Supporting Information for

The First Chiral Diene-Based Metal–Organic Frameworks for Highly Enantioselective Carbon-Carbon Bond Formation Reactions

Takahiro Sawano, Pengfei Ji, Alexandra R. McIsaac, Zekai Lin, Carter W. Abney, and Wenbin Lin*

Department of Chemistry, University of Chicago, 929 E 57th St, Chicago, IL 60637, USA

Table of Contents

1. General experimental	S2-S3
2. Procedures for ligand synthesis	S3-S6
3. Synthesis and characterization of E2-MOF	S7-S12
4. X-ray structure determination	S12-S14
5. X-ray absorption spectroscopy	S14-S21
6. Asymmetric 1,4-addion of arylboronic acids to α , β -unsaturated ketones with	
E2-MOF•RhCl	S21-S27
7. Asymmetric 1,2-addition of arylboronic acids to aldimines with	
E2-MOF•Rh(acac)	S27-S33
8. ¹ H and ¹³ C NMR spectra, and chiral HPLC charts	S34-S55
9. References	S56

1. General experimental

All anaerobic and moisture-sensitive manipulations were carried out with standard Schlenk techniques under predried nitrogen or in an inert atmosphere glovebox. ¹H NMR spectra were recorded on a Bruker NMR 500 DRX spectrometer at 500 MHz and referenced to the proton resonance resulting from incomplete deuteration of the CDCl₃ (δ 7.26) or DMSO-d₆ (δ 2.50). ¹³C NMR spectra were recorded at 125 MHz, and all of the chemical shifts are reported downfield in ppm relative to the carbon resonance of CDCl₃ (δ 77.00) or DMSO-*d*₆ (δ 39.50). The following abbreviations are used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad, app: apparent. Mass spectra were obtained with an Agilent 1100 LC-MSD Mass Spectrometer and Agilent 6224 Accurate-Mass TOF-MS. Thermogravimetric analysis (TGA) was performed in air using a Shimadzu TGA-50 equipped with a platinum pan and heated at a rate of 3 °C per minute. Single-crystal X-ray diffraction was performed on a Bruker APEX II CCD-based detector at ChemMatCARS (Sector 15), Advanced Photon Source (APS), Argonne National Laboratory. Powder X-ray diffraction (PXRD) patterns were collected on a Bruker D8 Venture, dual microsource (Cu and Mo) diffractometer with a CMOS detector. Cu Ka radiation was used. The PXRD patterns were processed with the APEX 2 package using the PILOT plugin. ICP-MS data were obtained with an Agilent 7700x ICP-MS and analyzed using ICP-MS MassHunter version B01.03. Samples were diluted in a 2% HNO₃ matrix and analyzed with a 159Tb internal standard against a six-point standard curve over the range from 0.1 ppb to 1000 ppb. The correlation coefficient was > 0.9997 for all analyses of interest. Data collection was performed in Spectrum Mode with five replicates per sample and 100 sweeps per replicate. Nitrogen adsorption experiments were performed on a Quantachrome-1C surface area analyzer at liquid nitrogen temperature. Enantiomeric excess (ee) values were determined by chiral high performance liquid chromatography (HPLC) using a Shimadzu SCL-10A HPLC equipped with a SPD-M10A photodiode array detector and by chiral gas chromatography (GC) using a Shimadzu GC-2010 gas chromatograph equipped with a flame ionization detector (FID). UV-Vis spectra were obtained using a Shimadzu UV-2401 PC UV-Vis spectrophotometer. 1,4-Dioxane was distilled over Na under N₂. Toluene was purified by passing through a neutral alumina column under N₂. 2-Cyclohexen-1-one, 2-cyclohepten-1-one, 2-cyclopenten-1-one, 4-hexen-3-one were purchased and distilled before use. [RhCl(C₂H₄)]₂, Rh(acac)(C₂H₄)₂, phenylboronic acid, 4fluorophenylboronic acid, and 4-methoxyphenylboronic acid were used as received. 4,4'-

Dibromo-2-nitrobiphenyl [CAS: 439797-69-0], methyl 4-ethynylbenzoate [CAS: 3034-86-4], N-(4-chlorophenyl)methylidene-4-methylbenzenesulfonamide [CAS: 3157-65-1], N-phenylmethylidene-4-methylbenzenesulfonamide [CAS: 51608-60-7], N-(4-methoxyphenyl)methylidene-4-methylbenzenesulfonamide [CAS: 135822-88-7], (1R,4R,7R)-7-isopropyl-5-methylbicyclo[2.2.2]octa-2,5-diene-2-carboxylic acid [CAS: 1252606-18-0] were prepared according to or analogous to the reported procedures.¹⁻⁵

2. Procedures for ligand synthesis

Dimethyl-4-4'-((2-nitro-[1,1'-biphenyl]-4,4'-diyl)bis(ethyne-2,1-dilyl))dibenzoate

A mixture of tetrakis(triphenylphosphine)palladium(0) (288.9 mg, 0.2500 mmol), triphenylphosphine (78.7 mg, 0.300 mmol), and copper(I) iodide (95.2 mg, 0.500 mmol) was dissolved in THF (6.3 mL) and triethylamine (TEA, 6.3 mL). To the mixture were added 4,4'-dibromo-2-nitrobiphenyl (893 mg, 2.50 mmol) and methyl 4-ethynylbenzoate (1.20 g, 7.49 mmol), and the resulting mixture was stirred under nitrogen at 75 °C for 2 d. The solution was then cooled to room temperature, and the volatiles were removed in vacuo. The residue was extracted with CHCl₃ and water, and the combined organic extracts were dried over MgSO₄ and filtered. After evaporation of the solvent, the residue was subjected to flash column chromatography on silica gel (CHCl₃ as eluent) to afford dimethyl 4,4'-((2-amino-[1,1'-biphenyl]-4,4'-diyl)bis(ethyne-2,1-diyl))dibenzoate (816.5 mg, 1.584 mmol, 63% yield). ¹H NMR (500 MHz, CDCl₃): δ 3.94 (s, 3H), 3.95 (s, 3H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.0

Hz, 1H), 7.58–7.65 (m, 6H), 7.77 (dd, J = 8.0, 2.0 Hz, 1H), 8.04 (app d, J = 8.0 Hz, 3H), 8.06 (d, J = 8.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 52.25, 52.33, 89.26, 89.98, 91.55, 91.62, 123.18, 123.65, 126.74, 127.27, 127.68, 127.96, 129.55, 129.64, 129.69, 130.29, 131.57, 131.71, 131.92, 132.10, 135.09, 135.45, 136.97, 148.97, 166.35, 166.50. ESI-MS: cald for C₃₂H₂₂NO₆ [M+H]⁺ 516.1, found 516.0.

