	-1.574703	-0.346087				
Cl	-2.417345	2.045773	-0.343190				
Cl	0.926877	-1.063497	2.165223				
Rb	1.339429	-2.289019	-0.697515				
Rb	-2.830949	3.270442	2.520152				
Therm	odynamics: H -1	14383.120999 Ha	artree S 140).770 cal mol ⁻¹ K ⁻¹			
Charge	Charges: In +1.735 CI -0.759 (x 6) Rb +0.911 (x 2)						
Reference: H. Narita et al., Dalton Trans., 2014, 43, 1630-1635.							

6. Data for oxides XO_n^{m-1}

Table S3. Data for Graph Shown in Fig. 3

species	explicit Rb	implicit Rb	ΔH kcal/mol	TΔS kcal/mol	ΔG (Rb.O) kcal/mol	ΔG (X-O) kcal/mol	γ(X)
O3	0	0	126.9	15.3	0.0	55.8	9.52
CO2	0	0	375.71	17.1	0.0	179.3	3.51
NO2	0	0	216.63	15.6	0.0	100.5	7.58
Rb+ [CO2]-	0	1	268.5	15.6	54.0	153.4	3.99
Rb+ [NO2]-	0	1	171.14	16.2	54.0	104.5	7.19
PO2	0	0	241.01	14.8	0.0	113.1	3.94
SO2	0	0	221.87	15.1	0.0	103.4	5.25
SeO2	0	0	182.71	14.9	0.0	83.9	6.38
TeO2	0	0	159.24	15.6	0.0	71.8	6.07
CIO2	0	0	90.77	14.3	0.0	38.2	8.31
BrO2	0	0	86.64	14.1	0.0	36.3	8.07
Rb+ [ClO2]-	0	1	51.08	15.2	54.0	44.9	8.58
Rb+ [BrO2]-	0	1	50.44	15.1	54.0	44.7	8.17
NO3	0	0	264.88	24.1	0.0	80.3	8.14
Rb+ [NO3]-	0	1	265.09	25.4	54.0	97.9	8.30
Rb+ Rb[CO3]-	1	1	420.13	32.6	45.1	144.2	3.70
SO3	0	0	288.12	24.7	0.0	87.8	4.85
Rb+ Rb[SO3]-	1	1	301.22	33.0	45.1	104.4	5.22
SeO3	0	0	222.14	24.3	0.0	66.0	6.95
Rb+ Rb[SeO3]-	1	1	271.54	32.6	45.1	94.7	6.30
Rb+ Rb[TeO3]-	1	1	267.12	32.3	45.1	93.3	5.90
Rb+ [CIO3]-	0	1	111.69	24.7	54.0	47.0	8.67
Rb+ [BrO3]-	0	1	113.28	24.4	54.0	47.6	8.14
Rb+ Rb2[AsO3]-	2	1	322.77	40.3	36.2	106.2	4.66
Rb+ [IO3]-	0	1	134.3	24.0	54.0	54.8	7.28
XeO3	0	0	-5.96	23.1	0.0	-9.7	9.00
XeO4	0	0	5.03	32.6	0.0	-6.9	9.72
Rb+ [CIO4]-	0	1	164.27	34.8	54.0	45.9	9.11
Rb+ [BrO4]-	0	1	159.1	34.2	54.0	44.7	8.71
Rb+ [IO4]-	0	1	189.88	33.6	54.0	52.6	7.54
Rb+ Rb[SO4]-	1	1	409.66	43.3	45.1	102.9	4.34
Rb+ Rb[SeO4]-	1	1	348.84	42.6	45.1	87.9	6.46
Rb+ Rb[TeO4]-	1	1	340.15	41.4	45.1	86.0	5.90
Rb+ Rb2[NO4]-	2	1	346.97	51.9	36.2	82.8	8.50
Rb+ Rb2[PO4]-	2	1	520.03	51.7	36.2	126.1	2.60
Rb+ Rb2[AsO4]-	2	1	438.49	50.9	36.2	106.0	4.83
Rb+ Rb3[SiO4]-	3	1	571.06	59.6	27.3	134.7	1.65
Rb+ Rb3[SeO5]-	3	1	434.3	68.3	27.3	78.7	6.70
Rb+ Rb[BrO5]- r	1	1	208.37	50.9	45.1	40.5	8.88
Rb+ Rb[IO5]- r	1	1	270.71	50.3	45.1	53.1	7.38

Table S3 continued

species	explicit Rb	implicit Rb	ΔH kcal/mol	T∆S kcal/mol	ΔG (Rb.O) kcal/mol	ΔG (X-O) kcal/mol	γ(X)
Rb+ Rb2[IO5]-	2	1	334.52	58.7	36.2	62.4	7.47
Rb+ Rb3[XeO6]-	3	1	277.55	78.9	27.3	37.7	9.41
Rb+ Rb4[IO6]-	4	1	509.05	88.1	18.4	73.2	7.26
Rb+ Rb5[TeO6]-	5	1	637.28	96.4	9.6	91.7	5.63
Rb+ Rb5[SeO6]-	5	1	569.12	95.8	9.6	80.5	6.81

Best fit parabolic curve:

$\gamma = 9.50 - 0.01432(\Delta G) - 0.0002947(\Delta G)^2$ RMS: 0.536

Data for individual oxides

6.1 O ₃ Geometry: bent Thermodynamic Charges: O(central) O(terminal) (well known)	O-O-O 117.7° S: H -225.358 QTAIM +0.238 -0.119	O-O 1.252 Å 505 Hartree NBO +0.324 -0.162	S 58.177 cal mol Hirshfeld +0.218 -0.109	¹ K ⁻¹ Mulliken +0.287 -0.143
6.2 CO ₂ Geometry: linea Thermodynamic Charges: C +2.2 (well known)	r, C-O 1.166 Å s: H -188.5347 243	743 Hartree O -1.121	S 51.048 cal mol	¹ K ⁻¹
6.3 NO ₂ Geometry: bent Thermodynamic Charges: N +0.7 (well known)	, O-N-O 133.8° s: H -205.022′ 710	N-O 1.198 Å 171 Hartree O -0.355	S 57.346 cal mol	¹ K ⁻¹
6.4 [CO ₂]- Geometry: bent, Thermodynamic Charges: C +1.5 Reference: Z. H	, O-C-O 133.8° s: H -188.508 <i>°</i> 506 . Kafafi <i>et al., J</i>	C-O 1.249 Å 134 Hartree O -1.253 . Am. Chem. So	S 57.380 cal mol [.] c., 1983, 105 , 3886	¹ K ⁻¹ -3893.
6.5 [NO ₂] ⁻ Geometry: bent, Thermodynamic Charges: N +0.4 (well known)	, O-N-O 115.5° s: H -205.093§ 407	N-O 1.265 Å 902 Hartree O -0.703	S 56.612 cal mol ⁻	¹ K ⁻¹
6.6 PO ₂ Geometry: bent, Thermodynamic Charges: P O Reference: HB	, O-P-O 134.0° s: H-491.6918 QTAIM +2.529 -1.265 s. Qian <i>et al., J.</i>	P-O 1.478 Å 323 Hartree NBO H: +1.822 + -0.911 - Chem. Soc., Fa	S 62.225 cal mol irshfeld Mu 0.572 +0 0.286 -0 <i>raday Trans.,</i> 1995	¹ K ⁻¹ lliken .943 .472 , 91, 2993-2998 .

6.7 SO₂

Geometry: bent, O-S-O 118.4° S-O 1.449 Å

Thermodynamics: H -548.507293 Hartree			S 60.722 cal mol ⁻¹ K ⁻¹		
Charges:	QTAIM	NBO	Hirshfeld	Mulliken	
S	+2.375	+1.598	+0.477	+0.940	
0	-1.187	-0.799	-0.238	-0.470	
(well known)					

(well known)

6.8 SeO₂

Geometry: bent, O-Se-O 114.2° Se-O 1.616 Å				
Thermodynai	mics: H -2551.	459509 Hartree	S 64.141 d	cal mol ⁻¹ K ⁻¹
Charges:	QTAIM	NBO	Hirshfeld	Mulliken
Se	+1.808	+1.716	+0.549	+0.876
0	-0.904	-0.858	-0.275	-0.438
Reference: R.J.M Konings et al., Chem. Phys. Lett., 1998, 292, 447–453.				

6.9 TeO₂

Geometry: bent, O-Te-O 112.5° Te-O 1.817 Å				
Thermodynamics: H -6764.099040 Hartree S 66.656 cal mol ⁻¹ K ⁻¹				
Charges:	QTAIM	NBO	Hirshfeld	Mulliken
Те	+1.964	+1.969	+0.757	+1.120
0	-0.982	-0.984	-0.379	-0.560
Reference: R.J.M Konings et al., Chem. Phys. Lett., 1998, 292, 447–453.				

6.10 CIO₂

0.10 0102					
Geometry: bent, O-CI-O 116.7° CI-O 1.503 Å					
Thermodynam	ics: H -610.3	30167 Hartree	S 61.474 ca	al mol ⁻¹ K ⁻¹	
Charges:	QTAIM	NBO	Hirshfeld	Mulliken	
Cl	+1.346	+1.293	+0.455	+0.974	
0	-0.673	-0.646	-0.227	-0.487	
(well known)					

6.11 BrO₂

Geometry: bent, O-Br-O 114.3° Br-O 1.663 Å					
Thermodynam	ics: H -2723	.914782 Hartree	S 66.009 c	al mol ⁻¹ K ⁻¹	
Charges:	QTAIM	NBO	Hirshfeld	Mulliken	
Br	+1.467	+1.474	+0.456	+0.869	
0	-0.733	-0.737	-0.228	-0.435	
(well known)					

6.12 [CIO₂]⁻

Geometry: bent, O-Cl-O 115.1° Cl-O 1.606 Å Thermodynamics: H -610.411149 Hartree S 61.105 cal mol⁻¹ K⁻¹ Charges: Cl +0.707 O -0.854 (well known)

6.13 [BrO₂]⁻

Geometry: bent, O-Br-O 114.2° Br-O 1.750 Å Thermodynamics: H -2724.001324 Hartree S 64.095 cal mol⁻¹ K⁻¹ Charges: Br +0.915 O -0.957 Reference: W. Levason *et al., J. Chem. Soc., Dalton Trans.,* 1990, 349-353.

6.14 NO₃

Geometry: planar, Y-shaped, O-N-O 111.8°, 124.1° (x2) N-O 1.207 Å, 1.252 Å (x 2) Thermodynamics: H -280.151142 Hartree S 65.248 cal mol⁻¹ K⁻¹ Charges: N +0.930 O -0.368, -0.281 (x 2) Reference: I. Hirota *et al., J. Chem. Phys.,* 1997, **107**, 2829-2838.

6.15 [NO₃]⁻ Geometry: trigonal planar, N-O 1.260 Å Thermodynamics: H -280.295711 Hartree Charges: N +0.849 O -0.616 (well known)

S 62.248 cal mol⁻¹ K⁻¹

6.16 [RbCO₃]⁻

Cartesian coordinates:

(well k	nown)			
Charge	es: C +2.148	O -1.35	6 (x 2), -1.314	Rb +0.877
Therm	odynamics: H -:	3203.586097 Ha	rtree S 77.6	59 cal mol ⁻¹ K ⁻¹
Rb	-0.875465	0.806107	-0.081334	
0	0.062633	-1.574553	0.129714	
0	1.590929	0.099775	0.020126	
0	2.271309	-2.047184	0.208901	
С	1.339367	-1.202150	0.122436	

6.17 SO₃

Geometry: trigonal planar, S-O 1.438					
Thermodynamics: H -623.664941 Hartree			S 65.016 ca	al mol ⁻¹ K ⁻¹	
Charges:	QTAIM	NBO	Hirshfeld	Mulliken	
S	+3.576	+2.437	+0.654	+1.192	
0	-1.192	-0.812	-0.218	-0.397	
(

(well known)

6.18 [RbSO₃]⁻

Cartes	sian coordinates	8:		
S	0.379904	0.742842	0.04	5830
0	-0.173132	0.094525	-1.262	1315
0	-0.154569	-0.161248	1.19	9575
0	1.916764	0.476687	0.00	6677
Rb	1.098570	-2.148633	-0.25	5424
Therm	odynamics: H	-3563.614301 H	artree	S 79.098 cal mol ⁻¹ K ⁻¹
Charg (well k	es: S +2.390 mown)	O -1.4	16	Rb +0.858

6.19 SeO₃

0.19 3603					
Geometry: trigonal planar, Se-O 1.607 Å					
Thermodynami	ics: H -2626	S 69.192 cal mol ⁻¹ K ⁻¹			
Charges:	QTAIM	NBO	Hirshfeld	Mulliken	
Se	+2.527	+2.542	+0.654	+1.416	
0	-0.842	-0.847	-0.218	-0.472	
(well known)					

6.20 [RbSO₃]⁻ Cartesian coordinates:

Se	-2.309061	0.626738	-0.1113	30
0	-1.826829	-0.517213	1.0808	33
0	-1.357530	2.006753	0.2791	82
0	-1.550427	0.033290	-1.5374	38
Rb	0.688830	0.137656	0.1037	61
Thermo	dynamics: H	-5566.585822 Har	tree S	83.062 cal mol ⁻¹ K ⁻¹
Charge	s: Se +1.849	O -1.243	3 R	b +0.882
(well kn	own)			

6.21 [RbTeO₃]⁻

Cartesian coordinates:				
Шо	2	110011	\cap	615510

Reference: L. Andersen et al., Acta Cryst. B, 1989, 45, 344-348.					
Charges: Te +2.052		O -1.31	5 F	Rb +0.893	
Thermodynamics: H -9779.251515 Hartree S 85.656 cal mol ⁻¹ K ⁻¹					
Rb	0.697514	0.133871	0.1028	810	
0	-1.512851	-0.009926	-1.6528	806	
0	-1.306119	2.122386	0.3089	62	
0	-1.813617	-0.604647	1.1752	251	
Te	-2.419944	0.645540	-0.1192	:09	

.

