Supprementary Information

Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

Youmei Bao, Naoya Kumagai,* and Masakatsu Shibasaki*

Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan

mshibasa@bikaken.or.jp, nkumagai@bikaken.or.jp

1. General	S2
2. Instrumentation	S2
3. Materials	S2
4. General Procedure	S2
4.1. Synthesis of additive 8 .	S2
4.2. Synthesis of additive 9 .	S 3
4.3. Direct catalytic asymmetric aldol reaction (Table 1 and 2).	S3-10
4.3.1. Characterization of <i>syn</i> -aldol products.	
4.3.2. Crossover experiments.	
4.4. Reaction with Chiral Aldehyde (Table 3 and 4).	S10-15
4.4.1. Synthesis of (<i>S</i>)– 2k .	
4.4.2. Experimental procedure.	
4.4.3. Determination of the absolute configuration.	
4.4.4. Control experiment.	
5. Calculated Structure of Aldol Adducts	S15-22
6. NMR Spectra of New Compounds	S23-70

1. General

The catalytic asymmetric aldol reaction was performed in a flame-dried 20 mL glass test tubes with a 3-way glass stopcock under Ar atmosphere unless otherwise noted. Air- and moisture-sensitive liquids were transferred via a gas-tight syringe and a stainless-steel needle. All work-up and purification procedures were carried out with reagent-grade solvents under ambient atmosphere.

2. Instrumentation

Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. NMR was recorded on JEOL ECS-400. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and referenced to residual protium in the NMR solvent (CDCl₃: δ 7.24 ppm). For ¹³C NMR chemical shifts are reported in the scale relative to NMR solvent (CDCl₃: δ 77.0 ppm) as an internal reference. NMR data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, dd: doublet of doublets, t: triplet, q: quartet, m: multiplet, br: broad signal), coupling constant (Hz), and integration. Optical rotation was measured using a 2 mL cell with a 1.0 dm path length on a JASCO polarimeter P-1030. High resolution mass spectra (ESI Orbitrap (+)) were measured on ThermoFisher Scientific LTQ Orbitrap XL. HPLC analysis was conducted on a JASCO HPLC system equipped with Daicel chiral-stationary-phase columns (ϕ 0.46 cm x 25 cm).

3. Materials

Unless otherwise noted, materials were purchased from commercial suppliers and were used without further purification. THF, CH₂Cl₂ and diethyl ether were purified by passing through a solvent purification system (Glass Contour). Mesitylcopper was purchased from Strem chemicals or prepared by following the literature procedure,¹ and handled in a glove box. (*S*,*S*)- and (*R*,*R*)-Ph-BPE and 2,2,5,7,8-pentamethylchromanol (ArOH) were purchased from Aldrich. ArOH was used after recrystallization from *n*-hexane. *N*,*N*-diallylpropiothioamide (**1a**) was prepared from the corresponding *N*,*N*-diallylpropioamide by following the reported procedure.² The same procedure was used to synthesize *N*,*N*-diallylbutanethioamide (**1b**) and *N*,*N*-diallylethanethioamide (**1c**). Column chromatography was performed with silica gel Merck 60 (230–400 mesh ASTM) or Kanto Chemical 60N (neutral, spherial, 50–60 μ M)

4. General Procedure

4.1 Synthesis of 3-hydroxy-*N*,*N*-dimethylpropanethioamide (additive 8).

$$(\text{HCHO})_{n} + \underbrace{\overset{S}{\underset{I}{\overset{}}}}_{I} \underbrace{\text{LDA}}_{THF, -78 \ ^{\circ}\text{C to rt}} \xrightarrow{OH} \overset{S}{\underset{I}{\overset{}}}_{I}$$

To a 200 mL flame-dried flask containing *N*,*N*-dimethylethanethioamide (1.0 g, 9.7 mmol) at -78 °C, lithium diisopropylamide (LDA, 11 mL, 1.09 M in THF, 1.2 eq.) was added slowly and the resulting reaction mixture was warmed to 0 °C. After stirring for 30 min, the reaction mixture was cooled down to -78 °C and paraformaldehyde (1.5 g, 5 eq.) dispersed in 30 mL THF was added. After 10 min of stirring at -78 °C, the reaction mixture was warmed to room temperature and stirred for overnight. The reaction was quenched with 50 mL of sat. NH₄Cl aq. and the biphasic mixture was extracted with CHCl₃, and the combined organic extracts were dried over Na₂SO₄. Volatiles were removed under reduced pressure and the resulting crude mixture was purified by silica gel column chromatography to give **8** as a pale yellow oil (570 mg, 44% yield).

¹H NMR (CDCl₃, 400 Hz): δ 4.02–3.98 (m, 2H), 3.83 (t, *J* = 7.1 Hz, 1H), 3.49 (s, 3H), 3.29 (s, 3H), 2.74 (t, *J* = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 150 Hz): δ 201.4, 59.9, 44.1, 43.0, 41.5.

¹Tsuda, T.; Yazawa, T.; Watanabe, K.; Fujii, T.; Saegusa, T. J. Org. Chem. **1981**, 46, 192.

²Iwata, M.; Yazaki, R.; Chen, H.; Sureshkumar, D.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2011, 133, 5554.

Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

4.2 Synthesis of 2-hydroxy-*N*,*N*-dimethylbenzothioamide (additive 9)

To a 300 mL flask, 50 mL SOCl₂ and salicylic acid (10 g, 72.5 mmol) were added. The reaction mixture was heated to 80 °C for 1 h. After cooling, SOCl₂ was carefully evaporated. The resulting mixture was dissolved in 100 mL toluene, and Me₂NH·HCl (17.7 g, 217.5 mmol, 3 eq.) and triethylamine (40.4 mL, 290 mmol, 4 eq.) were added. After stirring at room temperature for overnight, the reaction mixture was heated to 100 °C for 1 h. After cooling to room temperature, 170 mL sat. NH₄Cl aq. was added and the mixture was extracted with CH₂Cl₂, and the combined extracts were dried over Na₂SO₄. The filtrate was concentrated and recrystallized from EtOAc/*n*-hexane to givie **S1** as a white to orange crystal (11.2 g, 94% yield).

To the flask containing **S1** (5 g, 30.2 mmol) in 150 mL CH₂Cl₂ at 0 °C, pyridine (4.8 mL, 60.4 mmol, 2 eq.) and acetic anhydride (4.3 mL, 45.5 mmol, 1.5 eq.) were added and the reaction mixture was warmed to room temperature. After stirring for overnight, the reaction was quenched with 50 mL 0.5 N HCl aq. and the mixture was extracted with CH₂Cl₂. The combined organic extracts were washed with brine and dried over Na₂SO₄. Filtration and evaporation gave an orange oil of **S2**, which were used directly for the next step. To a stiired solution of **S2** (5 g, 24.1 mmol) in 240 mL THF, Lawesson's reagent (5.4 g, 13.3 mmol, 0.55 eq.) was added and the reaction mixture was refluxed for 1 h. After cooling to room temperature, the mixture was concentrated and loaded onto silica gel for silica gel column chromatography to give **S3** as a pale yellow crystal (4.4 g, 81% yield).

To a stirred solution of **S3** (3.6 g, 16.2 mmol) in 60 mL MeOH, K₂CO₃ (2.2 g, 16.2 mmol, 1 eq.) was added and the reaction mixture was stirred at room temperature for overnight. After removal of volatiles, 150 mL of sat. NH₄Cl aq. was added and the resulting mixture was extracted with ether. The combined organic extracts were washed with brine and dried over Na₂SO₄. The filtrate was concentrated and purified by silica gel column chromatography to give **9** as a pale pink solid (2.7 g, 92% yield). ¹H NMR (CDCl₃, 400 Hz): δ 8.35 (s, 1H), 7.51–7.47 (m, 1H), 7.26–7.23 (m, 2H), 7.14–7.10 (m, 1H), 3.84 (s, 3H), 3.52 (s, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ 196.5, 153.7, 130.9, 127.0, 126.1, 119.5, 118.3, 44.7, 42.9.

4.3 Direct catalytic asymmetric aldol reaction (Table 1 and 2).4.3.1 General procedure for the catalytic asymmetric aldol reaction

To a flame-dried 20 mL test tube equipped with a magnetic striring bar and a 3-way glass stopcock were charged with (*S*,*S*)-Ph-BPE (6.1 mg, 0.012 mmol), 2,2,5,7,8-pentamethylchromanol (ArOH, 2.6 mg, 0.012 mmol) and mesitylcopper (2.2 mg, 0.012 mmol) in a dry box. To the mixture was added dry THF (240 μ L, 0.05 M) *via* syringe at room temperature, after 5 min of stirring at the same temperature, yellow-green solution of (*S*,*S*)-Ph-BPE/mesitylcopper/ArOH solution was obtained, which was used within 15 min.

To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way glass stopcock were charged with *N*,*N*-diallylthiopropionamide (**1a**, 40 μ L, 0.24 mmol, 1.2 eq.), dry THF (882 μ L or 822 μ L, 0.2 M), **2a** (18 μ L, 0.2 mmol) and additive **8** (60 μ L, 0.1 M in THF, 6 μ mol) if any. The reaction mixture was cooled to –70 °C. To the resulting cooled solution was added (*S*,*S*)-Ph-BPE/mesitylcopper/ArOH solution (60 μ L, 3 μ mol) prepared above dropwise to run the reaction. After certain time at the same temperature, the precooled solution of acetic acid in THF (0.1 M in THF, 1 mL, 0.1 mmol), then saturated aq. NH4Cl were added to quench the reaction. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. The filtrate was

OH

3aa

Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

concentrated under reduced pressure. The chemical yield and diastereomeric ratio were determined by ¹H NMR of the crude mixture. The crude product was purified by silica gel column chromatography to give the desired product as a colorless oil.