dimethyl 4,4'-((2-nitro-[1,1'-biphenyl]-4,4'-diyl)bis(ethyne-2,1-Α mixture of diyl))dibenzoate (1.289 g, 2.500 mmol) and zinc powder (3.269 g, 50.00 mmol) was dissolved in acetic acid (8.3 mL), MeOH (50 mL) and THF (75 mL) under nitrogen. After stirring at rt for 3 h, saturated sodium bicarbonate was added at 0 °C. The solution was extracted with CHCl₃, and then the combined organic extracts were dried over Na₂SO₄ and filtered. After evaporation of the solvent, the residue was subjected to flash column chromatography (silica gel, hexane/CHCl₃/EtOAc = 10/10/1) to give dimethyl 4,4'-((2-amino-[1,1'-biphenyl]-4,4'divl)bis(ethyne-2,1-divl))dibenzoate (658.4 mg, 1.356 mmol, 54% yield). ¹H NMR (CDCl₃): δ 3.93 (s, 3H), 3.94 (s, 3H), 6.96 (d, J = 1.3 Hz, 1H), 7.03 (dd, J = 7.8, 1.3 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.56–7.66 (m, 6H), 8.03 (d, J = 8.5 Hz, 2H), 8.04 (d, J =8.5 Hz, 2H). ¹³C NMR (CDCl₃): δ 52.22, 52.25, 88.52, 89.30, 92.03, 92.44, 118.51, 121.86, 122.30, 122.92, 127.32, 127.86, 128.05, 128.97, 129.51, 129.54, 130.41, 131.51, 131.53, 132.24, 139.27, 143.44, 166.53, 166.57. HRMS(ESI): calcd for C₃₂H₂₄NO₄ [M+H]⁺ 486.1705, found 486.1693.

Dimethyl 4,4'-((2-((1*R*,4*R*,7*R*)-7-isopropyl-5-methylbicyclo[2.2.2]octa-2,5-diene-2carboxamido)-[1,1'-biphenyl]-4,4'-diyl)bis(ethyne-2,1-diyl))dibenzoate (LMe₂)

solution of (1R,4R,7R)-7-isopropyl-5-methylbicyclo[2.2.2]octa-2,5-diene-2-To a carboxylic acid (84.3 mg, 0.409 mmol) in CH₂Cl₂ was added oxalyl chloride (42 µL, 0.49 mmol) and DMF (3 drops) at 0 °C. The mixture was stirred at room temperature for 3 h, and then the residue was added to a mixture of dimethyl 4,4'-((2-amino-[1,1'-biphenyl]-4,4'divibis(ethyne-2,1-divibi))dibenzoate (198.4 mg, 0.4086 mmol), TEA (85 μ L, 0.61 mmol), and THF (41 mL). After stirring at room temperature for 24 h, saturated NH₄Cl was slowly added at 0 °C. The mixture was extracted with Et_2O , and the combined organic extracts were dried over MgSO₄ and filtered. After evaporation of the solvent, the residue was subjected to flash column chromatography (silica gel, hexanes/CHCl₃/EtOAc = 20/20/1) to give LMe₂ (157.1 mg, 0.2332 mmol, 57% yield). ¹H NMR (CDCl₃): δ 0.80 (d, J = 6.5 Hz, 3H), 0.92–0.98 (m, 1H), 0.93 (d, J = 6.5 Hz, 3H), 1.01-1.12 (m, 1H), 1.12-1.20 (m, 1H), 1.50-1.58 (m, 1H), 1.80 (d, J = 1.501.0 Hz, 3H), 3.30–3.37 (m, 1H), 3.93 (s, 3H), 3.94 (s, 3H), 3.96–4.03 (m, 1H), 5.78 (d, J = 6.0 Hz, 1H), 6.65 (dd, J = 6.5, 1.5 Hz, 1H), 7.22 (d, J = 7.8 Hz, 1H), 7.33 (dd, J = 7.8, 1.3 Hz, 1H), 7.42 (d, J = 8.3 Hz, 2H), 7.54 (s, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 8.02 (d, J = 8.0 Hz, 2H), 8.05 (d, J = 8.0 Hz, 2H), 8.73 (d, J = 1.3 Hz, 1H). ¹³C NMR (CDCl₃): δ 18.85, 21.19, 21.74, 31.61, 33.67, 39.76, 43.74, 47.75, 52.15, 52.22, 89.13, 89.87, 91.50, 92.11, 122.79, 123.23, 123.82, 123.98, 127.02, 127.49, 127.87, 129.30, 129.41,

129.46, 129.54, 129.73, 129.86, 131.15, 131.50, 132.46, 135.03, 137.87, 139.53, 143.70, 144.97, 163.27, 166.40, 166.51. HRMS (ESI): calcd for $C_{45}H_{40}NO_5$ [M+H]⁺ 674.2906, found 674.2892.

4,4'-((2-((1*R*,4*R*,7*R*)-7-isopropyl-5-methylbicyclo[2.2.2]octa-2,5-diene-2-carboxamido)-[1,1'-biphenyl]-4,4'-diyl)bis(ethyne-2,1-diyl))dibenzoic acid (LH₂)

LMe₂ (223.8 mg, 0.3321 mmol) was dissolved in a mixture of THF (17 mL), EtOH (17 mL), and 1 M NaOH (aq) (17 mL). After stirring at room temperature for 12 h, 1 M HCl (aq) was slowly added at 0 °C. The filtrate was extracted with EtOAc, and the combined organic extracts were concentrated in vacuo. The residue was washed with water, hexanes, MeOH, and EtOAc to give compound LH₂ (165.7 mg, 0.2566 mmol, 77% yield). ¹H NMR (CDCl₃): δ 0.79 (d, *J* = 5.5 Hz, 3H), 0.84–0.93 (m, 1H), 0.89 (d, *J* = 5.5 Hz, 3H), 0.95–1.04 (m, 1H), 1.45–1.55 (m, 1H), 1.78 (s, 3H), 3.91 (d, *J* = 5.5 Hz, 1H), 5.76 (d, *J* = 6.0 Hz, 1H), 6.98 (d, *J* = 7.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.3 Hz, 2H), 7.54 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 9.26 (s, 1H), 13.17 (br, 2H). ¹³C NMR (CDCl₃): δ 18.78, 21.18, 21.70, 30.41, 31.33, 33.37, 42.98, 47.37, 89.25, 89.31, 91.31, 91.88, 120.84, 121.46, 123.70, 126.44, 126.55, 128.98, 129.58, 129.59, 130.31, 130.60, 130.67, 131.51, 131.54, 131.61, 135.50, 137.15, 139.15, 139.69, 143.46, 143.68, 163.89, 166.68. ESI-MS: calcd for C4₃H₃₅NO₅ [M]⁻ 645.3, found 644.9.

3. Synthesis and characterization of Zr₆(µ₃-O)₄(µ₃-OH)₄(L)₆•143DMF•109H₂O (E₂-MOF)

LH₂ (8.3 mg, 13 μ mol), ZrCl₄ (3.0 mg, 13 μ mol), DMF (1.8 mL), trifluoroacetic acid (10 μ L) were charged in a vial. The vial was then heated in a 70 °C oven for 5 days, resulting in colorless crystals (15.4 mg, 5.43 μ mol, 42% yield). E₂-MOF has 73% solvent weight based on TGA analysis (Figure S2). Solvent content determined by ¹H NMR/TGA: DMF 61.4%, H₂O 11.6%.

Analysis of digested E₂-MOF by ¹H NMR: 15.4 mg of E₂-MOF was added to 0.50 mL of DMSO- d_6 . To this solution was added 0.50 mL of saturated K₃PO₄ in D₂O. After shaking for 15 minutes, MOF was totally dissolved and the organic phase was analyzed by ¹H NMR.

Fig. S1 ¹H NMR spectrum of LH₂ in $K_3PO_4/D_2O/DMSO-d_6$ (top). ¹H NMR spectrum of E₂-MOF digested in $K_3PO_4/D_2O/DMSO-d_6$ (bottom).