6.22 [CIO₃]⁻

 Geometry: trigonal pyramidal, O-CI-O 108.2°
 CI-O 1.522 Å

 Thermodynamics: H -685.559810 Hartree
 S 65.701 cal mol⁻¹ K⁻¹

 Charges: CI + 1.664
 O -0.888

 (well known)
 Column 1

6.23 [BrO₃]⁻

 Geometry: trigonal pyramidal, O-Br-O 107.6°
 Br-O 1.679 Å

 Thermodynamics: H -2799.153553 Hartree
 S 69.247 cal mol⁻¹ K⁻¹

 Charges: Br +1.929
 O -0.976

 Reference: W. Levason et al., J. Chem. Soc., Dalton Trans., 1990, 349-353.

6.24 [Rb₂AsO₃]⁻

Cartes	sian coordinates				
As	-0.934133	0.495542	0.915001		
0	-1.370013	1.549933	-0.401988		
0	-1.670301	-1.070723	0.712547		
0	0.833371	0.172103	0.630375		
Rb	0.994653	1.785241	-1.477570		
Rb	0.509088	-2.448923	0.319531		
Thermodynamics: H -8340.783901 Hartree S 98.427 cal mol ⁻¹ K ⁻¹					
Charg	es: As +1.671	O -1.33	1 (x 2), -1.438 (x 1	1) Rb +0.716 (x 2	2)
Refere	ence: M. B. Ham	ida and M. S. Wi	ckleder, Z. Anorg.	Allg. Chem., 2006, 63	2 , 2195–2197

6.25 [IO₃]⁻

Geometry: trigonal	pyramidal, O-I-O 106.8°	I-O 1.841 Å
Thermodynamics:	H -7145.496815 Hartree	S 71.978 cal mol ⁻¹ K ⁻¹
Charges: I +2.359	O -1.120	
(well known)		

6.26 XeO₃

 Geometry: trigonal pyramidal, O-Xe-O 107.8°
 Xe-O 1.819 Å

 Thermodynamics:
 H -7459.320352 Hartree
 S 72.436 cal mol⁻¹ K⁻¹

 Charges:
 QTAIM
 NBO
 Hirshfeld
 Mulliken

 Xe
 +2.498
 +2.728
 +0.746
 +1.522

 O
 -0.833
 -0.909
 -0.249
 -0.507

 Reference:
 D. S. Brock and G. J. Schrobilgen, J. Am. Chem. Soc., 2011, 133, 6265–6269.

6.27 XeO₄

 Geometry: tetrahedral, Xe-O 1.801 Å

 Thermodynamics:
 H -7534.389949 Hartree
 S 77.001 cal mol⁻¹ K⁻¹

 Charges:
 QTAIM
 NBO
 Hirshfeld
 Mulliken

 Xe
 +3.140
 +3.512
 +0.789
 +1.754

 O
 -0.785
 -0.878
 -0.197
 -0.439

 Reference:
 H. Selig et al., Science, 1964, 143, 1322-1322.
 Science
 Science
6.28 [CIO₄]⁻

Geometry: tetrahedral, CI-O 1.484 Å Thermodynamics: H -760.695680 Hartree Charges: CI +2.446 O -0.861 (well known) S 68.299 cal mol⁻¹ K⁻¹

6.29 [BrO₄]⁻

Geometry: tetrahedral, Br-O 1.648 Å Thermodynamics: H -2874.278643 Hartree S 72.760 cal mol⁻¹ K⁻¹ Charges: Br +2.646 O -0.912 Reference: W. Levason *et al., J. Chem. Soc., Dalton Trans.,* 1990, 349-353.

6.30 [IO₄]⁻

Geometry: tetrahedral, I-O 1.819 Å Thermodynamics: H -7220.637457 Hartree S 76.370 cal mol⁻¹ K⁻¹ Charges: I +3.230 O -1.058 (well known)

6.31 [RbSO₄]⁻, [SO₄]²⁻

[RbS	5O ₄] ⁻ Cartesian coo	ordinates:		
S	-1.275903	-0.610173	-0.493839	
0	-0.088263	-0.170741	-1.341692	
0	-0.956700	-0.200539	0.938907	
0	-1.549699	-2.055363	-0.616982	
0	-2.458462	0.244202	-0.932991	
Rb	-0.712021	2.312496	-0.240882	
Cha	rges: S +3.832	O -1.44	49 (x3), -1.415 (x1)	Rb +0.930
Ther	modynamics: H -	3638.839191 Ha	artree S 81.163 ca	al mol ⁻¹ K ⁻¹

[SO₄]²⁻ geometry: tetrahedral, S-O 1.514 Å

Charges:	QTAIM	NBO	Hirshfeld	Mulliken
S	+3.846	+2.613	+0.238	+1.305
0	-1.462	-1.153	-0.559	-0.826
(well known)				

6.32 [RbSeO₄]⁻

ian coordinates:			
-1.280641	-0.639728	-0.496297	
0.030226	-0.119793	-1.423976	
-0.922697	-0.151954	1.079447	
-1.587685	-2.248653	-0.633071	
-2.570310	0.338094	-0.975141	
-0.709940	2.341917	-0.238441	
odynamics: H -5	5641.761086 Ha	rtree S 86.2	208 cal mol ⁻¹ K ⁻¹
es: Se +2.771 nown)	O -1.19	9 (x 3), -1.099	Rb +0.925
	an coordinates: -1.280641 0.030226 -0.922697 -1.587685 -2.570310 -0.709940 odynamics: H -5 es: Se +2.771 nown)	ian coordinates: -1.280641 -0.639728 0.030226 -0.119793 -0.922697 -0.151954 -1.587685 -2.248653 -2.570310 0.338094 -0.709940 2.341917 odynamics: H -5641.761086 Hai pes: Se +2.771 O -1.19 nown)	ian coordinates: -1.280641 -0.639728 -0.496297 0.030226 -0.119793 -1.423976 -0.922697 -0.151954 1.079447 -1.587685 -2.248653 -0.633071 -2.570310 0.338094 -0.975141 -0.709940 2.341917 -0.238441 odynamics: H -5641.761086 Hartree S 86.2 es: Se +2.771 O -1.199 (x 3), -1.099 nown) -0.1199 (x 3), -1.099

6.33 [RbTeO₄]⁻

Carte	Cartesian coordinates:						
Те	-1.212760	-0.112277	-0.111150				
0	-0.304539	0.431594	-1.655089				
0	-0.288442	-1.665911	0.376980				
0	-3.035044	-0.287174	-0.277243				
0	-0.628665	1.126801	1.164755				

6.34 [Rb₂NO₄]⁻

Cartesi	an coordinates	8:		
Ν	-0.441642	0.923038	0.423435	
0	-1.705942	1.003932	0.904138	
0	-0.463193	0.423184	-0.946351	
0	0.199555	2.115911	0.468370	
0	0.312217	-0.073322	1.177423	
Rb	-1.776014	-1.532509	0.337743	
Rb	2.169461	0.769891	-0.564616	
Thermo	odynamics: H	-6235.046760 Ha	artree S 90.9	94 cal mol ⁻¹ K ⁻¹
Charge	s: N +0.749	O -0.93	34 (x 2), -0.808 (x	(2) Rb +0.868 (x 2)
Referer	nce: T. Bremm	and M. Jansen,	Z. Anorg. Allg. Cl	<i>hem.,</i> 1992, 608 , 49-55.
6.35 [R	b ₂ PO ₄] ⁻			
Cartesi	an coordinates	S:		
P	1.123869	-0.843343	-0.208509	
0	0.676838	-0.060835	1.125235	
0	2.480135	-0.277597	-0.701454	
0	1.048633	-2.370364	0.046575	
0	-0.033838	-0.421686	-1.244342	
RD	1.101558	2.052422	-0.642805	
Rb	-1.501163	-1./52595	0./1/248	04 1 11/1
Thermo	dynamics: H	-6521.953349 Ha	artree S 93.8	
Charge	S: P +3.701	U -1.63	37 (X 2), -1.615 (X	(2) RD $+0.900$ (X 2)
(well kn	iown)			
6.36 [R Cartesi	b₂AsO₄] - an coordinates	8:		
6.36 [R Cartesi As	b₂AsO₄] - an coordinates	S: 0.052724	0.065908	
6.36 [R Cartesi As O	b₂AsO₄] - an coordinates -0.000293 1.396568	3: 0.052724 −0.734990	0.065908 -0.501031	
6.36 [R Cartesi As 0 0	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453	0.052724 -0.734990 1.772395	0.065908 -0.501031 0.215333	
6.36 [R Cartesi As - 0 0 0	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171	C.052724 -0.734990 1.772395 -0.344350	0.065908 -0.501031 0.215333 1.765296	
6.36 [R Cartesi As 0 0 0 0 0	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080	C.052724 -0.734990 1.772395 -0.344350 -0.143270	0.065908 -0.501031 0.215333 1.765296 -0.742238	
6.36 [R Cartesi As - 0 0 0 0 - Rb	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483	C. 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345	
6.36 [R Cartesi As - 0 0 0 0 0 Rb Rb	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417	<pre> . 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 </pre>	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013	
6.36 [R Cartesi As - 0 0 0 - Rb Rb - Thermo	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H	 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Hate 	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree \$99.2	22 cal mol ⁻¹ K ⁻¹
6.36 [R Cartesi As - O O O Rb Rb Rb - Thermo Charge	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585	S: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O -1.38	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.22 38 (x 2), -1.301 (x	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 pown)	5: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O -1.38	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.21 38 (x 2), -1.301 (x	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 Rb Rb Rb Thermo Charge (well kn	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 hown)	s: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O -1.38	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree \$ 99.2 38 (x 2), -1.301 (x	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 Rb Rb Rb Thermo Charge (well kn 6.37 [R	b ₂ AsO ₄] ⁻ an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 nown) b ₃ SiO ₄] ⁻	5: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O -1.38	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.2 38 (x 2), -1.301 (x	22 cal mol ^{.1} K ^{.1} (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 Rb Rb Thermo Charge (well kn 6.37 [R Cartesi Si	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 nown) b₃SiO₄] - an coordinates -0.842292	S: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O -1.38 S: 1.193294	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree \$99.22 38 (x 2), -1.301 (x	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 Rb Rb Thermo Charge (well kn 6.37 [R Cartesi Si 0	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 hown) b₃SiO₄] - an coordinates -0.842292 -1.921495	5: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O -1.38 5: 1.193294 1.396995	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree \$99.22 38 (x 2), -1.301 (x	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b₂AsO₄] - an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 nown) b₃SiO₄] - an coordinates -0.842292 -1.921495 -1.534194	5: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O -1.38 5: 1.193294 1.396995 0.940746	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree \$ 99.2 38 (x 2), -1.301 (x -0.606321 -1.846950 0.877904	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 0 Rb Rb Thermo Charge (well kn 6.37 [R Cartesi Si 0 0 0	b₂AsO₄]⁻ an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 hown) b₃SiO₄]⁻ an coordinates -0.842292 -1.921495 -1.534194 -0.081799	<pre></pre>	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.2 38 (x 2), -1.301 (x -0.606321 -1.846950 0.877904 -0.973272	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$b_2AsO_4]^-$ an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 hown) $b_3SiO_4]^-$ an coordinates -0.842292 -1.921495 -1.534194 -0.081799 0.423963	S: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O -1.38 S: 1.193294 1.396995 0.940746 -0.345690 2.261643	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.2: 38 (x 2), -1.301 (x -0.606321 -1.846950 0.877904 -0.973272 -0.606996	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi: As 0 0 0 0 Rb Rb Rb Thermo Charge (well kn 6.37 [R Cartesi: Si 0 0 0 0 Rb	b₂AsO₄]⁻ an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 iown) b₃SiO₄]⁻ an coordinates -0.842292 -1.921495 -1.534194 -0.081799 0.423963 -2.785356	s: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O-1.38 s: 1.193294 1.396995 0.940746 -0.345690 2.261643 -0.946580	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.22 38 (x 2), -1.301 (x -0.606321 -1.846950 0.877904 -0.973272 -0.606996 -0.688960	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi: As 0 0 0 0 Rb Rb Rb Thermo Charge (well kn 6.37 [R Cartesi: Si 0 0 0 Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb	b₂AsO₄]⁻ an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 iown) b₃SiO₄]⁻ an coordinates -0.842292 -1.921495 -1.534194 -0.081799 0.423963 -2.785356 1.139954	s: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O-1.38 s: 1.193294 1.396995 0.940746 -0.345690 2.261643 -0.946580 0.497019	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.2 38 (x 2), -1.301 (x -0.606321 -1.846950 0.877904 -0.973272 -0.606996 -0.688960 1.382788	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi: As 0 0 0 0 Rb Rb Thermo Charge (well kn 6.37 [R Cartesi: Si 0 0 0 Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb	$b_2AsO_4]^-$ an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 nown) $b_3SiO_4]^-$ an coordinates -0.842292 -1.921495 -1.534194 -0.081799 0.423963 -2.785356 1.139954 0.487906	 .0.052724 .0.734990 .772395 .344350 .143270 .608149 .564405 .8416.020390 Ha .0.1.38 .193294 .396995 .940746 .345690 .261643 .946580 .497019 .265782 	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.2 38 (x 2), -1.301 (x -0.606321 -1.846950 0.877904 -0.973272 -0.606996 -0.688960 1.382788 -3.173844	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2)
6.36 [R Cartesi As 0 0 0 0 Rb Rb Thermo Charge (well kn 6.37 [R Cartesi Si 0 0 0 0 Rb Rb Rb Rb Rb Rb Rb Thermo	b ₂ AsO ₄] ⁻ an coordinates -0.000293 1.396568 0.340453 -0.224171 -1.484080 2.422483 -2.240417 odynamics: H s: As +2.585 nown) b ₃ SiO ₄] ⁻ an coordinates -0.842292 -1.921495 -1.534194 -0.081799 0.423963 -2.785356 1.139954 0.487906 odynamics: H	<pre> S: 0.052724 -0.734990 1.772395 -0.344350 -0.143270 0.608149 1.564405 -8416.020390 Ha O-1.38 S: 1.193294 1.396995 0.940746 -0.345690 2.261643 -0.946580 0.497019 1.265782 -9409.931020 Ha </pre>	0.065908 -0.501031 0.215333 1.765296 -0.742238 1.705345 1.316013 artree S 99.22 38 (x 2), -1.301 (x -0.606321 -1.846950 0.877904 -0.973272 -0.606996 -0.688960 1.382788 -3.173844 artree S 107	22 cal mol ⁻¹ K ⁻¹ (2) Rb +0.896 (x 2) 095 cal mol ⁻¹ K ⁻¹