(2S,3R)-N,N-Diallyl-3-hydroxy-2,4-dimethylpentanethioamide (3aa)

Colorless oil, IR (CHCl₃ solution) *v* 3402, 3019, 1710, 1488, 1412, 1362, 1210, 1089, 929, 670 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.90–5.73 (m, 2H), 5.28–5.09 (m, 4H), 4.85–4.80 (m, 2H), 4.24 (dd, *J* = 6.0, 14.7 Hz, 1H), 4.20 (dd, *J* = 4.6, 15.6 Hz, 1H), 4.09 (dd, *J* = 4.6, 17.4 Hz, 1H), 3.31 (d, *J* = 8.9 Hz, 1H), 3.16 (q, *J* = 6.9 Hz, 1H), 1.68 (m, 1H), 1.18 (d, *J* = 6.9 Hz, 3H), 1.00 (d, *J* = 6.6 Hz, 3H), 0.81 (d, *J*

= 6.6 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 210.9, 130.8, 130.4, 118.6, 117.7, 77.9, 55.6, 52.6, 42.8, 31.1, 19.7, 19.2, 13.8; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₃H₂₃ONNaS *m*/*z* 264.1393 [M+Na]⁺, found 264.1386; [α]_D²⁶ 128.8 (*c* 1.21, CHCl₃, 94% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 1/99, flow rate 1.0 mL/min, detection 254 nm, t_R = 14.2 min (minor), 25.3 min (major).

(2S,3R)-N,N-Diallyl-3-cyclohexyl-3-hydroxy-2-methylpropanethioamide (3ab)

Colorless oil, IR (CHCl₃ solution) *v* 3335, 2990, 2927, 2853, 1643, 1489, 1449, 1412, 1221, 1205, 1143, 930 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.85–5.74 (m, 2H), 5.28–5.12 (m, 4H), 4.82–4.76 (m, 2H), 4.36 (dd, *J* = 5.9, 14.6 Hz, 1H), 4.2–4.0 (m, 2H), 3.36 (d, *J* = 8.7 Hz, 1H), 3.15 (q, *J* = 6.6 Hz, 1H), 2.09 (d, *J* = 13.0 Hz, 1H), 1.72–1.69 (m, 2H), 1.64–1.54 (m, 2H), 1.39–1.34 (m, 1H), 1.21–1.07

 n_{z} , n_{z} , n

(m, 6H), 0.93–0.81 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 210.8, 130.8, 130.4, 118.5, 117.6, 76.5, 55.5, 52.6, 42.4, 40.5, 29.8, 29.2, 26.4, 26.0, 25.9, 13.8; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₆H₂₇ONNaS *m*/*z* 304.1706 [M+Na]⁺, found 304.1705; [α]_{D²⁵} 119.9 (*c* 2.80, CHCl₃, 90% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 1/99, flow rate 1.0 mL/min, detection 254 nm, t_R = 15.4 min (minor), 38.1 min (major).

(2S,3R)-N,N-Diallyl-3-hydroxy-2,5,5-trimethylhexanethioamide (3ac)

Colorless oil, IR (CHCl₃ solution) *v* 3407, 3018, 1709, 1415, 1363, 1217, 1090, 926, 669 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.88–5.73 (m, 2H), 5.27–5.09 (m, 4H), 4.94 (dd, *J* = 5.0, 14.7 Hz, 1H), 4.59 (s, 1H), 4.25–4.17 (m, 2H), 4.05 (dt, *J* = 2.3, 17.6 Hz, 1H), 3.91 (dd, *J* = 1.6, 8.5 Hz, 1H) 2.75

Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

(qd, *J* = 1.6, 6.9 Hz, 1H), 1.48 (q, *J* = 8.5 Hz, 1H), 1.21 (d, *J* = 6.6 Hz, 3H), 1.03 (d, *J* = 14.0 Hz, 1H), 0.91 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz): δ 210.8, 131.0, 130.5, 118.5, 117.6, 70.0, 55.3, 52.6, 49.4, 48.2, 30.3, 30.0, 14.0; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₅H₂₈ONS *m*/*z* 270.1886 [M+H]⁺, found 270.1884; [α] $_{D^{26}}$ 127.2 (*c* 1.54, CHCl₃, 90% ee sample); HPLC: CHIRALCEL OD-H (ϕ 0.46 cm x 25 cm) and OD-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 1/99, flow rate 0.5 mL/min, detection 254 nm, t_R = 26.4 min (minor), 28.2 min (major).

(2S, 3R) - N, N- Diallyl-7-((tert-butyldimethylsilyl) oxy) - 3-hydroxy - 2, 5, 5-trimethylheptanethioamide (3ad) - 2, 5-trimethylheptanethide (3ad) - 2, 5-trimethylheptanethioami

Colorless oil, IR (CHCl₃ solution) *ν* 3368, 3019, 1710, 1211, 1083, 929, 670 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.85–5.72 (m, 2H), 5.27–5.09 (m, 4H), 4.88 (dd, *J* = 5.3, 14.9 Hz, 1H), 4.53 (s, 1H), 4.31 (dd, *J* = 5.2, 13.7 Hz, 1H), 4.20–4.06 (m, 2H), 3.95 (d, *J* = 8.7 Hz, 1H), 3.71–3.61 (m, 2H), 2.76–2.74 (m, 1H), 1.70–1.63 (m, 1H), 1.52–1.38 (m, 2H), 1.22 (d, *J* = 6.9 Hz, 3H), 1.12 (d, *J* = 14.2 Hz, 1H), 0.93 (s, 3H), 0.90 (s, 3H), 0.86 (s, 9H),

0.02 (s, 6H); ¹³C NMR (CDCl₃, 150 MHz): δ 210.5, 131.1, 130.6, 118.5, 117.6, 70.4, 60.2, 55.3, 52.6, 48.7, 47.4, 44.4, 32.2, 28.1, 28.0, 25.9, 18.2, 15.1, -5.3, -5.4; HRMS (ESI-Orbitrap) Anal. calcd. for C₂₂H₄₄O₂NSSi *m*/*z* 414.2857 [M+H]⁺, found 414.2852; [α]_{D²⁶} 82.0 (*c* 1.11, CHCl₃, 90% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 2/98, flow rate 0.5 mL/min, detection 254 nm, t_R = 9.0 min (minor), 12.2 min (major).

Colorless oil, IR (CHCl₃ solution) *v* 3501, 3019, 1486, 1411, 1061, 930, 669 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.88–5.73 (m, 2H), 5.27–5.11 (m, 4H), 4.68 (dd, *J* = 5.8, 14.9 Hz, 1H), 4.50 (dd, *J* = 6.0, 14.9 Hz, 1H), 4.28–4.20 (m, 2H), 4.16–4.10 (m, 2H), 3.93–3.90 (m, 4H), 3.02–2.96 (m, 1H), 1.88 (dd, *J* = 2.5, 14.2 Hz, 1H), 1.68 (q, *J* = 8.0 Hz, 2H), 1.60 (dd, *J* = 8.7, 14.2 Hz, 1H),

1.28 (d, J = 6.6 Hz, 3H), 0.88 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 208.9, 131.3, 130 .7, 118.3, 117.7, 112.0, 71.3, 64.8, 64.5, 55.4, 52.6, 47.7, 40.1, 29.7, 17.0, 8.0; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₆H₂₇O₃NNaS *m*/*z* 336.1604 [M+Na]⁺, found 336.1600; [α] $_{D^{26}}$ 91.1 (*c* 0.91, CHCl₃, >99% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 10/90, flow rate 1.0 mL/min, detection 254 nm, t_R = 7.2 min (minor), 10.2 min (major).

(2*S*,3*R*)-*N*,*N*-Diallyl-3-hydroxy-2,5-dimethylhexanethioamide (3af)

Colorless oil, IR (CHCl₃ solution) *ν* 3400, 3019, 1710, 1488, 1413, 1363, 1213, 930, 669 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.87–5.73 (m, 2H), 5.26–5.07 (m, 4H), 4.93 (dd, *J* = 5.3, 14.9 Hz, 1H), 4.64 (s, 1H), 4.24–4.17 (m, 2H), 4.07–4.02 (m, 1H), 3.87–3.84 (m, 1H), 2.81 (qd, *J* = 1.6, 6.6 Hz, 1H), 1.80–1.70 (m, 1H), 1.51–1.43 (m, 1H), 1.19 (d, *J* = 6.9 Hz, 3H), 1.00–0.97 (m, 1H), 0.87 (d, *J* = 3.2

Hz, 3H), 0.85 (d, J = 3.0 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 210.9, 131.0, 130.4, 118.5, 117.5, 70.4, 55.3, 52.7, 46.4, 44.0, 24.4, 23.4, 21.9, 13.9; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₄H₂₆ONS *m*/*z* 256.1730 [M+H]⁺, found 256.1728; [α] $_{D^{26}}$ 140.8 (*c* 1.94, CHCl₃, 96% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 2/98, flow rate 1.0 mL/min, detection 254 nm, t_R = 8.6 min (minor), 18.8 min (major).

