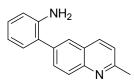
Asymmetric Conjugate Addition of Malonates to Nitrostyrenes using Ambidextrous Catalysis

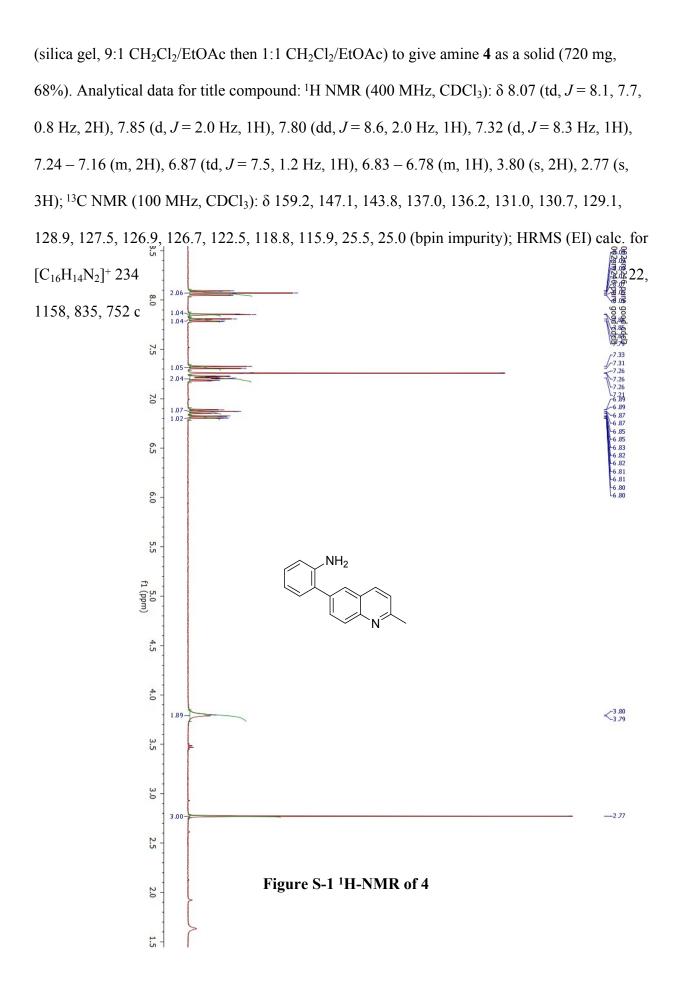
Shahab Mortezaei, Noelle R. Catarineu, Xueyou Duan, Chunhua Hu, and James W. Canary*

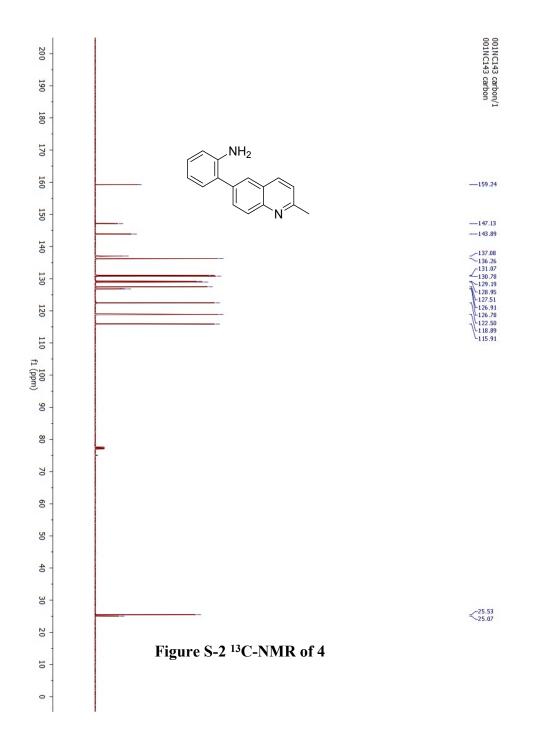
Department of Chemistry, New York University, New York, New York 10003, United States

Table of Contents	SI-1
I. General Information	SI-2
II. Synthesis and Characterization of Catalyst and Products	SI-3
III. Method for <i>in situ</i> Catalysis	SI-96
IV. Crystallographic information for Δ-1	SI-97
V. References	SI-99

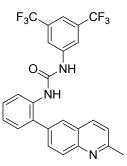

I. General Information

General experimental information

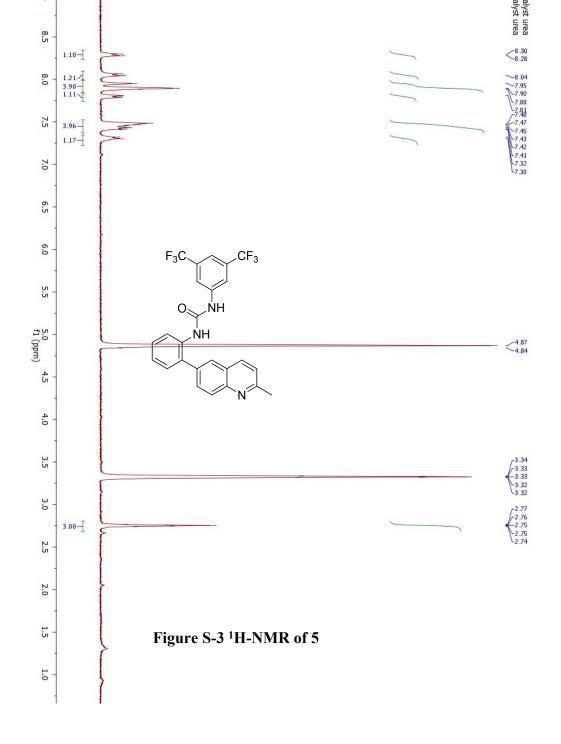

All commercial materials were purchased from commercial sources and used without further purification. Small scale reactions were carried out in 20 mL Fisher Scientific disposable scintillation vials. Other reactions were carried out using oven-dried (160 °C) glassware. Solvents were purchased from Aldrich with Sure-Seal bottles. ¹H-NMR spectra were obtained using a Bruker AC 400 (400 MHz) NMR. ¹³C-NMR spectra were obtained at 100 MHz on the same spectrometer. All chemical shifts are reported in parts per million (ppm) with reference to TMS = 0 ppm. The ESI mass spectra were obtained with an Agilent 1100 Series Capillary LCMSD Trap XCT Spectrometer using acetonitrile solutions. Absorption spectra were recorded on a Perkin Elmer Lambda spectroscope. Circular dichroism spectra were acquired with an AVIV Model 202SF CD spectroscope. All $\Delta\epsilon$ units are L mol⁻¹ cm⁻¹. The ee was determined on an Agilent 1200 series HPLC with Daicel Chemical Industries, LTD chiral columns. Chiralpak OD (0.46 cm x 25 cm), Chiralpak AD-H (0.46 cm x 25 cm), Chiralpak OD-H (0.46 cm x 25 cm), and Chiralpak OJ-H (0.46 cm x 25 cm) columns were used.

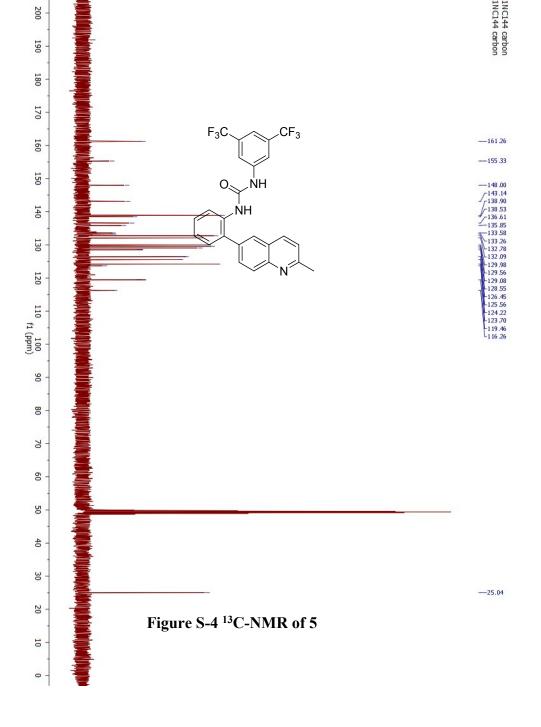

II. Synthesis and Characterization of Catalyst and Products

(2-methylquinolin-6-yl)aniline (4):

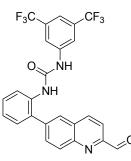


A 50 mL round bottom flask was charged with 1.0 g (4.5 mmol) of 6-bromo-2-methylquinoline (2), 1.25 g (5 mmol) bis(pinacolato)diboron, and 20 mL of toluene. The mixture was degassed using argon for 10 min. Pd(dppf)Cl₂ (330 mg, 0.45 mmol) and potassium acetate (1.3 g, 13.5 mmol) were then added and the reaction was heated at 90 °C under an argon atmosphere for 18 h. The reaction was allowed to cool to room temperature before filtering through a pad of silica. The solvent was then removed in vacuo. The crude product (1.19 g) was obtained and used without further purification for the Suzuki coupling. To 1.19 g of borylation product was added $605 \ \mu L (5.4 \ mmol)$ of 2-bromoaniline and a mixture of 30 mL dioxane/ 10 mL (1.3M) aq. K₃PO₄. The mixture was then purged using argon. Pd₂dba₃ (274 mg, 0.3 mmol) and PCy₃ (160 mg, 0.6 mmol) were then added to the reaction mixture before fitting the flask with a reflux condenser and heating the reaction to 100 °C under an inert atmosphere for 17 h. The reaction was allowed to cool, and the mixture was filtered through a pad of silica, which was washed with copious amounts of ethyl acetate. The solvent was removed in vacuo and crude was extracted with CH₂Cl₂ (3 x 50 mL). The organic layers were combined and washed with H₂O and brine and subsequently dried over Na₂SO₄ before being concentrated in vacuo and chromatographed

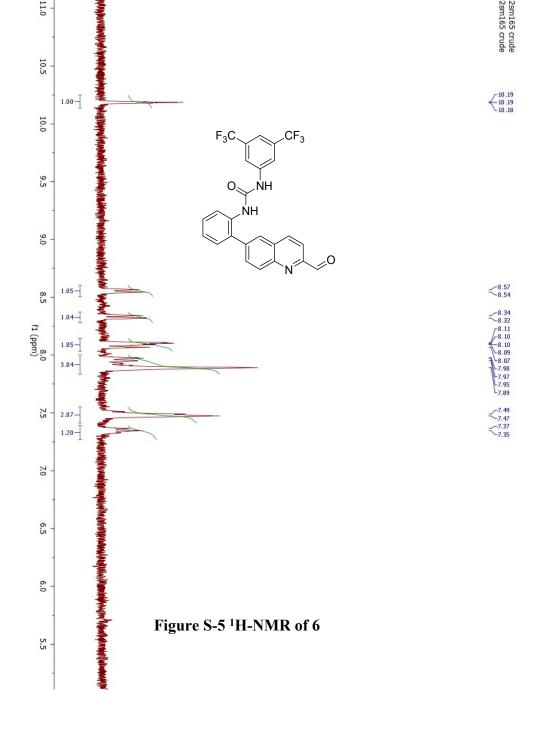




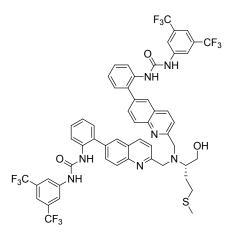
1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(2-methylquinolin-6-yl)phenyl)urea (5):

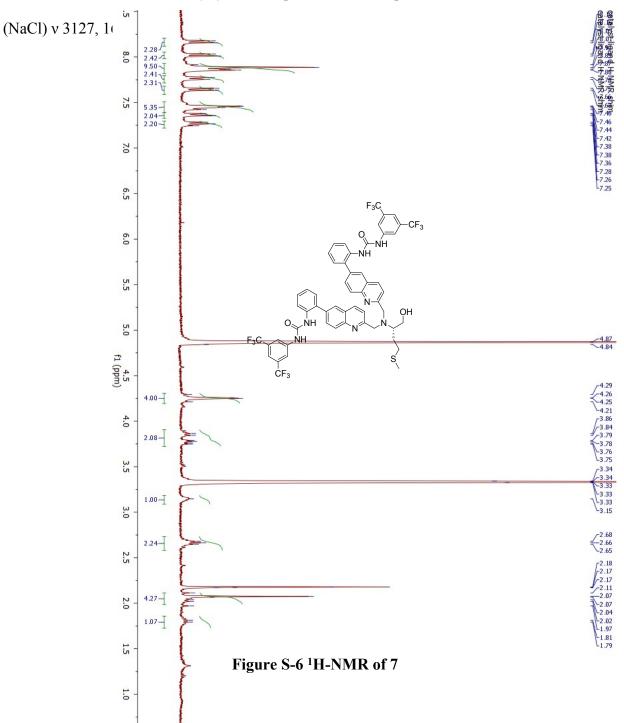


To a stirred solution of amine **4** (720 mg, 3 mmol) in 20 mL CH₂Cl₂ was added 780 μ L (4.6 mmol) of 3,5-bis(trifluoromethyl)phenyl isocyanate. The reaction was allowed to stir for 18 h under argon atmosphere at room temperature. The solvent was removed *in vacuo* and the crude was chromatographed (silica gel, 9:1 CH₂Cl₂/EtOAc then 4:1 CH₂Cl₂/EtOAc) to obtain urea **5** (1.46 g, 98%). Analytical data for title compound: ¹H NMR (400 MHz, MeOD): δ 8.29 (d, *J* = 8.4 Hz, 1H), 8.05 (d, *J* = 8.8 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 3H), 7.83 – 7.74 (m, 1H), 7.54 – 7.36 (m, 3H), 7.31 (d, *J* = 7.5 Hz, 1H), 2.75 (q, *J* = 2.4 Hz, 3H). ¹³C NMR (100 MHz, MeOD): δ 161.2, 155.3, 148.0, 143.1, 138.9, 138.5, 136.6, 135.8, 133.5, 133.2, 132.7, 132.0, 129.9, 129.5, 129.0, 128.5, 126.4, 125.5, 124.2, 119.4, 116.2, 25.0; HRMS (EI) calc. for [C₂₅H₁₇F₆N₃O]⁺ 489.1276, found 489.1281; IR (NaCl) v 3342, 3152, 1724, 1661, 1501, 1418, 1252, 1144, 1067 cm⁻¹