Charges: Si +3.173 O -1.693 (x 3), -1.695 (x 1) Rb +0.867 (x 3) Reference: W. Klein and M. Jansen, *Z. Anorg. Allg. Chem.*, 2008, **634**, 1077-1081.

6.38 [Rb₃SeO₅]⁻ Cartesian coordinates:

Carle	sian coordinates.		
Se	0.467555	-0.749540	-0.602275
0	-1.157189	-0.856432	-1.330023
0	1.894916	-1.676978	-0.299436
0	0.410064	0.880245	0.210946
0	1.150343	-0.153896	-2.112696
0	-0.224655	-1.523464	0.994187
Rb	1.979605	-0.549285	2.101883
Rb	-0.504862	1.739695	-2.303276
Rb	-2.316604	-0.114265	0.947917

Thermodynamics: H -11596.517853 Hartree S 117.491 cal mol⁻¹ K⁻¹ Charges: Se +2.652 O -1.155, -1.239, -1.233, -1.292, -1.313 Rb +0.836, +0.863, +0.881 Reference: H. Haas and M. Jansen, *Z. Anorg. Allg. Chem.*, 2001, **627**, 755-760.

6.39 [RbBrO₅]⁻

Cartesian coordinates:

Br	0.00000	0.00000	0.00000
0	0.00000	0.00000	1.686573
0	1.704382	0.00000	-0.516432
0	0.432439	-1.720450	-0.157064
0	-0.081012	1.766057	-0.214714
0	-1.496456	-0.325049	-0.706746
Rh	2 004096	1 962642	1 488445

Thermodynamics: H -5889.193480 HartreeS 93.756 cal mol-1 K-1Charges: Br +2.561O -0.989 (x 2), -0.586, -0.856, -1.070Rb +0.928Reference: J.R. Byberg, Inorg. Chem., 1993, **32**, 5513-5516.Rb +0.928

6.40 [RbIO₅]⁻

Cartesian coordinates:

Ι	-0.126863	0.188430	-0.015287	
0	-0.130532	1.940121	0.510651	
0	1.323519	0.168465	-1.176988	
0	0.497095	-0.545471	1.599095	
0	-1.788072	0.082135	-0.770273	
0	-0.130230	-1.949590	-0.213075	
Rb	2.580949	-1.850731	0.240164	
Therm	odynamics: H -	10235.602601 H	artree S 97.132 cal mol ⁻¹	K ⁻¹
Charg	es: I +3.309	O -1.11	0, -1.178, -0.767, -1.057, -1.	128 Rb +0.931
Refere	ence: J. R. Bybei	rg, J. Phys. Cher	n., 1992, 96 , 4220-4225.	

6.41 [Rb₂IO₅]⁻

Cartesian coordinates: -1.536637 -0.390268 0.411174 Τ 1.123931 -1.541506 1.370120 0 -2.792361 -0.136739 -1.009656 0 0.059313 0.010023 -0.537634 0 -2.752130 -0.867351 1.790472 0 0 -1.147381 -2.228280 0.133370 -0.879577 -1.621983 -4.271241 1.261070 Rb -2.520250 Rb 0.991900 Thermodynamics: H -13175.488533 Hartree S 109.851 cal mol⁻¹ K⁻¹ Charges: I +3.263 O -1.201 (x 4), -1.286 Rb +0.914 (x 2) Reference: H. Dölling and M. Trömel, Naturwissenschaften, 1973, 60, 153-154.

6.42 [Rb₃XeO₆]⁻

Carte	Sian coordinates.		
Xe	0.029281	0.637923	0.200301
0	-0.535696	-0.034170	-1.580556
0	0.592645	1.142750	1.945250
0	-1.063280	-0.818678	0.994163
0	1.125028	1.934208	-0.658165
0	-1.494370	1.775591	0.234380
0	1.529795	-0.660307	0.113233
Rb	0.979917	-1.427219	2.625041
Rb	-3.062709	-0.199675	-0.689264
Rb	2.011807	0.106367	-2.413168

Thermodynamics: H -16504.425371 Hartree S 117.860 cal mol⁻¹ K⁻¹ Charges: Xe +3.297 O -1.210 (x 3), -1.123 (x 3) Rb +0.901 (x 3) Reference: M. A. M. Forgeron *et al., Inorg. Chem.,* 2007, **46**, 3585–3592.

6.43 [Rb₄IO₆]⁻

Cartesian coordinates:

Thorm		10120 207224 1	Jortroo S 129 005 or	al mal - 1 K - 1
Rb	-1.076482	2.349461	-2.179769	
Rb	-2.438690	-2.119028	0.399996	
Rb	0.839948	1.405811	2.710276	
Rb	2.542351	-1.506373	-1.437259	
0	-1.831178	0.117620	-0.923825	
0	1.768737	-0.058323	0.672727	
0	-0.827145	-0.381018	1.630013	
0	0.766853	0.439614	-1.880916	
0	-0.119069	1.955592	0.283263	
0	0.056345	-1.896374	-0.536120	
I	-0.030450	0.029246	-0.125637	

Thermodynamics: H -19130.387234 Hartree S 128.905 cal mol⁻¹ K⁻¹ Charges: I +3.370 O -1.318 (x 4) Rb +0.884 (x 4)

Reference: A. Kovalevskiy and M. Jansen, Z. Anorg. Allg. Chem., 2006, 632, 577-581.

6.44 [Rb₅TeO₆]⁻

Cartesian coordinates:

-0.012891	0.420220	0.036073
1.261700	-0.723370	-1.132087
1.488011	1.542767	0.677244
-0.347851	1.676680	-1.459052
-1.512998	-0.853544	-0.617803
0.328913	-0.986254	1.521681
-1.281551	1.412798	1.188582
2.991729	-0.497641	1.003407
-0.570363	-0.240844	-3.135685
-0.110802	3.644562	0.322192
-2.375908	-0.750517	1.998941
0.089421	-2.955627	-0.262188
	-0.012891 1.261700 1.488011 -0.347851 -1.512998 0.328913 -1.281551 2.991729 -0.570363 -0.110802 -2.375908 0.089421	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Thermodynamics: H -21764.139773 Hartree S 141.285 cal mol⁻¹ K⁻¹ Charges: Te +3.193 O --1.423 (x 3), -1.390 (x 3) Rb +0.853 (x 3), +0.812, +0.875 Reference: A. Kovalevskiy and M. Jansen, *Z. Anorg. Allg. Chem.*, 2006, **632**, 577-581.

6.45 [Rb₅SeO₆]⁻ Cartesian coordinates:

Cartes	sian coordinates.				
Se	-0.005682	0.013964	-0.004467		
0	1.433462	-1.141577	-0.719810		
0	1.196464	0.957014	0.986022		
0	0.175336	1.163019	-1.406233		
0	-1.258844	-1.117659	-1.045963		
0	-0.193606	-1.330549	1.441230		
0	-1.393094	0.981987	0.670676		
Rb	2.467939	-1.068540	1.773017		
Rb	0.362393	-0.648824	-3.144846		
Rb	-0.007078	3.160131	0.274319		
Rb	-2.853020	-1.015962	1.124326		
Rb	-0.005589	-3.315944	-0.291330		
Therm	odynamics: H -1	7551.353264 H	artree S 143.0	001 cal mol ⁻¹ K ⁻¹	
Charg	es: Se +2.596	O -1.30	9 (x 3), -1.271 (x	3) Rb +0.835	(x 3), +0.770, +0.869
Refere	ence: J. Haas, Z.	Anorg. Allg. Che	e <i>m</i> ., 2001, 627 , 1	313-1318.	• •
		-			

7. Thermodynamic data for atoms and ions

Table S4. Enthalpies and entropies of free atoms and ions in their ground states, calculated at the wB97XD/DGDZVP level of theory

species	multiplicity	H, Hartrees	S, cal mol ⁻¹ K ⁻¹
Н	m=2	-0.498492	27.392
Li	m=2	-7.484814	33.176
В	m=2	-24.642674	34.519
С	m=3	-37.831855	35.581
N	m=4	-54.572791	36.613
0	m=3	-75.052079	36.438
F	m=2	-99.718538	36.145
AI	m=2	-242.312300	37.191
Si	m=3	-289.315698	38.104
Р	m=4	-341.203585	38.979
S	m=3	-398.049560	38.502
CI	m=2	-460.081358	37.964
Ar	m=1	-527.464859	36.984
Ga	m=2	-1924.426902	39.986
Ge	m=3	-2076.525529	41.001
As	m=4	-2235.400567	41.612
Se	m=3	-2401.068386	41.233
Br	m=2	-2573.672556	40.390
Kr	m=1	-2753.305863	39.195
Rb	m=2	-2939.784246	40.608
Rb⁺	m=1	-2939.640014	39.231
In	m=2	-5742.051166	41.510
Sn	m=3	-6024.828197	42.392
Sb	m=4	-6315.389789	43.039
Те	m=3	-6613.741112	42.681
I	m=2	-6919.982319	41.806
Xe	m=1	-7234.173618	40.543

8. Data for species in Table 3

8.1 CLi₆

Geometry: octahedral, C-Li 2.054 Å Charges: C -4.593 Li +0.766 (x 3), +0.767 (x 3) Reference: H. Kudo, *Nature*, 1992, **355**, 432-434.

8.2 N₃-

Geometry: linear, N-N 1.189 Å Charges: N(terminal) -0.332 N(central) -0.335 (well known)

8.3 CH₂NN

Cartesian coordinates and charges (QTAIM, NBO, Hirshfeld, Mulliken):

С	-1.016033	-0.654820	0.002537	+0.270	-0.434	-0.129	-0.547
Ν	0.073966	0.047431	-0.000320	-0.672	+0.035	+0.112	+0.217
Ν	1.033932	0.666074	-0.003033	+0.147	-0.043	-0.098	-0.181
Н	-1.607035	-0.669364	-0.900478	+0.127	+0.221	+0.058	+0.255
Н	-1.270808	-1.183830	0.908168	+0.127	+0.221	+0.058	+0.255
6 11 1	····· ····· `						

(well known)

8.4 CH₂NCH

Cartesian coordinates and charges:

D (0 • • •		4000 400 000	7 00 50
Н	2.239167	-0.242461	3.073175	+0.102
Н	3.232519	0.213834	1.533927	+0.102
С	2.283363	0.037019	2.026802	+0.460
Ν	1.200348	0.160501	1.364449	-1.376
С	0.160561	0.420734	0.770154	+0.586
Н	-0.303247	-0.407256	0.224811	+0.127

Reference: G. Maier et al., Chem. Ber., 1993, 126, 2337-2352.

8.5 NNS

Geometry: linear, N-N 1.127 Å N-S 1.588 Å Charges: N(terminal) +0.223 N(central) -0.627 S +0.404 Reference: R.D. Brown *et al.*, *J. Mol. Spec.*, 1990, **140**, 390-400.

8.6 PNS

Geometry: linear, P-N 1.511 Å N-S 1.572 Å Charges: P +1.115 N -1.585 S +0.470 Reference: X. Zeng *et al.*, *Angew. Chem. Int. Ed.*, 2012, **51**, 3334-3339.

8.7 NS2-

Geometry: bent, S-N-S 122.1° N-S 1.645 Å Charges: N -1.108 S +0.054 Reference: P. Hassanzadeh and L. Andrews, *J. Am. Chem. Soc.,* 1992, **114**, 83-91.

8.8 OLi₄

Geometry: tetrahedral, O-Li 1.790 Å Charges: O -2.799 Li +0.700 Reference: J. Viallon *et al., Eur. Phys. J.*, 2005, **D33**, 405-411.