(2S,3R)-N,N-Diallyl-3-hydroxy-2,6,6-trimethylheptanethioamide (3ag)

Colorless oil, IR (CHCl₃ solution) *ν* 3352, 2957, 1710, 1489, 1412, 1364, 930, 669 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.89–5.75 (m, 2H), 5.30–5.11 (m, 4H), 4.87 (dd, *J* = 5.3, 14.9 Hz, 1H), 4.72 (s, 1H), 4.32 (dd, *J* = 6.2, 14.9 Hz, 1H), 4.20 (dd, *J* = 3.6, 17.4 Hz, 1H), 4.09 (dd, *J* = 4.6, 17.4 Hz, 1H), 3.70 (t, *J* = 6.9 Hz, 1H), 2.93 (q, *J* = 6.6 Hz, 1H), 1.53–1.50 (m, 1H), 1.36 (dt, *J* = 4.1, 12.8 Hz, 1H), 4.93 (dt, J) = 4.1, 12.8 Hz, 1H), 4.93 (dt, J) = 4.1, 12.8 Hz, 1H), 4.93 (dt,

1H), 1.27–1.21 (m, 4H), 1.08 (dt, *J* = 4.1, 12.8 Hz, 1H), 0.86 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz): δ 210.8, 131.0, 130.4, 118.6, 117.7, 73.5, 55.4, 52.7, 45.8, 40.3, 30.1, 29.8, 29.3, 13.8; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₆H₃₀ONS *m*/*z* 284.2043 [M+H]⁺, found 284.2042; [α] $_{D^{22}}$ 120.0 (*c* 1.05, CHCl₃, 97% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 2/98, flow rate 1.0 mL/min, detection 254 nm, t_R = 8.4 min (minor), 18.5 min (major).

Supplementary Information Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

(2S,3R)-N,N-Diallyl-3-hydroxy-2-methyl-5-phenylpentanethioamide (3ah)

Colorless oil, IR (CHCl₃ solution) *ν* 3348, 3007, 1710, 1492, 1453, 1412, 930, 770 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.32–7.18 (m, 5H), 5.92–5.74 (m, 2H), 5.29–5.09 (m, 4H), 4.94 (dd, *J* = 5.3, 14.9 Hz, 1H), 4.82 (s, 1H), 4.30 (dd, *J* = 6.4, 14.9 Hz, 1H), 4.20 (dd, *J* = 4.2, 17.4 Hz, 1H), 4.08 (dd, *J* = 4.4, 17.4 Hz, 1H), 3.86 (dd, *J* = 3.0, 9.4 Hz, 1H), 2.93–2.87 (m, 2H), 2.70–2.66 (m, 1H),

1.96–1.90 (m, 1H), 1.59–1.56 (m, 1H), 1.27 (d, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 210.5, 142.0, 130.9, 130.4, 128.4, 128.3, 125.7, 118.6, 117.6, 71.9, 55.3, 52.7, 46.3, 36.7, 32.4, 14.0; HRMS (ESI-Orbitrap) Anal. calcd. for C18H26ONS m/z 304.1730 [M+H]⁺, found 304.1730; [α] $_{D^{22}}$ 145.1 (c 1.76, CHCl₃, 98% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/n-hexane = 10/90, flow rate 0.5 mL/min, detection 254 nm, t $_{R}$ = 13.4 min (minor), 17.7 min (major).

(2S, 3S) - N, N- Dially l-4-((tert-butyldiphenylsily l) oxy) - 3-hydroxy - 2-methyl butan ethioamide (3ai) - 2-methyl butan ethioamide (3ai)

Colorless oil, IR (CHCl₃ solution) *v* 3342, 2932, 2859, 1710, 1488, 1428, 1363, 1226, 1112, 996, 823, 703 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): ð 7.61–7.59 (m, 4H), 7.41–7.36 (m, 6H), 5.87–5.67 (m, 2H), 5.24–5.06 (m, 4H), 4.62 (dd, *J* = 5.0, 15.4 Hz, 1H), 4.52 (dd, *J* = 5.2, 14.9 Hz, 1H), 4.38 (s, 1H), 4.23 (dd, *J* = 3.2, 17.4 Hz, 1H), 4.09 (dd, *J* = 1.8, 17.4 Hz, 1H), 3.97–3.95 (m, 1H),

OН

3ah

3.70–3.68 (m, 1H), 3.57–3.55 (m, 1H), 3.40 (q, *J* = 6.6 Hz, 1H), 1.16 (d, *J* = 6.8 Hz, 3H), 1.04 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz): δ 209.7, 135.48, 135.45, 133.0, 130.9, 130.5, 129.80, 129.78, 127.7, 118.5, 117.7, 73.2, 64.1, 55.2, 52.6, 42.3, 26.9, 19.0, 14.0; HRMS (ESI-Orbitrap) Anal. calcd. for C₂₇H₃₇O₂NNaSSi *m*/*z* 490.2206 [M+Na]⁺, found 490.2198; [α]p²⁵ 35.9 (*c* 2.24, CHCl₃, 97% ee sample); HPLC: CHIRALCEL OD-H (ϕ 0.46 cm x 25 cm) and OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 1/99, flow rate 1.0 mL/min, detection 254 nm, t_R = 18.5 min (minor), 29.5 min (major).

(25,3R)-N,N-Diallyl-5-((tert-butyldiphenylsilyl)oxy)-3-hydroxy-2-methylpentanethioamide (3aj)

Colorless oil, IR (CHCl₃ solution) ν 3488, 3405, 3019, 1709, 1416, 1362, 1210, 1110, 908, 703 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 7.66–7.62 (m, 4H), 7.41–7.34 (m, 6H), 5.87–5.69 (m, 2H), 5.23– 5.09 (m, 4H) 4.75 (dd, *J* = 5.5, 14.9 Hz, 1H), 4.56 (s, 1H), 4.42 (dd, *J* = 6.2, 14.9 Hz, 1H), 4.14–4.09 (m, 3H), 3.81 (t, *J* = 6.0 Hz, 2H), 2.95 (m, 1H), 1.76–1.68 (m, 1H),

1.64–1.58 (m, 1H), 1.26 (d, *J* = 6.6 Hz, 3H), 1.02 (s, 9H); ¹³C NMR (CDCl₃, 150 MHz): δ 209.9, 135.53, 135.50, 133.4, 131.1, 130.6, 129.7, 127.68, 127.67, 118.4, 117.6, 72.0, 62.2, 55.3, 52.6, 46.8, 37.0, 26.8, 19.1, 15.3; HRMS (ESI-Orbitrap) Anal. calcd. for C₂₈H₃₉O₂NNaSSi *m*/*z* 504.2363 [M+Na]⁺, found 504.2359; [α]p²⁶ 44.1 (*c* 2.37, CHCl₃, 92% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 2/98, flow rate 1.0 mL/min, detection 254 nm, t_R = 8.5 min (minor), 18.8 min (major)

(2*S*,3*R*)-*N*,*N*-Diallyl-2-ethyl-3-hydroxy-4-methylpentanethioamide (3ba)

Colorless oil, IR (CHCl₃ solution) ν 3405, 3019, 1710, 1413, 1363, 1213, 1090, 929, 669 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.90–5.72 (m, 2H), 5.29–5.11 (m, 4H), 4.81 (dd, *J* = 5.5, 14.6 Hz, 1H), 4.72 (s, 1H), 4.43 (dd, *J* = 6.2, 14.6 Hz, 1H), 4.29–4.24 (m, 1H), 4.10 (dd, *J* = 4.8, 17.4 Hz, 1H), 3.15–3.08 (m, 2H), 2.12–2.04 (m, 1H), 1.77–1.68 (m, 2H), 0.99 (d, *J* = 6.6 Hz, 3H), 0.84–0.78 (m, 6H); ¹³C NMR (CDCl₃, 150 MHz): δ 209.4, 130.9, 130.5, 118.8, 118.2, 78.4, 55.9, 52.5, 50.1, 31.5, 22.0, 20.0, 19.2, 12.2;

HRMS (ESI-Orbitrap) Anal. calcd. for C₁₄H₂₆ONS *m*/*z* 256.1730 [M+H]⁺, found 256.1726; [α]_D²⁶ 148.0 (*c* 1.54, CHCl₃, 95% ee sample); HPLC: CHIRALCEL OZ-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 2/98, flow rate 0.5 mL/min, detection 254 nm, t_R = 14.8 min (minor), 17.7 min (major).