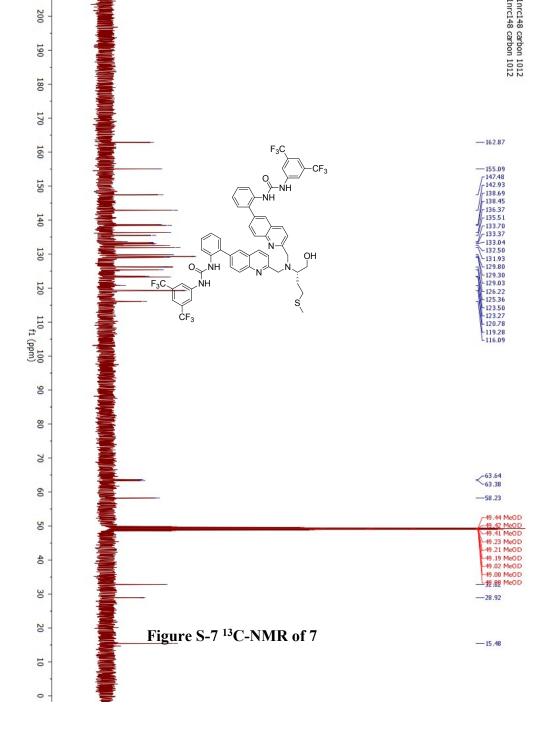


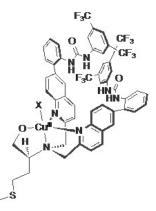
1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(2-formylquinolin-6-yl)phenyl)urea (6):


A 50 mL round bottom flask was charged with 1.46 g (3.0 mmol) of urea **5** and 410 mg (3.7 mmol) of SeO₂. *p*-Dioxane (15 mL) was added and the flask was fitted with a reflux condenser and heated to 80 °C for 2 h. The reaction was allowed to cool to room temperature before filtering through a pad of Celite. The solvent was removed *in vacuo* to yield pure aldehyde **6** as a solid (1.45 g, 97%). Analytical data for title compound: ¹H NMR (400 MHz, MeOD) δ 10.18 (s, 1H), 8.56 (d, *J* = 8.5 Hz, 1H), 8.33 (d, *J* = 8.7 Hz, 1H), 8.15 – 8.03 (m, 2H), 8.00 – 7.84 (m, 4H), 7.48 (d, *J* = 6.7 Hz, 3H), 7.36 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (insoluble); HRMS (EI) calc. for [C₂₆H₁₉F₆N₃O₃]⁺ 535.1331, found 535.1332; IR (NaCl) v 3251, 3123, 2467, 1711, 1622, 1379, 1133 cm⁻¹

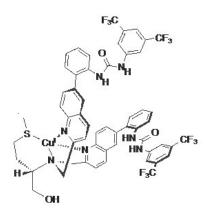

(S)-1,1'-((2,2'-(((1-hydroxy-4-(methylthio)butan-2-

yl)azanediyl)bis(methylene))bis(quinoline-6,2-diyl))bis(2,1-phenylene))bis(3-(3,5-


bis(trifluoromethyl)phenyl)urea) (7):



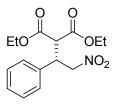
To a solution of 50 mg (0.37 mmol) L-methioninol in 2 mL MeOH at 0 °C was added a solution of 650 mg (1.3 mmol) of 6 in 10 mL MeOH. The mixture was stirred under argon for 10 min before 1.2 mL of AcOH and 80 mg (0.74 mmol) of 2-picoline borane were added at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred for 16 h before the solvent was removed in vacuo. The crude reaction mixture was then cooled to 0 °C and treated with 10% aq. HCl (10 mL) and allowed to stir at room temperature for 30 minutes. The mixture was then made alkaline using 25% aq. Na₂CO₃ (50 mL). Product was then extracted into EtOAc (3 x 50 mL) and the organics were combined and washed with H₂O and brine before drying over Na₂SO₄. Solvent was removed *in vacuo* and crude product was chromatographed (silica gel, 1:1 EtOAc/CH₂Cl₂ then 10:1 CH₂Cl₂/MeOH) to obtain ligand 7 (386 mg, 94%). Analytical data for title compound: ¹H NMR (400 MHz, MeOD) δ 8.17 (d, J = 8.6 Hz, 2H), 8.02 (d, J = 8.7 Hz, 2H), 7.87 (d, J = 12.5 Hz, 9H), 7.76 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.51 – 7.39 (m, 5H), 7.37 (d, J = 7.1 Hz, 2H), 7.26 (t, J = 7.6 Hz, 2H), 4.25 (d, J = 3.1 Hz, 4H), 3.91 – 3.72 (m, 2H), 3.15 (bs, 1H), 2.73 - 2.58 (m, 2H), 2.07 - 1.97 (m, 4H), 1.80 (d, J = 7.5 Hz, 1H); ${}^{13}C$ NMR (100) MHz, MeOD) & 162.8, 155.0, 147.4, 142.9, 138.6, 138.4, 136.3, 135.5, 133.7, 133.3, 133.0, 132.5, 131.9, 129.8, 129.3, 129.0, 126.2, 125.3, 123.5, 123.2, 120.7, 119.2, 116.0, 63.6, 63.3,



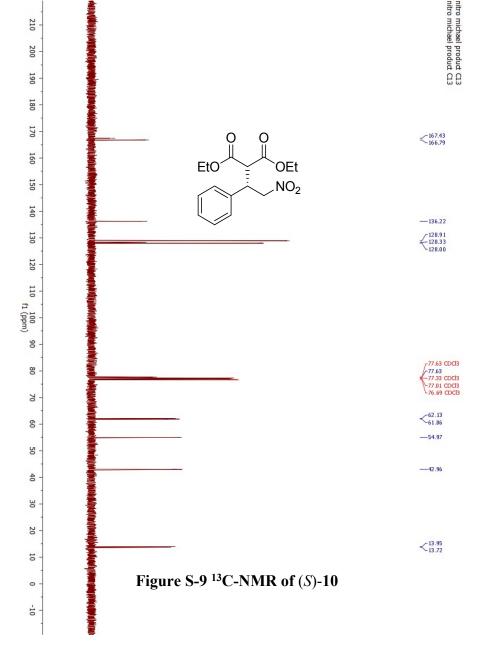
58.2, 32.8, 28.9, 15.4; HRMS (EI) calc. for $[C_{55}H_{43}F_{12}N_7O_3S]^+$ 1109.2956, found 1109.2952; IR

[Cu^{II}(7)](ClO₄)₂ • 2(H₂O) (abb. as Δ-1): A solution of ligand 7 (100 mg, 0.09 mmol) in 210 µL of MeOH was stirred at room temperature for 5 min before a solution of Cu^{II}(ClO₄)₂• 6(H₂O) (40 mg, 1.0 mmol) in 300 µL of MeOH was added. The reaction mixture was stirred at room temperature for 1 h until a blue precipitate formed. The solid was obtained by filtration and washed with diethyl ether. The product was then recrystallized twice using acetonitrile to obtain Δ-1 (101 mg, 80%) as a light blue solid. Analytical data for title compound: LRMS (EI): 1172 (M+), 622, 505 Anal. Calcd (mass%) for $C_{55}H_{47}Cl_2CuF_{12}N_7O_{13}S$: C, 46.90; H, 3.36; N, 6.96; Found C, 46.66; H, 2.99; N, 6.95.

 $[Cu^{I}(7)]PF_{6}$ (abb. as A-1): Compound 7 (197 mg, 0.18 mmol) was dissolved in 10 mL of CH₂Cl₂ and purged with N₂ before placing into a glovebox. Cu(MeCN)₄PF₆ (71 mg, 0.19 mmol) was added to the reaction mixture in the glovebox. The reaction was stirred for 30 minutes and the


solvent was removed *in vacuo* to obtain **Λ-1** (210 mg, 88%) as a yellow solid. LRMS (EI): 1172 (M+), 698, 505 : ¹H NMR (400 MHz, MeOD) δ 8.70 (d, *J* = 8.0 Hz, 1H), 8.52 (d, *J* = 8.0 Hz, 1H), 8.41 (d, *J* = 8.0 Hz, 1H), 8.36 (d, *J* = 8.0 Hz, 1H), 7.96-7.93 (m, 3H), 7.85 – 7.81 (m, 2H), 7.72-7.63 (m, 6H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.38 – 7.18 (m, 9H), 4.36 (d, *J* = 12.0 Hz, 1H), 4.0-3.99 (dd, *J* = 4.0 Hz, 1H), 3.96 (d, *J* = 4.0 Hz, 1H), 3.78-3.75 (m, 1H), 2.98-2.89 (m, 3H), 2.20 (s, 3H), 1.88-1.83 (m, 2H).

General procedure for enantioselective Michael addition of malonates to nitrostyrenes:


trans- β -Nitrostyrene (**8**) (50 mg, 0.34 mmol), diethyl malonate (**9**) (102 µL, 0.67 mmol), and acetonitrile (1 mL) were added to a scintillation vial equipped with a magnetic stir bar. Catalyst Δ -**1** (24 mg, 0.017 mmol) was added to the vial and stirred for 5 min until NEt₃ (4 µL, 0.034 mmol) was added to activate the reaction. The reaction was stirred for 24 h at room temperature at which point the solvent was removed *in vacuo*. The crude product was then chromatographed (silica gel, 15:85 EtOAc/hexane) to obtain (*S*)-**10** (58 mg, 55%). Spectral data for compounds (*S*)/(*R*)-**10a-h** matched those found in previous literature ¹.

(S)-diethyl 2-(2-nitro-1-phenylethyl)malonate ((S)-10):

0.0

Analytical data for title compound: $[\alpha]_D^{25} = +5.8$ (*c* 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ $7.29 - 7.10 \text{ (m, 5H)}, 4.88 - 4.73 \text{ (m, 2H)}, 4.21 - 4.07 \text{ (m, 3H)}, 3.92 \text{ (q, } J = 7.1 \text{ Hz, 2H)}, 3.73 \text{ (d, } J = 7.1 \text{ Hz, 2H)}, 3.73 \text{ ($ J = 9.4 Hz, 1H), 1.21 – 1.13 (m, 3H), 0.96 (td, J = 7.0, 0.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 166.7, 136.2, 128.9, 128.3, 128.0, 77.6, 62.1, 61.8, 54.9, 42.9, 13.9, 13.7. HRMS (EI) calc. for [C₁₅H₁₉N ^a fare/ethanol=97/3, $1.00 \text{ mL/min}, \lambda = 2$.4 min, 72% ee). 5.16-7.0 С റ 6.5 OEt EtO 6.0 NO_2 5.5 5.0 1.98-4.5 4.0 f1 (ppm) 2.97-1.99-1.00-3.5 3.0 2.5 2.0 1.5 1.19 1.19 1.19 1.18 1.17 1.16 1.16 1.16 1.15 0.98 0.96 0.96 0.94 0.94 3.12-I 1.0 2.95-1 Figure S-8 ¹H-NMR of (S)-10 0.5

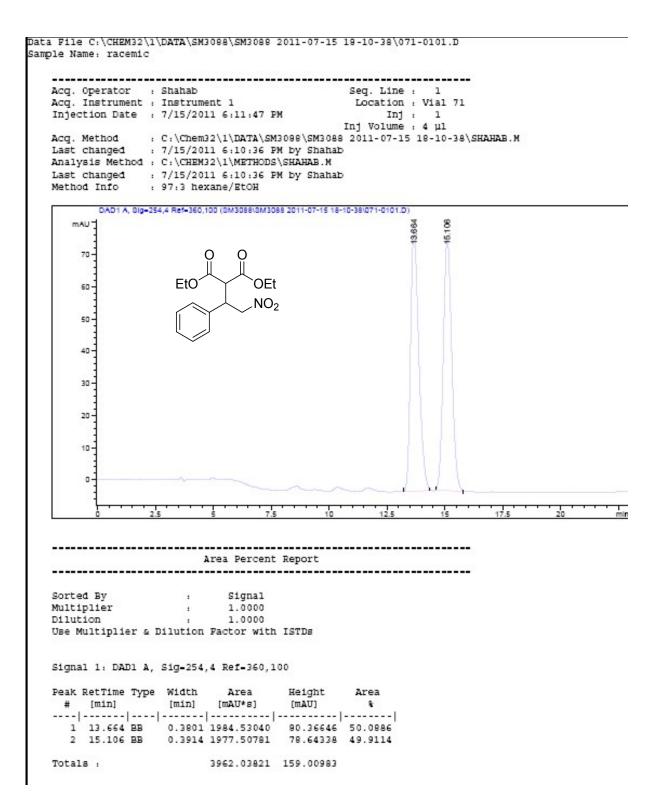
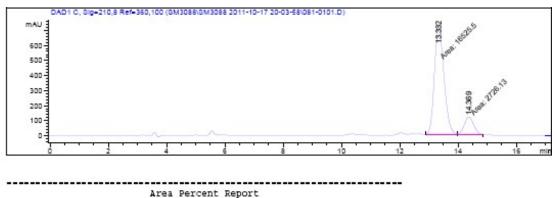
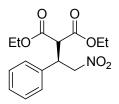



Figure S-10 HPLC trace of racemic 10

Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Use Multiplier & Dilution Factor with ISTDs