8.9 XeF₂O₃

 Geometry: trigonal bipyramidal (F axial, O equatorial), Xe-F 1.963 Å
 Xe-O 1.791 Å

 Charges: Xe +3.340
 F -0.553
 O -0.745

 Reference: J. L. Huston, *Inorg. Chem.,* 1982, **21**, 685-688.
 Xe-O 1.791 Å

8.10 NNO

Geometry: linear, N-N 1.130 Å N-O 1.193 Å Charges: N(terminal) +0.258 N(central) +0.102 O -0.360 (well known)

8.11 PNO

Geometry: linear, 1.512 Å N-O 1.192 Å Charges: P +1.024 N -0.622 O -0.401 Reference: T. Okabayashi *et al., J. Chem. Phys.*, 1999, **111**, 3012-3017

8.12 HCNO

Geometry: linear, H-C 1.066 Å C-N 1.606 Å N-O 1.209 Å Charges: H +0.282 C +0.727 N -0.579 O -0.430 (well known)

8.13 NH₄ radical

Geometry: tetrahedral, N-H 1.081 Å Charges: N -1.032 H +0.258 Reference: G. I. Gellene and R. F. Porter, *J. Phys. Chem.*, 1984, **88**, 6680-6684.

$8.14 N_5^+$

Cartesian coordinates and charges:

+0.570 N1 0.120240 0.000000 0.120553 N2 0.094182 0.000000 1.234031 -0.168 -0.235970 NЗ 0.000000 2.502140 +0.197 N4 0.836178 0.000000 3.255397 -0.168 Ν5 1.576540 0.000000 4.087565 +0.570

Reference: K. O. Christe et al., Angew. Chem. Int. Ed., 1999, 38, 2004-2009.

8.15 FLi₂

Geometry: bent, Li-F-Li 100.2° F-Li 1.741 Å Charges: F -1.418 Li +0.709 Reference: K. Yokoyama *et al., Chem. Phys. Lett.,* 2000, **330**, 339–346.

8.16 PPS

Geometry: linear, P-P 1.885 Å P-S 1.906 Å Charges: P(terminal) +0.442 P(central) +0.086 S -0.529 Reference: Z.Mielke *et al., J. Phys. Chem.*, 1991, **95**, 75-79.

8.17 HArF

Geometry: linear, H-Ar 1.372 Å Ar-F 2.010 Å Charges: H +0.255 Ar +0.429 F -0.684 Reference: L. Khriachtchev *et al., Nature,* 2000, **406**, 874-876.

8.18 HKrF

Geometry: linear, H-Kr 1.509 Å Kr-F 2.053 Å Charges: H +0.131 Kr +0.578 F -0.709 Reference: M. Pettersson *et al.*, *J. Chem. Phys.*, 2002, **116**, 2508-2515

8.19 Me₃NO

Cartesian coordinates and charges:

N1	-0.005337	-0.007411	-0.008111	-0.470
02	-0.022938	1.354532	-0.034906	-0.720
СЗ	1.407094	-0.485662	0.015410	+0.204
C4	-0.713810	-0.489667	1.212456	+0.204
С5	-0.689972	-0.536973	-1.222649	+0.204
НG	1.462636	-1.578079	0.037445	+0.033
H7	1.893057	-0.090220	-0.874533	+0.080
Н8	1.875607	-0.054696	0.898173	+0.080
Н9	-0.718627	-1.582161	1.270531	+0.033
H10	-0.201968	-0.056979	2.069959	+0.080
H11	-1.728549	-0.098701	1.168477	+0.079
H12	-0.697623	-1.630903	-1.236444	+0.033
H13	-1.703902	-0.141507	-1.215529	+0.080
H14	-0.159356	-0.141524	-2.086709	+0.080

8.20 CINO₂

Cartesian coordinates and charges:

Cl	-0.046718	-0.055329	0.054328	+0.020	
Ν	0.278603	0.450619	1.798216	+0.703	
0	1.284985	0.001375	2.260758	-0.361	
0	-0.555337	1.168641	2.265316	-0.361	
(well known)					

8.21 HXeF

Geometry: linear, H-Xe 1.	697 Å Xe-F 2.140 Å	
Charges: H -0.062	Xe +0.805	F -0.743
Reference:		

8.22 CF₃NO₂ Cartesian coordinates and *charges*:

C1	0.007984	-0.558715	0.000733	+2.177
N2	0.010140	0.989626	-0.002738	+0.529
03	-1.093284	1.490880	0.069346	-0.414
04	1.087702	1.540206	-0.075167	-0.408
F5	1.241167	-0.998097	-0.078246	-0.629
F6	-0.696957	-0.961826	-1.038469	-0.627
F7	-0.556752	-0.956918	1.124384	-0.627
((nown)			

(well known)

8.23 Ph₃l

Cartesian coordinates and charges:

I1	-0.908526	-0.230134	0.096104	+0.849
C2	-1.262516	2.012839	0.232238	-0.301
С3	-2.190743	2.447617	1.177690	-0.080
C4	-2.556872	3.794258	1.252932	-0.067
С5	-1.995449	4.716346	0.372622	-0.064
C6	-1.069978	4.288258	-0.580745	-0.067
С7	-0.706965	2.943509	-0.649090	-0.065
C8	-0.156695	-2.369691	-0.081972	-0.301
С9	0.938629	-2.871210	0.625331	-0.065
C10	1.263353	-4.225910	0.561044	-0.067
C11	0.492884	-5.094867	-0.213526	-0.064
C12	-0.603119	-4.603636	-0.919116	-0.067
C13	-0.924741	-3.245422	-0.848594	-0.081
C14	1.161646	0.307849	-0.122451	-0.324
C15	1.738662	1.174979	0.797915	-0.019
C16	3.082706	1.516790	0.654254	-0.044
C17	3.828783	1.000987	-0.404020	-0.054
C18	3.232944	0.136444	-1.320628	-0.044
C19	1.892162	-0.219493	-1.180844	-0.019
H20	-2.638687	1.738049	1.872842	+0.047
H21	-3.275238	4.121333	1.999120	+0.057
H22	-2.276376	5.763571	0.427498	+0.057
Н23	-0.632084	5.003432	-1.271222	+0.057
H24	0.023418	2.627873	-1.391544	+0.057
Н25	1.555438	-2.205364	1.225763	+0.057
Н26	2.117013	-4.605339	1.115375	+0.057
H27	0.746956	-6.149073	-0.265560	+0.057
H28	-1.204892	-5.273886	-1.526123	+0.057
Н29	-1.785201	-2.875981	-1.405817	+0.047
Н30	1.151128	1.596123	1.607219	+0.094
Н31	3.543410	2.186631	1.372939	+0.072
Н32	4.873609	1.272517	-0.514322	+0.069
Н33	3.808525	-0.264084	-2.148714	+0.072
н34	1.434861	-0.912171	-1.879846	+0.094

Reference: H. J. Reich et al., J. Am. Chem. Soc., 1991, 113, 1414-1416.

8.24 MeONO₂ Cartesian coordinates and *charges*:

C1	1.036047	-1.533684	0.034441	+0.365
02	0.966012	-0.102365	0.093621	-0.640
NЗ	-0.324372	0.399584	-0.027437	+0.872
04	-0.371949	1.601707	0.023084	-0.407
05	-1.228175	-0.398485	-0.165718	-0.443
НG	2.099095	-1.735920	0.144235	+0.088
Н7	0.473005	-1.984776	0.851512	+0.082
Н8	0.672323	-1.901283	-0.925089	+0.082

(well known)

8.25 MeNO₂

Cartesian coordinates and charges (QTAIM, NBO, Hirshfeld, Mulliken):

C1	-0.005244	-0.004064	0.057653	+0.197	-0.439	-0.023	-0.527
N2	0.008593	0.021481	1.546439	+0.427	+0.550	+0.263	+0.385
03	1.104150	-0.001099	2.089668	-0.468	-0.400	-0.218	-0.316
04	-1.067480	0.086555	2.122875	-0.465	-0.394	-0.215	-0.316
Н5	0.742813	-0.721081	-0.270080	+0.103	+0.230	+0.068	+0.258
НG	-1.005725	-0.265486	-0.273215	+0.104	+0.227	+0.064	+0.258
H7	0.267278	0.995987	-0.276309	+0.102	+0.225	+0.061	+0.258
(well known)							

$8.26 \ PhNO_2$

Cartesian coordinates and charges:

C1	0.303602	-1.279778	0.062834	-0.003
C2	1.630607	-1.517236	-0.280971	-0.029
C3	2.463449	-0.456810	-0.636481	-0.052
C4	1.973872	0.848807	-0.650379	-0.030
С5	0.649287	1.102984	-0.309221	-0.003
C6	-0.162629	0.030097	0.041895	+0.158
N7	-1.565472	0.290246	0.404276	+0.398
08	-2.262132	-0.669442	0.710130	-0.468
09	-1.954339	1.451289	0.378849	-0.468
H10	-0.363527	-2.085570	0.342607	+0.129
H11	2.013225	-2.531918	-0.270792	+0.080
H12	3.497463	-0.648526	-0.903590	+0.079
H13	2.623167	1.672161	-0.927122	+0.080
H14	0.244765	2.107474	-0.312162	+0.129

(well known)

8.27 Ph₄Se

Cartesian coordinates and charges:					
Se1	-0.501211	0.808437	0.144010	+0.951	
C2	0.850565	1.215985	1.760426	-0.245	
C3	1.128163	2.578526	1.879501	-0.088	
C4	2.001074	3.061882	2.855759	-0.070	
С5	2.612456	2.173515	3.738794	-0.067	
C6	2.341923	0.808887	3.637662	-0.074	
C7	1.466477	0.337998	2.657739	-0.081	
C8	1.058892	0.666382	-1.001674	-0.285	
C9	2.100330	-0.208338	-0.714653	-0.021	
C10	3.202255	-0.257693	-1.566659	-0.045	
C11	3.267259	0.578856	-2.679122	-0.054	
C12	2,221683	1.460601	-2.949435	-0.044	
C13	1.105760	1.498548	-2.116662	-0.024	
C14	-0.915571	-0.901878	0.962366	-0.285	
C15	-0.671869	-2.104122	0.308708	-0.021	
C16	-1.002741	-3.301632	0.940448	-0.045	
C17	-1.593262	-3.289554	2.202484	-0.054	
C18	-1.843843	-2.076566	2.842530	-0.044	
C19	-1.493645	-0.876336	2.228501	-0.024	
C20	-1.727904	0.197785	-1.508889	-0.245	
C21	-3.066299	0.547872	-1.324562	-0.088	
C22	-4.040648	0.227283	-2.271420	-0.070	
C23	-3.680031	-0.454977	-3.432119	-0.067	
C24	-2.345912	-0.807813	-3.635172	-0.074	
C25	-1.380750	-0.480693	-2.681282	-0.081	
H26	0.658921	3.288164	1.196025	+0.038	
H27	2.201670	4.127104	2.929315	+0.053	
H28	3.291711	2.541200	4.501916	+0.053	
Н29	2.812715	0.110263	4.324057	+0.051	
Н30	1.266568	-0.731066	2.605792	+0.046	
H31	2.067001	-0.837316	0.168286	+0.090	
Н32	4.014590	-0.944233	-1.351534	+0.069	
Н33	4.131884	0.545276	-3.334037	+0.068	
Н34	2.268087	2.115442	-3.813370	+0.070	
Н35	0.274391	2.156826	-2.349408	+0.087	
H36	-0.242276	-2.115195	-0.687095	+0.090	
Н37	-0.807632	-4.243374	0.437894	+0.069	
H38	-1.859474	-4.223656	2.686426	+0.068	
Н39	-2.305145	-2.061477	3.824531	+0.070	
H40	-1.652805	0.065976	2.743681	+0.087	
H41	-3.366661	1.081415	-0.421221	+0.037	
H42	-5.076398	0.510571	-2.106095	+0.053	
H43	-4.431395	-0.707110	-4.174291	+0.053	
H44	-2.056445	-1.337670	-4.538670	+0.051	
H45	-0.345347	-0.760951	-2.868326	+0.046	

Reference: A. M. Bienfait et al., Heteroatom Chem., 2011, 22, 576-578.

9. Data for species in Scheme 5

9.1 Molecule 8 (pyridine-*N*-oxide)

Cartesian coordinates and charges:

C1	-1.333377	1.035650	0.000445	-0.022
C2	0.039856	1.188536	0.000135	+0.343
NЗ	0.875179	0.108694	-0.000246	-0.564
C4	0.329446	-1.142737	-0.000211	+0.343
С5	-1.039441	-1.330480	0.000134	-0.022
C6	-1.900948	-0.236171	0.000431	-0.028
07	2.140929	0.265914	-0.000437	-0.573
Н8	-1.949562	1.927369	0.000698	+0.089
Н9	0.553794	2.140572	0.000139	+0.132
H10	1.060724	-1.940067	-0.000462	+0.132
H11	-1.418732	-2.345856	0.000127	+0.089
H12	-2.976182	-0.369743	0.000676	+0.081
(well kno	own)			

9.2 Molecule 9 (azomethine ylide) Cartesian coordinates and *charges*:

Cartesian coordinates and charges.					
C1	0.398332	-0.950403	0.900557	+0.244	
N2	-0.027278	0.093127	-0.048785	-1.194	
С3	0.953995	0.739232	-0.681419	+0.239	
C4	-1.344764	0.231716	-0.208784	+0.240	
Н5	-0.345187	-1.046389	1.689673	+0.066	
H6	1.353360	-0.670465	1.341352	+0.066	
Н7	0.498117	-1.895564	0.367095	+0.071	
Н8	1.978185	0.503561	-0.439594	+0.065	
Н9	0.697852	1.467205	-1.438141	+0.069	
H10	-2.011561	-0.377259	0.380720	+0.065	
H11	-1.711187	0.935355	-0.942819	+0.069	
(well known)					

9.3 Anion 10

Cartesian coordinates and charges:

Defense	AND KARA	and C II DoDung	1 Ora Chara	1005 EO	20-
Н7	-1.048448	1.395038	-0.474032	-0.062	
НG	-2.120068	0.019132	0.228107	-0.048	
Н5	1.485359	0.876573	-0.543511	-0.062	
H4	1.966243	-0.817005	0.116058	-0.048	
C3	-1.126587	0.385152	-0.038270	+0.232	
C2	1.183641	-0.087564	-0.101616	+0.232	
Nl	-0.076062	-0.394626	0.170928	-1.243	

Reference: S. R. Kass and C. H. DePuy, J. Org. Chem., 1985, 50, 2874-2877.