(S)-N,N-Diallyl-3-hydroxy-4-methylpentanethioamide (3ca)

Colorless oil, IR (CHCl₃ solution) *ν* 3414, 2965, 1642, 1491, 1411, 1297, 1204, 994, 931, 684 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ 5.90–5.72 (m, 2H), 5.29–5.11 (m, 4H), 4.69 (dd, *J* = 6.0, 14.9 Hz, 1H), 4.56 (dd, *J* = 6.0, 14.9 Hz, 1H), 4.24 (dt, *J* = 2.5, 17.2 Hz, 1H), 4.09 (dt, *J* = 2.5, 17.4 Hz, 1H), 3.96–3.89 (m, 2H), 2.79 (dd, *J* = 1.8, 15.6 Hz, 1H), 2.64 (dd, *J* = 9.8, 15.6 Hz, 1H), 1.78–1.70 (m, 1H), 0.94 (t, *J* = 6.4

Hz, 6H); ¹³C NMR (CDCl₃, 150 MHz): δ 203.4, 130.53, 130.49, 118.7, 117.9, 74.6, 55.8, 52.8, 45.1, 33.3, 18.5, 17.8; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₂H₂₁ONNaS *m*/*z* 250.1236 [M+Na]⁺, found 250.1235; [α]p²⁵ –84.8 (*c* 0.92, CHCl₃, 89% ee sample); HPLC: CHIRALCEL OD-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 1/99, flow rate 1.0 mL/min, detection 254 nm, t_R = 9.1 min (major), 12.1 min (minor).

4.3.2 Crossover experiment.

To a flame-dried 20 mL test tube equipped with a magnetic striring bar and a 3-way glass stopcock were charged with (*S*,*S*)-Ph-BPE (3.0 mg, 6 μ mol), 2,2,5,7,8-pentamethylchromanol (ArOH, 1.3 mg, 6 μ mol) and mesitylcopper (1.1 mg, 6 μ mol) in a dry box. To the mixture was added THF (120 μ L, 0.05 M) *via* syringe at room temperature, after 5 min of stirring at the same temperature, yellow-green solution of (*S*,*S*)-Ph-BPE/mesitylcopper/ArOH solution was obtained, which was used within 15 min.

To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way glass stopcock were charged with **3aa** (24.1 mg, 0.1 mmol, 94% ee sample), **2j** (37.4 mg, 0.12 mmol, 1.2 eq.), dry THF (440 μ L, 0.2 M), the reaction mixture was cooled to -70 °C. To the resulting cooled solution was added (*S*,*S*)-Ph-BPE/mesitylcopper/ArOH solution (60 μ L, 3 μ mol) prepared above dropwise to run the reaction. After specified time at the same temperature, the

precooled solution of acetic acid in THF (0.1 M in THF, 1 mL, 0.1 mmol), then saturated aq. NH4Cl were added to quench the reaction. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure. The product distribution was determined by crude ¹H NMR. The enantiomeric excess was determined by HPLC analysis.

To a flame-dried 20 mL test tube equipped with a magnetic striring bar and a 3-way glass stopcock were charged with (*S*,*S*)-Ph-BPE (3.0 mg, 6 μ mol), 2,2,5,7,8-pentamethylchromanol (ArOH, 1.3 mg, 6 μ mol) and mesitylcopper (1.1 mg, 6 μ mol) in a dry box. To the mixture was added THF (120 μ L, 0.05 M) *via* syringe at room temperature, after 5 min of stirring at the same temperature, yellow-green solution of (*S*,*S*)-Ph-BPE/mesitylcopper/ArOH solution was obtained, which was used within 15 min.

To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way glass stopcock were charged with **3aj** (48.1 mg, 0.1 mmol, 93% ee sample), **2a** (11 μ L, 0.12 mmol, 1.2 eq.), dry THF (440 μ L, 0.2 M), the reaction mixture was cooled to -70 °C. To the resulting cooled solution was added (*S*,*S*)-Ph-BPE/mesitylcopper/ArOH solution (60 μ L, 3 μ mol) prepared above dropwise to run the reaction. After 48 h at the same temperature, the precooled solution of acetic acid in THF (0.1 M in THF, 1 mL, 0.1 mmol), then saturated aq. NH4Cl were added to quench the reaction. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure. The product distribution was determined by crude ¹H NMR. The enantiomeric excess was determined by HPLC analysis.

4.4. Direct catalytic asymmetric aldol reaction with chiral aldehyde (Table 3 and 4). 4.4.1 Synthesis of (*S*)-2-((*tert*-butyldimethylsilyl)oxy)propanal ((*S*)-2k).

(*S*)-2-((*tert*-Butyldimethylsilyl)oxy)propanal was synthesized from ethyl L-lactate by following literature.³ To a 500 mL flask containing ethyl L-lactate (14.2 g, 120 mmol) and imidazole (16.4 g, 240 mmol, 2 eq.), CH₂Cl₂ (250 mL) was added and the resulting solution was cooled to 0 °C. TBSCl (23.6 g, 156 mmol, 1.3 eq.) in CH₂Cl₂ (50 mL) was added via a cannula and the reaction mixture was warmed to room temperature. After stirring for overnight, the reaction mixture was washed with 1N HCl aq., sat. NaHCO₃ aq. and brine, and dried over Na₂SO₄. Filtration and concentration gave a crude product of **S4** as a colorless oil, which was used for the next step without purification. The crude **S4** (2.2 g, 9 mmol) was dissolved in 50 mL CH₂Cl₂ and the solution was cooled to –78 °C. Diisobutylaluminium hydride (DIBAL-H, 11 mL, 1.04 M in *n*-hexane, 10.6 mmol, 1.2 eq.) was added dropwise via a cannula to the reaction mixture at –78 °C. After stirring at the same temperature for 1 h, 5 mL of methanol was added dropwise via a cannula to room temperature and stirred for 3 h until clear phase separation was observed. The mixture was extracted with CH₂Cl₂, and combined organic extracts were washed with brine and dired over Na₂SO₄. Filtration and concentration gave the crude product, which was distilled to give (*S*)-**2k** as a colorless oil (83% in two steps). All data matched the reported data.³

³Kim, D.; Lee, J.; Shim, P.; Lim, J.; Doi, T.; Kim, A. J. Org. Chem. 2002, 67, 772.

Colorless oil, ¹H NMR (CDCl₃, 400 Hz): δ 9.59 (d, *J* = 1.4 Hz, 1H), 4.07 (qd, *J* = 1.4, 6.9 Hz, 1H), 1.05 (d, *J* = 6.9 Hz, 3H), 0.89 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ 204.2, 73.8, 25.7, 18.5, 18.2, -4.8; [α]_{D²⁴} -14.8 (*c* 0.84, CHCl₃). The enantiopurity of the aldehyde was determined to be >99% by HPLC analysis after transforming the aldehyde to *N*-benzyl-2-((*tert*-butyldimethylsilyl)oxy)-propanamide (**S6**) by following procedures.

To a stirred solution of (*S*)-**2k** (188 mg, 1 mmol) in 'BuOH/H₂O (1.2 mL, 5:1), 2-methyl-2-butene (1.06 mL, 10 mmol, 10 eq.), NaClO₂ (271 mg, 3 mmol, 3 eq.) and NaH₂PO₄·2H₂O (468 mg, 3 mmol, 3 eq.) were added. After stirring at room temperature for 30 min, the reaction mixture was diluted with ethyl acetate, and the resulting mixture was washed with 1N HCl aq. and brine, and dried over Na₂SO₄. Filtration and concentration gave crude acid **S5**, which was directly used for the next step. **S5** (102 mg, 0.5 mmol) was dissolved in 5 mL CH₂Cl₂ and HBTU (379 mg, 1 mmol, 2 eq.), benzylamine (109 µL, 1 mmol, 2 eq.), and Et₃N (140 µL, 1 mmol, 2 eq.) were added to the solution. After stirring at room temperature for 2 h, the reaction mixture was concentrated and directly loaded onto silica gel column chromatography to give **S6** as a colorless oil (87 mg, 60% in two steps).

Colorless oil; IR (CHCl₃ solution) *ν* 3420, 3008, 2955, 2930, 2858, 1710, 1666, 1524, 1363, 1260, 1121, 945, 838 cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 7.32–7.22 (m, 5H), 6.93 (br, 1H), 4.49 (dd, *J* = 6.4, 14.9 Hz, 1H), 4.38 (dd, *J* = 5.6, 14.7 Hz, 1H), 4.24 (q, *J* = 6.9 Hz, 1H), 1.38 (d, *J* = 6.6 Hz, 3H), 0.82 (s, 9H), 0.05 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ 174.3, 138.1, 128.7, 127.5, 127.4,

70.0, 42.9, 25.7, 22.0, 17.9; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₆H₂₈O₂NSi *m*/*z* 294.1884 [M+H]⁺, found 294.1882; $[\alpha]_{D^{26}} -17.2$ (*c* 2.52, CHCl₃); HPLC: CHIRALCEL AD-H (ϕ 0.46 cm x 25 cm) and AD-H (ϕ 0.46 cm x 25 cm), 2-propanol/*n*-hexane = 2/98, flow rate 0.5 mL/min, detection 220 nm, t_R = 34.9 min (major), 40.0 min (minor).

4.4.2 Experimental procedure.

To a flame-dried 20 mL test tube equipped with a magnetic striring bar and a 3-way glass stopcock were charged with (R,R)-Ph-BPE (6.1 mg, 0.012 mmol), 2,2,5,7,8-pentamethylchromanol (ArOH, 2.6 mg, 0.012 mmol) and mesitylcopper (2.2 mg, 0.012 mmol) in a dry box. To the mixture was added THF (240 μ L, 0.05 M) *via* syringe at room temperature, after 5 min of stirring at the same temperature, yellow-green solution of (R,R)-Ph-BPE/mesitylcopper/ArOH solution

was obtained, which was used within 15 min.