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

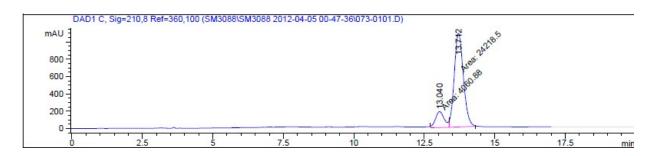
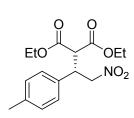
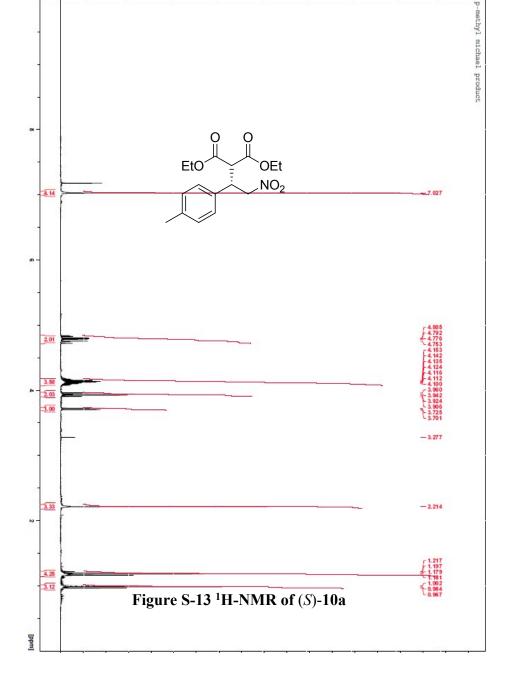
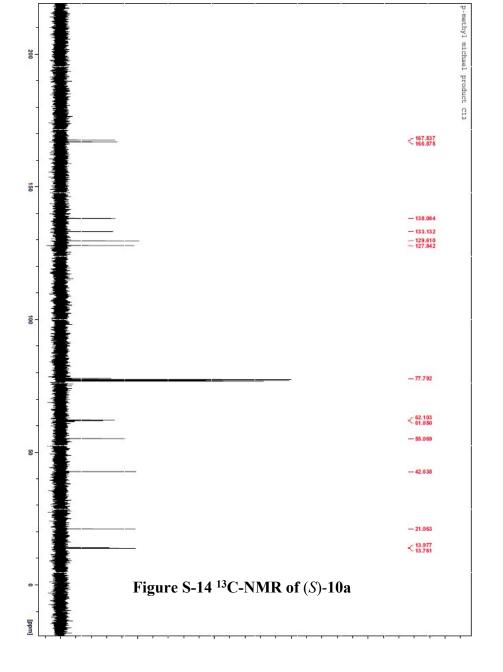

#			[min]	Area [mAU*s]	Height (mAU)	Area %
1	13.332	MF	0.3809	1.65255e4	723.15735	85.8395
2	14.369	FM	0.3818	2726.12598	118.99001	14.1605

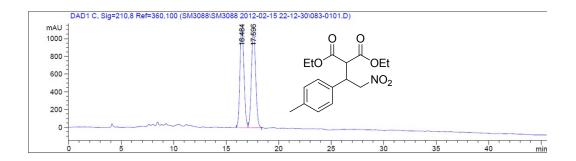
Figure S-11 HPLC trace of (S)-10

(*R*)-diethyl 2-(2-nitro-1-phenylethyl)malonate ((*R*)-10):

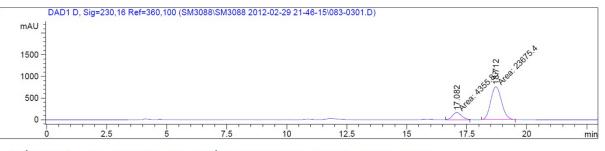

The same procedure was used as for the synthesis of (*S*)-31 except **A-1** (22 mg, 0.017 mmol) was used as the catalyst. Analytical data for title compound: (42 mg, 40%), $[\alpha]_D^{25} = -4.9$ (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.10 (m, 5H), 4.88 – 4.73 (m, 2H), 4.21 – 4.07 (m, 3H), 3.92 (q, *J* = 7.1 Hz, 2H), 3.73 (d, *J* = 9.4 Hz, 1H), 1.21 – 1.13 (m, 3H), 0.96 (td, *J* = 7.0, 0.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.43, 166.79, 136.22, 128.91, 128.33, 128.00, 77.63, 62.13, 61.86, 54.97, 42.96, 13.95, 13.72. HRMS (EI) calc. for [C₁₅H₁₉NO₆]⁺ 309.1212, found 309.1196; HPLC (Chiralcel OD, hexane/ethanol= 97/3, 1.00 mL/min, λ = 210 nm, retention times: (S) (Minor) 13.3 min, (R) (Major) 14.4 min, 70% ee).


Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.040	MF	0.3675	4060.87866	184.18996	14.3599
2	13.712	FM	0.3739	2.42185e4	1079.56470	85.6401


Figure S-12 HPLC trace of (R)-10


(S)-diethyl 2-(2-nitro-1-(p-tolyl)ethyl)malonate ((S)-10a):

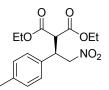
Δ-1 used as catalyst. Analytical data for title compound: (74 mg, 67%), $[α]_D^{25} = +3.8$ (*c* 0.52, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.06 – 7.02 (m, 4H), 4.79 (dd, *J* = 11.6, 5.2 Hz, 1H), 4.77 (dd, *J* = 9.2, 6.2 Hz, 1H), 4.15 – 4.10 (m, 3H), 3.94 (q, *J* = 7.2 Hz, 2H), 3.72 (d, *J* = 9.6 Hz, 1H), 2.21 (s, 3H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.00 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 166.9, 138.1, 133.1, 129.6, 127.8, 77.8, 62.1, 61.9, 55.1, 42.6, 21.1, 13.9, 13.7. HRMS (EI) calc. for $[C_{16}H_{21}NNaO_6]^+$ 346.1267, found 346.1268; HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (R) (Minor) 18.7 min, (S) (Major) 17.1 min, 70% ee).



Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Area
010
49.5339
50.4661

Figure S-15 HPLC trace of racemic 10a

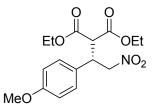


Signal 3: DAD1 D, Sig=230,16 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	17.082	MM	0.4381	4355.83057	165.71893	15.5392
2	18.712	MM	0.5206	2.36754e4	757.89734	84.4608
Total	s:			2.80312e4	923.61627	

Figure S-16 HPLC trace of (S)-10a

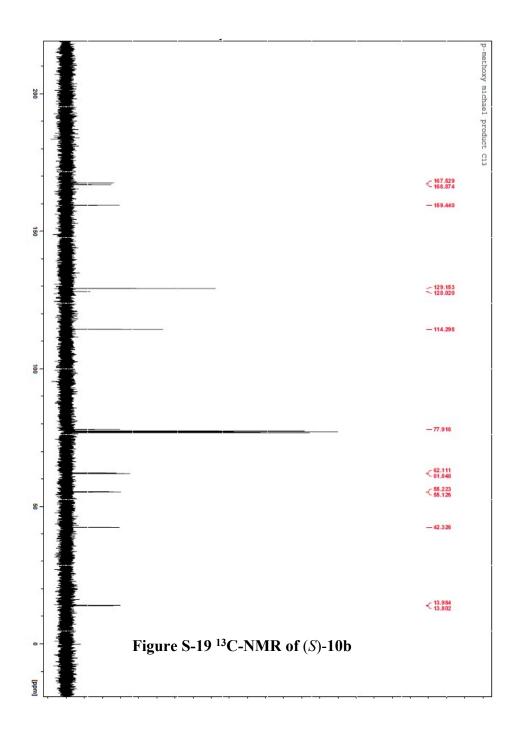
(*R*)-diethyl 2-(2-nitro-1-(p-tolyl)ethyl)malonate ((*R*)-10a):

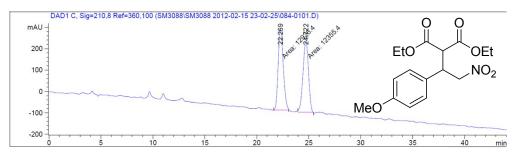


A-1 used as catalyst. Analytical data for title compound: (61 mg, 55%), $[\alpha]_D^{25} = -2.3$ (*c* 1.06, CHCl₃); HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (R) (Major) 14.9 min, (S) (Minor) 16.7 min, 67% ee).

Signal 3: DAD1 D,	Sig=230	,16 Ref=360,	,100	
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
 1 14.921 VV	0 4160	2.09741e4	784.34772	83.2229
2 16.694 VV		4228.22021		
Totals :		2.52023e4	929.43517	

Figure S-17 HPLC trace of (R)-10a


(S)-diethyl 2-(1-(4-methoxyphenyl)-2-nitroethyl)malonate ((S)-10b):



SI-25

Δ-1 used as catalyst. Analytical data for title compound: (53 mg, 46%), $[α]_D^{25} = +2.0$ (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 4.79 (dd, *J* = 12.8, 8.0 Hz, 1H), 4.72 (dd, 1H, *J* = 12.4, 9.2 Hz), 4.16 – 4.08 (m, 3H), 3.94 (q, *J* = 6.8 Hz, 2H), 3.71-3.68 (m, 4H), 1.18 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 166.9, 159.4, 129.2, 128.0, 114.3, 77.9, 62.1, 61.8, 55.2, 55.1, 42.3, 13.9, 13.8. HRMS (EI) calc. for $[C_{16}H_{21}NNaO_7]^+$ 362.1216, found 362.1225; HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (R) (Minor) 26.0 min, (S)

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak RetTime Tyj # [min]	e Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1 22.269 MM	0.5646	1.29264e4	381.57730	51.1293
2 24.722 MM	0.6199	1.23554e4	332.19260	48.8707
Totals :		2.52818e4	713.76990	

Figure S-20 HPLC trace of racemic 10b

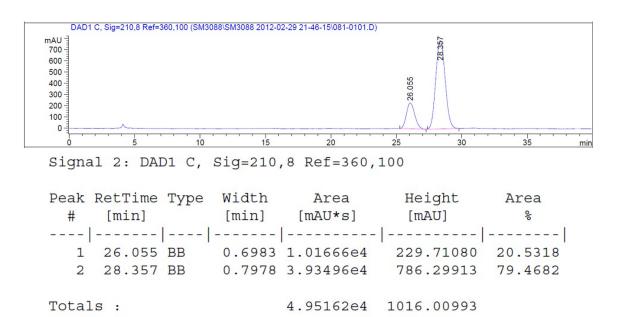
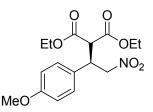
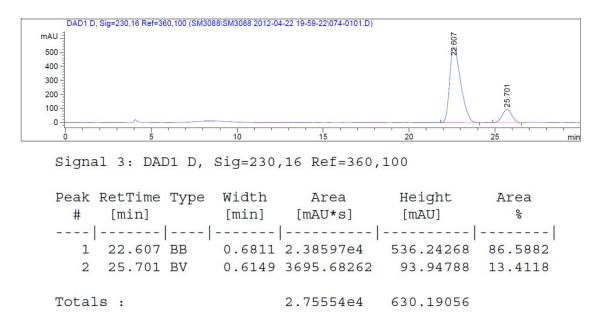
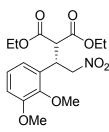
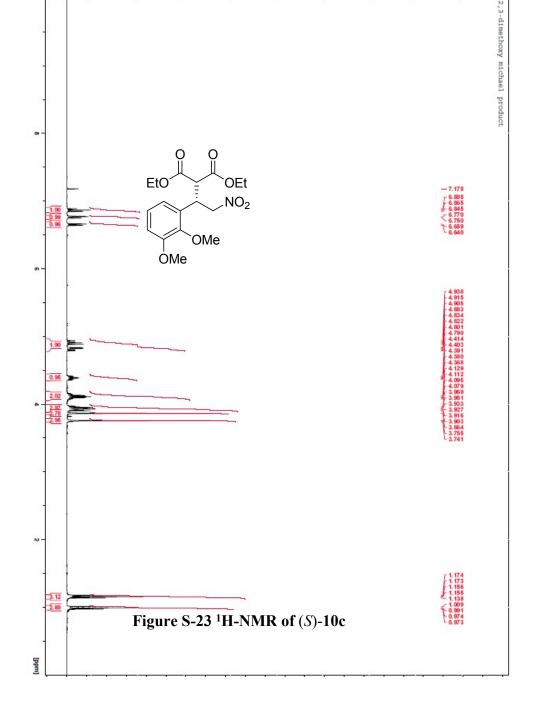
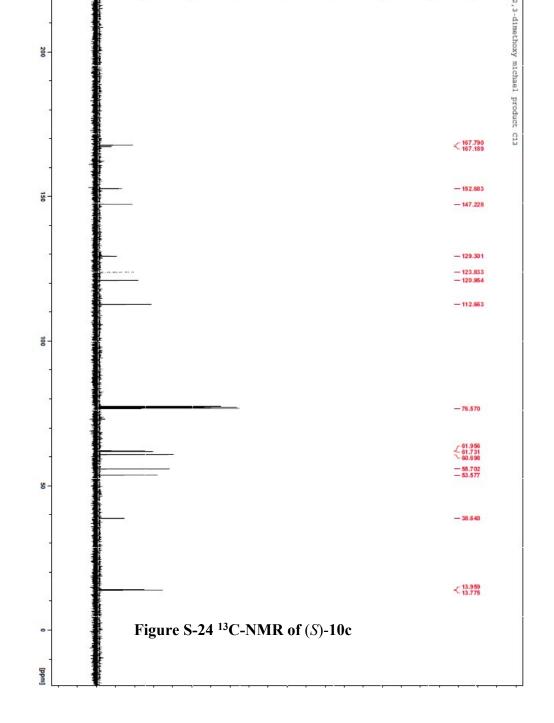



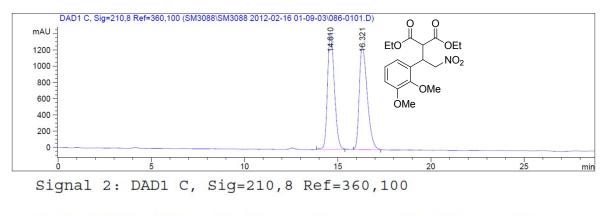
Figure S-21 HPLC trace of (S)-10b

(*R*)-diethyl 2-(1-(4-methoxyphenyl)-2-nitroethyl)malonate ((*R*)-10b):

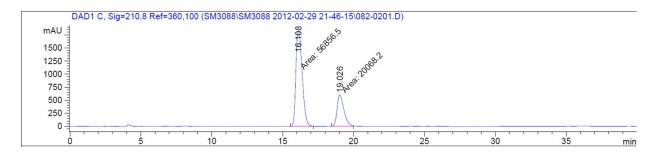
A-1 used as catalyst. Analytical data for title compound: (23 mg, 20%), $[α]_D^{25} = -5.5$ (*c* 0.4, CHCl₃); HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (R) (Major) 22.6 min, (S) (Minor) 25.7 min, 73% ee).