9.4 Molecule 11 Cartesian coordinates and *charges*:

ounce		and charges.			
C1	-1.207316	-2.296742	0.000099	+0.010	
C2	-1.180566	-0.918150	0.000283	+0.337	
NЗ	-0.001779	-0.229557	0.000661	-1.186	
C4	1.166467	-0.935893	0.000826	+0.337	
С5	1.172372	-2.314737	0.000602	+0.010	
C6	-0.022925	-3.027104	0.000231	-0.021	
С7	0.008818	1.174748	0.000861	+0.531	
C8	1.244397	1.844052	0.001108	+0.852	
N9	2.296008	2.349695	0.000889	-1.173	
C10	-1.216522	1.862604	0.000754	+0.852	
N11	-2.260414	2.383993	0.000817	-1.173	
H12	-2.174004	-2.785464	-0.000213	+0.107	
H13	-2.081856	-0.320054	0.000139	+0.156	
H14	2.076691	-0.351486	0.001151	+0.156	
H15	2.131564	-2.818012	0.000756	+0.107	
H16	-0.031120	-4.110363	0.000035	+0.100	
Reference: C. Bugg and R. L. Sass, <i>Acta Cryst.</i> , 1965, 18 , 591-594.					

9.5 Molecule 12

Cartesian coordinates and *charges*:

C1	-3.784908	-1.339391	0.237830	-0.002
C2	-2.665374	-0.532949	0.233053	+0.332
NЗ	-1.423777	-1.052014	0.002247	-1.217
C4	-1.297628	-2.392157	-0.226573	+0.332
С5	-2.400325	-3.221490	-0.227384	-0.002
C6	-3.671206	-2.706346	0.006261	-0.038
С7	-0.292625	-0.219349	0.000194	+0.197
C8	-0.320361	1.206486	0.230428	+0.975
С9	1.059971	-0.669806	-0.232934	+0.975
H10	-4.745557	-0.875446	0.426303	+0.099
H11	-2.695596	0.535663	0.407010	+0.219
H12	-0.286675	-2.738836	-0.402339	+0.219
H13	-2.243217	-4.276927	-0.414424	+0.099
H14	-4.544141	-3.348906	0.007799	+0.093
015	-1.273354	1.954755	0.463174	-1.164
016	1.490725	-1.802497	-0.464761	-1.164
C17	1.917390	0.560367	-0.139352	-0.053
C18	1.108728	1.659590	0.132077	-0.053
C19	1.638441	2.928915	0.270966	-0.028
C20	3.024730	3.072992	0.128558	-0.055
C21	3.836136	1.970043	-0.143797	-0.055
C22	3.286394	0.688845	-0.282174	-0.028
H23	0.995314	3.777009	0.482688	+0.094
H24	3.476949	4.054422	0.230857	+0.065
H25	4.907317	2.110115	-0.249269	+0.065
H26	3.904599	-0.177595	-0.493853	+0.094
Refere	ence: V. F. Kar	ninskii <i>et al., J.</i> S	Struct. Chem., 197	6, 17 , 768-777.

9.6 Molecule 13 Cartesian coordinates and *charges*:

041100		ana ona goo.				
C1	-1.456115	-0.467883	0.015967	+0.006		
C2	-1.418289	0.958365	-0.130637	-0.019		
C3	-0.258246	1.683540	-0.205997	-0.261		
S4	1.279039	0.931598	0.120818	+0.417		
С5	0.978728	-0.687595	-0.423369	-0.095		
C6	-0.314912	-1.204618	-0.252437	-0.043		
С7	-2.776946	-1.173596	0.220915	-0.048		
C8	-2.718786	1.703491	-0.311391	-0.052		
С9	1.283930	0.775682	1.943601	-0.189		
C10	2.074470	-1.411629	-0.946305	+0.833		
N11	2.988452	-2.007450	-1.357902	-1.202		
H12	-0.209178	2.722057	-0.508135	+0.092		
H13	-0.417828	-2.276923	-0.404871	+0.085		
H14	-3.487873	-0.975910	-0.588512	+0.029		
H15	-2.631307	-2.254627	0.270137	+0.035		
H16	-3.260763	-0.871801	1.155712	+0.026		
H17	-3.364261	1.561038	0.559722	+0.050		
H18	-2.553659	2.774327	-0.438228	+0.039		
H19	-3.263270	1.331517	-1.183418	+0.052		
H20	0.374451	0.267055	2.262600	+0.092		
H21	2.169229	0.201262	2.220732	+0.082		
H22	1.334100	1.782471	2.362064	+0.073		
Reference: H. Shimizu et al., Tetrahedron Lett., 1990, 31, 115-118.						

9.7 Molecule 14

Cartesian coordinates and <i>charges</i> :					
S1	0.219415	0.873010	0.667034	+1.525	
C2	1.536429	0.366835	-0.511712	-0.202	
C3	2.317900	1.424484	-0.967427	-0.031	
C4	3.361406	1.169887	-1.853355	-0.043	
С5	3.625486	-0.136245	-2.264585	-0.057	
C6	2.849993	-1.190815	-1.785671	-0.048	
С7	1.799453	-0.943962	-0.902334	-0.055	
C8	-1.211025	1.019329	-0.479165	-0.202	
С9	-2.257965	1.784348	0.026233	-0.031	
C10	-3.394777	1.984708	-0.752424	-0.043	
C11	-3.471295	1.433950	-2.031251	-0.057	
C12	-2.408236	0.686827	-2.535990	-0.048	
C13	-1.268191	0.476910	-1.760669	-0.055	
C14	-0.155383	-0.743097	1.459895	-0.202	
C15	0.505920	-0.940814	2.668351	-0.031	
C16	0.293937	-2.120221	3.377479	-0.043	
C17	-0.584943	-3.083734	2.883714	-0.058	
C18	-1.258242	-2.866579	1.682696	-0.048	
C19	-1.047784	-1.690457	0.963576	-0.055	
H20	2.111841	2.428864	-0.607424	+0.121	
H21	3.974255	1.989057	-2.215054	+0.073	
H22	4.443282	-0.334037	-2.950102	+0.069	
H23	3.064766	-2.209292	-2.092797	+0.069	
H24	1.204078	-1.768700	-0.524744	+0.087	
H25	-2.160688	2.228921	1.013032	+0.122	
H26	-4.216457	2.578300	-0.365162	+0.073	
H27	-4.355382	1.596009	-2.639524	+0.069	
H28	-2.460495	0.270988	-3.537046	+0.069	
H29	-0.438971	-0.097365	-2.160771	+0.087	
Н30	1.161189	-0.161059	3.047166	+0.122	
Н31	0.807115	-2.283086	4.319612	+0.073	
Н32	-0.753874	-3.999822	3.440542	+0.069	
Н33	-1.954245	-3.608946	1.305566	+0.069	
Н34	-1.581006	-1.521829	0.033776	+0.086	
N35	0.501349	2.016080	1.553428	-1.474	

Reference: T. Yoshimura et al., J. Org. Chem., 1997, 61, 3802-3803.

9.8 Molecule 15 Cartesian coordinates and *cha*

Cartesia	n coordinates ar	nd charges:			
S1	0.237705	-0.049836	0.435480	+0.503	
C2	-1.561768	0.231720	0.385403	-0.178	
С3	-2.499085	-0.733630	0.032340	-0.029	
C4	-3.849390	-0.393684	0.019560	-0.044	
C5	-4.253269	0.904242	0.336467	-0.054	
C6	-3.306725	1.873511	0.647474	-0.037	
С7	-1.948347	1.549505	0.655668	-0.005	
C8	-0.832013	2.468634	0.901537	-0.035	
С9	-0.902881	3.777445	1.392777	-0.055	
C10	0.275624	4.483006	1.603916	-0.055	
C11	1.515103	3.880104	1.354435	-0.064	
C12	1.576747	2.568284	0.890791	-0.066	
C13	0.395290	1.878134	0.627619	-0.168	
H14	-2.188412	-1.735364	-0.236674	+0.105	
H15	-4.585936	-1.143595	-0.249560	+0.067	
H16	-5.306901	1.163888	0.317874	+0.066	
H17	-3.621688	2.890827	0.857778	+0.064	
H18	-1.859116	4.238201	1.623993	+0.055	
H19	0.235938	5.500543	1.979630	+0.059	
H20	2.430253	4.437675	1.530345	+0.059	
H21	2.542086	2.097002	0.716168	+0.062	
C22	1.150567	-0.145585	-1.138506	-0.178	
C23	1.459641	0.951404	-1.936133	-0.029	
C24	2.153107	0.749132	-3.126613	-0.044	
C25	2.513745	-0.539689	-3.522893	-0.054	
C26	2.164237	-1.634062	-2.740370	-0.037	
C27	1.461055	-1.447380	-1.548344	-0.005	
C28	0.969423	-2.497427	-0.649939	-0.035	
C29	1.292506	-3.859075	-0.679221	-0.055	
C30	0.758316	-4.699679	0.289948	-0.055	
C31	-0.068113	-4.183375	1.296177	-0.064	
C32	-0.362898	-2.822716	1.332798	-0.066	
C33	0.128133	-1.987851	0.331155	-0.168	
Н34	1.161532	1.950476	-1.644000	+0.105	
Н35	2.402086	1.601208	-3.750527	+0.067	
Н36	3.048190	-0.690512	-4.455376	+0.066	
Н37	2.414299	-2.637753	-3.069663	+0.064	
Н38	1.962733	-4.259871	-1.434407	+0.055	
Н39	0.995918	-5.758682	0.276752	+0.059	
H40	-0.473908	-4.847705	2.053360	+0.059	
H41	-0.989986	-2.422345	2.127120	+0.062	
Defenses	and C. Omenue of	al I Ohama O	a Cham Cam	maxim 1000	4444

Reference: S. Ogawa et al., J. Chem. Soc., Chem. Commun., 1992, 1141-1142.

9.9 Molecule 16 Cartesian coordinates and *charges (QTAIM, NBO, Hirshfeld, Mulliken)*:

S1	0.425592	-0.368704	0.810884	+0.825	+1.221	+0.334	+0.780
C2	-1.284462	-0.562676	-0.060205	-0.160	-0.192	-0.048	-0.122
C3	-1.613806	-1.462721	-1.069204	-0.051	-0.223	-0.056	-0.211
C4	-2.906157	-1.470580	-1.594018	-0.060	-0.191	-0.053	-0.273
С5	-3.870357	-0.587112	-1.109481	-0.056	-0.200	-0.056	-0.260
C6	-3.541170	0.310386	-0.100455	-0.052	-0.191	-0.051	-0.359
С7	-2.245473	0.321343	0.422062	-0.025	-0.073	-0.018	+0.088
C8	-1.758765	1.219988	1.481837	-0.029	-0.063	-0.013	+0.127
C9	-2.521366	2.199058	2.123952	-0.052	-0.192	-0.049	-0.369
C10	-1.941024	3.003656	3.097986	-0.059	-0.200	-0.055	-0.252
C11	-0.598499	2.828820	3.429163	-0.064	-0.200	-0.055	-0.284
C12	0.162705	1.851033	2.787432	-0.060	-0.229	-0.054	-0.256
C13	-0.415674	1.044223	1.810813	-0.157	-0.202	-0.041	-0.108
C14	-0.100886	-1.632365	2.149083	-0.217	-0.804	-0.145	-0.856
H15	-0.884472	-2.160886	-1.463121	+0.082	+0.218	+0.045	+0.272
H16	-3.159519	-2.170739	-2.384255	+0.059	+0.212	+0.054	+0.234
H17	-4.875759	-0.599318	-1.518511	+0.059	+0.211	+0.054	+0.232
H18	-4.295244	0.995876	0.274371	+0.053	+0.205	+0.052	+0.221
H19	-3.566380	2.340632	1.866067	+0.057	+0.208	+0.053	+0.227
H20	-2.530747	3.767153	3.595297	+0.062	+0.213	+0.055	+0.234
H21	-0.138026	3.456478	4.185907	+0.060	+0.213	+0.054	+0.236
H22	1.206144	1.756153	3.058883	+0.066	+0.216	+0.051	+0.257
Н23	-0.834304	-2.325977	1.737259	+0.047	+0.220	+0.035	+0.270
H24	0.768808	-2.175507	2.522068	+0.032	+0.210	+0.036	+0.251
H25	-0.552738	-1.079336	2.972629	+0.054	+0.226	+0.037	+0.311
C26	0.945664	0.856285	-0.585422	-0.160	-0.192	-0.048	-0.122
C27	0.727935	2.230370	-0.618899	-0.051	-0.223	-0.056	-0.211
C28	1.170830	2.974181	-1.712633	-0.060	-0.191	-0.053	-0.273
C29	1.835256	2.350367	-2.768267	-0.056	-0.200	-0.056	-0.260
C30	2.053923	0.978156	-2.733333	-0.052	-0.191	-0.051	-0.359
C31	1.606302	0.232442	-1.639935	-0.025	-0.073	-0.018	+0.088
C32	1.761561	-1.222457	-1.476430	-0.029	-0.063	-0.013	+0.127
C33	2.380125	-2.076802	-2.392903	-0.052	-0.192	-0.049	-0.369
C34	2.446129	-3.441432	-2.135326	-0.059	-0.200	-0.055	-0.252
C35	1.893421	-3.950867	-0.961609	-0.064	-0.200	-0.055	-0.284
C36	1.275591	-3.097235	-0.046780	-0.060	-0.229	-0.054	-0.256
C37	1.207244	-1.730057	-0.302512	-0.157	-0.202	-0.041	-0.108
C38	2.111015	-0.109224	1.680837	-0.217	-0.804	-0.145	-0.856
Н39	0.215575	2.740614	0.188360	+0.082	+0.218	+0.045	+0.272
H40	0.995901	4.045450	-1.738518	+0.059	+0.212	+0.054	+0.234
H41	2.181246	2.933875	-3.615673	+0.059	+0.211	+0.054	+0.232
H42	2.572388	0.496739	-3.557013	+0.053	+0.205	+0.052	+0.221
H43	2.808515	-1.684155	-3.309916	+0.057	+0.208	+0.053	+0.227
H44	2.922953	-4.107166	-2.847685	+0.062	+0.213	+0.055	+0.234
H45	1.937851	-5.016002	-0.756265	+0.060	+0.213	+0.054	+0.236
H46	0.842759	-3.531359	0.845211	+0.066	+0.216	+0.051	+0.257
H47	2.503584	0.879723	1.443198	+0.047	+0.220	+0.035	+0.270
H48	2.003623	-0.226575	2.760273	+0.032	+0.210	+0.036	+0.251
H49	2.800025	-0.867756	1.309174	+0.054	+0.226	+0.037	+0.311