To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way glass stopcock were charged with N,N-diallylthiopropionamide (1a, 40 µL, 0.24 mmol, 1.2 eq.), dry THF (1.8 mL or 1.86 mL, 0.1 M), and (S)-2k (44 μL, 0.2 mmol) and additive 8 (60 μL, 0.1 M in THF, 6 μmol) if any, the reaction mixture was cooled to -70 °C. To the resulting cooled solution was added (R,R)-Ph-BPE/mesitylcopper/ArOH solution (120 µL, 6 µmmol) prepared above dropwise to run the reaction. After certain time at the same temperature, the precooled solution of acetic acid in THF (0.1 M in THF, 1 mL, 0.1 mmol), then saturated aq. NH4Cl were added to quench the reaction. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure. The chemical yield and diastereomeric ratio were determined by ¹H NMR of the crude mixture. The crude product was purified by silica gel column chromatography, giving the desired product as a colorless oil.

To a flame-dried 20 mL test tube equipped with a magnetic striring bar and a 3-way glass stopcock were charged with (S,S)-Ph-BPE (10.1 mg, 0.02 mmol), 2,2,5,7,8-pentamethylchromanol (ArOH, 4.4 mg, 0.02 mmol) and mesitylcopper (3.6 mg, 0.02 mmol) in a dry box. To the mixture was added THF (0.4 mL, 0.05 M) via syringe at room temperature, after 5 min of stirring at the same temperature, yellow-green solution of (S,S)-Ph-BPE/mesitylcopper/ArOH solution was obtained, which was used within 15 min.

To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way glass stopcock were charged with *N*,*N*-diallylthiopropionamide (1a, 40 μL, 0.24 mmol, 1.2 eq.), dry THF (1.6 mL or 1.7 mL, 0.1 M), and (*S*)-2k (44 μL, 0.2 mmol) and additive 8 (100 µL, 0.1 M in THF, 0.01 mmol) if any, and the reaction mixture was cooled to -78 °C. To the resulting cooled solution was added (S,S)-Ph-BPE/mesitylcopper/ArOH solution (0.2 mL, 0.01 mmol) prepared above dropwise to run the reaction. After certain time at the same temperature, the precooled solution of acetic acid in THF (0.1 M in THF, 1 mL, 0.1 mmol), then saturated aq. NH₄Cl were added to quench the reaction. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure. The chemical yield and diastereomeric ratio were determined by ¹H NMR of the crude mixture. The crude product was purified by silica gel column chromatography to give the desired product as a colorless oil.

(2R,3R,4S)-N,N-Diallyl-4-((tert-butyldimethylsilyl)oxy)-3-hydroxy-2-methylpentanethioamide (2R,3R,4S-3ak)

Less polar product, colorless oil, IR (CHCl₃ solution) v 3338, 2957, 2931, 2857, 1710, 1489, 1412, 1257, 1224, 1088, 835 cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 5.89–5.71 (m, 2H), 5.27–5.08 (m, 4H), 4.68–4.63 (m, 2H), 4.50 (dd, J = 6.0, 14.7 Hz, 1H), 4.26 (dd, J = 3.9, 17.4 Hz, 1H), 4.10 (dd, J = 2.3, 17.2 Hz, 1H), 3.65 (m, 1H), 3.52 (q, J = 6.9 Hz, 1H), 3.36 (d, J = 8.0 Hz, 1H), 1.22 (d, J = 6.0 Hz, 3H), 1.19 (d, J = 6.6 Hz, 3H), 0.85 (s, 9H), 0.07 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ

210.1, 130.9, 130.4, 118.5, 117.7, 76.7, 68.6, 55.1, 52.4, 41.0, 25.7, 21.2, 17.8, 13.6, -4.3, -4.7; HRMS (ESI-Orbitrap) Anal. calcd. for C18H36O2NSSi *m/z* 358.2231 [M+H]⁺, found 358.2230; [a]p²⁸ -68.0 (*c* 2.18, CHCl3).

(25,35,4S)-N,N-Diallyl-4-((tert-butyldimethylsilyl)oxy)-3-hydroxy-2-methylpentanethioamide (25,35,4S-3ak)

More polar product, colorless oil, IR (CHCl3 solution) v 3336, 2956, 2931, 2858, 1644, 1488, 1410, 1256, 1138, 1088, 987, 933, 837 cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 5.90–5.72 (m, 2H), 5.28–5.12 (m, 4H), 4.85 (dd, J = 5.5, 14.7 Hz, 1H), 4.38 (dd, J = 6.2, 14.9 Hz, 2H), 4.08-4.01 (m, 1H),3.94–3.89 (m, 1H), 3.77–3.76 (m, 1H), 3.38 (d, J = 5.7 Hz, 1H), 3.18–3.13 (m, 1H), 1.29 (d, J = 6.6 Hz, 3H), 1.18 (d, J = 6.4 Hz, 3H), 0.86 (s, 9H), 0.06 (s, 3H), 0.02 (s, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ 210.1, 131.2, 130.7,

Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

118.6, 118.2, 77.6, 69.9, 55.2, 52.8, 44.0, 16.0, 20.5, 18.2, 17.6, -3.9, -4.5; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₈H₃₅O₂NNaSSi *m*/*z* 380.2050 [M+Na]⁺, found 380.2043; [α]_{D²⁷} 13.2 (*c* 0.28, CHCl₃).

4.4.3 Determination of the absolute configuration

Relative and absolute configuration of aldol adduct **3ak** was determined by converting into the reported 5-membered lactone **S9** by following procedures.

To a stirred solution of (2R,3R,4S)-**3ak** (357 mg, 1 mmol, obtained with the (*R*)-catalyst) in 10 mL of CH₂Cl₂, 2,6-lutidine (233 µL, 2 mmol, 2 eq.) and TBSOTf (459 µL, 2 mmol, 2 eq.) were added at 0 °C and the reaction mixture was stirred at room temperature for 2 h. Saturated NH₄Cl aq. was added and the mixture was extracted with CH₂Cl₂. The combined organic layers were washed with brine and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure and the resulting residue was purified by column chromatography, giving (2*R*,3*R*,4*S*)-**S7** as a colorless oil (462 mg, 98% yield).

To a stirred solution of (2R,3R,4S)-**S7** (450 mg, 0.955 mmol) in 10 mL of ether, MeOTf (209 µL, 1.91 mmol, 2 eq.) was added at 0 °C and the reaction miture was stirred at room temperature for 5 h. The reaction mixture was cooled to –78 °C and LiAlH(O'Bu)₃ (1.91 mL, 1.0 M in THF, 1.91 mmol, 2 eq.) was added. After stirring at the same temperature for 4 h, silica gel (9.55 g, 10 g/1 mmol starting material) was added slowly with CH₂Cl₂ at –78 °C. The resulting mixture was slowly warmed to room temperature for 1.5 h, and filtered through a short pad of silica gel with ethyl acetate as eluent. The filtrate was concentrated under reduced pressure and the crude material was purified by column chromatography to give aldehyde (2*R*,3*R*,4*S*)-**S8** as a colorless oil (288 mg, 84% yield).

To a stirred solution of (2*R*,3*R*,4*S*)-**S8** (180 mg, 0.5 mmol) in 'BuOH/H₂O (1.2 mL, 5:1), 2-methyl-2-butene (530 µL, 5 mmol, 10 eq.), NaClO₂ (136 mg, 1.5 mmol, 3 eq.), and NaH₂PO₄·2H₂O (234 mg, 1.5 mmol, 3 eq.) were added. After stirring at room temperature for 30 min, the reaction mixture was diluted with ethyl acetate, washed with 1N HCl aq. and brine, dried over Na₂SO₄. Filtartion and concentration gave crude acid, which was used directly for the next step. The crude acid was dissolved in 2 mL MeOH and several drops of 12 N HCl was added till the starting material was consumed in 30 min. Sat. NaHCO₃ aq. was added to neutralize. MeOH was removed under reduced pressure, and the resulting residue was dissolved in EtOAc, and the resulting mixture was washed with brine and dried over Na₂SO₄. The crude product was purified by silica gel column chromatography to give lactone (2*R*,3*R*,4*S*)-**S9** as a colorless oil (58 mg, 90% yield in two steps).

Configuration of (2R,3R,4S)-S9 was confirmed by NOE analysis and reported NMR data.⁴

(2R,3R,4S)-N,N-Diallyl-3,4-bis((tert-butyldimethylsilyl)oxy)-2-methylpentanethioamide ((2R,3R,4S)-S7)

Colorless oil; IR (CHCl₃ solution) *ν* 2957, 2930, 2857, 1472, 1408, 1254, 1149, 1104, 1033, 835 cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 5.91–5.71 (m, 2H), 5.26–5.09 (m, 4H), 4.88 (dd, *J* = 5.5, 14.6 Hz, 1H), 4.41–4.27 (m, 3H), 4.06 (dd, *J* = 4.8, 17.2 Hz, 1H), 3.80–3.76 (m, 1H), 2.95–2.87 (m, 1H), 1.24 (d, 3H), 0.97 (d, 3H), 0.89 (s, 9H), 0.85 (s, 9H), 0.12 (s, 6H), 0.06 (s, 3H), 0.01 (s, 3H) ; ¹³C NMR (CDCl₃, 150 Hz): δ 209.0, 131.3, 131.0, 118.3, 117.9, 82.3, 70.6, 55.3, 52.5, 45.6, 26.3,

26.0, 20.8, 18.5, 18.1, 17.8, -3.5, -4.1, -4.6, -4.8; HRMS (ESI-Orbitrap) Anal. calcd. for C₂₄H₅₀O₂NSSi₂ m/z 472.3095 [M+H]⁺, found 472.3084; [α] $_{D^{28}}$ -61.5 (*c* 1.10, CHCl₃).