Figure S-22 HPLC trace of (*R*)-10b

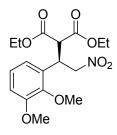

(S)-diethyl 2-(1-(2,3-dimethoxyphenyl)-2-nitroethyl)malonate ((S)-10c):

Δ-1 used as catalyst. Analytical data for title compound: (121 mg, 97%), $[α]_D^{25} = +4.9$ (*c* 0.85, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.87 (t, *J* = 8.0 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 7.6 Hz, 1H), 4.91 (dd, *J* = 13.2, 9.8 Hz, 1H), 4.83 (dd, 1H, *J* = 13.2, 4.2 Hz), 4.41 – 4.36 (m, 3H), 4.12 - 4.08 (m, 2H), 3.97 - 3.90 (m, 3H), 3.86 (s, 3H), 3.74 (s, 3H). 1.15 (t, *J* = 7.6 Hz, 3H), 0.97 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.2, 152.7, 129.3, 123.8, 120.9, 112.7, 76.6, 61.9, 61.7, 60.7, 55.7, 53.6, 38.6, 13.9, 13.8. HRMS (EI) calc. for $[C_{17}H_{24}NO_8]^+$ 370.1502, found 370.1530; HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ= 210 nm, retention times: (S) (Major) 16.1 min, (R) (Minor) 19.0 min, 48% ee).



Peak Ret	Time Type	Width	Area	Height	Area
# [n	in]	[min]	[mAU*s]	[mAU]	010
1 14	.610 BB	0.4046	3.69644e4	1434.53784	49.4978
2 16	.321 BB	0.4629	3.77144e4	1261.07422	50.5022
Totals :			7.46788e4	2695.61206	

Figure S-25 HPLC trace of racemic 10c



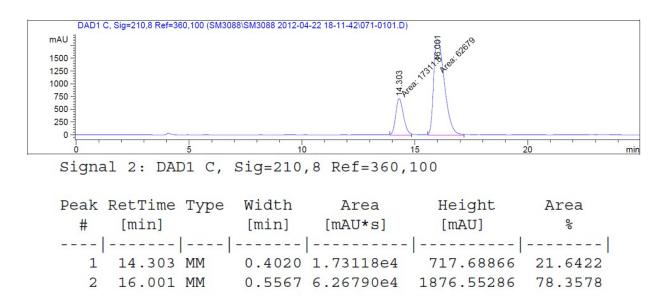
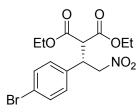
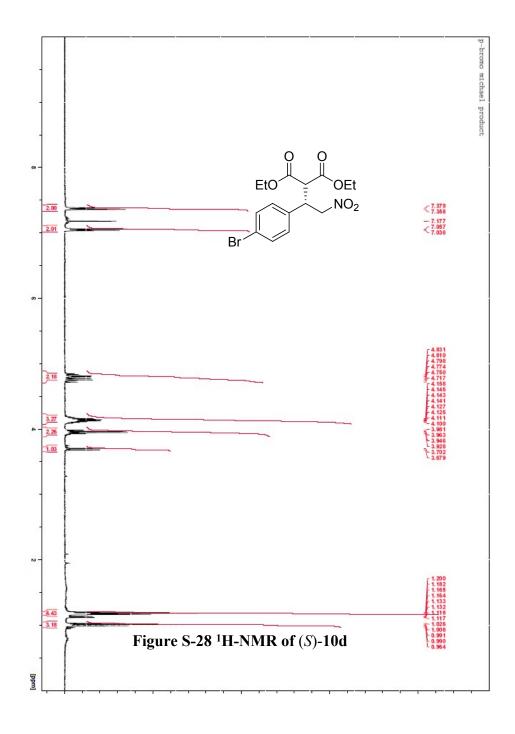
Signal 2: DAD1 C, Sig=210,8 Ref=360,100

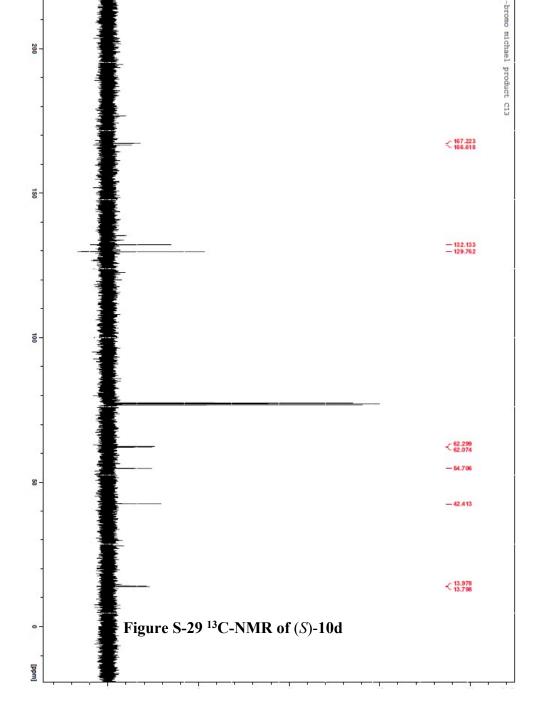
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	16.108	MM	0.5160	5.68565e4	1836.35291	73.9119
2	19.026	MM	0.5556	2.00682e4	602.04913	26.0881

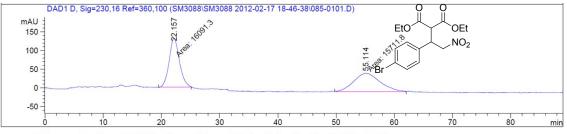
Figure S-26 HPLC trace of (S)-10c(R)-diethyl 2-(1-(2,3-dimethoxyphenyl)-2-

nitroethyl)malonate ((R)-10c):

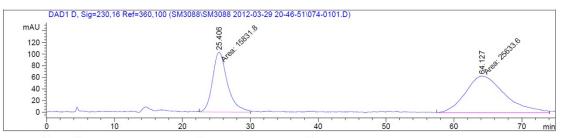
Λ-1 used as catalyst. Analytical data for title compound: (122 mg, 98%), $[\alpha]_D^{25} = -10.9$ (*c* 0.87, CHCl₃); HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (S) (Minor) 14.3 min, (R) (Major) 16.0 min, 57% ee).


Figure S-27 HPLC trace of (*R*)-10c


(S)-diethyl 2-(1-(4-bromophenyl)-2-nitroethyl)malonate ((S)-10d):

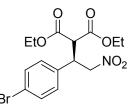
Δ-1 used as catalyst. Analytical data for title compound: (59 mg, 45%), $[α]_D^{25} = +1.3$ (*c* 0.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.04 (d, *J* = 8.4 Hz, 2H), 4.82 (dd, *J* = 13.2, 8.4 Hz, 1H), 4.78 (dd, *J* = 13.2, 9.4 Hz, 1H), 4.16 - 4.10 (m, 3H), 3.98 - 3.93 (m, 2H), 3.69 (d, *J* = 9.2 Hz, 1H). 1.17 (t, *J* = 7.2 Hz, 3H), 0.99 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 166.6, 132.1, 129.7, 123.8, 62.3, 62.1, 54.7, 42.4, 13.9, 13.8. HRMS (EI) calc. for [C₁₅H₁₈BrNNaO₆]⁺ 410.0215, found 410.0219; HPLC (Chiralcel AD-H, hexane/isopropanol= 90/10, 0.8 mL/min, λ= 210 nm, retention times: (R) (Minor) 25.4 min, (S) (Major) 64.1 min, 24% ee).



Signal 3: DAD1 D, Sig=230,16 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	22.157	MM	2.0478	1.60913e4	130.96414	50.5967
2	55.114	MM	5.2701	1.57118e4	49.68838	49.4033
Total	s :			3.18030e4	180.65252	

Figure S-30 HPLC trace of racemic 10d



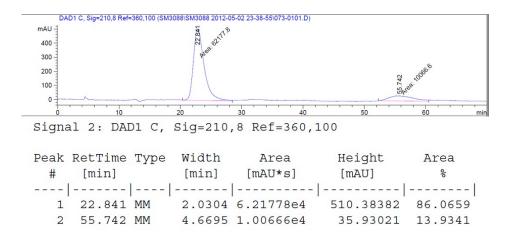
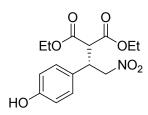
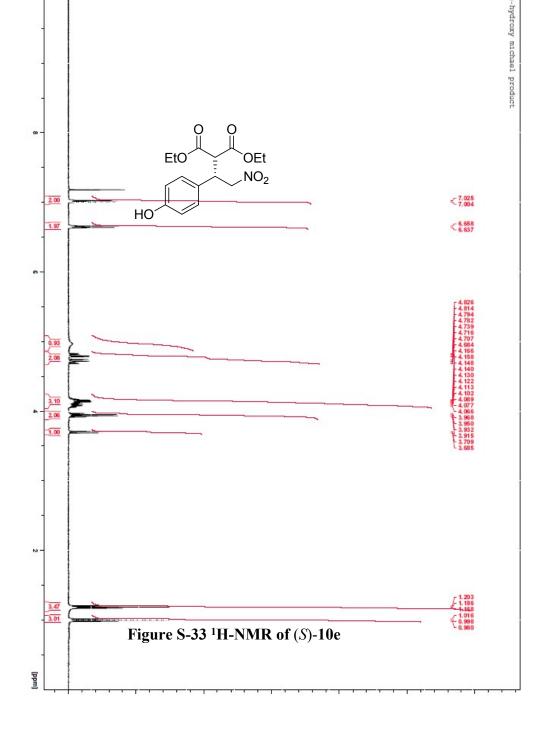
Signal 3: DAD1 D, Sig=230,16 Ref=360,100

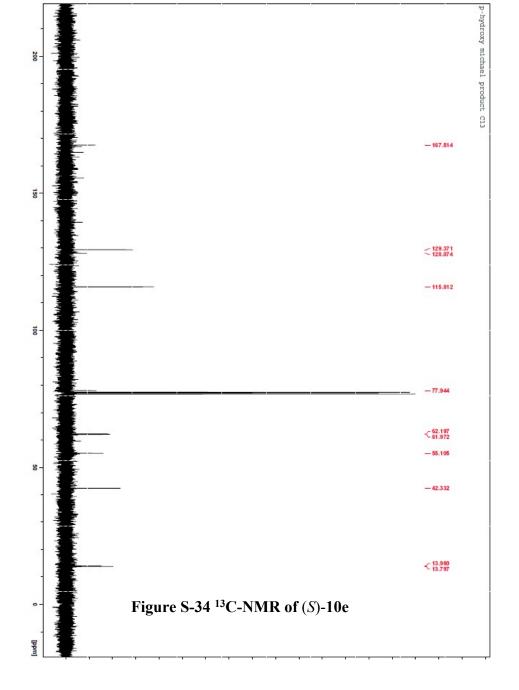
ight Area AU] %
.05199 38.1807
.19254 61.8193
.24453

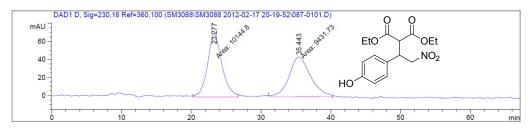
Figure S-31 HPLC trace of (S)-10d

(*R*)-diethyl 2-(1-(4-bromophenyl)-2-nitroethyl)malonate ((*R*)-10d):

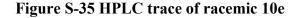
Λ-1 used as catalyst. Analytical data for title compound: (63 mg, 48%), $[\alpha]_D^{25} = -6.5$ (*c* 0.82, CHCl₃); HPLC (Chiralcel AD-H, hexane/isopropanol= 90/10, 0.8 mL/min, λ = 210 nm, retention times : (R) (Major) 22.8 min, (S) (Minor) 55.7 min, 72% ee).


Figure S-32 HPLC trace of (R)-10d


(S)-diethyl 2-(1-(4-hydroxyphenyl)-2-nitroethyl)malonate ((S)-10e):

Δ-1 used as catalyst. Analytical data for title compound: (60 mg, 51%), $[α]_D^{25} = +5.1$ (*c* 0.86, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, *J* = 8.4 Hz, 2H), 6.64 (d, *J* = 8.4 Hz, 2H), 4.95 (bs, 1H), 4.81 (dd, *J* = 12.8, 4.8 Hz, 1H), 4.78 (dd, *J* = 17.2, 4.8 Hz, 1H), 4.16 - 4.09 (m, 3H), 3.95 (q, *J* = 7.2Hz, 2H), 3.69 (d, *J* = 9.6 Hz, 1H). 1.19 (t, *J* = 6.8 Hz, 3H), 0.99 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 166.4, 129.4, 128.1, 115.8, 77.9, 62.2, 61.9, 55.1, 42.3, 13.9, 13.8. HRMS (EI) calc. for $[C_{17}H_{24}NO_8]^+$ 348.1059, found 348.1087; HPLC (Chiralcel AD-H, hexane/isopropanol= 90/10, 0.8 mL/min, λ = 210 nm, retention times: (R) (Minor) 26.5 min, (S) (Major) 39.9 min, 40% ee).