Reference: S. Sato et al., J. Am. Chem. Soc., 2006, 128, 6778 - 6779.

10. Data for species in Scheme 7

10.1 Molecule 21 Cartesian coordinates and *charges*:

C11	-3 185845	-4 223008	-1 732279	-0 142
C12	3 185837	4 217631	-1 746180	-0 142
03	-2 117658	1 /857/7	1 399619	_1 109
01	2.117050	_1 /81160	1 101129	_1 109
$C_{5}(*)$	2.117755	-1.401100	0 000061	-1.109
C5(^)	0.000036	0.001759	0.900001	-0.001
60	0.000140	0.004202	2.4/0808	-0.034
C /	-1.190482	0.261911	3.1///02	-0.011
C8	-1.174542	0.276537	4.568982	-0.027
C9	0.000334	0.008782	5.264867	-0.033
C10	1.175112	-0.261248	4.569702	-0.027
C11	1.190859	-0.251172	3.178374	-0.011
C12	-2.458396	0.555701	2.414707	+0.449
C13	-2.912672	1.595941	0.287285	+0.387
C14	-2.429685	2.456640	-0.703291	-0.031
C15	-3.111482	2.575143	-1.905442	-0.052
C16	-4.288978	1.854111	-2.152107	-0.011
C17	-4.763856	1.024714	-1.137595	-0.043
C18	-4.093032	0.888515	0.080285	-0.034
C19	-5.036732	2.019064	-3.451285	-0.053
C20	2.458651	-0.547515	2.416158	+0.449
C21	2.912532	-1.595217	0.292320	+0.387
C22	2.429281	-2.459174	-0.695244	-0.031
C23	3.110869	-2.581813	-1.897142	-0.052
C24	4.288376	-1.861769	-2.146431	-0.011
C25	4 763532	-1 028988	-1 134777	-0 043
C26	4 092959	-0.888610	0 082726	-0.034
C20	5 036330	-2 031295	-3 111908	-0.054
C28	-0 7/3769	-1 016717	0 301373	+0 022
C20	-1 000648	-2 248677	0.901373	-0.036
C29	1 721041	2.240077	0.220097	-0.030
C30 C31	-1.751041	-3.23/314	0.320007	+0.021
C31 C32	-2.230323	-2.990070	-0.959103	-0.002
C32	-2.033600	-1.703794	-1.010930	+0.030
033	-1.282765	-0.804530	-0.987589	-0.039
C34 a25	0.743909	1.01/931	0.298023	+0.023
035	1.282929	0.801521	-0.990222	-0.039
C36	2.035929	1.//8/61	-1.616/84	+0.038
C37	2.250600	2.995197	-0.968963	-0.001
C38	1.731133	3.238608	0.309448	+0.021
C39	1.000774	2.252010	0.939348	-0.036
H40	-2.085714	0.502977	5.113754	+0.089
H41	0.000404	0.010566	6.349241	+0.100
H42	2.086365	-0.485895	5.115079	+0.089
H43	-3.228895	0.972437	3.070533	+0.074
H44	-2.846336	-0.370098	1.974409	+0.065
H45	-1.520231	3.019617	-0.516316	+0.081
H46	-2.724881	3.245942	-2.667729	+0.074
H47	-5.684669	0.468674	-1.287986	+0.074
H48	-4.514017	0.242835	0.841929	+0.071
H49	-5.609197	2.950710	-3.450390	+0.059
Н50	-5.738634	1.199597	-3.616186	+0.044
H51	-4.352729	2.055705	-4.302325	+0.043
Н52	3.229315	-0.961872	3.073293	+0.074
Н5З	2.846408	0.376760	1.972510	+0.065
Н54	1.519768	-3.021374	-0.506239	+0.081
Н55	2.724021	-3.255112	-2.657089	+0.074
Н56	5.684366	-0.473538	-1.287252	+0.074

continued...

10.1 Molecule 21 (continued)

	`	,		
H57	4.514117	-0.240385	0.842113	+0.071
Н58	5.731536	-1.207602	-3.617072	+0.044
Н59	4.351999	-2.080391	-4.295022	+0.043
H60	5.616332	-2.958244	-3.436839	+0.059
H61	-0.578332	-2.436385	1.927697	+0.120
H62	-1.903825	-4.190631	0.806181	+0.121
H63	-2.473800	-1.601021	-2.585089	+0.121
H64	-1.173757	0.155469	-1.477173	+0.122
H65	1.174018	-0.160100	-1.476636	+0.122
H66	2.473913	1.592794	-2.590341	+0.121
H67	1.903908	4.193514	0.792415	+0.121
H68	0.578474	2.442906	1.919693	+0.120
note: C5	(*)is the hyper	coordinate center.		

Reference: K.-y. Akiba et al., J. Am. Chem. Soc., 2005, 127, 5893–5901.

10.2 Molecule 22

Cartesia	n coordinates	and charges:		
01	-2.291385	0.913363	1.262308	-1.133
02	2.058655	1.619782	-0.862566	-1.133
03	-0.780514	1.996982	-0.916039	-1.084
04	0.158168	2.167441	1.060781	-1.104
C5	-2.230975	-0.437484	1.090300	+0.423
C6	-3.196639	-1.314679	1.496776	+0.012
C7	-3.026980	-2.714885	1.299483	-0.029
C8	-1.901886	-3.202533	0.712019	-0.024
С9	2.464355	-2.493571	-1.420147	-0.024
C10	3.446644	-1.663727	-1.861973	-0.029
C11	3.338010	-0.253582	-1.694692	+0.012
C12	2.237657	0.288138	-1.092234	+0.423
C13	-0.008864	-0.040706	-0.014680	+0.001
C14	0.278605	-2.796473	-0.342303	-0.028
C15	-1.029212	-0.898973	0.445391	+0.023
C16	-0.874468	-2.310960	0.271073	+0.006
C17	1.297795	-1.958247	-0.789668	+0.006
C18	1.159791	-0.543527	-0.623583	+0.023
C19	-3.452215	1.472671	1.869045	+0.396
C20	3.057381	2.530051	-1.312462	+0.396
C21	-0.999932	3.430004	-0.888074	+0.338
C22	0.816852	1.555613	2.203077	+0.325
C23(*)	-0.204134	1.429851	0.074483	+1.495
H24	-4.101297	-0.963182	1.977154	+0.089
H25	-3.810540	-3.386522	1.631579	+0.096
H26	-1.766826	-4.268748	0.565323	+0.088
H27	2.546362	-3.568411	-1.540850	+0.088
H28	4.330934	-2.064551	-2.344386	+0.096
H29	4.144430	0.375780	-2.050093	+0.089
Н30	0.385412	-3.868835	-0.480144	+0.093
Н31	-3.280129	2.546405	1.914510	+0.070
Н32	-3.585992	1.085915	2.883004	+0.069
Н33	-4.340671	1.267936	1.265939	+0.072
Н34	2.716386	3.520626	-1.017378	+0.070
H35	3.159937	2.485316	-2.399884	+0.072
H36	4.017856	2.322008	-0.833086	+0.069
Н37	-1.495455	3.651960	-1.827296	+0.117
Н38	-0.040238	3.939466	-0.818146	+0.099
Н39	-1.633550	3.680346	-0.038776	+0.099
H40	0.145144	0.827701	2.654517	+0.110
H41	1.011342	2.379329	2.882973	+0.112
H42	1.746143	1.094466	1.873449	+0.110
note: C2	3(*)is the hype	ercoordinate cente	er.	

Reference: K.-y. Akiba et al., J. Am. Chem. Soc., 1999, 121, 10644–10645.

56

10.3 Molecule 23

Cartesia	n coordinates	and charges:		
S1	-3.871101	-0.486221	-1.426093	+0.393
S2	3.871016	0.485711	-1.426251	+0.393
03	-1 026296	0 901317	2 536368	-1 112
0.0	0 650256	0.501017	0 200222	1 120
04	0.030230	-2.341072	-0.308233	-1.120
05	1.026298	-0.900506	2.536747	-1.112
06	-0.650080	2.541181	-0.308533	-1.121
C7	-2.259994	0.833323	2.022621	+0.552
C8	-3 388468	1 389574	2 638051	-0 022
C Q	-1 613331	1 200015	2.0000001	0 001
C 9	-4.043234	1.308813	2.040424	-0.001
CIU	-4./94/6/	0.688/59	0.812462	-0.005
C11	-3.023802	-2.917540	-2.234256	+0.001
C12	-2.090003	-3.941937	-2.326698	+0.006
C13	-0.861926	-3.828173	-1,686409	-0.016
C14	-0 537592	-2 69388/	-0 933727	$\pm 0 515$
	1 000406	2.00004	0.000721	10.010
015	-1.228426	-0.462843	0.0/9/41	+0.243
C16	-3.659399	0.147672	0.217652	-0.215
C17	-2.681634	-1.798217	-1.484418	-0.211
C18	-1.471494	-1.639398	-0.801587	+0.050
C19	-2.381147	0.160852	0.784902	+0.057
C20	-0 803523	1 604785	3 753344	+0 393
C20	1 522644	2 657026	0 205005	10.396
C21	1.332044	-3.037020	-0.203883	+0.300
CZZ	-3.081812	0.811553	-2.425395	-0.170
C23(*)	-0.000004	0.000040	0.183741	-0.416
C24	2.259965	-0.832773	2.022891	+0.552
C25	3.388416	-1.388928	2.638448	-0.022
C26	4.643151	-1.308483	2.046711	-0.001
C27	4 794677	-0 688818	0 812554	-0 005
C20	2 022004	2 016004	-2 22/052	+0.001
C20	0.020904	2.910994	-2.234033	+0.001
029	2.0901/5	3.94144/	-2.32/43/	+0.006
C30	0.862118	3.827919	-1.687073	-0.016
C31	0.537718	2.693795	-0.934157	+0.515
C32	1.228419	0.462878	0.079643	+0.243
C33	3.659333	-0.147790	0.217633	-0.215
C.34	2.681666	1.797841	-1.484803	-0.211
C 3 5	1 471542	1 639264	-0 801893	+0 050
C36	2 201117	0 160600	0.001055	10.050
230	2.301117	-0.160690	0.704907	+0.037
C37	0.803551	-1.603920	3./53/5/	+0.393
C38	-1.532573	3.657090	-0.206694	+0.386
C39	3.081485	-0.812150	-2.425271	-0.170
Н4О	-3.293818	1.886785	3.595462	+0.107
H41	-5.503980	1.736757	2.547271	+0.121
н42	-5 765016	0 629758	0 331472	+0 113
цл Э	-3 007107	-2 00/102	-2 726502	+0 116
1145	-3.907107	-2.994102	-2.720303	10.110
H44	-2.318433	-4.834565	-2.89/411	+0.123
H45	-0.154248	-4.643295	-1.773267	+0.105
Н46	-1.083814	2.657633	3.657002	+0.066
H47	0.266830	1.532184	3.933965	+0.087
H48	-1.346120	1.145060	4.584303	+0.066
Н49	1 039237	-4 509431	0 268484	+0 079
н50	2 356105	-3 318860	0 421906	+0 082
11.5.0	2.550105	-3.310009	1 106407	10.002
HCH	1.920995	-3.948059	-1.18643/	+0.056
H52	-3.745189	1.675709	-2.397968	+0.118
H53	-2.999782	0.430202	-3.443079	+0.122
H54	-2.104481	1.049836	-2.005524	+0.124
H55	3.293756	-1.885773	3.596049	+0.107
Н56	5.503892	-1.736348	2.547634	+0.121
H57	5.764919	-0 630035	0 331522	+0 113
'				

continued...