Fig. S2 TGA curve of freshly prepared E_2 -MOF. A solvent weight loss of 73% was observed in the room temperature to 200 °C range.

Quantitative determination of the content of solvent molecules:

Freshly prepared E_2 -MOF (6.19 mg, 2.18 µmol) was briefly dried on a filter paper and loaded into a vial. After addition of 0.75 mL of CD₃OD and 8.6 µL of mesitylene as an internal standard, the crystals were soaked overnight to ensure thorough solvent exchange from the pores. The content of solvent molecules in E_2 -MOF was measured by the supernatant of ¹H NMR. The exact amount of DMF was calculated against the internal standard. Following determination of the total amount of solvent by TGA, the amount of water was calculated.

Fig. S3 Quantitative ¹H NMR analysis of the solvent contents in E_2 -MOF (d_4 -methanol).

N2 adsorption isotherms of E2-MOF

E₂-MOF was activated using the freeze-drying protocol. After decanting the mother liquid, freshly prepared crystals of E₂-MOF were washed with DMF, CH₃CN, and then CH₂Cl₂ several times. The resulting crystals were washed with benzene several times and then soaked in benzene overnight before loading into a BET sample cell. About 1 mL of benzene was left in the sample cell, and the sample cell placed in an ice/NaCl bath and evacuated under a dynamic vacuum for 24 h. The ice/NaCl bath was removed and the sample was kept under vacuum at room temperature for another 5 h, and then heated under vacuum at 60 °C for 24 h. The resulting freeze-dried E₂-MOF was used to perform gas uptake measurements.

The observed negligible surface areas was presumably due to framework distortion upon solvent removal. The crystallinity of E_2 -MOF was lost after removal of solvent at rt and 60 °C (Fig. S5).

Fig. S4 N_2 sorption isotherms for E_2 -MOF at 77 K.

Fig. S5. PXRD spectrum of dried E_2 -MOF at rt and 60 °C

Stability of E2-MOF in different solvents

Fig. S6. PXRD spectrum of E₂-MOF soaked in 1,4-dioxane, 1M HCl aq., water, and 1M NaOH aq. for 40 h.

General procedure for dye absorption measurements of E₂-MOF, E₂-MOF•RhCl, and E₂-MOF•Rh(acac)

Freshly prepared E_2 -MOF (9.15 mg, 3.23 µmol) was briefly dried on a filter paper, and then soaked in a methanol solution of Brilliant Blue R-250 (24 mM, 0.71 mL) for 12 h. The resulting dark blue crystals were washed with water thoroughly until the washing become colorless. After addition of DMSO (0.5 mL) to the washed sample, the solid was digested by saturated K₃PO₄ in water (0.4 mL). The resultant clear solution of DMSO was diluted to 20 mL and adjusted to a pH of 1.2 by HCl. Absorption experiments were performed on Shimadzu UV-2401 PC UV-Vis spectrophotometer. The concentration of BBR-250 was determined by comparing the UV-Vis absorption with a standard curve. The dye absorption measurements of E_2 -MOF, E_2 -MOF•Rh(acac), and E_2 -MOF•RhCl indicate that the uptake of BBR-250 per unit cell is 5.32 (112 wt%), 4.47 (107 wt%), 2.53 (98 wt%), respectively.

Fig. S7 UV-Vis measurement of released BBR-250 from E_2 -MOF, E_2 -MOF•Rh(acac), and E_2 -MOF•RhCl (normalized).

4. X-ray structure determination

Single crystal X-ray diffraction of E₂-MOF was collected with a Bruker APEX II CCD-based detector at ChemMatCARS (Sector 15), Advanced Photon Source (APS), Argonne National Laboratory. The crystals were mounted inside a capillary tube (0.2 mm ID) with a small amount of mother liquor to prevent solvent loss from the crystal. Data were collected at 296 K. The frames were integrated with the Bruker SAINT© built-in APEX II software package using a narrow-frame integration algorithm which also corrects for the Lorentz and polarization effects. Absorption corrections were applied using SADABS. Structures were solved by direct methods and refined to convergence by the least squares method on F^2 using the SHELXTL software suite.⁶

Due to the disorder caused by random orientations, the diene moiety cannot be located in the electron density map and are thus modeled in the single crystal structure. The SQUEEZE subroutine of the PLATON software suite was applied to remove the scattering from the highly disordered guest molecules.⁷ The resulting new HKL4 files were used to further refine the structures. Due to the relatively weak diffraction and low resolution, which is not uncommon for this kind of framework with very large solvent accessible void space, restraints (SIMU and DELU) on displacement parameters are applied. All non-hydrogen atoms are refined anisotropically.

2

$Zr_6(O)_4(OH)_4L_6$	Density (calcd. g/cm ³)	0.225
4541.81	Absorption coeff. (mm ⁻¹)	0.171
296(2)	F(000)	6496
0.51800	Crystal size (mm)	$0.08 \times 0.08 \times 0.08$
Cubic	Crystal color & shape	Colorless block
Fm3m	θ range data collection	0.65 - 15.75
a = 45.887(8)	Limiting indices	-47<=h<=48,
b = 45.887(8)		-42<=k<=48, -33<=l<=47
c = 45.887(8)	Reflection collected	159296
$\alpha = 90$	Independent reflections	2870
$\beta = 90$	R(int)	0.1444
$\gamma = 90$	Data/restraints/parameters	2870/85/71
	Goodness-of-fit on F^2	1.119
96622(28)	Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0523, wR2 =
		0.1431
4	R indices (all data)	R1 = 0.0559, wR2 =
		0.1472
	$2r_{6}(O)_{4}(OH)_{4}L_{6}$ 4541.81 $296(2)$ 0.51800 Cubic Fm3m $a = 45.887(8)$ $b = 45.887(8)$ $c = 45.887(8)$ $\alpha = 90$ $\beta = 90$ $\gamma = 90$ $96622(28)$ 4	$2r_6(O)_4(OH)_4L_6$ Density (calcd. g/cm ³) 4541.81 Absorption coeff. (mm ⁻¹) $296(2)$ $F(000)$ 0.51800 Crystal size (mm)CubicCrystal color & shape $Fm\overline{3}m$ θ range data collection $a = 45.887(8)$ Limiting indices $b = 45.887(8)$ Reflection collected $a = 90$ Independent reflections $\beta = 90$ $R(int)$ $\gamma = 90$ Data/restraints/parametersGoodness-of-fit on F^2 96622(28)Final R indices [I>2 σ (I)]4R indices (all data)

Table S1 Crystal data and structure refinements of E₂-MOF.

Fig. S8 Space filling model of E₂-MOF along the (100) direction (left) and the (111) direction (right).

Fig. S9 Space filling model of E₂-MOF along the (110) direction.

Fig. S10 Octahedral cage (left) and tetrahedral cage (right) of E₂-MOF.