Signal 3: DAD1 D, Sig=230,16 Ref=360,100

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
# [min]	-		-	
1 23.277 MM 2 35.443 MM		1.01448e4 9431.73145	70.24554 44.28881	51.8213
Totals :		1.95766e4		1011.01

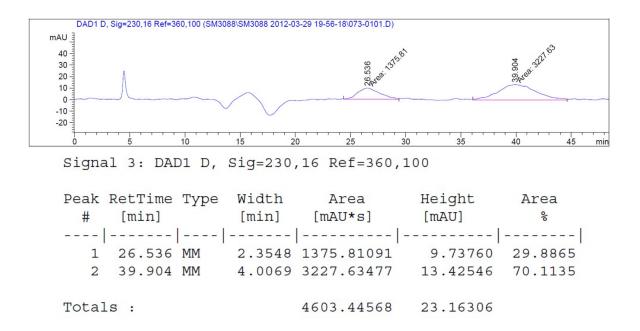
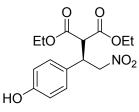
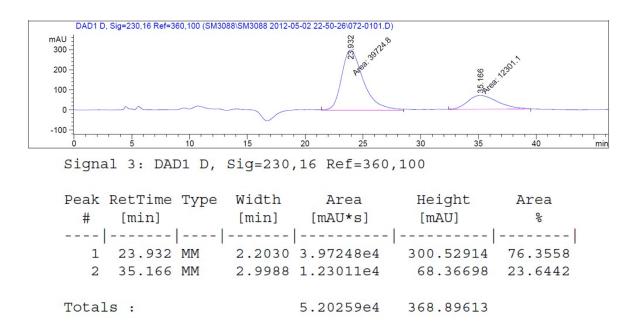
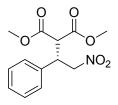
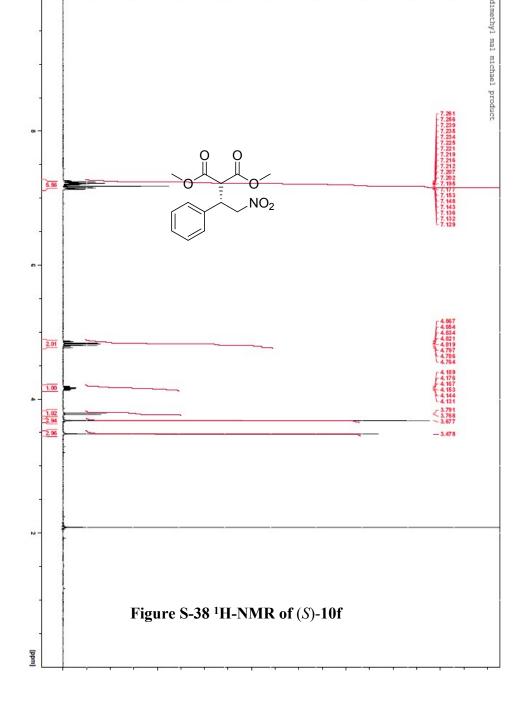



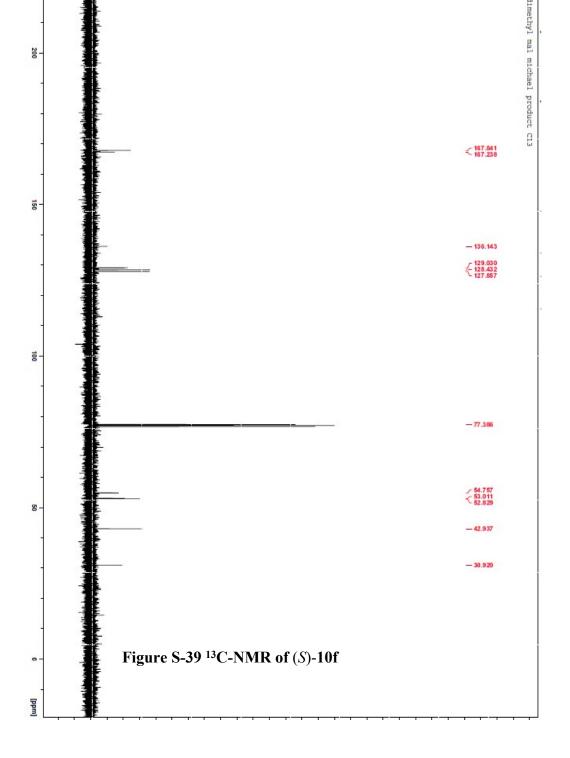
Figure S-36 HPLC trace of (S)-10e

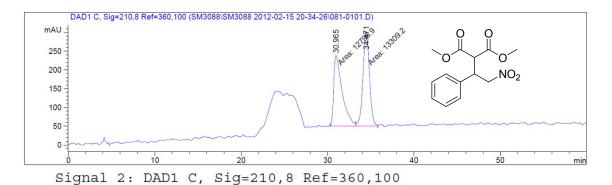
(*R*)-diethyl 2-(1-(4-hydroxyphenyl)-2-nitroethyl)malonate ((*R*)-10e):

Λ-1 used as catalyst. Analytical data for title compound: (52 mg, 44%), $[\alpha]_D^{25} = -1.7$ (*c* 0.84,

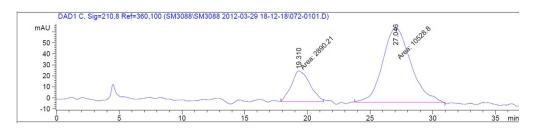
CHCl₃); HPLC (Chiralcel AD-H, hexane/isopropanol= 90/10, 0.8 mL/min, λ = 210 nm, retention times : (R) (Major) 23.9 min, (S) (Minor) 35.2 min, 53% ee).


Figure S-37 HPLC trace of (*R*)-10e

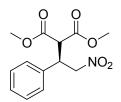

(S)-dimethyl 2-(2-nitro-1-phenylethyl)malonate ((S)-10f):

Δ-1 used as catalyst. Analytical data for title compound: (34 mg, 35%), $[α]_D^{25} = +6.8$ (*c* 0.68, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.13 (m, 5H), 4.83 (dd, *J* = 13.2, 5.2 Hz, 1H), 4.79 (dd, *J* = 13.2, 8.8 Hz, 1H), 4.19 - 4.13 (m, 1H), 3.78 (d, *J* = 9.2Hz, 1H), 3.67 (s, 3H). 3.48 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 167.2, 136.1, 129.0, 128.4, 127.9, 77.4, 54.8, 53.0, 52.8, 42.9, 30.9. HRMS (EI) calc. for [C₁₃H₁₅NNaO₆]⁺ 304.0797, found 304.0794; HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (R) (Minor) 19.3 min, (S) (Major) 27.0 min, 57% ee).



Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	30.965	MM	1.1315	1.27969e4	188.49965	49.0187
2	34.471	MM	0.8766	1.33092e4	253.03561	50.9813
Totals :				2.61061e4	441.53526	

Figure S-40 HPLC trace of racemic 10f



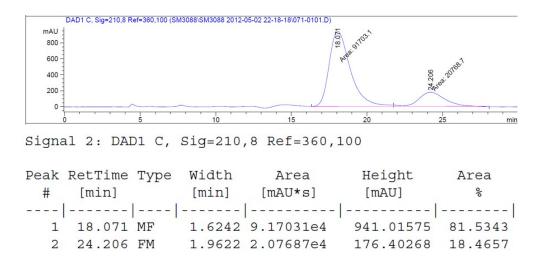
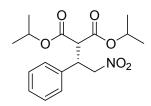
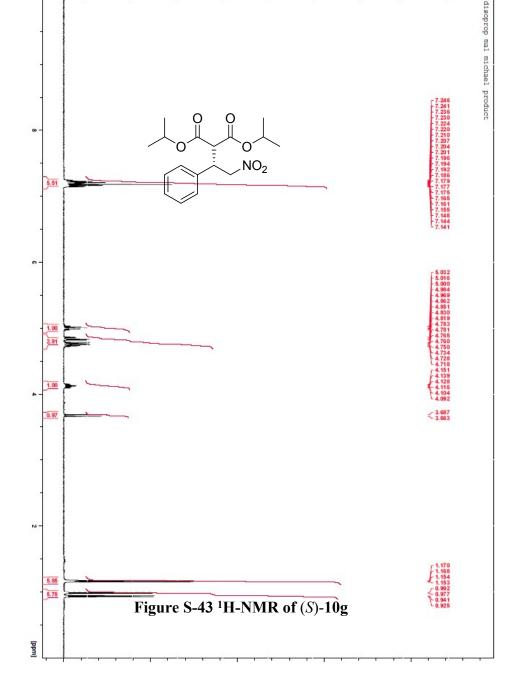

```
Signal 2: DAD1 C, Sig=210,8 Ref=360,100
```

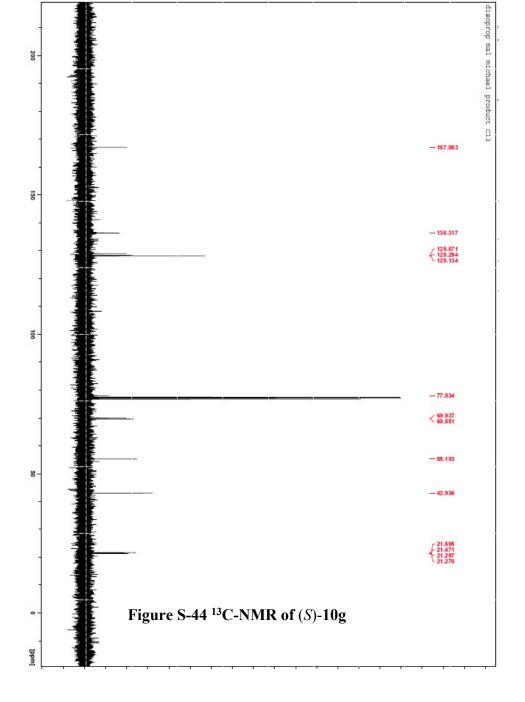
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	19.310	MM	1.7193	2890.21338	28.01811	21.5381
2	27.046	MM	2.5972	1.05288e4	67.56586	78.4619

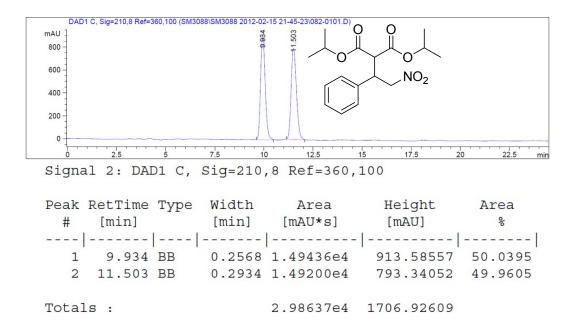
Figure S-41 HPLC trace of (S)-10f

(*R*)-dimethyl 2-(2-nitro-1-phenylethyl)malonate ((*R*)-10f):

A-1 used as catalyst. Analytical data for title compound: (73 mg, 77%), $[α]_D^{25} = -4.9$ (*c* 0.54, CHCl₃); HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (R) (Major) 18.1 min, (S) (Minor) 24.2 min, 64% ee).


Figure S-42 HPLC trace of (R)-10f


(S)-diisopropyl 2-(2-nitro-1-phenylethyl)malonate ((S)-10g):

Δ-1 used as catalyst. Analytical data for title compound: (34 mg, 30%), $[α]_D^{25} = +6.8$ (*c* 0.68, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.14 (m, 5H), 5.02 (m, 1H), 4.86-4.72 (m, 3H), 4.15 - 4.09 (m, 1H), 3.67 (d, *J* = 9.6 Hz, 1H), 1.16 (d, *J* = 6.3 Hz, 3H), 1.15 (d, *J* = 6.3 Hz, 3H), 0.97 (d, *J* = 6.3 Hz, 3H), 0.94 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 166.3, 136.3, 128.9, 128.3, 128.1, 77.9, 69.9, 69.6, 55.2, 42.9, 21.6, 21.5, 21.3, 21.2. HRMS (EI) calc. for [C₁₃H₁₅NNaO₆]⁺ 360.1423, found 360.1432; HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (R) (Minor) 9.8 min, (S) (Major) 11.1 min, 73% ee).

Figure S-45 HPLC trace of racemic 10g

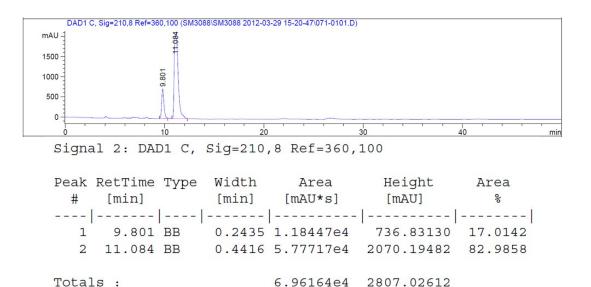
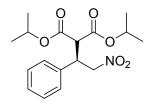
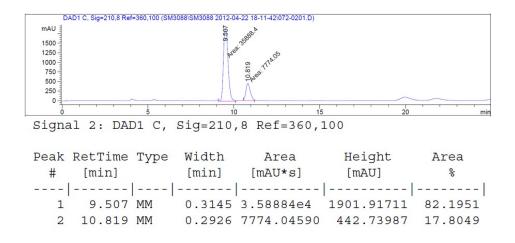
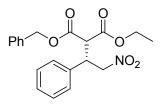
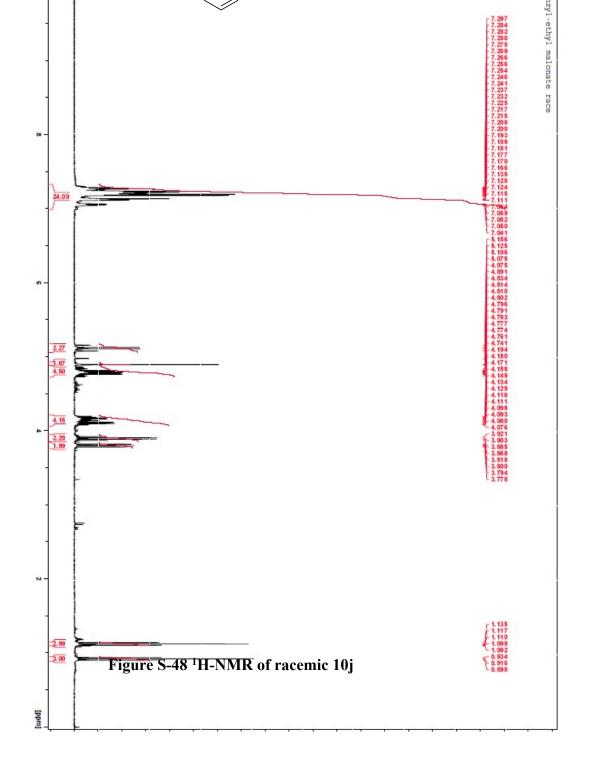
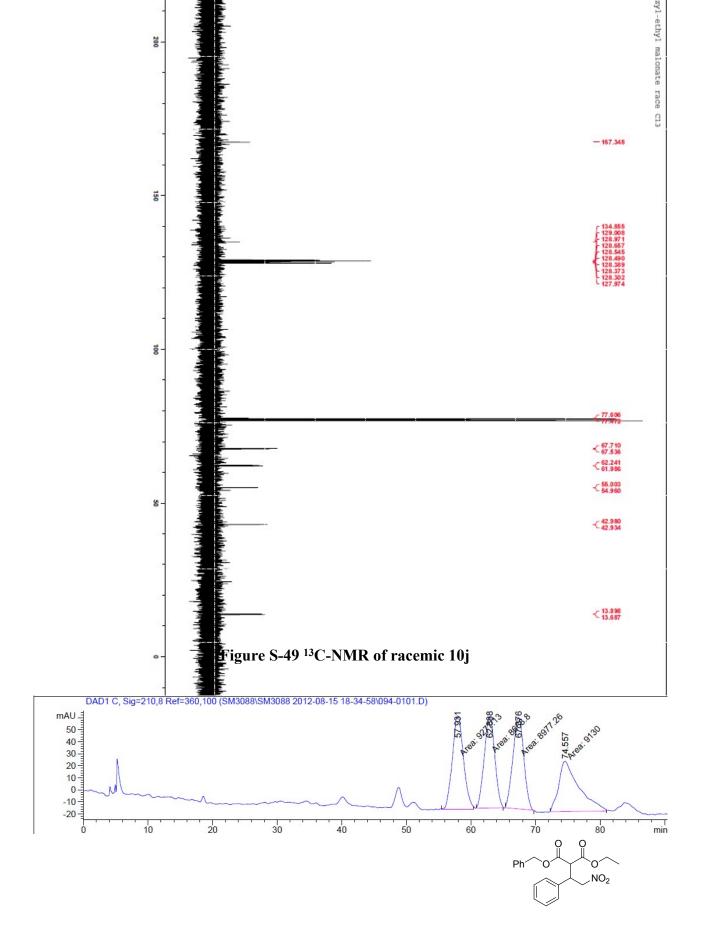