10.3 Molecule 23 (continued)

	(,		
H58	3.987202	2.993489	-2.727217	+0.116
Н59	2.318661	4.833941	-2.898339	+0.123
H60	0.154524	4.643099	-1.774057	+0.105
H61	1.083991	-2.656744	3.657526	+0.066
H62	-0.266824	-1.531468	3.934312	+0.087
Н6З	1.346081	-1.144066	4.584692	+0.066
H64	-1.039297	4.509739	0.267369	+0.079
Н65	-2.356040	3.319121	0.421188	+0.082
H66	-1.920882	3.947674	-1.187399	+0.056
Н67	2.104244	-1.050385	-2.005156	+0.124
Н68	3.744848	-1.676318	-2.397955	+0.118
Н69	2.999214	-0.430848	-3.442956	+0.122
note: C23(*)is the hypercoordinate center.				

Reference: T. Yamaguchi et al., J. Am. Chem. Soc., 2008, 130, 6894–6895.

10.4 Molecule 24				
Cartesia	n coordinates a	nd charges:		
S1	4.229856	-0.199437	-0.690635	+0.393
S2	-4.229845	0.199731	-0.690428	+0.392
НЗ	0.634968	-1.043071	2.547470	+0.092
Н4	0.156666	2.528916	-0.590019	+0.089
н5	-0 634670	1 042334	2 547622	+0 092
п5 ц6	-0 156961	-2 520102	-0 590/85	+0.092
07	1 690000	1 172000	-0.590405	0.009
	1.0009999 0.E1100C	-1.1/2090	2.200709	-0.014
	2.511886	-1.900780	3.135198	-0.014
09	3.863519	-2.062874	2.839113	+0.006
C10	4.383009	-1.505597	1.675292	-0.009
C11	3.845105	2.263095	-1.751911	-0.008
C12	3.090837	3.384636	-2.081331	+0.006
C13	1.760067	3.462423	-1.675956	-0.017
C14	1.178883	2.431970	-0.942799	-0.011
C15	1.300843	0.205897	0.213237	+0.211
C16	3.531240	-0.797704	0.830424	-0.207
C17	3.239327	1.233580	-1.036339	-0.207
C18	1.905721	1.285155	-0.613290	+0.010
C19	2 173832	-0 598460	1 114210	+0 003
C20	3 615117	-1 402325	-1 907453	-0.159
C21	0 000026	-0 000184	0 195474	-0 528
C22	-1 680704	1 172327	2 280033	-0.014
C22	-2 511/59	1 000124	2.200000	0.014
023	-2.511458	1.900124	0.000071	-0.014
CZ4	-3.863091	2.062436	2.839671	+0.006
C25	-4.382/14	1.505462	1.6/5/63	-0.009
C26	-3.845447	-2.262684	-1.752099	-0.008
C21	-3.091335	-3.384270	-2.081721	+0.006
C28	-1.760547	-3.462270	-1.676440	-0.017
C29	-1.179190	-2.431987	-0.943183	-0.012
C30	-1.300827	-0.206040	0.213146	+0.211
C31	-3.531073	0.797651	0.830697	-0.207
C32	-3.239498	-1.233339	-1.036424	-0.207
C33	-1.905869	-1.285127	-0.613478	+0.010
C34	-2.173672	0.598200	1.114361	+0.003
C35	-3.615029	1.402755	-1.907072	-0.159
Н36	2.103154	-2.333322	4.041580	+0.121
н37	4 511900	-2 615877	3 508584	+0.129
н38	5 434855	-1 623203	1 434380	+0 120
н30	4 888048	2 197718	-2 045439	+0.120
цлО	3 5/6/9/	1 107707	-2 63/158	+0.121
ции ции	1 1775/2	4.19/19/	-2.034130	+0 116
ПЧ1 П41	1.1//343	4.343722	-1.913310	+0.110
H4Z	4.102219	-2.353532	-1.695043	+0.128
H43	3.908135	-1.039/49	-2.892363	+0.130
H44	2.532521	-1.484856	-1.825576	+0.106
H45	-2.102622	2.332429	4.042091	+0.121
H46	-4.511368	2.615374	3.509296	+0.129
H47	-5.434563	1.623225	1.434941	+0.120
H48	-4.888405	-2.197144	-2.045540	+0.121
H49	-3.547124	-4.197306	-2.634624	+0.128
Н50	-1.178144	-4.345607	-1.913956	+0.116
Н51	-2.532421	1.485157	-1.825227	+0.106
Н52	-4.102023	2.353978	-1.694482	+0.128
Н53	-3.908126	1.040376	-2.892031	+0.130

(fragment of molecule 23)

10.5 Molecule 25 Cortosian coordinates and *charges*:

Cartesia	n coordinates a	and <i>charges</i> :		
S1	-0.473315	-2.163594	-0.269160	+0.366
02	-1.845262	2.678335	0.095469	-1.111
03	2.702982	1.756634	-0.221877	-1.111
C4	-2.224048	1.390085	0.318214	+0.453
С5	-3.473706	1.011706	0.756429	-0.034
C6	-3.792060	-0.350484	0.983156	-0.031
С7	-2.851074	-1.319149	0.731696	-0.057
C8	2.156315	-2.333897	0.382318	-0.057
С9	3.423549	-1.812747	0.479704	-0.030
C10	3.630763	-0.428011	0.260742	-0.034
C11	2.579037	0.416745	-0.016874	+0.453
C12	0.132568	0.815744	-0.238583	-0.032
C13	-1.583820	-0.925421	0.259416	-0.221
C14	1.089911	-1.467244	0.072876	-0.220
C15	1.223246	-0.065859	-0.089798	-0.003
C16	-1.184102	0.421979	0.078142	-0.003
C17	-2.796467	3.697311	0.311765	+0.433
C18	3.994287	2.321239	-0.161595	+0.433
C19	-0.572918	-2.026670	-2.093743	-0.188
H20	-4.237043	1.757049	0.948024	+0.056
H21	-4.780392	-0.620046	1.337897	+0.057
H22	-3.079777	-2.371484	0.872461	+0.061
H23	1.975918	-3.396023	0.519709	+0.061
H24	4.267950	-2.453715	0.706531	+0.057
H25	4.641442	-0.042189	0.328558	+0.056
H26	-3.665245	3.580893	-0.346842	+0.039
H27	-2.292028	4.633816	0.077811	+0.061
H28	-3.131514	3.719622	1.355312	+0.041
H29	4.447540	2.183538	0.827014	+0.041
Н30	3.865787	3.386032	-0.351163	+0.061
H31	4.653998	1.895369	-0.926778	+0.039
Н32	-1.575446	-2.338226	-2.389327	+0.076
Н33	0.181564	-2.694027	-2.511948	+0.076
Н34	-0.383724	-0.992932	-2.382541	+0.111
Н35	0.337655	1.868897	-0.358978	+0.105

(fragment of molecule 23)

11. Miscellaneous species mentioned in the text

11.1 S₃

Geometry: bent, S-S-S 117.0° S-S 1.925 Å Charges: S(terminal) -0.099 S(central) +0.198 Reference: M. C. McCarthy *et al., J. Am. Chem. Soc.,* 2004, **126**, 4096–4097.

11.2 S_N 2 intermediate CI-CH₃-CI

Cartesia	an coordinates a	nd <i>charges</i> :			
Cl1	0.00000	0.000000	0.150292	-0.712	
C2	0.000000	0.00000	2.493303	+0.025	
HЗ	1.074891	0.00000	2.493303	+0.133	
H4	-0.537445	0.930883	2.493303	+0.133	
Н5	-0.537446	-0.930883	2.493303	+0.133	
C16	0.000000	0.00000	4.836315	-0.712	
Sinale i	Single imaginany frequency - 108.0 cm ⁻¹				

Single imaginary frequency = -408.9 cm^{-1}

11.3 S_N 2 intermediate Br-CH₃-Br

Cartesian coordinates and charges:

-0.537600 0.000000	-0.931151 0.000000	2.493303 4.986607	+0.137 -0.687
-0.537600	-0.931151	2.493303	+0.137
-0.537600	0.931151	2.493303	+0.137
1.075201	0.00000	2.493303	+0.137
0.000000	0.00000	2.493303	-0.036
0.000000	0.000000	0.00000	-0.687
	0.000000 0.000000 1.075201 -0.537600	0.0000000.0000000.0000000.0000001.0752010.000000-0.5376000.931151	0.0000000.0000000.0000000.0000000.0000002.4933031.0752010.0000002.493303-0.5376000.9311512.493303

Single imaginary frequency = -400.4 cm⁻¹

11.4 CH₃CI

Cartesian coordinates and charges:

0.000256	-0.002026	-0.010653	-0.269
-0.001992	0.000420	1.779137	+0.036
1.028230	-0.005295	2.127875	+0.078
-0.512438	0.896504	2.124833	+0.078
-0.522797	-0.888887	2.126835	+0.078
	0.000256 -0.001992 1.028230 -0.512438 -0.522797	0.000256 -0.002026 -0.001992 0.000420 1.028230 -0.005295 -0.512438 0.896504 -0.522797 -0.888887	0.000256-0.002026-0.010653-0.0019920.0004201.7791371.028230-0.0052952.127875-0.5124380.8965042.124833-0.522797-0.8888872.126835

11.5 CH₃Br

Cartesian coordinates and charges:

Br1	0.000261	-0.001800	0.030194	-0.151
C2	-0.001850	0.000427	1.977799	-0.100
НЗ	1.031036	-0.005376	2.314555	+0.084
H4	-0.513879	0.898399	2.311696	+0.084
Н5	-0.524309	-0.890933	2.313783	+0.084

11.6 SiH₆

Geometry: octahedral, Si-H	H 1.656 Å
Charges: Si +2.609	H -0.768

11.7 Ph₃SiH₂

Cartesia	n coordinates a	and charges:		
Si1	0.000821	-0.000377	0.000002	+2.717
H2	0.001140	-0.000388	-1.582160	-0.694
HЗ	0.000847	-0.000425	1.582163	-0.694
C4	1.364380	-1.393133	0.000111	-0.494
С5	1.878847	-1.918416	1.193995	-0.087
C6	2.855573	-2.916199	1.203966	-0.097
C7	3.349321	-3.420890	0.000266	-0.097
C8	2.855375	-2.916578	-1.203511	-0.097
С9	1.878669	-1.918773	-1.193692	-0.087
C10	0.524454	1.876996	0.000072	-0.494
C11	0.721924	2.585250	-1.193789	-0.087
C12	1.096478	3.930332	-1.203644	-0.097
C13	1.285629	4.610453	0.000170	-0.096
C14	1.096107	3.930349	1.203935	-0.097
C15	0.721562	2.585265	1.193984	-0.087
C16	-1.887111	-0.484571	-0.000182	-0.494
C17	-2.599475	-0.667061	1.193624	-0.087
C18	-3.952143	-1.013215	1.203392	-0.097
C19	-4.636018	-1.188044	-0.000452	-0.096
C20	-3.951979	-1.012933	-1.204162	-0.097
C21	-2.599310	-0.666791	-1.194128	-0.087
H22	1.495766	-1.526879	2.135030	+0.059
Н23	3.233029	-3.301546	2.149025	+0.022
H24	4.110199	-4.198181	0.000326	+0.021
Н25	3.232666	-3.302229	-2.148511	+0.022
H26	1.495462	-1.527503	-2.134787	+0.059
Н27	0.575047	2.057387	-2.134746	+0.059
H28	1.241354	4.450047	-2.148639	+0.022
Н29	1.577368	5.658310	0.000208	+0.021
Н30	1.240691	4.450079	2.148967	+0.022
Н31	0.574406	2.057414	2.134905	+0.059
Н32	-2.068786	-0.531322	2.134654	+0.059
Н33	-4.474849	-1.147079	2.148360	+0.022
Н34	-5.689789	-1.457635	-0.000555	+0.021
Н35	-4.474558	-1.146572	-2.149232	+0.022
Н36	-2.068488	-0.530849	-2.135055	+0.059

11.8 OF₄

Geometry: seesaw, F-O-F (ax-eq) 94.9°, (eq-eq) 104.3°, O-F (ax) 1.760 Å, O-F (eq) 1.378 Å Thermodynamics: H -474.000859 Hartree S 73.522 cal mol⁻¹ K⁻¹ Charges: O +0.614 F (ax) -0.322 F (eq) +0.014

12. Worked examples of γ calculations

12.1 $[XF_6]$ species (X = CI, Br or I)

Contributing resonance forms:

For X = CI, QTAIM charges: CI +1.904, F -0.484. This is reproduced by $[0.516 \times (A)] + [0.484 \times (B)]$ Such that charge on CI = $(0.516 \times -1) + (0.484 \times +5) = +1.904$ Then γ (CI) = $(0.516 \times 14) + (0.484 \times 2) = 8.192$.

For X = Br, QTAIM charges: Br +2.456, F -0.576 This is reproduced by $[0.424 \times (A)] + [0.576 \times (B)]$ Such that charge on Br = $(0.424 \times -1) + (0.576 \times +5) = +2.456$ Then $\gamma(Br) = (0.424 \times 14) + (0.576 \times 2) = 7.088$.