5. X-ray absorption spectroscopy

X-ray absorption data for [RhCl(nbd)]₂, RhCl-LMe₂, and E₂-MOF•RhCl were collected at Beamline 9-BM-B at the Advanced Photon Source (APS) at Argonne National Laboratory. Spectra were collected at the Rh K-edge (23220 eV) in transmission mode. The X-ray beam was monochromatized by a Si(111) monochromater and detuned by 25% to minimize harmonics. In an inert environment, 11 - 37 mg dry Rh samples (sufficient to achieve 1-2 absorption edges) were ground thoroughly with a mortar and pestle, then blended with polyethylene glycol (PEG) and pressed into pellets for XAFS analysis. A Rh foil was used as the reference for energy calibration and was measured simultaneously while collecting data for experimental samples. The incident beam intensity (I_0) and transmitted beam intensity (I_t) were measured by ionization chambers with I_0 filled with 40% N₂, 60% He, and I_t filled with air. The beam was masked to 1 mm × 1mm. Data were collected in three regions, with all energies listed relative to the environmental Rh K-edge (23220 eV): a pre-edge region, -150 to -20 eV (5 eV step size, 1.0 s dwell time); XANES region, -10 to 25 eV (0.5 eV step size, 1.0 s dwell time); and EXAFS region, 3.62 Å⁻¹ to 13.93 Å⁻¹ (0.05 Å⁻¹ step size, 1.0 s dwell time). Three spectra were collected at room temperature

X-ray absorption data for Rh(acac)-LMe₂, and E₂-MOF•Rh(acac) were collected at Beamline 20-BM-B at the Advanced Photon Source (APS) at Argonne National Laboratory. Spectra were collected at the Rh K-edge (23220 eV) in transmission mode. The X-ray beam was monochromatized by a Si(111) monochromater and detuned by 15% to minimize harmonics. In an inert environment, 11 - 37 mg dry Rh samples (sufficient to achieve 1-2 absorption edges) were ground thoroughly with a mortar and pestle, then blended with polyethylene glycol (PEG) and pressed into pellets for XAFS analysis. A Rh foil was used as the reference for energy calibration and was measured simultaneously while collecting data for experimental samples. The incident beam intensity (I_0) and transmitted beam intensity (I_1) were measured by ionization chambers with filled with 100% Ar. The beam was masked to 1 mm × 1mm. Data were collected in three regions, with all energies listed relative to the environmental Rh K-edge (23220 eV): a pre-edge region, -200 to -30 eV (10 eV step size, 1.0 s dwell time); XANES region, -30 to 30 eV (1.0 eV step size, 1.0 s dwell time); and EXAFS region, 2.80 Å⁻¹ to 15.97 Å⁻¹ (0.05 Å⁻¹ step size, 1.0 s dwell time). Two spectra were collected at room temperature..

Data were processed and analyzed using the Athena and Artemis programs of the IFEFFIT package⁸ based on FEFF 6.⁹ Prior to averaging, data were aligned to the first and largest peak in the smoothed first derivative of the absorption spectrum for the reference foil, background removed, and spectra processed to obtain a normalized unit edge step. Data were processed and fit with k²-weighting in R-space. All single-scattering and multiple-scattering paths with relative intensity greater than 10% of the first single scattering path and half-path length (R_{eff}) less than 5Å were used for fitting. [RhCl(nbd)]₂ was fit with $\Delta R = 1.25 - 5$ Å, and $\Delta k = 2.0 - 12$, yielding 23 independent points. E₂-MOF•RhCl was fit with $\Delta R = 1 - 5.4$ Å, and

 $\Delta k = 2.0 - 11.2$, yielding 25 independent points. Rh(acac)-LMe₂ was fit with $\Delta R = 1 - 4$ Å, and $\Delta k = 2.0 - 12.75$, yielding 20 independent points. E₂-MOF•Rh(acac) was fit with $\Delta R = 1 - 4$ Å, and $\Delta k = 2.0 - 12.75$, yielding 20 independent points. For all fits, the number of parameters used was less than 2/3 the total number of independent points, as determined by the Nyquist Equation. Fits were performed in R-space. Refinement was performed by optimizing an amplitude factor S_0^2 and energy shift parameter E_0 which are common to all paths, in addition to parameters for bond length (ΔR) and mean squared relative displacement of the scattering atoms (σ^2). [RhCl(nbd)]₂ was fit with the corresponding crystal structure ZOWVUC obtained from the Cambridge Crystallographic Database.

Fig. S11 EXAFS data (squares) and best fits (lines) for [RhCl(nbd)]₂ in *R*-space (left) and *k*-space (right). Data are displayed in *R*-space containing both magnitude of Fourier Transform and real components. A final *R*-factor of 0.01 was obtained for [RhCl(nbd)]₂ with a reduced χ^2 of 64.32.

Table S2	EXAFS	fitting parameter	s and	calculated	error	for fit	of	[RhC	l(nbd))]2
----------	-------	-------------------	-------	------------	-------	---------	----	------	--------	-----

Parameter	Value	Error
S_0^2	1.0	0.1
E ₀	-2.8	0.9
$\Delta R C_1$	0.01	0.01
$\Delta R C_2$	0.014	0.007
$\Delta R C_3$	0.00	-0.04
$\Delta R C_4$	0.3	0.1
$\Delta R Rh$	-0.03	0.04
ΔR C-Cl	0.0	0.1
$\sigma^2 C_1$	0.003	0.001
$\sigma^2 C_2$	0.004	0.001

$\sigma^2 C_3$	0.002	0.0004
$\sigma^2 C_4$	0.002	0.0004
$\sigma^2 Rh$	0.008	0.003
$\sigma^2 C_{ms}$	0.03	0.3
$\sigma^2 C_{long}$	0.02	0.01

Fig. S12 EXAFS data (squares) and best fits (lines) for E₂-MOF metalated with RhCl(THF) in *k*-space. A final *R*-factor of 0.01 and reduced χ^2 of 342.03 were obtained for the fit.

Table S3 EXAFS fitting parameters and calculated error for fit of E_2 -MOF metalated with RhCl(THF)

Parameter	Value	Error
S_0^2	1.05	0.00
E ₀	7	2
$\Delta R C_1$	-0.04	0.03
$\Delta R O$	0.02	0.08
$\Delta R Cl$	0.02	0.02
$\Delta R C_2$	-0.07	0.02
$\Delta R C_3$	0.01	0.02
	0.05	0.07
$\Delta R C_{long}$		
$\sigma^2 C_1$	0.007	0.005
$\sigma^2 O$	0.002	0.0009
$\sigma^2 Cl$	0.004	0.002
$\sigma^2 C_2$	0.002	0.0009
$\sigma^2 Rh$	0.002	0.0009
$\sigma^2 C_{long}$	0.01	0.01

RhCl-LMe₂ was fitted using a combination of monomer and dimer models, the fractional contribution of each being dictated by a variable multiplied directly by the S_0^2 parameter. While

fitted values suggested a distribution of 85% monomer, 15% dimer, this specific method of fitting intrinsically contains a significant amount of error, and the amount of dimer could be less than 5%. Systemic errors in the data for this particular sample are also significant. A reasonable fit could be obtained without inclusion of the dimeric paths, but was rejected due to the *a priori* knowledge obtained by NMR.

Fig. S13 EXAFS data (squares) and best fits (lines) for RhCl-LMe₂ in *R*-space (left) and *k*-space (right). Data are displayed in *R*-space containing both magnitude of Fourier Transform and real components. A final *R*-factor of 0.01 was obtained for [RhCl(nbd)]₂ with a reduced χ^2 of 1430.