Figure S-46 HPLC trace of (S)-10g

(*R*)-diisopropyl 2-(2-nitro-1-phenylethyl)malonate ((*R*)-10g):

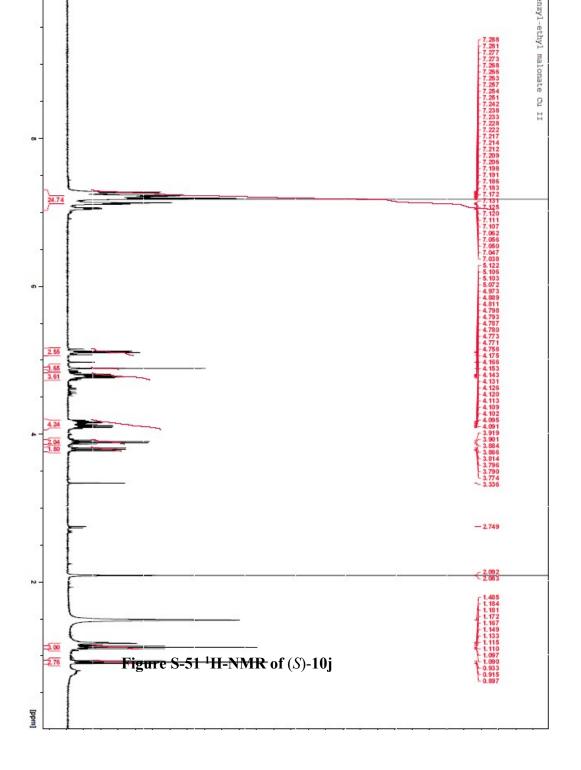
A-1 used as catalyst. Analytical data for title compound: (34 mg, 30%), $[\alpha]_D^{25} = -3.8$ (*c* 0.68, CHCl₃); HPLC (Chiralcel OD, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: (R) (Major) 9.5 min, (S) (Minor) 10.8 min, 65% ee).


Figure S-47 HPLC trace of (*R*)-10g

1-benzyl 3-ethyl 2-((S)-2-nitro-1-phenylethyl)malonate ((S)-10j):

Δ-1 used as catalyst and (*S*)-**10**j was obtained as a mixture of inseparable diastereomers. Analytical data for title compound: (26 mg, 41%, dr~50:50), $[α]_D^{25} = +0.73$ (*c* 0.52, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.04 (m, 25H), 5.10 (dd, *J* = 7.3, 5.2 Hz, 2.5H), 4.81 (s, 1.7H), 4.79 - 4.75 (m, 3.6H), 4.17-4.09 (m, 4.2H), 3.89 (q, *J* = 7.2 Hz, 2H), 3.80 (dd, *J* = 9.6, 7.2 Hz, 1.8H), 1.12 (t, *J* = 7.2 Hz, 3H), 0.92 (d, *J* = 7.2 Hz, 2.7H), ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 166.1, 134.9, 129.0, 128.3, 128.9, 128.6, 128.5, 128.4, 128.37, 128.30, 127.9, 77.6, 77.4, 67.7, 67.5, 62.2, 61.9, 55.0, 54.9, 43.0, 42.9, 13.8, 13.6. HRMS (EI) calc. for [C₂₀H₂₁NNaO₆]⁺ 394.1267, found 394.1279; HPLC (Chiralcel OD-H, hexane/isopropanol= 99/1, 1.0 mL/min, λ = 210 nm, retention times: First diastereomer: major enantiomer t_r = 50.2 min, minor enantiomer t_r = 59.3 min, major enantiomer t_r = 69.8 min; 30% ee.



Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] 00 1 57.931 MM 1.9961 9277.13281 77.46063 25.7354 2 62.888 MM 1.8950 8663.80176 76.20068 24.0339 Peak RetTime Type Width Area Height Area [min] [min] [mAU*s] # [mAU] 00 367.376 MM1.9694 8977.2587975.9737624.9035474.557 MM3.6380 9130.0009841.8269925.3272 3.60482e4 271.46207 Totals :

Figure S-50 HPLC trace of racemic 10j

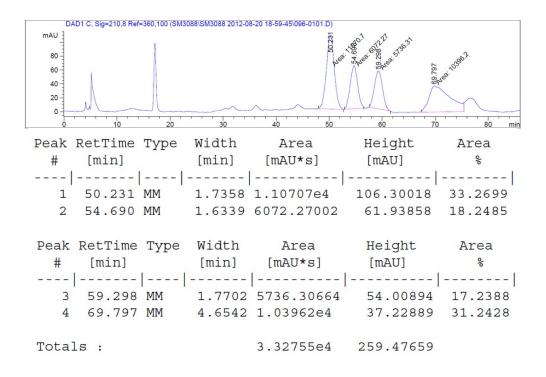
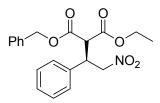
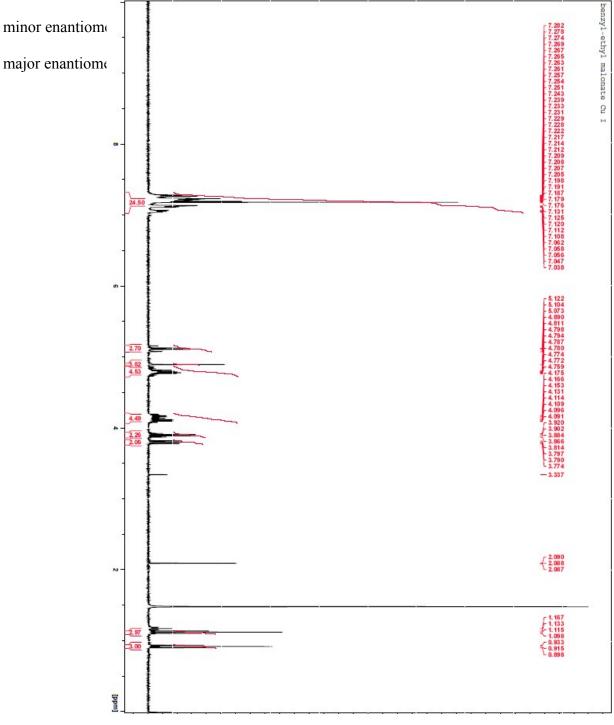
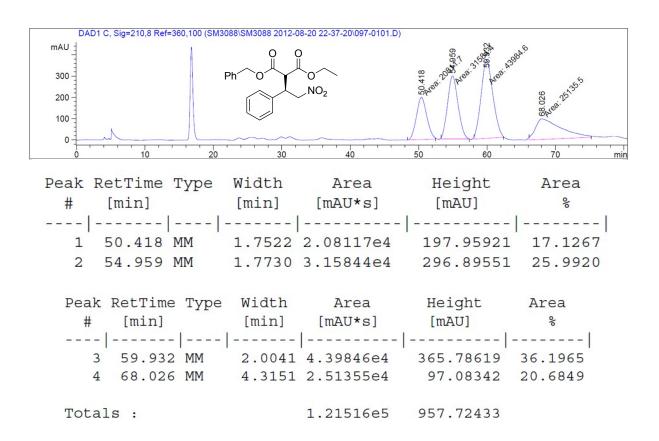
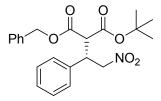
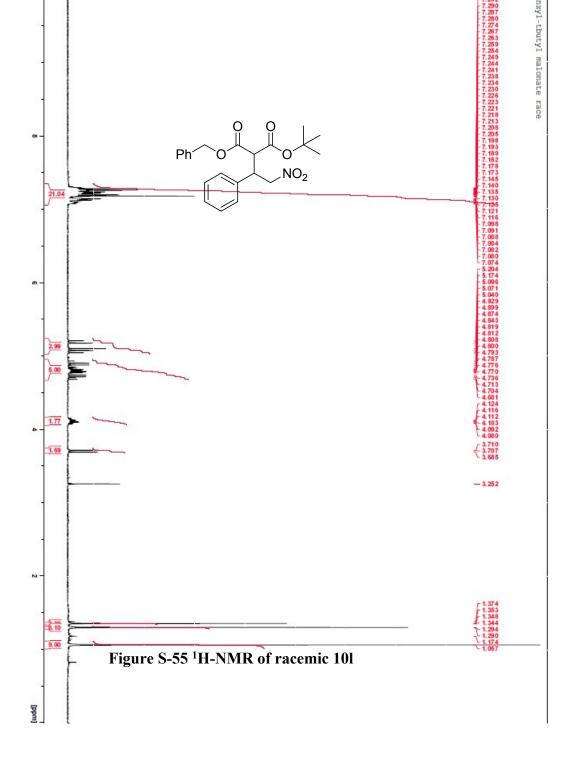
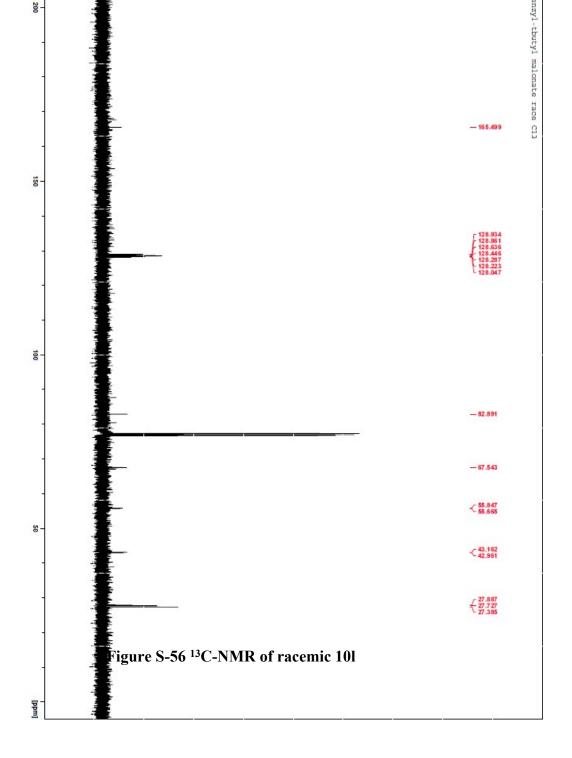




Figure S-52 HPLC trace of (S)-10j

1-benzyl 3-ethyl 2-((R)-2-nitro-1-phenylethyl)malonate ((R)-10j):

Λ-1 used as catalyst, (24 mg, 40%, dr~50:50), $[\alpha]_D^{25} = -3.7$ (*c* 0.50, CHCl₃); HPLC (Chiralcel OD-H, hexane/isopropanol= 99/1, 1.0 mL/min, λ = 210 nm, retention times: First diastereomer: minor enantiom


Figure S-54 HPLC trace of (R)-10j

1-benzyl 3-tert-butyl 2-((S)-2-nitro-1-phenylethyl)malonate ((S)-10l):

Δ-1 used as catalyst and (*S*)-10l was obtained as a mixture of inseparable diastereomers. Analytical data for title compound: (34 mg, 51%, dr~67:32), $[α]_D^{25} = -2.2$ (*c* 0.66, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.07 (m, 15H), 5.08 (dd, *J* = 52.8, 12.0 Hz, 2.2H), 4.90-4.68 (m, 4.2H), 4.12-4.07 (m, 1.6H), 3.69 (d, *J* = 10.0 Hz, 1.5H), 1.29 (s, 4.2H), 1.13 (s, 9H), ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.4, 165.5, 136.2, 134.97, 134.91, 128.9, 128.8, 128.6, 128.5, 128.44, 128.43, 128.3, 128.2, 128.0, 82.9, 78.0, 67.5, 67.4, 55.8, 55.6, 43.1, 42.9, 27.7, 27.4. HRMS (EI) calc. for [C₂₂H₂₅NNaO₆]⁺ 422.1580, found 422.1584; HPLC (Chiralcel AD-H, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times: First diastereomer: minor enantiomer t_r = 35.8 min, major enantiomer t_r = 65.6 min; 37% ee; Second diastereomer: minor