For X = I, QTAIM charges: I +3.032, F -0.672 This is reproduced by $[0.328 \times (A)] + [0.672 \times (B)]$ Such that charge on I = $(0.328 \times -1) + (0.672 \times +5) = +3.032$ Then $y(I) = (0.328 \times 14) + (0.672 \times 2) = 5.936$.

12.2 XCl₄ species (X = S, Te)

Contributing resonance forms:

(A) CI-X-CI	(B) _{CI} ⁻ X ⁴⁺ CI⁻
CI CI	CI⁻ CI⁻
fully covalent	fully ionic
(X has 10 e)	(X has 2 e)

For X = S, QTAIM charges: S +0.833, Cl(ax) -0.369, Cl(eq) -0.048 This is reproduced by $[0.7918 \times (A)] + [0.2083 \times (B)]$ Such that charge on S = $(0.7918 \times 0) + (0.2083 \times +4) = +0.833$ Then γ (S) = $(0.7918 \times 10) + (0.2083 \times 2) = 8.335$.

For X = Te, QTAIM charges: Te +1.713, Cl(ax) -0.509, Cl(eq) -0.348 This is reproduced by $[0.5718 \times (A)] + [0.4283 \times (B)]$ Such that charge on Te = $(0.5718 \times 0) + (0.4283 \times +4) = +1.713$ Then γ (Te) = $(0.5718 \times 10) + (0.4283 \times 2) = 6.575$.

12.3 XeO₄

Contributing resonance forms:

(A) O	(B) O ²⁻	
O=Xe=O	O ²⁻ Xe ⁸⁺ O ²	-
0	O ²⁻	
fully covalent	fully ionic	
(Xe has 16 e)	(Xe has 0 e)	

QTAIM charges: Xe +3.140, O -0.785 This is reproduced by $[0.6075 \times (A)] + [0.3925 \times (B)]$ Such that charge on Xe = $(0.6075 \times 0) + (0.3925 \times +8) = +3.140$ Then γ (Xe) = $(0.6075 \times 16) + (0.9325 \times 0) = 9.720$.

12.4 [XO₄]³⁻ species (X = N, P, As)

These were treated as [Rb₂XO₄]⁻; contributing resonance forms:

For X = N, QTAIM charges: N +0.749, O -0.934 (x 2), -0.808 (x 2), Rb +0.868 (x 2) This is reproduced by $[0.8502 \times (A)] + [0.1498 \times (B)]$ Such that charge on N = $(0.8502 \times 0) + (0.1498 \times +5) = +0.749$ Then $\gamma(N) = (0.8502 \times 10) + (0.1498 \times 0) = 8.502$.

For X = P, QTAIM charges: P +3.701, O -1.637 (x 2), -1.615 (x 2), Rb +0.900 (x 2) This is reproduced by $[0.2598 \times (A)] + [0.7402 \times (B)]$ Such that charge on P = $(0.2598 \times 0) + (0.7402 \times +5) = +3.701$ Then $\gamma(P) = (0.2598 \times 10) + (0.7402 \times 0) = 2.598$.

For X = As, QTAIM charges: As +2.585, O -1.388 (x 2), -1.301 (x 2), Rb +0.896 (x 2) This is reproduced by $[0.483 \times (A)] + [0.517 \times (B)]$ Such that charge on As = $(0.483 \times 0) + (0.517 \times +5) = +2.585$ Then γ (As) = $(0.483 \times 10) + (0.517 \times 0) = 4.830$.

12.5 RNO₂ species (R = CI, CF₃, MeO, Me, O_2N)

Contributing resonance forms:

For R = CI, charges: CI +0.020, N +0.703, O -0.361 (x2). This is reproduced by $[0.277 \times (A)] + [0.020 \times (B)] + [0.703 \times (C)]$ Such that charge on CI = $(0.277 \times 0) + (0.020 \times +1) + (0.703 \times 0) = +0.020$ Charge on N = $(0.277 \times 0) + (0.020 \times 0) + (0.703 \times +4) = +0.703$ Charge on O = $(0.277 \times 0) + (0.020 \times -0.5) + (0.703 \times -0.5) = -0.362$ Then $\gamma(N) = (0.277 \times 10) + (0.020 \times 8) + (0.703 \times 8) = 8.554$.

For R = CF₃, charges: CF₃ +0.294, N +0.529, O -0.408, -0.414 (average -0.411) This is reproduced by $[0.177 \times (A)] + [0.294 \times (B)] + [0.529 \times (C)]$ Such that charge on CF₃ = $(0.177 \times 0) + (0.294 \times +1) + (0.529 \times 0) = +0.294$ Charge on N = $(0.177 \times 0) + (0.294 \times 0) + (0.529 \times +1) = +0.529$ Charge on O = $(0.177 \times 0) + (0.294 \times -0.5) + (0.529 \times -0.5) = -0.412$ Then $\gamma(N) = (0.177 \times 10) + (0.294 \times 8) + (0.529 \times 8) = 8.354$.

For R = MeO, charges: MeO -0.023, N +0.872, O -0.407, -0.443 (average -0.425) This is reproduced by $[0.128 \times (A)] + [0.849 \times (C)] + [0.023 \times (D)]$ Such that charge on MeO = $(0.128 \times 0) + (0.849 \times 0) + (0.023 \times -1) = -0.023$ Charge on N = $(0.128 \times 0) + (0.849 \times +1) + (0.023 \times +1) = +0.872$ Charge on O = $(0.128 \times 0) + (0.849 \times -0.5) + (0.023 \times 0) = -0.425$ Then $\gamma(N) = (0.128 \times 10) + (0.849 \times 8) + (0.023 \times 8) = 8.256$.

For R = Me, charges: Me +0.506, N +0.427, O -0.465, -0.468 (average -0.467) This is reproduced by $[0.067 \times (A)] + [0.506 \times (B)] + [0.427 \times (C)]$ Such that charge on Me = $(0.067 \times 0) + (0.506 \times +1) + (0.427 \times 0) = +0.506$ Charge on N = $(0.067 \times 0) + (0.506 \times 0) + (0.427 \times +1) = +0.427$ Charge on O = $(0.067 \times 0) + (0.506 \times -0.5) + (0.427 \times -0.5) = -0.467$ Then $\gamma(N) = (0.067 \times 10) + (0.506 \times 8) + (0.427 \times 8) = 8.134$.

For R = O_2N , charges: N +0.742, O -0.371 This is reproduced by $[0.258 \times (A)] + [0.742 \times (C)]$ Such that charge on N = $(0.258 \times 0) + (0.742 \times +1) = +0.742$ Charge on O = $(0.258 \times 0) + (0.742 \times -0.5) = -0.371$ Then $\gamma(N) = (0.258 \times 10) + (0.742 \times 8) = 8.516$.

12.6 HXF species (X = Ar, Kr, Xe)

Contributing resonance forms:

(A)	(B)	(C)	(D)	
H-X-F	H⁺ ⁻X−F	H⁻ ⁺X−F	H−X⁺ F⁻	
fully covalent	partially ionic	partially ionic	partially ionic	
(X has 10 e)	(X has 10 e)	(X has 8 e)	(X has 8 e)	

For X = Ar, charges: H +0.255, Ar +0.429, F -0.684 This is reproduced by $[0.061 \times (A)] + [0.255 \times (B)] + [0.684 \times (D)$ Such that charge on Ar = $(0.061 \times 0) + (0.255 \times -1) + (0.684 \times +1) = +0.429$ Then $\gamma(Ar) = (0.061 \times 10) + (0.255 \times 10) + (0.684 \times 8) = 8.632$.

For X = Kr, charges: H +0.131, Kr +0.578, F -0.709 This is reproduced by $[0.160 \times (A)] + [0.131 \times (B)] + [0.709 \times (D)$ Such that charge on Kr = $(0.160 \times 0) + (0.131 \times -1) + (0.709 \times +1) = +0.578$ Then γ (Kr) = $(0.160 \times 10) + (0.131 \times 10) + (0.709 \times 8) = 8.582$.

For X = Xe, charges: H -0.062, Xe +0.805, F -0.743 This is reproduced by $[0.195 \times (A)] + [0.062 \times (C)] + [0.743 \times (D)$ Such that charge on Xe = $(0.195 \times 0) + (0.062 \times +1) + (0.743 \times +1) = +0.805$ Then γ (Xe) = $(0.195 \times 10) + (0.062 \times 8) + (0.743 \times 8) = 8.390$.

12.7 Molecule 8 (Scheme 5)

Summary of charge map:

Three contributing resonance forms are required to reproduce this distribution (note that as the most electronegative atom, the O must have 8 electrons in all valid resonance forms):

Proportions: $[0.3345 \times (A)] + [0.3790 \times (B)] + [0.2865 \times (C)]$ Such that charge on N = $(0.3345 \times 0) + (0.3790 \times -3) + (0.2865 \times +2) = -0.564$ Then $\gamma(N) = (0.3345 \times 10) + (0.3790 \times 10) + (0.2865 \times 6) = 8.854$.

12.8 Molecule 11 (Scheme 5)

Summary of charge map:

Three contributing resonance forms are required to reproduce this distribution:

Proportions: $[0.5115 \times (A)] + [0.4330 \times (B)] + [0.0555 \times (C)]$ Such that charge on N = $(0.5115 \times 0) + (0.4330 \times -3) + (0.0555 \times +2) = -1.188$ Then $\gamma(N) = (0.5115 \times 10) + (0.4330 \times 10) + (0.0555 \times 6) = 9.778$.

12.9 Molecule 13 (Scheme 5)

Summary of charge map:

Three contributing resonance forms are required to reproduce this distribution:

Proportions: $[0.469 \times (A)] + [0.473 \times (B)] + [0.057 \times (C)]$ Such that charge on S = $(0.469 \times 0) + (0.473 \times +1) + (0.057 \times -1) = +0.416$ Then γ (S) = $(0.469 \times 10) + (0.473 \times 8) + (0.057 \times 10) = 9.044$.

12.10 Molecule 14 (Scheme 5)

Summary of charge map: S +1.525, N -1.474, Ph -0.017 (x 3) Three contributing resonance forms are required to reproduce this distribution:

fully covalent (S has 12 e)

partially ionic (S has 6 e)

partially ionic (S has 6 e)

Proportions: $[0.4917 \times (A)] + [0.4913 \times (B)] + [0.017 \times (C)]$ Such that charge on S = $(0.4917 \times 0) + (0.4913 \times +3) + (0.017 \times +3) = +1.525$ Then $\gamma(S) = (0.4917 \times 12) + (0.4913 \times 6) + (0.017 \times 6) = 8.950$.

12.11 Molecule 16 (Scheme 5)

Summary of charge map:

charge on S = +0.825

Three contributing resonance forms are required to reproduce this distribution:

Proportions: $[0.752 \times (A)] + [0.164 \times (B)] + [0.084 \times (C)]$ Such that charge on S = $(0.752 \times 0) + (0.164 \times +4) + (0.084 \times +2) = +0.824$ Then $\gamma(S) = (0.752 \times 12) + (0.164 \times 4) + (0.084 \times 8) = 10.352$.

12.12 Molecule 21 (Scheme 7)

Summary of charge map:

charge on central C = -0.001

Three contributing resonance forms are required to reproduce this distribution:

Proportions: $[0.320 \times (A)] + [0.347 \times (B)] + [0.333 \times (C)]$ Such that charge on hypercoordinate C = $(0.320 \times -1) + (0.347 \times -1) + (0.333 \times +2) = -0.001$ Then $\gamma(C) = (0.320 \times 10) + (0.347 \times 6) + (0.333 \times 4) = 6.614$.

12.13 Molecule 22 (Scheme 7)

Summary of charge map:

charge on hypercoordinate C = +1.495

Three contributing resonance forms are required to reproduce this distribution:

Proportions: $[0.3143 \times (A)] + [0.439 \times (B)] + [0.2467 \times (C)]$ Such that charge on hypercoordinate C = $(0.3143 \times -1) + (0.439 \times +3) + (0.2467 \times +2) = +1.496$ Then γ (C) = $(0.3143 \times 10) + (0.439 \times 2) + (0.2467 \times 4) = 5.008$.

12.14 Molecule 23 (Scheme 7)

Summary of charge map:

charge on hypercoordinate C = -0.416

If the hypervalent form of the structure is assumed, then two contributing resonance forms are required to reproduce this distribution:

(C has 12 e)

(C has 0 e)

Proportions: $[0.73617 \times (A)] + [0.26383 \times (B)]$ Such that charge on hypercoordinate C = $(0.73617 \times -2) + (0.26383 \times +4) = -0.417$ Then $\gamma(C) = (0.73617 \times 12) + (0.26383 \times 0) = 8.834$.

Raw data:

species	ΔG(X-O)	γ(AIM)	γ(NBO)	γ(Hirshfeld)	γ(Mulliken)
PO2	113.105	3.94	5.36	7.86	7.11
SO2	103.385	5.25	6.80	9.05	8.12
SeO2	83.905	6.38	6.57	8.90	8.25
TeO2	71.83	6.07	6.06	8.48	6.08
CIO2	38.23	8.31	8.42	10.09	9.05
BrO2	36.275	8.07	8.05	10.09	9.26
SO3	87.81	4.85	7.13	10.69	9.17
SeO3	65.96	6.95	6.92	10.60	9.62
XeO3	-9.69	9.00	8.55	12.51	10.96
XeO4	-6.8925	9.72	8.98	14.42	12.49