(2R,3R,4S)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-methylpentanal ((2R,3R,4S)-S8)

Colorless oil, IR (CHCl₃ solution) *v* 2957, 2931, 2958, 1717, 1472, 1362, 1257, 1104, 839 cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 9.71 (s, 1H), 3.95 (dd, *J* = 2.7, 6.2 Hz, 1H), 3.70–3.64 (m, 1H), 2.72 (qd, *J* = 3.2, 6.9

⁴Nebot, J.; Figueras, S.; Romea, P.; Urpí, F.; Ji, Y. *Tetrahedron* **2006**, *62*, 11090.

Supplementary Information Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

2R.3R.4S)-S9

Hz, 1H), 1.15 (d, *J* = 6.2 Hz, 3H), 1.06 (d, *J* = 7.1 Hz, 3H), 0.83 (s, 18H), 0.05 (s, 3H), 0.04 (s, 3H), 0.02 (s, 3H), -0.05 (s, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ 205.2, 76.1, 70.0, 25.8, 20.7, 18.2, 18.0, 7.4, -4.1, -4.2, -4.9; HRMS (ESI-Orbitrap) Anal. calcd. for C₁₈H₄₀O₃NaSi₂ *m/z* 383.2408 [M+Na]⁺, found 383.2399; [α]_{D²⁸} –16.6 (*c* 1.96, CHCl₃).

(2R,3R,4S)-4-Hydroxy-3,5-dimethyldihydrofuran-2(3H)-one ((2R,3R,4S)-S9)

Colorless oil, IR (CHCl₃ solution) v 3615, 3399, 3025, 2982, 2935, 1780, 1455, 1213, 1180, 1064, 963 cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 4.22-4.16 (m, 1H), 3.71-3.66 (m, 1H), 2.79 (d, J = 5.3 Hz, 1H), 2.62–2.54 (m, 1H), 1.44 (d, J = 6.2 Hz, 3H), 1.28 (d, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ 176.2, 80.6, 79.7, 43.9, 18.0, 12.5; HRMS (ESI-Orbitrap) Anal. calcd. for C₆H₁₀O₃Na *m/z* 153.0522 [M+Na]⁺, found 153.0519; [α]_{D²⁸} -30.4 (*c* 0.64,

CHCl₃). The absolute configuration was determined by NOE experiment, and further confirmed by comparison with reported data. ([α]p -23.5(c 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 4.22 (dq, J = 7.6, 6.1 Hz, 1H), 3.76-3.67 (m, 1H), 2.75 (br, 1H), 2.60 (dq, J = 9.2, 7.2 Hz, 1H), 1.46 (d, J = 6.1 Hz, 3H), 1.31 (d, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 75.4 MHz): δ 176.7, 80.5, 80.0, 43.9, 18.0, 12.5.)4

(2S,3S,4S)-**3ak** (the major diastereomer obtained with the (S)-catalyst) was converted to lactone (2S,3S,4S)-**S9** by following the identical procedure and its configuration was confirmed by comparing with the reported NMR data.⁵

(2S,3S,4S)-N,N-Diallyl-3,4-bis((tert-butyldimethylsilyl)oxy)-2-methylpentanethioamide ((2S,3S,4S)-S7)

Colorless oil; IR (CHCl₃ solution) v 2958, 2929, 2857, 1711, 1255, 1103, 837 cm⁻¹; ¹H NMR TBS (CDCl₃, 400 Hz): δ 5.92–5.80 (m, 2H), 5.23–5.14 (m, 4H), 4.65–4.47 (m, 3H), 4.43 (q, J = 4.4 Hz, TBSC 1H), 4.05–3.9 9 (m, 1H), 3.88–3.83 (m, 1H), 3.34–3.28 (m, 1H), 1.17 (d, J = 6.9 Hz, 3H), 1.11 (d, J = 6.4 Hz, 3H), 0.89 (s, 9H), 0.84 (s, 9H), 0.17 (s, 3H), 0.07 (s, 3H), 0.04 (s, 3H), -0.01 (s, 3H); ¹³C (2S,3S,4S)-S7 NMR (CDCl₃, 150 Hz): δ 211.1, 132.1, 131.6, 118.2, 118.0, 77.8, 71.6, 55.9, 53.0, 42.2, 26.0, 20.2, 18.5, 18.2, 17.6, -4.0, -4.4, -4.5, -4.7; HRMS (ESI-Orbitrap) Anal. calcd. for C24H50O2NSSi2 m/z 472.3095 [M+H]+, found 472.3093; [α]D²⁷ 38.8 (*c* 0.80, CHCl₃).

(2S,3S,4S)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-methylpentanal ((2S,3S,4S)-S8)

Colorless oil, IR (CHCl3 solution) v 2958, 2929, 2857, 1711, 1255, 1103, 837 cm-1; 1H NMR (CDCl3, TBSC TBSO 400 Hz): 8 9.57 (d, J = 3.2 Hz, 1H), 3.88–3.82 (m, 1H), 3.78–3.75 (m, 1H), 2.58–2.54 (m, 1H), 1.12 (d, J = 6.4 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.87 (s, 9H), 0.84 (s, 9H), 0.05 (d, 6H), 0.03 (s, 3H), 0.01 (s, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ 202.5, 75.3, 70.7, 48.0, 25.7, 18.0, 17.4, 11.4, -4.5, -4.6, -4.7, -4.8; (2S,3S,4S)-S8 HRMS (ESI-Orbitrap) Anal. calcd. for C18H40O3NaSi2 m/z 383.2408 [M+Na]+, found 383.2404; [α]D²⁸ -0.6 (c 0.71, CHCl3).

(25,35,45)-4-Hydroxy-3,5-dimethyldihydrofuran-2(3H)-one ((25,35,45)-S9)

colorless oil, IR (CHCl₃ solution) v 3503, 3406, 3023, 3016, 1709, 1418, 1363, 1227, 1090, 902 cm⁻¹; ¹H NMR (CDCl₃, 400 Hz): δ 4.68–4.61 (m, 1H), 4.14–4.10 (m, 1H), 2.64–2.57 (m, 1H), 2.03 (dd, J = 1.8, 4.8 Hz, 1H), 1.38 (dd, J = 1.8, 6.4 Hz, 3H), 1.28 (dd, J = 2.0, 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 150 Hz): δ 177.9, 77.8,

75.4, 43.2, 13.8, 13.0; HRMS (ESI-Orbitrap) Anal. calcd. for C6H10O3Na m/z 153.0522 [M+Na]+, found 153.0519; $[\alpha]_{D^{28}}$ –71.7 (c 0.30, CHCl₃). The absolute configuration was confirmed by comparison with the reported data (typical chemical shifts in ¹H NMR: δ = 4.12 (dd, *J* = 5.0, 5.0 Hz, 1H), 4.66 (dq, *J* = 6.6 Hz, 1H)).⁵

S14

NOE

To a flame-dried 20 mL test tube equipped with a magnetic striring bar and a 3-way glass stopcock were charged with (S,S)-Ph-BPE (10.1 mg, 0.02 mmol), 2,2,5,7,8-pentamethylchromanol (ArOH, 4.4 mg, 0.02 mmol) and mesitylcopper (3.6 mg, 0.02 mmol) in a dry box. To the mixture was added THF (0.4 mL, 0.05 M) *via* syringe at room temperature, after 5 min of stirring at the same temperature, yellow-green solution of (S,S)-Ph-BPE/mesitylcopper/ArOH solution was obtained, which was used within 15 min.

To a flame-dried 20 mL test tube equipped with a magnetic stirring bar and a 3-way glass stopcock were charged with (S)-2k (44 µL, 0.2 mmol), dry THF (1.76 mL, 0.1 M). The reaction mixture was cooled to -78 °C. To the resulting cooled solution was added Ph-BPE/mesitylcopper/ArOH solution (0.2 mL, 0.01 mmol) prepared above dropwise to run the reaction. After 24 h at the same temperature, the precooled solution of acetic acid in THF (0.1 M in THF, 1 mL, 0.1 mmol), then saturated aq. NH4Cl were added to quench the reaction. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. The filtrate was concentrated under reduced pressure. ¹H NMR of the crude mixture showed complete recovery of (S)-2k. The enantiopurity of the recovered aldehyde was determined to be >99% by HPLC analysis after transforming to N-benzyl-2-((tert-butyldimethylsilyl)oxy)propanamide as mentioned before.

5. Calculated Structure of Aldol Adducts

All calculations were performed using Gaussian 09.6 Computed XYZ-coordinates are summarized in Table S1-9.