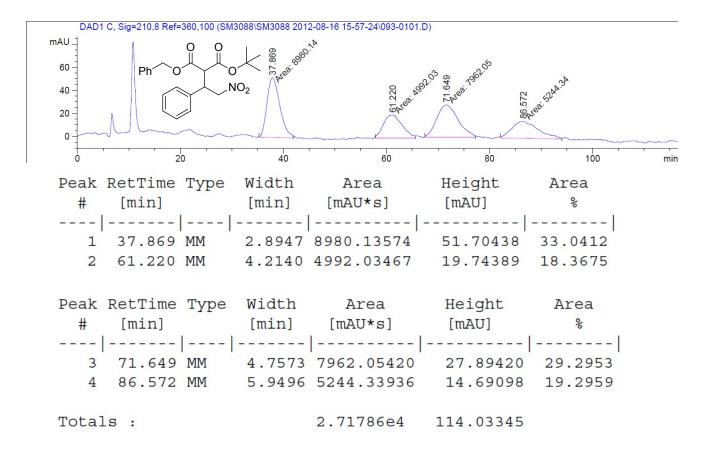
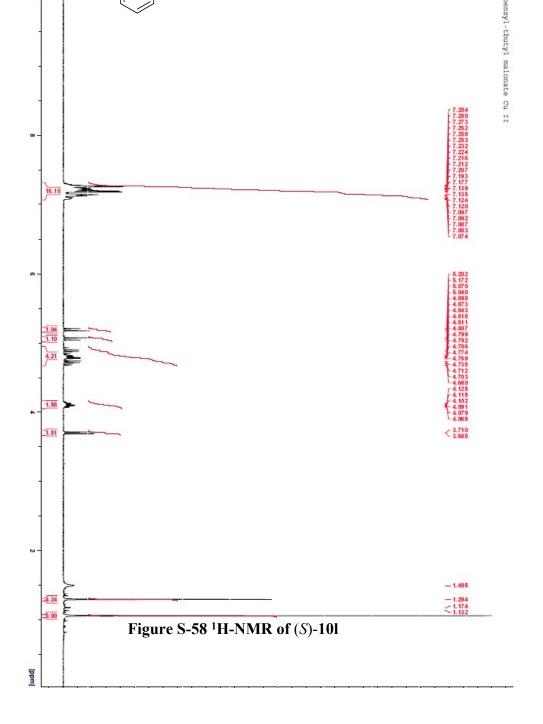
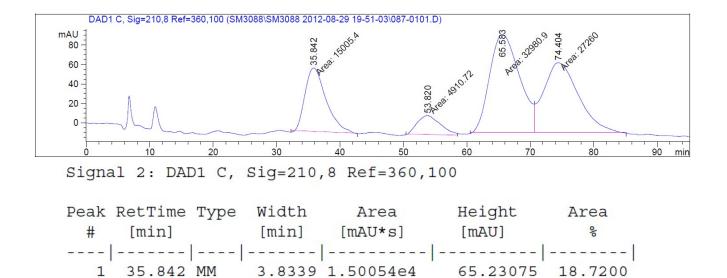
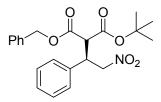
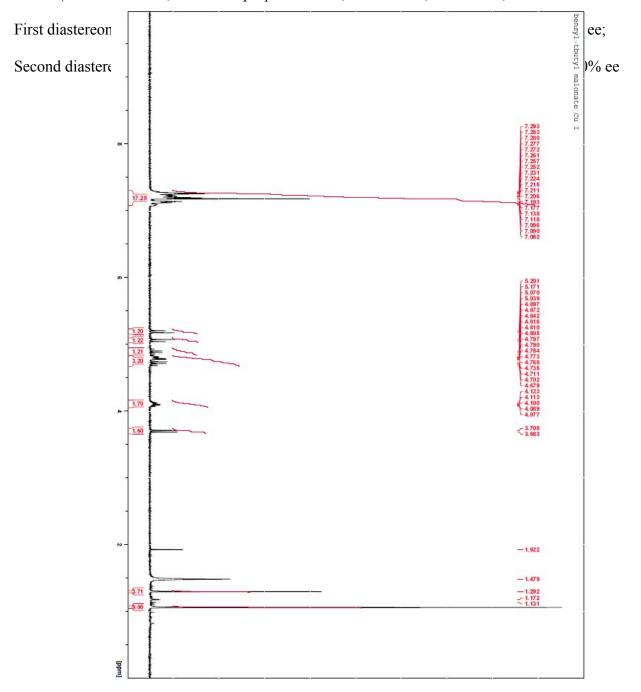




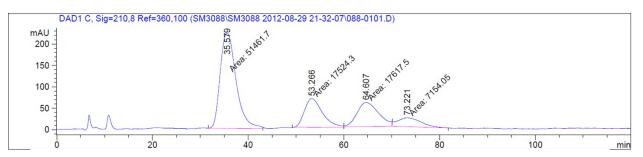
Figure S-57 HPLC trace of racemic 10l



2	53.820	MM	4.2226	4910.72363	19.38260	6.1264
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 3 4	65.583 74.404	MF	5.4531	3.29809e4 2.72600e4	100.80265 71.48313	41.1454 34.0083
Total	ls :			8.01571e4	256.89913	

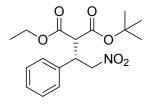
Figure S-59 HPLC trace of (S)-101


1-benzyl 3-tert-butyl 2-((*R*)-2-nitro-1-phenylethyl)malonate ((*R*)-10l):

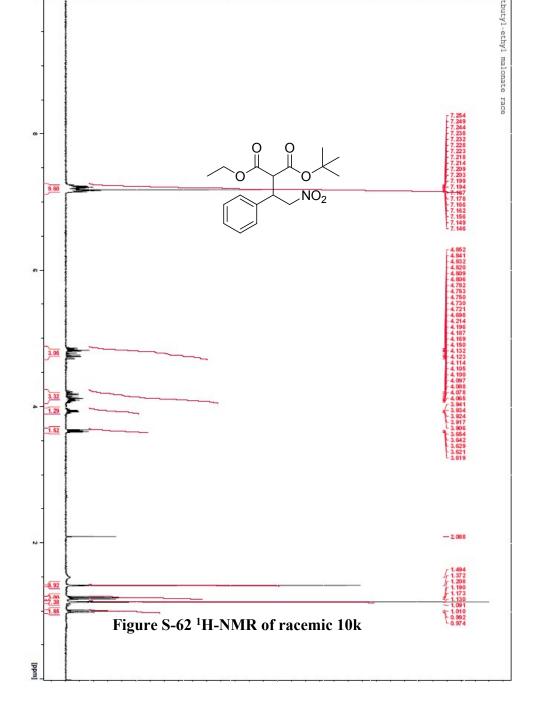

A-1 used as catalyst and (R)-10l was obtained as a mixture of inseparable diastereomers.

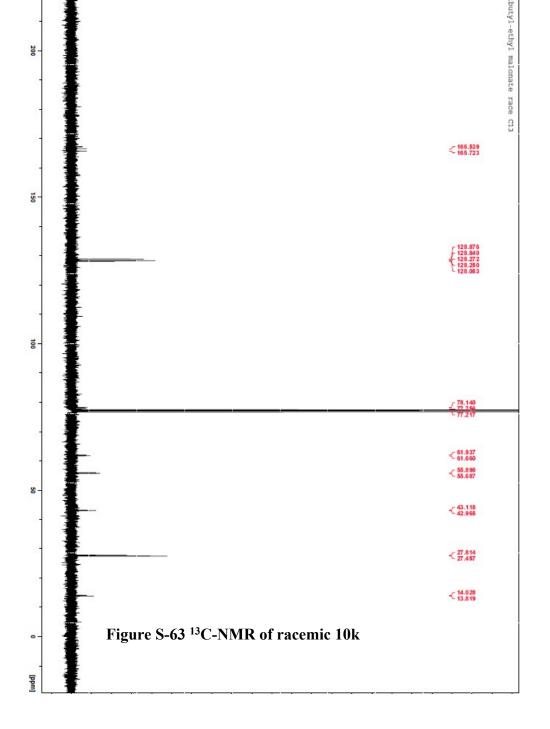
Analytical data for title compound: (28 mg, 42%, dr~50:50), $[\alpha]_D^{25} = -4.2$ (*c* 0.57, CHCl₃);

HPLC (Chiralcel AD-H, hexane/isopropanol= 95/5, 0.8 mL/min, λ = 210 nm, retention times:



Signal 2: DAD1 C, Sig=210,8 Ref=360,100


Peak RetTime # [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	-				
1 35.579	MM	3.8414	5.14617e4	223.27827	54.8880
2 53.266	MM	4.3565	1.75243e4	67.04218	18.6911
Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	00
3 64.607	MM	5.2308	1.76175e4	56.13378	18.7905
4 73.221	MM	5.6322	7154.05322	21.17004	7.6304
Totals :			9.37575e4	367.62428	


Figure S-61 HPLC trace of (*R*)-101

1-tert-butyl 3-ethyl 2-((S)-2-nitro-1-phenylethyl)malonate ((S)-10k):

Δ-1 used as catalyst and (*S*)-**10k** was obtained as a mixture of inseparable diastereomers. Analytical data for title compound: (26 mg, 46%, dr~50:50), $[α]_D^{25} = -2.6$ (*c* 0.54, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.14 (m, 9H), 4.85-4.70 (m, 3H), 4.21-4.07 (m, 3.3H), 3.94-3.91 (m, 1.3H), 3.62 (m, 1.5H), 1.49 (s, 4.9H), 1.19 (t, *J* = 10.0 Hz, 3H), 1.13 (s, 7.4H), 0.99 (t, *J* = 10.0 Hz, 3H), ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 165.7, 165.5, 128.87, 128.84, 128.3, 128.2, 128.1, 78.1, 77.7, 77.2, 61.9, 61.7.0, 55.9, 55.7, 43.1, 42.9, 27.8, 27.5, 14.0, 13.8, HRMS (EI) calc. for [C₁₇H₂₃NNaO₆]⁺ 360.1423, found 360.1434; HPLC (Chiralcel AD-H, hexane/isopropanol= 93/7, 0.8 mL/min, λ= 210 nm, retention times: First diastereomer: minor enantiomer t_r = 21.5 min, major enantiomer t_r = 33.9 min; 77% ee; Second diastereomer: minor

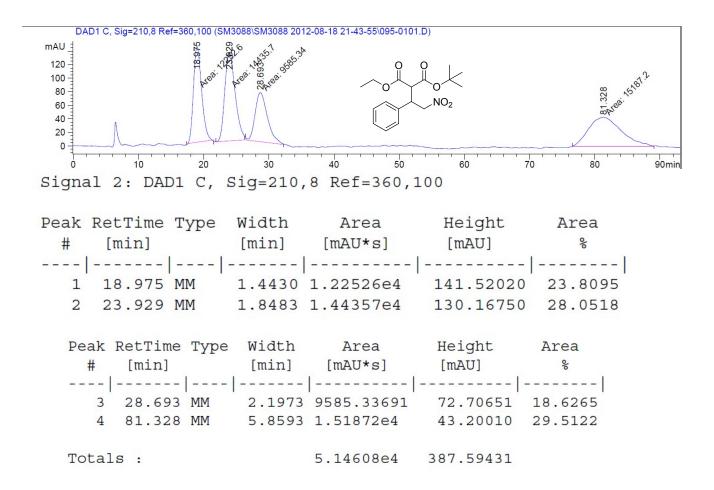
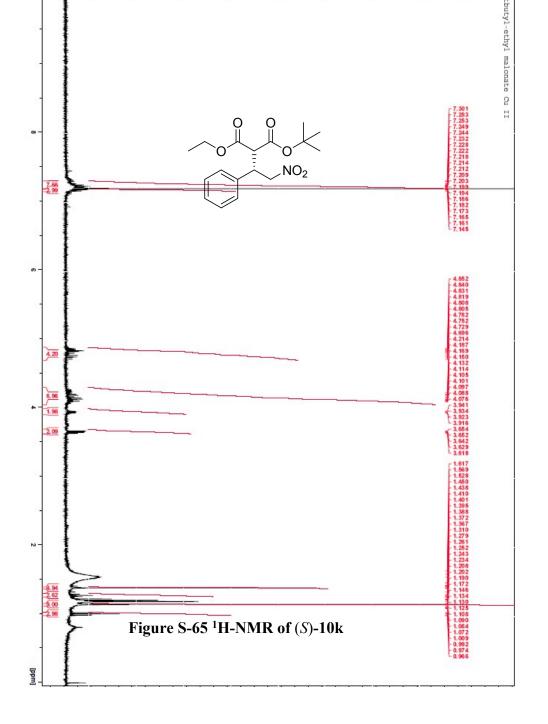
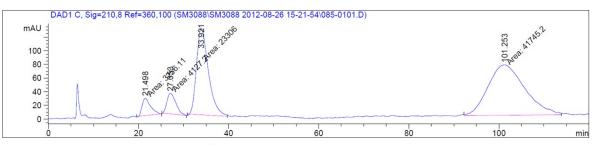
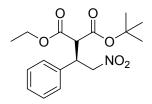




Figure S-64 HPLC trace of racemic 10k



Signal 2: DAD1 C, Sig=210,8 Ref=360,100

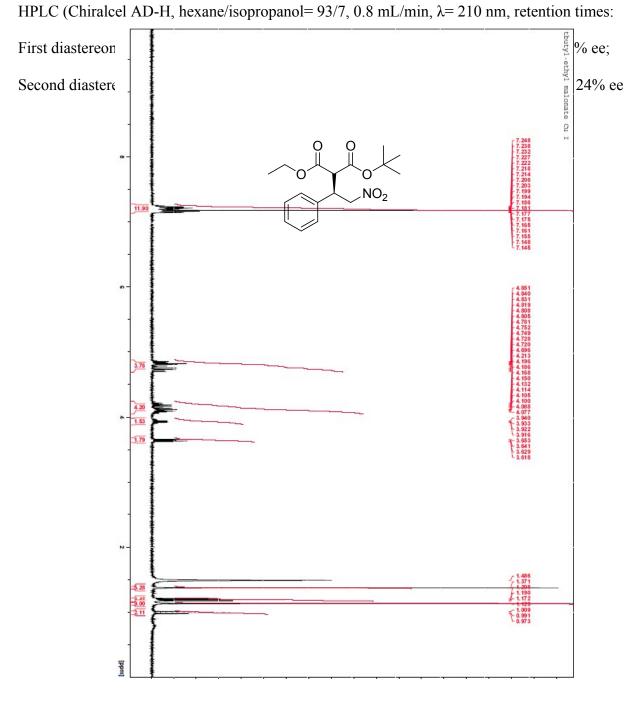

Peak RetTime Type # [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1 21.498 MM	2.1493	3256.11475	25.24889	4.4953
2 27.053 MM	2.2883	4127.20117	30.06008	5.6978
Peak RetTime Type # [min] 	Width [min]	Area [mAU*s]	Height [mAU]	Area %
3 33.921 MM 4 101.253 MM	3.0690	2.33060e4 4.17452e4	126.56712 73.61555	32.1752 57.6317
Totals :		7.24345e4	255.49164	

Figure S-66 HPLC trace of (S)-10k

1-tert-butyl 3-ethyl 2-((*R*)-2-nitro-1-phenylethyl)malonate ((*R*)-10k):

A-1 used as catalyst and (*R*)-10k was obtained as a mixture of inseparable diastereomers. Analytical data for title compound: (24 mg, 39%, dr~50:50), $[\alpha]_D^{25} = -4.7$ (*c* 0.44, CHCl₃);