Table S4	EXAFS	fitting pa	arameters	and c	alculated	error	for	fit (of Rh	Cl-I	LMe	2 2
----------	-------	------------	-----------	-------	-----------	-------	-----	-------	-------	------	-----	------------

Parameter	Value	Error
S_0^2	1.05	0.00
Frac	0.15	0.3
E ₀	-1	1
$\Delta R C_1$	0.00	0.02
ΔR Cl	0.03	0.03
$\Delta R C_2$	0.06	0.03
$\Delta R C_3$	-0.06	0.03
$\Delta R \ C_{long}$	0.04	0.1
ΔR Rh	0.03	0.4
$\Delta R O$	0.03	0.1
$\sigma^2 C_1$	0.004	0.006
$\sigma^2 Cl$	0.002	0.002
$\sigma^2 C_2$	0.002	0.002

$\sigma^2 C_3$	0.002	0.002
$\sigma^2 Rh$	0.02	0.09
$\sigma^2 C_{long}$	0.002	0.002
$\sigma^2 O$	0.002	0.002

Rh(acac)-LMe₂, and E₂-MOF•Rh(acac) were fit with the reported crystal structure UGOSAL obtained from the Cambridge Crystallographic Database.³

Fig. S14 EXAFS data (squares) and best fits (lines) for Rh(acac)-LMe₂ in *R*-space (left) and *k*-space (right). Data are displayed in *R*-space containing both magnitude of Fourier Transform and real components. A final *R*-factor of 0.016 was obtained for Rh(acac)-LMe₂ with a reduced χ^2 of 1587.25.

Table S5 EXAFS fitting parameters and calculated error for fit of Rh(acac)-LMe₂

Parameter	Value	Error
S_0^2	0.86	0.12
E ₀	-2.86	1.13
ΔR O	-0.03	0.02
$\Delta R C_8$	0.04	0.02
$\Delta R C_7$	0.18	0.09
$\Delta R C_2$	0.07	0.06
$\Delta R C_1$	0.08	0.08
$\sigma^2 O$	0.001	0.003

$\sigma^2 C_8$	0.002	0.003
$\sigma^2 C_7$	0.01	0.01
$\sigma^2 C_2$	0.002	0.002
$\sigma^2 C_1$	0.002	0.002

Fig. S15 EXAFS data (squares) and best fits (lines) for E₂-MOF•Rh(acac) in *R*-space (left) and *k*-space (right). Data are displayed in *R*-space containing both magnitude of Fourier Transform and real components. A final *R*-factor of 0.016 was obtained for E₂-MOF•Rh(acac) with a reduced χ^2 of 78.77.

Table S6 EXAFS fitting parameters and calculated error for fit of E2-MOF•Rh(acac)

Parameter	Value	Error
S_0^2	0.91	0.16
E ₀	-1.77	1.24
ΔR O	-0.02	0.03
$\Delta R C_8$	0.03	0.03
$\Delta R C_7$	0.20	0.12
$\Delta R C_2$	0.07	0.05
$\Delta R C_1$	0.10	0.06
$\sigma^2 O$	0.002	0.004

$\sigma^2 C_8$	0.002	0.003
$\sigma^2 C_7$	0.01	0.02
$\sigma^2 C_2$	0.0005	0.004
$\sigma^2 C_1$	0.001	0.007

6. Asymmetric 1,4-addion of arylboronic acids to α , β -unsaturated ketones with E₂-MOF •RhCl

Post-synthetic metalation of E₂-MOF with [RhCl(C₂H₄)₂]₂.

Freshly prepared E₂-MOF was briefly dried on a filter paper and then weighted on a 1 dram vial (1.50 mg, 0.529 μ mol). After addition of THF (1.5 mL) and [RhCl(C₂H₄)₂]₂ (42 μ L, 0.53 μ mol, 0.0125 M solution in THF), the mixture was allowed to stand overnight, and then the resulting brown solid was centrifuged out of suspension and washed with 1.5 mL of THF four times. ICP-MS analysis gave 66% Rh-loading of L.

A typical procedure for E₂-MOF•RhCl catalyzed asymmetric 1,4-addition reaction (Table 1).

E₂-MOF (1.50 mg, 0.529 µmol) was metalated with [RhCl(C₂H₄)₂]₂ (42 µL, 0.53 µmol, 0.0125 M solution in THF) as above. A mixture of 2-cyclohexenone (**1a**) (340 µL, 3.49 mmol), phenylboronic acid (**2a**) (510.6 mg, 4.188 mmol), E₂-MOF•RhCl (0.349 µmol Rh) in toluene (1.2 mL) and H₂O (2.3 mL) was refluxed under nitrogen atmosphere at 100 °C for 40 h. The mixture was extracted with Et₂O. After evaporation of the solvent, the residue was subjected to column chromatography on silica gel (hexanes/CHCl₃/ethyl acetate = 20/10/1) to give (*R*)-3-phenylcyclohexanone (588.2 mg, 97% yield, 93% ee).

(*R*)-3-Phenylcyclohexanone.¹⁰ ¹H NMR (CDCl₃): δ 1.73–1.92 (m, 2H), 2.05–2.12 (m, 1H), 2.12–2.20 (m, 1H), 2.38 (td, *J* = 13.3, 5.8 Hz, 1H), 2.43–2.50 (m, 1H), 2.50–2.63 (m, 2H), 3.01 (tt, *J* = 12.0, 3.8 Hz, 1H), 7.20–7.27 (m, 3H), 7.34 (t, *J* = 7.5 Hz, 2H). The ee was measured by HPLC (Chiralpak AD, 0.6 mL/min, hexanes/2-propanol = 99/1, 210 nm, *t*₁ = 20.3 min (minor), *t*₂ = 24.8 min (major)).

(*R*)-3-(4-Fluorophenyl)cyclohexanone.¹⁰ ¹H NMR (CDCl₃): δ 1.71–1.87 (m, 2H), 2.03–2.10 (m, 1H), 2.10–2.18 (m, 1H), 2.37 (td, *J* = 13.3 , 6.5 Hz, 1H), 2.42–2.52 (m, 2H), 2.57 (ddt, *J* = 14.0, 4.0, 2.0 Hz, 1H), 2.99 (tt, *J* = 11.8, 3.8 Hz, 1H), 7.01 (app t, *J*_{H-F} = 8.9 Hz, *J*_{H-H} = 8.9 Hz, 2H), 7.17 (dd, *J*_{H-F} = 5.3 Hz, *J*_{H-H} = 8.9 Hz, 2H). The ee was measured by HPLC (Chiralpak AD, 0.6 mL/min, hexanes/2-propanol = 95/5, 210 nm, *t*₁ = 11.9 min (minor), *t*₂ = 14.4 min (major)).

(*R*)-3-(4-Acetylphenyl)cyclohexanone.¹¹ ¹H NMR (CDCl₃) δ 1.74–1.94 (m, 2H), 2.05–2.13 (m, 1H), 2.13–2.21 (m, 1H), 2.39 (td, *J* = 13.3, 6.2 Hz, 1H), 2.45–2.52 (m, 1H), 2.52–2.64 (m, 2H), 2.59 (s, 3H), 3.08 (tt, *J* = 11.8, 3.9 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 2H). The ee was measured by HPLC (Chiralpak AD, 0.6 mL/min, hexanes/2-propanol = 90/10, 250 nm, $t_1 = 27.3$ min (major), $t_2 = 31.9$ min (minor)).