Number	atom	Х	Y	Ζ	
1	С	2.226447	0.354306	-0.343339	
2	С	3.205723	-0.336044	-1.299125	
3	Н	3.630872	-1.239154	-0.858702	
4	Н	2.718419	-0.596946	-2.241958	
5	Н	4.037235	0.329940	-1.530408	
6	С	2.919521	0.563412	1.002891	
7	Н	.312801	1.157422	1.686001	
8	Н	3.133531	-0.395994	1.473194	
9	Н	3.861987	1.093603	0.857906	
10	С	0.974272	-0.535103	-0.191164	
11	С	-0.065366	0.033843	0.808077	
12	С	1.410599	0.369493	0.172952	
13	Ν	-2.121345	-0.612174	-0.428429	
14	С	-3.426175	-0.289067	-0.994002	
15	Η	-3.820028	-1.180961	-1.474486	
16	Η	-4.107576	0.047721	-0.212955	

Table S1. XYZ-coordinates and the structure of 3al' optimized at PM2 with a 6-31G(d,p) basis set.

⁶M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Supplementary Information Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

			in an and and	reede raannag
17	С	-1.754320	-2.023405	-0.487838
18	Н	-0.752882	-2.190139	-0.115735
19	Н	-2.460007	-2.613677	0.100579
20	S	-1.980614	1.930740	0.271028
21	С	-0.231274	-0.775613	2.101377
22	Н	-0.910128	-0.233505	2.759309
23	Н	-0.627604	-1.773182	1.936826
24	Н	0.729687	-0.879650	2.601052
25	0	1.323414	-1.860061	0.244303
26	Н	1.846808	-2.259783	-0.462102
27	Н	0.512449	-0.595032	-1.187874
28	Н	0.292664	1.009203	1.124130
29	С	1.816566	1.693855	-0.958601
30	Н	1.376767	1.546210	-1.947137
31	Н	1.087937	2.226898	-0.349442
32	Н	2.694223	2.331592	-1.074432
33	Н	-1.804622	-2.361644	-1.523963
34	Н	-3.329376	0.516896	-1.719045

Table S2. XYZ-coordinates and the structure of **3aa'** optimized at PM2 with a 6-31G(d,p) basis set.

 Number	atom	Х	Y	Z	
 1	С	-2.308897	-0.571191	-0.540235	
2	С	-3.224416	0.018893	-1.611792	
3	Н	-3.733804	0.912435	-1.244643	
4	Н	-2.667382	0.282354	-2.512374	
5	Н	-3.998133	-0.694483	-1.893132	
6	С	-3.099863	-0.890196	0.725151	and a state of the
7	Н	-2.495168	-1.414299	1.463722	
8	Н	-3.469766	0.029530	1.176635	
9	Н	-3.953923	-1.524743	0.488494	
10	С	-1.120904	0.358308	-0.262322	
11	С	-0.088531	-0.288419	0.694899	
12	С	1.297880	-0.436404	0.076653	
13	Ν	2.007236	0.673464	-0.232331	
14	С	3.356524	0.520087	-0.763838	
15	Н	3.791342	1.509493	-0.880341	
16	Н	3.960058	-0.077681	-0.083440	
17	С	1.534973	2.050848	-0.136469	
18	Н	0.496004	2.095921	0.159702	
19	Н	2.141569	2.601094	0.585337	
20	S	1.911572	-1.964956	-0.165396	
21	С	-0.035051	0.319680	2.101451	
22	Н	0.651813	-0.270659	2.707529	
23	Н	0.296163	1.353722	2.108499	
24	Н	-1.020749	0.286903	2.561148	
25	0	-1.559096	1.603324	0.308069	
26	Н	-2.101330	2.043745	-0.359348	
27	Н	-0.630356	0.558014	-1.225461	

			Managing the	Supplementary Information e Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides
28	Н	-0.397170	-1.323763	0.825373
29	Н	1.640924	2.531698	-1.110629
30	Н	3.332566	0.005935	-1.724544
31	Н	-1.875986	-1.496386	-0.935415

_

Table S3. XYZ-coordinates and the structure of 3ab' optimized at PM2 with a 6-31G(d,p) basis set.NumberatomXYZ

Number	atom	Х	Y	Z	
1	С	0.194026	-0.655602	-0.122301	0. a
2	С	-0.794310	0.124714	0.781314	
3	С	-2.071889	0.535796	0.057791	
4	Ν	-2.928621	-0.421683	-0.366210	
5	С	-4.177191	-0.016935	-1.001591	
6	Н	-4.763688	-0.910356	-1.200157	
7	Н	-4.727761	0.656008	-0.347060	j j
8	С	-2.705745	-1.862708	-0.306967	
9	Н	-1.721508	-2.098863	0.073625	
10	Н	-3.460969	-2.328277	0.329124	
11	S	-2.390272	2.155756	-0.156833	
12	С	-1.079084	-0.519005	2.143544	
13	Н	-1.706059	0.159222	2.722048	
14	Н	-1.582746	-1.477991	2.067739	
15	Н	-0.147779	-0.678492	2.683299	
16	0	0.370316	-1.973667	0.424268	
17	Н	0.901429	-2.472085	-0.210646	
18	Н	-0.240265	-0.739829	-1.129060	
19	Н	-0.325598	1.083790	0.993404	
20	Н	-2.799774	-2.278754	-1.311735	
21	Н	-3.977961	0.514723	-1.932011	
22	С	1.534524	0.072940	-0.266277	
23	С	2.285447	0.205279	1.060176	
24	С	2.429056	-0.597136	-1.313682	
25	Н	1.291886	1.079340	-0.632591	
26	С	3.606910	0.953901	0.882171	
27	Н	2.476787	-0.797387	1.452491	
28	Н	1.669167	0.722891	1.798220	
29	С	3.743613	0.159376	-1.500566	
30	Н	2.665978	-1.618011	-0.989977	
31	Н	1.894775	-0.675026	-2.265482	
32	С	4.488187	0.291080	-0.174044	
33	Н	4.135528	1.009896	1.836346	
34	Н	3.395890	1.983831	0.577825	
35	Н	4.366960	-0.346084	-2.241561	
36	Н	3.527092	1.156771	-1.895106	
37	Н	5.410899	0.859029	-0.311363	
38	Н	4.778618	-0.705530	0.173878	

Supplementary Information Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

Table S4. XYZ-coordinates and the structure of **3ba'** optimized at PM2 with a 6-31G(d,p) basis set.

Number	atom	Х	Y	Z	2 with a 6-31G(d,p) basis set.
1	С	-2.423420	-0.301391	0.739594	
2	С	-3.414940	-1.459521	0.637663	1
3	Н	-3.899157	-1.476811	-0.341046	
4	Н	-2.924336	-2.420722	0.799551	
5	Н	-4.204597	-1.357279	1.381114	
6	С	-3.120378	1.027623	0.463347	
7	Н	-2.463294	1.877959	0.640149	
8	Н	-3.457091	1.065159	-0.571986	
9	Н	-3.989042	1.142157	1.111815	
10	С	-1.219995	-0.527939	-0.183800	•
11	С	-0.121275	0.547360	0.017330	
12	С	1.209297	-0.050018	0.461089	
13	О	1.939979	-0.759874	-0.431366	
14	С	3.248044	-1.264852	-0.032956	
15	Н	3.748935	-1.645093	-0.920096	
16	Н	3.831085	-0.463341	0.413485	
17	С	1.466951	-1.254189	-1.721079	
18	Н	0.436804	-0.978022	-1.900191	
19	Н	2.093937	-0.860374	-2.522911	
20	S	1.736850	0.218557	2.015960	
21	С	0.020853	1.558665	-1.132147	
22	Н	0.309522	1.068456	-2.059691	
23	Н	-0.963466	1.990779	-1.317946	
24	0	-1.617792	-0.528329	-1.565831	
25	Н	-2.199426	-1.289734	-1.690157	
26	Н	-0.797612	-1.511396	0.066868	
27	Η	-0.418376	1.130035	0.888924	
28	Н	1.542070	-2.343676	-1.730700	
29	Η	3.149221	-2.059243	0.708517	
30	Η	-2.017582	-0.289524	1.756785	
31	С	1.017920	2.663068	-0.796860	
32	Н	1.046021	3.406751	-1.593133	
33	Н	0.747599	3.167102	0.131028	
34	Н	2.023331	2.262836	-0.672609	

Table S5. XYZ-coordinates and the structure of **3ac'** optimized at PM2 with a 6-31G(d,p) basis set.