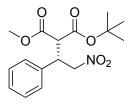
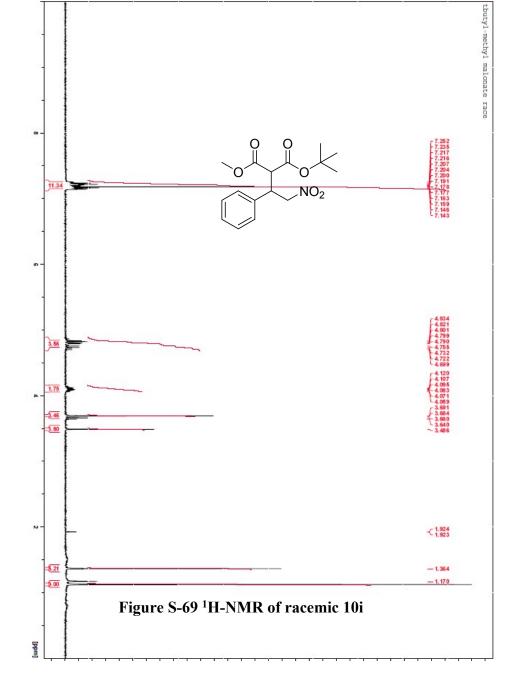
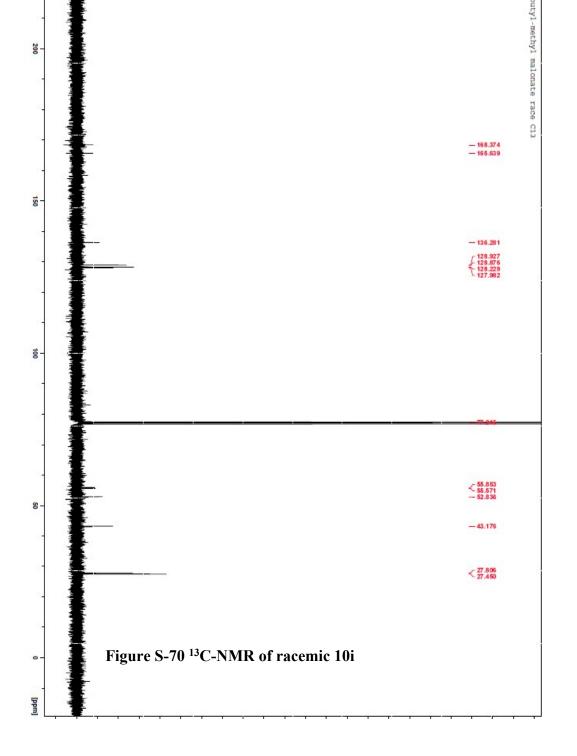


Figure S-67 ¹H-NMR of (*R*)-10k




Figure S-68 HPLC trace of (*R*)-10k

1-tert-butyl 3-methyl 2-((S)-2-nitro-1-phenylethyl)malonate ((S)-10i):

Δ-1 used as catalyst and (*S*)-**10i** was obtained as a mixture of inseparable diastereomers. Analytical data for title compound: (28 mg, 51%, dr~70:30), $[α]_D^{25} = -1.4$ (*c* 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.14 (m, 11H), 4.83-4.67 (m, 3.6H), 4.12-4.06 (m, 1.8H), 3.69-3.64 (m, 3.5H), 3.49 (m, 1.8H), 1.36 (s, 5.2H), 1.17 (s, 9H), ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 165.6, 136.3, 128.9, 128.8, 128.2, 127.9, 77.2, 55.8, 55.5, 52.8, 43.2, 27.8, 27.4, HRMS (EI) calc. for $[C_{17}H_{23}NNaO_6]^+$ 346.1267, found 360.1243; HPLC (Chiralcel OJ-H, hexane/isopropanol= 95/5, 1.0 mL/min, λ = 210 nm, retention times: First diastereomer: major enantiomer t_r = 19.5 min, minor enantiomer t_r = 29.1 min; 73% ee

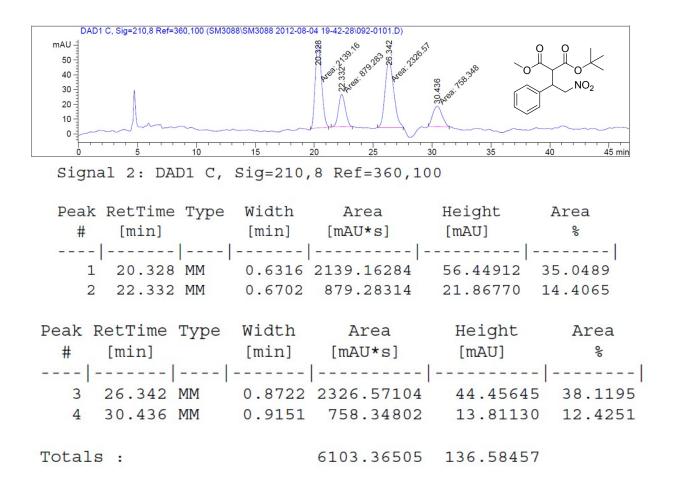
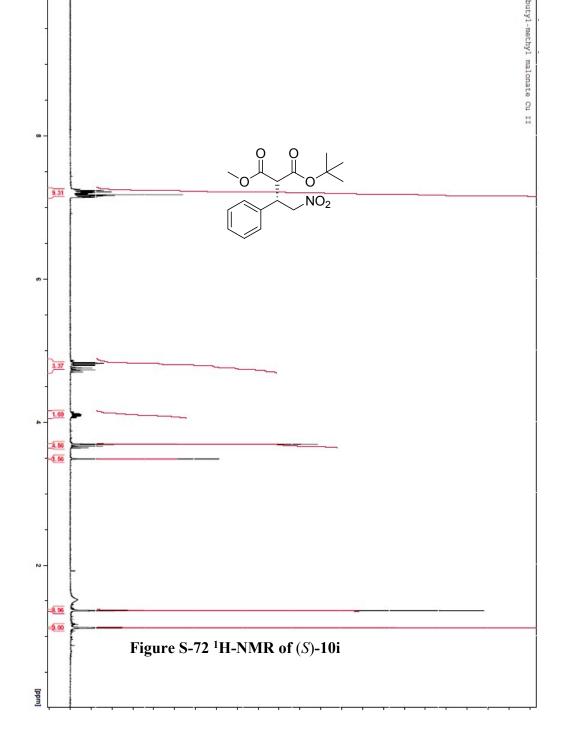
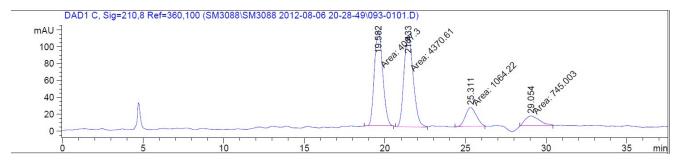
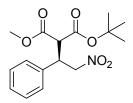




Figure S-71 HPLC trace of racemic 10i



Signal 2: DAD1 C, Sig=210,8 Ref=360,100

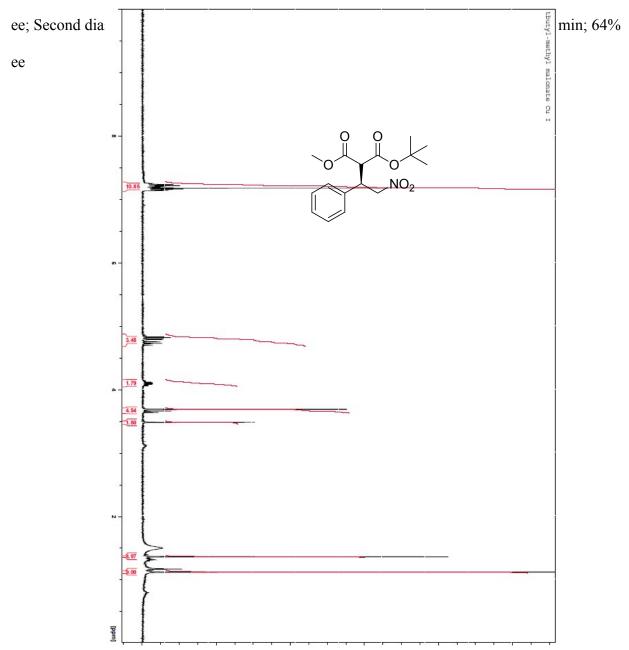
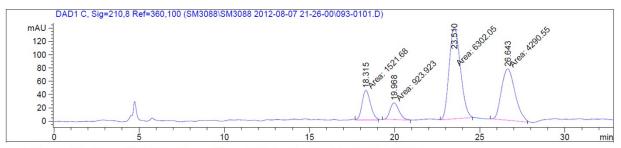

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	010
1 19.582 MM	0.6000	4087.29663	113.53278	39.8095
2 21.433 MM	0.6694	4370.60645	108.82658	42.5689
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	010
3 25.311 MM	0.7858	1064.22400	22.57256	10.3654
4 29.054 MM	1.0619	745.00299	11.69344	7.2562
Totals :		1.02671e4	256.62536	

Figure S-73 HPLC trace of (S)-10i


1-tert-butyl 3-methyl 2-((*R*)-2-nitro-1-phenylethyl)malonate ((*R*)-10i):

A-1 used as catalyst and (*R*)-10i was obtained as a mixture of inseparable diastereomers. Analytical data for title compound: (25 mg, 40%, dr~68:32), $[\alpha]_D^{25} = -4.9$ (*c* 0.44, CHCl₃, 72% *ee* (S)); HPLC (Chiralcel OJ-H, hexane/isopropanol= 95/5, 1.0 mL/min, λ = 210 nm, retention times: First diastereomer: minor enantiomer t_r = 18.3 min, major enantiomer t_r = 23.5 min; 64%

Figure S-74 ¹H-NMR of (*R*)-10i

Signal 2: DAD1 C, Sig=210,8 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	0/0
1 18.315 MM	0.5720	1521.68201	44.33887	11.6709
2 19.968 MM	0.6121	923.92297	25.15882	7.0863
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	010
3 23.510 MM	0.7662	6302.05176	137.08719	48.3353
4 26.643 MM	0.9234	4290.54590	77.44334	32.9075

Totals :

1.30382e4 284.02822

Figure S-75 HPLC trace of (*R*)-10i

A-1 by reduction of A-1: Catalyst A-1 (24 mg, 0.017 mmol) was dissolved in 1 mL of CH_2Cl_2 . NEt₃ (4 µL, 0.034 mmol) and L-ascorbic acid (6 mg, 0.034 mmol) were then added to the mixture and stirred for 1 h at room temperature. A color change from light blue to yellow was observed after addition of ascorbic acid. The solvent was removed *in vacuo*, and the solid was suspended in degassed H₂O (2 mL) and filtered. The solid residue was washed with H₂O and hexane before drying under reduced pressure. The yellow solid was then used as catalyst.

III. Method for in situ Catalysis

Ligand 7 (18 mg, 0.018 mmol), $Cu^{II}(ClO_4)_2 \bullet 6(H_2O)$ (6.4 mg, 0.018 mmol), 10 mg of 4 Å MS, and 1 mL of CH₃CN were added to a scintillation vial and stirred for 1 h before nitrostyrene (**8**) (50 mg, 0.34 mmol), diethyl malonate (**9**) (102 µL, 0.67 mmol), and NEt₃ (4 µL, 0.034 mmol) were added to the vial. The reaction was stirred at room temperature for 1 h and solvent was removed. Crude product was purified using silica column chromatography (90/10 hexane/ethyl acetate) to obtain (*S*)-**10** (66 mg, 63%) in 72% ee.

For *in situ* formation of Λ -1, Cu(MeCN)₄PF₆ was used as the copper salt

IV. Crystallographic information for Δ -1

Single Crystal Structure Determination Experimental Description

A green block-like crystal with the size of $0.30 \times 0.34 \times 0.50$ mm³ was selected for geometry and intensity data collection with a Bruker SMART APEXII CCD area detector on a D8 goniometer at 100 K. The temperature during the data collection was controlled with an Oxford Cryosystems Series 700+ instrument. Preliminary lattice parameters and orientation matrices were obtained from three sets of frames. Data were collected using graphite-monochromated and 0.5 mm-MonoCap-collimated Mo-K_a radiation ($\lambda = 0.71073$ Å) with the ω scan method.⁽²⁾ Data were processed with the INTEGRATE program of the APEX2 software⁽²⁾ for reduction and cell refinement. Multi-scan absorption corrections were applied by using the SCALE program for the area detector. The structure was solved by the direct method and refined on F² (SHELXTL).⁽³⁾ Non-hydrogen atoms, except a highly disordered 3,5-bis(trifluoromethyl)benzene group, were refined with anisotropic displacement parameters, and hydrogen atoms on carbons and nitrogens were placed in idealized positions (C-H = 0.95-1.00 Å and N-H = 0.88 Å) and included as riding with $U_{\rm ISO}(\rm H) = 1.2$ or 1.5 $U_{\rm eq}(\rm non-H)$.

Identification code	13jca3h		
Chemical formula	$C_{113,30}H_{88,95}Cl_2Cu_2F_{24}N_{15,65}O_{14}S_2$		
Formula weight	2611.73		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal size	0.300 x 0.340 x 0.500 mm		
Crystal habit	green block		
Crystal system	trigonal		
Space group	P 32 2 1		
Unit cell dimensions	a = 29.930(6) Å	$\alpha = 90^{\circ}$	
	b = 29.930(6) Å	$\beta = 90^{\circ}$	
	c = 28.878(6) Å	$\gamma = 120^{\circ}$	
Volume	22403.(8) Å ³		
Z	6		
Density (calculated)	1.161 g/cm ³		
Absorption coefficient	0.432 mm ⁻¹		
F(000)	8353		

Table 1. Sample and crystal data for Δ -1.

Table 2. Data collection and structure refinement for Δ -1.

Diffractometer	Bruker APEX-II CCD		
Radiation source	sealed tube, $MoK\alpha$		
Theta range for data collection	1.36 to 23.00°		
Index ranges	-32<=h<=32, -32<	=k<=32, -31<=l<=31	
Reflections collected	163141		
Independent reflections	20779 [R(int) = 0.0863]		
Absorption correction	multi-scan		
Max. and min. transmission	0.8813 and 0.8129		
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (Sheldrick, 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-97 (Sheldrick, 2008)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	20779 / 305 / 1393		
Goodness-of-fit on F ²	1.005		
Final R indices	15401 data; I>2σ(I)	R1 = 0.0782, wR2 = 0.2086	
	all data	R1 = 0.0974, wR2 = 0.2228	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.1611P) ²] where P=(F_o^2 +2 F_c^2)/3		
Absolute structure parameter	0.0(1)		
Largest diff. peak and hole	0.661 and -0.481 eÅ ⁻³		
R.M.S. deviation from mean	0.086 eÅ ⁻³		

V. References

(1) Evans, D. A.; Mito, S.; Seidel, D. Journal of the American Chemical Society 2007, 129, 11583.

(2) APEX2 (version 2012.10). *Program for Bruker CCD X-ray Diffractometer Control*, Bruker AXS Inc., Madison, WI, 2012.

(3) G. M. Sheldrick, SHELXTL, version 6.14. *Program for solution and refinement of crystal structures*, Universität Göttingen, Germany, 2009.