(*R*)-3-(4-Methoxy)cyclohexanone.¹⁰ ¹H NMR (CDCl₃): δ 1.70–1.87 (m, 2H), 2.02–2.09 (m, 1H), 2.09–2.18 (m, 1H), 2.37 (td, *J* = 13.0, 5.8 Hz, 1H), 2.41–2.53 (m, 2H), 2.57 (ddt, *J* = 14.0 Hz, 4.3, 2.0 Hz, 1H), 2.96 (tt, *J* = 11.8, 3.8 Hz, 1H), 3.80 (s, 3H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.14 (d, *J* = 8.8 Hz, 2H). The ee was measured by HPLC (Chiralcel OD-H, 0.6 mL/min, hexanes/2-propanol = 97/3, 210 nm, t_1 = 22.3 min (major), t_2 = 23.7 min (minor)).

(*R*)-3-(4-Methylphenyl)cyclohexanone.¹⁰ ¹H NMR (CDCl₃): 1.71–1.89 (m, 2H), 2.03–2.10 (m, 1H), 2.10–2.18 (m, 1H), 2.33 (s, 3H), 2.34–2.42 (m, 1H), 2.42–2.48 (m, 1H), 2.48–2.62 (m, 2H), 2.98 (tt, J = 11.8, 3.9 Hz, 1H), 7.11 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H). The ee was measured by HPLC (Chiralcel OJ, 0.6 mL/min, hexanes/2-propanol = 95/5, 225 nm, $t_1 = 18.2$ min (major), $t_2 = 19.3$ min (minor)).

(*R*)-3-(3-Methylphenyl)cyclohexanone.¹² ¹H NMR (CDCl₃): δ 1.71–1.91 (m, 2H), 2.03–2.20 (m, 1H), 2.11–2.20 (m, 1H), 2.35 (s, 3H), 2.36–2.43 (m, 1H), 2.43–2.49 (m, 1H), 2.49–2.62 (m, 2H), 2.97 (tt, *J* = 11.8, 4.0 Hz, 1H), 6.99–7.05 (m, 1H), 7.04 (s, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 7.22 (t, *J* = 7.6 Hz, 1H). The ee was measured by HPLC (Chiralcel OD-H, 0.8 mL/min, hexanes/2-propanol = 95/5, 210 nm, t_1 = 13.7 min (minor), t_2 = 15.9 min (major)).

(*R*)-3-(2-Methylphenyl)cyclohexanone.¹² ¹H NMR (CDCl₃): δ 1.74–1.90 (m, 2H), 1.97–2.05 (m, 1H), 2.14–2.22 (m, 1H), 2.33 (s, 3H), 2.41 (td, *J* = 13.3, 6.0 Hz, 1H), 2.45–2.55 (m, 3H), 3.17–3.26 (m, 1H), 7.11–7.19 (m, 2H), 7.19–7.26 (m, 2H). The ee was measured by HPLC (Chiralpak AD, 0.6 mL/min, hexanes/2-propanol = 97/3, 210 nm, *t*₁ = 10.6 min (minor), *t*₂ = 12.5 min (major)).

(*R*)-3-Phenylcyclopentanone.¹⁰ ¹H NMR (CDCl₃): δ 1.96–2.08 (m, 1H), 2.28–2.42 (m, 2H), 2.43–2.54 (m, 2H), 2.70 (dd, *J* = 18.0, 7.5 Hz, 1H), 3.40–3.50 (m, 1H), 7.25–7.31 (m, 3H), 7.37 (t, *J* = 7.5 Hz, 2H). The ee was measured by GC (γ -dex 225. Inj: 250 °C. Det: 250 °C. Column temp: 80 °C, ramp of 1 °C/min to 200 °C and held for 10 min. Column flow: 1.0 mL/min, $t_1 = 67.7$ min (minor), $t_2 = 68.4$ min (major)).

(*R*)-3-Phenylcycloheptanone.¹⁰ ¹H NMR (CDCl₃): δ 1.44–1.56 (m, 1H), 1.66–1.80 (m, 2H), 1.95–2.15 (m, 3H), 2.59 (dd, *J* = 9.5, 4.2 Hz, 2H), 2.62–2.67 (m, 1H), 2.86–2.93 (m, 1H), 2.94 (t, *J* = 12.5 Hz, 1H), 7.15–7.23 (m, 3H), 7.30 (t, *J* = 7.5 Hz, 2H). The ee was measured by HPLC (Chiralcel OD-H, 0.6 mL/min, hexanes/2-propanol = 95/5, 210 nm, *t*₁ = 15.0 min (minor), *t*₂ = 16.3 min (major)).

(*S*)-5-Phenyl-3-hexanone.¹³ ¹H NMR (CDCl₃): δ 0.99 (t, *J* = 7.3 Hz, 3H), 1.26 (d, *J* = 7.0 Hz, 3H), 2.29 (dq, *J* = 17.5, 7.3 Hz, 1H), 2.35 (dq, *J* = 17.5, 7.3 Hz, 1H), 2.63 (dd, *J* = 16.0, 8.0 Hz, 1H), 2.73 (dd, *J* = 16.0, 6.5 Hz, 1H), 3.27–3.38 (m, 1H), 7.16–7.21 (m, 1H), 7.21 (d, *J* = 7.3 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 2H). The ee was measured by HPLC (Chiralpak AD, 0.6 mL/min, hexanes/2-propanol = 99.8/0.2, 210 nm, *t*₁ = 17.1 min (major), *t*₂ = 18.4 min (minor)).

A procedure for the synthesis of mixure of RhCl(LMe₂) and [RhCl(LMe₂)]₂

A mixture of [RhCl(C₂H₄)₂]₂ (3.9 mg, 0.02 mmol Rh), LMe₂ (14.2 mg, 0.021 mmol) in THF (0.5 mL) was stirred under nitrogen atmosphere at 60 °C for 30 min. After addition of benzene to the mixture, the precipitated solid was washed with benzene to give a mixture of RhCl(LMe₂) and [RhCl(LMe₂)]₂ (11.0 mg, 68% yield). ¹H NMR (CDCl₃): compound A. 0.66 (d, J = 6.0 Hz, 3H), 0.83 (d, J = 6.0 Hz, 3H), 0.80–1.00 (m, 1H), 1.08–1.32 (m, 3H), 1.39 (s, 3H), 3.09 (d, J = 4.0 Hz, 1H), 3.33–3.45 (m, 1H), 3.93 (s, 3H), 3.95 (s, 3H), 4.00 (s, 1H), 4.65 (d, J = 4.0 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.28–7.41 (m, 3H), 7.59 (d, J = 8.2 Hz, 4H), 7.63 (d, J = 7.5 Hz, 2H), 8.02 (d, J = 8.2 Hz, 2H), 8.03 (d, J = 8.2 Hz, 2H), 8.83 (s, 1H). compound B. 0.75 (d, J = 6.5 Hz, 1H), 0.89 (d, J = 6.5 Hz, 3H), 0.80–1.00 (m, 1H), 1.08–1.32 (m, 3H), 1.47 (s, 3H), 3.18 (d, J = 5.5 Hz, 1H), 3.33–3.45 (m, 1H), 3.91 (s, 3H), 3.96 (s, 3H), 4.05 (s, 1H), 4.73 (d, J = 5.0 Hz, 1H), 6.76 (s, 1H), 6.82 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 7.5 Hz, 1H), 7.07 (d, J = 7.5 Hz, 1H), 7.28–7.41 (m, 2H), 7.48 (d, J = 7.8 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H), 7.90 (d, J = 8.0 Hz, 2H), 8.64 (s, 1H).