Number	atom	Х	Y	Z	
1	С	1.876078	-0.376656	0.616191	
2	С	3.131396	0.143653	-0.109447	
3	С	0.536275	-0.144995	-0.088184	
4	С	-0.627726	-0.078824	0.906316	
5	С	-1.904490	0.442083	0.239224	
6	Ν	-2.861795	-0.412123	-0.187131	
7	С	-4.135279	0.128305	-0.647599	1 - 1
8	Η	-4.855689	-0.686035	-0.677810	
9	Η	-4.470770	0.903043	0.035996	

Supplementary Information Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

			Managing the	e Ketto-i attiway
10	С	-2.679959	-1.837855	-0.456299
11	Н	-1.629701	-2.079736	-0.506008
12	Н	-3.191482	-2.444736	0.292598
13	S	-2.079259	2.095094	0.113811
14	С	-0.750604	-1.328450	1.787006
15	Н	-1.721627	-1.356433	2.280644
16	Η	-0.615195	-2.253702	1.234614
17	Η	0.011435	-1.296964	2.564845
18	0	0.244801	-1.204785	-1.013383
19	Η	0.881035	-1.147502	-1.734934
20	Η	0.543137	0.814154	-0.616849
21	Η	-0.369516	0.749244	1.567359
22	Η	3.114478	-2.051318	-1.432643
23	Η	-4.035707	0.573382	-1.639048
24	Η	1.852450	0.095094	1.603997
25	Η	1.971292	-1.454297	0.780470
26	С	4.359463	-0.385661	0.634475
27	Н	5.278219	-0.002163	0.187541
28	Η	4.339129	-0.078744	1.681288
29	Η	4.394533	-1.475836	0.601500
30	С	3.158662	1.673525	-0.086306
31	Н	2.291628	2.103241	-0.588475
32	Н	3.169612	2.042573	0.940370
33	Н	4.053118	2.045916	-0.588507
34	С	3.188879	-0.340048	-1.560261
35	Н	3.105877	-1.427397	-1.618893
36	Н	2.401128	0.115000	-2.165336
37	Н	4.137713	-0.055607	-2.017405

Table S6. XYZ-coordinates and the structure of **3af'** optimized at PM2 with a 6-31G(d,p) basis set.

	coordinate	o with the othered	le of building of t	
Number	atom	Х	Y	Ζ
1	С	2.117108	-0.180179	0.585435
2	С	3.319272	-0.055162	-0.355549
3	Н	3.230554	-0.840599	-1.114081
4	С	0.760989	0.005486	-0.088407
5	С	-0.405227	-0.155801	0.893606
6	С	-1.710647	0.386247	0.301892
7	Ν	-2.602427	-0.446769	-0.280468
8	С	-3.906325	0.076142	-0.670724
9	Н	-4.566619	-0.768256	-0.855162
10	Н	-4.303288	0.697797	0.126882
11	С	-2.323307	-1.795631	-0.770315
12	Н	-1.259143	-1.966312	-0.817911
13	Н	-2.816678	-2.545175	-0.149360
14	S	-1.999947	2.020804	0.451201
15	С	-0.466415	-1.532681	1.569478
16	Н	-1.457696	-1.712160	1.984329
17	Н	-0.220561	-2.347382	0.893828

Supplementary Information Managing the Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides

			managing the	i neuro i unimuj
18	Н	0.242564	-1.564694	2.395386
19	0	0.585573	-0.950002	-1.146412
20	Н	1.161913	-0.685784	-1.873876
21	Н	0.683812	1.021399	-0.488977
22	Н	-0.197658	0.573894	1.677120
23	Н	-2.715764	-1.871534	-1.784289
24	Н	-3.828353	0.690197	-1.569465
25	Н	2.212310	0.563719	1.384264
26	Н	2.145164	-1.167008	1.053694
27	С	4.613979	-0.305576	0.413869
28	Н	5.477794	-0.275743	-0.250662
29	Н	4.753336	0.458195	1.180881
30	Н	4.597400	-1.278363	0.905636
31	С	3.370695	1.299830	-1.058780
32	Н	2.506166	1.473136	-1.699815
33	Η	3.403217	2.106774	-0.324638
34	Η	4.262364	1.376373	-1.681438

Table S7. XYZ-coordinates and the structure of **3ag'** optimized at PM2 with a 6-31G(d,p) basis set.

Number	atom	Х	Ŷ	Z
1	С	1.366547	-0.022164	0.408936
2	С	2.474408	0.004330	-0.642073
3	С	-0.021339	0.024985	-0.224885
4	С	-1.143492	0.066599	0.817609
5	С	-2.482078	0.460840	0.184964
6	Ν	-3.383815	-0.483222	-0.167304
7	С	-4.712417	-0.064191	-0.597623
8	Н	-5.365536	-0.933466	-0.569762
9	Н	-5.084709	0.708426	0.069233
10	С	-3.103458	-1.903162	-0.373718
11	Н	-2.039843	-2.071040	-0.439938
12	Н	-3.550974	-2.507612	0.416981
13	S	-2.793484	2.087774	0.001231
14	С	-1.149139	-1.137112	1.769843
15	Н	-2.112464	-1.225145	2.271164
16	Н	-0.932274	-2.076186	1.268174
17	Н	-0.392680	-0.993566	2.540127
18	0	-0.237171	-1.120359	-1.063863
19	Н	0.292325	-0.997633	-1.860925
20	Н	-0.109813	0.942006	-0.820199
21	Н	-0.916176	0.946384	1.420726
22	Н	-3.544013	-2.196233	-1.326521
23	Н	-4.684526	0.347530	-1.607858
24	Н	1.459681	0.833003	1.083077
25	Н	1.445714	-0.929261	1.009944
26	С	3.917095	0.108521	-0.117248
27	Н	2.405811	-0.908656	-1.243365
28	Н	2.298960	0.846888	-1.322244

			Managing th	ne Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides
29	С	4.862233	0.040214	-1.318961
30	Н	5.902098	0.122313	-0.998841
31	Н	4.746363	-0.905330	-1.851566
32	Н	4.659486	0.851924	-2.019738
33	С	4.136109	1.437637	0.607391
34	Н	3.896485	2.279790	-0.044248
35	Н	3.521975	1.516467	1.504159
36	Н	5.179258	1.534351	0.912573
37	С	4.231033	-1.050773	0.829556
38	Н	3.630030	-1.002093	1.737429
39	Н	4.040506	-2.010879	0.346054
40	Н	5.281116	-1.025277	1.125150

Supplementary Information

Table S8. XYZ-coordinates and the structure of **3ah'** optimized at PM2 with a 6-31G(d,p) basis set.

Number	atom	Х	Y	Z	
1	С	0.884852	0.013826	0.110681	
2	С	1.901251	0.023952	-1.035123	
3	С	-0.557332	0.039951	-0.383595	
4	С	-1.570666	0.100753	0.763987	
5	С	-2.967792	0.471300	0.255621	
6	Ν	-3.894666	-0.485829	0.024595	
7	С	-5.262867	-0.084336	-0.280309	
8	Н	-5.904530	-0.953933	-0.157721	
9	Н	-5.569268	0.708402	0.396321	
10	С	-3.626154	-1.909838	-0.170453	
11	Н	-2.574564	-2.072682	-0.348804	
12	Н	-3.978023	-2.493925	0.681434	
13	S	-3.304724	2.090821	0.052907	
14	С	-1.470682	-1.079660	1.739643	
15	Н	-2.376753	-1.158711	2.339464	
16	Н	-1.301197	-2.030097	1.241119	
17	Н	-0.639691	-0.914574	2.423862	
18	0	-0.839165	-1.128522	-1.171706	
19	Н	-0.477141	-0.978738	-2.053004	
20	Н	-0.712084	0.941272	-0.988696	
21	Н	-1.292312	0.996111	1.321123	
22	Н	-4.166537	-2.233065	-1.059983	
23	Н	-5.341326	0.294519	-1.300718	
24	Н	1.058388	0.882678	0.752057	
25	Н	1.046258	-0.880278	0.716524	
26	Н	1.757893	-0.868414	-1.649307	
27	Н	1.721311	0.894320	-1.673764	
28	С	3.316237	0.053824	-0.522494	
29	С	3.956657	1.272378	-0.264603	
30	С	3.991268	-1.136612	-0.224529	
31	С	5.247226	1.301994	0.264940	
32	Н	3.444822	2.201009	-0.492939	
33	С	5.281598	-1.111850	0.305870	

			Managing th	Supplementary Information he Retro-Pathway in Direct Catalytic Asymmetric Aldol Reactions of Thioamides
			Managing in	the relief allway in Direct Catalytic Asymmetric Autor reactions of Thoannees
34	Н	3.506225	-2.086594	-0.421796
35	С	5.911634	0.108856	0.555291
36	Н	5.731855	2.252199	0.451627
37	Н	5.793104	-2.040992	0.524395
38	Н	6.913761	0.130103	0.964208

Table S9. XYZ-coordinates and the structure of **3ca'** optimized at PM2 with a 6-31G(d,p) basis set.

Number	atom	Х	Ŷ	Z	
 1	С	2.597478	-0.355521	-0.317029	
2	С	3.573187	-0.656441	0.819081	2
3	Н	3.593387	0.167971	1.533063	
4	Н	3.296165	-1.569281	1.349176	
5	Н	4.585632	-0.784645	0.437782	
6	С	2.973577	0.946740	-1.018085	
7	Н	2.399206	1.100020	-1.930764	
8	Н	2.794673	1.790463	-0.352107	
9	Н	4.029085	0.943384	-1.290421	
10	С	1.160257	-0.340201	0.215530	
11	С	0.111199	-0.087476	-0.860717	
12	С	-1.288147	-0.331018	-0.332940	
13	Ν	-2.033743	0.747679	-0.012472	
14	С	-3.409547	0.540579	0.424609	
15	Н	-3.900217	1.506610	0.496639	
16	Н	-3.931880	-0.092630	-0.289950	
17	С	-1.529632	2.121553	-0.060856	
18	Н	-0.514303	2.160015	0.315836	
19	Н	-1.575685	2.528440	-1.073332	
20	S	-1.836012	-1.892237	-0.165507	
21	0	0.980943	0.688865	1.203632	
22	Н	1.341973	0.360259	2.035510	
23	Н	0.941089	-1.319347	0.656525	
24	Н	0.275173	-0.796289	-1.671727	
25	Н	-2.154552	2.732649	0.584164	
26	Н	-3.431507	0.036258	1.390833	
27	Η	2.650830	-1.178396	-1.038266	
28	Η	0.235553	0.916352	-1.264167	

6. NMR Spectra of New Compounds