Fig. S16 1 H NMR of a mixture of RhCl(LMe₂) and [RhCl(LMe₂)]₂

Recyclability test for E₂-MOF•RhCl catalyzed asymmetric 1,4-addition of α,β-unsaturated ketone

Scheme S1 Recycle of E₂-MOF•RhCl for the 1,4-addition reaction.

E₂-MOF (3.73 mg, 1.32 µmol) was metalated with [RhCl(C₂H₄)₂]₂ (105 µL, 1.32 µmol, 0.0125 M solution in THF) as described above. A mixture of 2-cyclohexenone (**1a**) (168 µL, 1.73 mmol), phenyboronic acid (**2a**) (254 mg, 2.08 mmol), E₂-MOF•RhCl (0.867 µmol Rh) in toluene (0.58 mL) and water (1.2 mL) was refluxed under nitrogen atmosphere at 100 °C for 40 h. After extraction, the solid catalyst was separated via centrifugation. The supernatant was concentrated on a rotary evaporator and subjected to flash column chromatography (silica gel, hexanes/CHCl₃/EtOAc = 20/10/1) to give **3a** (272.0 mg, 1.561 mmol, 90% yield, 94% ee). The solid catalyst was added to a solution of 2-cyclohexenone (**1a**) (168 µL, 1.73 mmol), phenylboronic acid (**2a**) (254 mg, 2.08 mmol). After stirring at 100 °C for 40 h, the mixture was worked up and subjected to flash column chromatography (silica gel, hexanes/CHCl₃/EtOAc = 20/10/1) to give **3a** (108.5 mg, 0.6227 mmol, 36% yield, 91% ee).

Fig. S17 PXRD spectrum after 1,4-addition reaction with E₂-MOF•RhCl

7. Asymmetric 1,2-addition of arylboronic acids to aldimines with E₂-MOF•Rh(acac) Post-synthetic metalation of E₂-MOF with Rh(acac)(C₂H₄)₂.

Freshly prepared E₂-MOF was briefly dried on a filter paper and then weighted with a 1 dram vial (6.0 mg, 2.12 μ mol). After addition of THF (1.5 mL) and Rh(acac)(C₂H₄)₂ (169 μ L, 2.12 μ mol, 0.0125 M solution in THF), the mixture was allowed to stand overnight, and then the

resulting orange solid was centrifuged out of suspension and washed with 1.5 mL of THF four times. ICP-MS analysis gave 13% Rh-loading of L.

A typical procedure for E₂-MOF•Rh(acac) catalyzed asymmetric addition reactions of aldimines (Table 3).

E₂-MOF (6.0 mg, 2.12 µmol) was metalated with Rh(acac)(C₂H₄)₂ (169 µL, 2.12 µmol, 0.0125 M solution in THF) as above. A mixture of *N*-(4-chlorophenyl)methylidene-4-methylbenzenesulfonamide (**4a**) (2.8 mg, 9.5 µmol), phenylboronic acid (**2a**) (2.3 mg, 19 mmol), E₂-MOF•Rh(acac) (0.29 µmol Rh) in 1,4-dioxane (0.24 mL) was stirred under nitrogen atmosphere at 100 °C for 20 h. After centrifugation, MeOH was added to the supernatant and the mixture was stirred for 30 min. After evaporation of the solvent, the residue was subjected to preparative TLC (silica gel, hexane/ethyl acetate = 3/1) to give (*S*)-*N*-[(4-chlorophenyl)phenylmethyl]-4-methylbenzenesulfonamide (99% NMR yield, 98% ee).

(*S*)-*N*-[(4-chlorophenyl)phenylmethyl]-4-methylbenzenesulfonamide.¹⁴ ¹H NMR (CDCl₃): 2.39 (s, 3H), 5.11 (d, J = 7.0 Hz, 1H), 5.53 (d, J = 7.0 Hz, 1H), 7.02–7.08 (m, 4H), 7.13–7.20 (m, 4H), 7.20–7.24 (m, 3H), 7.55 (d, J = 8.5 Hz, 2H). The ee was measured by HPLC (Chiralcel OD-H, 0.5 mL/min, hexanes/2-propanol = 80/20, 230 nm, $t_1 = 15.8$ min (major), $t_2 = 20.7$ min (minor)).

(S)-N-[(4-Chlorophenyl)(4-fuluorophenyl)methyl]-4-methylbenzenesulfonamide.¹H NMR (CDCl₃): 2.40 (s, 3H), 5.42 (d, *J* = 7.5 Hz, 1H), 5.52 (d, *J* = 7.5 Hz, 1H), 6.89 (app t, *J*_{H-H} = 8.8 Hz, *J*_{H-F} = 8.8 Hz, 2H), 6.98–7.05 (m, 4H), 7.14 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.5 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H); ¹³C NMR (CDCl₃): 21.4, 60.0, 115.5 ($J_{C-F} = 21.6$ Hz), 127.1, 128.6, 128.7, 129.0 ($J_{C-F} = 8.3$ Hz), 129.4, 133.6, 135.8 ($J_{C-F} = 3.3$ Hz), 137.0, 138.7, 143.5, 162.1 ($J_{C-F} = 247.2$ Hz). HRMS (ESI) calcd for [M+Na] C₂₀H₁₇ClFNO₂SNa 412.0550, found 412.0550. The ee was measured by HPLC (Chiralcel OD-H, 0.5 mL/min, hexanes/2-propanol = 80/20, 230 nm, $t_1 = 18.7$ min (major), $t_2 = 20.9$ min (minor)).

(S)-N-[(4-Chlorophenyl)(4-methoxyphenyl)methyl]-4-methylbenzenesulfonamide.¹⁴ ¹H NMR (CDCl₃): 2.39 (s, 3H), 3.74 (s, 3H), 5.31–5.38 (br, 1H), 5.48 (d,*J*= 7.5 Hz, 1H), 6.72 (d,*J*= 8.8 Hz, 2H), 6.94 (d,*J*= 8.8 Hz, 2H), 7.06 (d,*J*= 8.3 Hz, 2H), 7.15 (app t,*J*= 8.5 Hz, 4H), 7.54 (d,*J* $= 8.3 Hz, 2H). The ee was measured by HPLC (Chiralcel OD-H, 0.5 mL/min, hexanes/2-propanol = 80/20, 230 nm, <math>t_1 = 26.1 \text{ min (minor)}, t_2 = 35.1 \text{ min (major)}).$

(*R*)-*N*-[(4-Fuluorophenyl)phenylmethyl]-4-methylbenzenesulfonamide.¹⁵ ¹H NMR (CDCl₃): 2.38 (s, 3H), 5.12–5.31 (br, 1H), 5.55 (d, *J* = 7.0 Hz, 1H), 6.89 (app t, $J_{\text{H-H}} = 8.8$ Hz, $J_{\text{H-F}} = 8.8$ Hz, 2H), 7.03–7.12 (m, 4H), 7.14 (d, *J* = 8.3 Hz, 2H), 7.18–7.25 (m, 3H), 7.55 (d, *J* = 8.3 Hz, 2H). The ee was measured by HPLC (Chiralcel OD-H, 0.5 mL/min, hexanes/2-propanol = 80/20, 235 nm, $t_1 = 15.4$ min (minor), $t_2 = 18.2$ min (major)).

(R)-N-[(4-Methoxyphenyl)phenylmethyl]-4-methylbenzenesulfonamide.¹⁴ ¹H NMR (CDCl₃): 2.38 (s, 3H), 3.75 (s, 3H), 5.08 (d, J = 7.0 Hz, 1H), 5.52 (d, J = 7.0 Hz, 1H), 6.73 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 7.08–7.12 (m, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.16–7.23

(m, 3H), 7.55 (d, J = 8.0 Hz, 2H). The ee was measured by HPLC (Chiralcel OD-H, 0.5 mL/min, hexanes/2-propanol = 80/20, 210 nm, $t_1 = 19.7$ min (minor), $t_2 = 30.0$ min (major)).

(*S*)-*N*-[(4-Methoxyphenyl)phenylmethyl]-4-methylbenzenesulfonamide.¹⁴ The ee was measured by HPLC (Chiralcel OD-H, 0.5 mL/min, hexanes/2-propanol = 80/20, 210 nm, t_1 = 19.3 min (major), t_2 = 30.5 min (minor)).

(*R*)-*N*-[(4-Fuluorophenyl)(4-methoxyphenyl)methyl]-4-methylbenzenesulfonamide.¹⁶ ¹H NMR (CDCl₃): 2.38 (s, 3H), 3.75 (s, 3H), 5.10–5.28 (br, 1H), 5.49 (d, J = 7.0 Hz, 1H), 6.72 (d, J = 8.5 Hz, 2H), 6.85–6.91 (m, 2H), 6.95 (d, J = 8.5 Hz, 2H), 7.08 (dd, $J_{\text{H-H}} = 8.5$, $J_{\text{H-F}} = 5.0$ Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.3 Hz, 2H). The ee was measured by HPLC (Chiralcel OD-H, 0.5 mL/min, hexanes/2-propanol = 80/20, 210 nm, $t_1 = 21.8$ min (major), $t_2 = 31.8$ min (minor)).

A procedure for the synthesis of Rh(acac)-LMe₂

A mixture of $Rh(acac)(C_2H_4)_2$ (7.7 mg, 0.03 mmol), LMe_2 (22.2 mg, 0.033 mmol) in THF (0.6 mL) was stirred under nitrogen atmosphere at 60 °C for 30 min. After evaporation of solvent, the Rh(acac)-LMe₂ was obtained.

Fig. S18 ¹H NMR of Rh(acac)/LMe₂

Recyclability test for E2-MOF•Rh(acac) catalyzed asymmetric 1,2-addition of aldimine

Scheme S2 Recycle of E₂-MOF•Rh(acac) for the 1,2-addition reaction.

E₂-MOF (21.7 mg, 7.66 μ mol) was metalated with Rh(acac)(C₂H₄)₂ (612 μ L, 7.66 μ mol, 0.0125 M solution in THF) as described above. A mixture of aldimine **4a** (5.0 mg, 17.2 μ mol), phenyboronic acid (**2a**) (4.2 mg, 34.4 mmol), E₂-MOF•Rh(acac) (1.03 μ mol Rh) in 1,4-dioxane (0.86 mL) was stirred under nitrogen atmosphere at 100 °C for 20 h. The solid catalyst was

separated via centrifugation, and then the supernatant was concentrated on a rotary evaporator and subjected to preparative TLC (silica gel, hexanes/ethyl acetate = 3/1) to give **5a**. The recovered solid catalyst was used for subsequent reactions.

Test of "heterogeneity" of E2-MOF•Rh(acac)

E₂-MOF (7.98 mg, 2.82 µmol) was metalated with Rh(acac)(C₂H₄)₂ (225 µL, 2.82 µmol, 0.0125 M solution in THF). A mixture of aldimine **4a** (3.7 mg, 12.6 µmol), phenylboronic acid (**2a**) (3.1 mg, 25.2 µmol), E₂-MOF•Rh(acac) (0.379 µmol Rh), 1,4-dioxane (1.7 mL) was stirred under nitrogen atmosphere at 100 °C for 3 h. After the solid catalyst was separated via centrifugation, the supernatant was concentrated on a rotary evaporator. The residue was subjected to preparative TLC (silica gel, hexanes/EtOAc = 3/1) to give **5a** (64% NMR yield, 98% ee).

E₂-MOF (7.98 mg, 2.82 μ mol) was metalated with Rh(acac)(C₂H₄)₂ (225 μ L, 2.82 μ mol, 0.0125 M solution in THF). A mixture of aldimine **4a** (3.7 mg, 12.6 μ mol), phenylboronic acid (**2a**) (3.1 mg, 25.2 μ mol), E₂-MOF•Rh(acac) (0.379 μ mol Rh), 1,4-dioxane (1.7 mL) was stirred under nitrogen atmosphere at 100 °C for 3 h. After the mixture was centrifuged, the resulting supernatant was filtered through a celite, and then the filtrate was allowed to react for an

additional 17 h. After evaporation of the solvent, the residue was subjected to preparative TLC (silica gel, hexanes/EtOAc = 3/1) to give **5a** (64% NMR yield, 98% ee). These two reactions afforded the same yields and enantioselectivity.

8. ¹H and ¹³ C NMR spectra, and chiral HPLC charts

S39

Minutes

9. References

- 1. Dierschke, F.; Grimsdale, A. C.; Müllen, K. Synthesis 2003, 2470.
- 2.Vivas, M. G.; Silva, D. L.; De Boni, L.; Bretonniere, Y.; Andraud, C.; Laibe-Darbour, F.;
- Mulatier, J.-C.; Zaleśny, R.; Bartkowiak, W.; Canuto, S.; Mendonca, C. R. J. Phys. Chem. B 2012, 116, 14677.
- 3. Okamoto, K.; Hayashi, T.; Rawal, V. H. Chem. Commun. 2009, 4815.
- 4. Pattison, G.; Piraux, G.; Lam, H. W. J. Am. Chem. Soc. 2010, 132, 14373.
- 5. Love, B. E.; Raje, P. S.; Williams II, T. C. Synlett 1994, 493.
- 6. Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112.7.
- 7. Spek, A. L. Acta Cryst. 2009, D65, 148.
- 8. Ravel, B.; Newville, M. J. Synchrotron Radiat. 2005, 12, 537.
- 9. Rehr, J. J.; Albers, R. C. Rev. Mod. Phys. 2000, 72, 621.
- 10. Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508.
- 11. Fairhurst, N. W. G.; Munday, R. H.; Carbery, D. R. Synlett 2013, 24, 496.
- 12. Gini, F.; Hessen, B.; Minnaard, A. J. Org. Lett. 2005, 7, 5309.
- 13. Suzuma, Y.; Hayashi, S.; Yamamoto, T.; Oe, Y.; Ohta, T.; Ito, Y. *Tetrahedron: Asymmetry* **2009**, *20*, 2751.
- 14. Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2004, 126, 13584.
- 15. Duan, H.-F.; Jia, Y.-X.; Wang, L.-X.; Zhou, Q.-L. Org. Lett. 2006, 8, 2567.
- 16. Wang, Z.-Q.; Feng, C.-G.; Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336.