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Polarity effect on the photophysics of 1 

As could be seen from comparison between Figures 1 and 3 (main text) the overlap between the 

points (lifetimes and quantum yields) collected for 1 at different temperatures for identical viscosities 

is not precise, whereas for 3 a perfect overlap is observed (Figure 3b). The lack of overlap at low 

viscosities is particularly noticeable for the quantum yield measurements of 1, Figure 1b. We believe 

that the following reasons could explain this slight spread of data in Figure 1: 

1) A smaller dynamic range of lifetimes (260 – 5700 ps) and quantum yields (0.02  - 0.77) in 

Figure 1 compared to a range of ratios (0.04 – 2.2) in Figure 3b makes the spread in Figure 1 more 

visible. 

2) The photophysics of 1 in low viscosity environments (up to 30 cP) is known to be nominally 

affected by polarity.1 The dielectric constant of methanol ranges from 40 to 33 between 0 to 25 ˚C.2 

Furthermore, the dielectric constant of glycerol is 40 at 25 ˚C,3 which will affect the resulting 

dielectric constant of methanol/glycerol mixtures. Overall the small variations in the dielectric 

constant between solutions of identical viscosity may result in less than perfect overlap of curves. 

The solution polarity appears to have a negligible effect on the photophysics of the porphyrin dimer 

3. 

3) Solution polarity can have an effect on both knr and kr of rotor 1 and as such the polarity 

effect on quantum yields may be even more pronounced than that on fluorescence lifetimes. This is 

indeed seen in Figure 1b, even though we adjusted the quantum yield measurements for variations 

in the refractive index of methanol/glycerol solutions. However, it is noteworthy that only the 

fluorescence lifetime is useful as a concentration bias free measurement of viscosity and as such the 

quantum yield measurements do not affect the usefulness of 1 as a temperature-independent 

viscosity probe. 

In conclusion, we emphasise that the spread seen in Figure 1a is a lot smaller than the spread 

expected if the photophysics of the dye is affected by temperature, e.g. the data shown in Figures 2b 

or 3d. Therefore, our conclusion that 1 shows temperature-independent photophysics is valid.  
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Figure S1. Normalized absorption and fluorescence spectra of dyes 1(a), 2 (b) and 3 (c) in 50% 

methanol-glycerol mixture. The excitation wavelengths were 400 nm (for 1), 500 nm (for 2) and 453 

nm (for 3). 

 

 

Figure S2. a) Fluorescence decays of 2 in various methanol-glycerol mixtures of increasing viscosity 

recorded at 20 ˚C with an excitation wavelength of 560 nm. Only a small correlation with the 

solution viscosity is observed. b) Fluorescence decays of 2 in water-glycerol mixtures at 60 ˚C with an 

excitation wavelength of 540 nm. Decays show biexponential character at this temperature. c) 

Lifetimes of 2 in methanol-glycerol (empty squares) and water-glycerol (full circles) mixtures at 

temperatures ranging from 20 ˚C to 60 ˚C. Intensity-weighted mean lifetimes are shown for 

biexponential decays. 
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Figure S3. a) Lifetimes of 2 recorded in water-glycerol mixtures at variable temperature.  

Note the time resolved decays with average lifetimes shorter than ca 1.8 ns (e.g. those recorded at a 

temperature between 30-60 ˚C and a viscosity below 10 cP) are best fitted with a biexponential 

function. b) The second minor (and temperature independent) lifetime component of biexponential 

decays, plotted against temperature for mixtures of 30-70% glycerol 

c) The amplitudes of the second minor lifetime component of biexponential decays.  
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Figure S4. Normalized fluorescence spectra of 2 in 50% methanol-glycerol mixture and in water at 

room temperature. A small (5 nm) solvatochromic shift between the two curves is visible.  
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Figure S5. Lifetimes (a) and amplitudes (b) of a minor lifetime component of 3 observed in 

methanol/glycerol mixtures of varied temperature and viscosity.  

We have observed biexponential fluorescence decays of 3, which is consistent with our previous 

report.4 The major component corresponds to the viscosity-sensitive twisted conformer of 3, 

whereas the minor component comes from the planar conformer, due to the overlap of the 

corresponding peaks in the fluorescence spectrum. In most decays, the amplitudes of this minor 

component are below 5%. Exception to this are decays recorded at high viscosities, where the 

lifetime of the principal exponential component approaches the lifetime of the minor component. In 

these cases, the fitting gives  unreliable (and high) amplitude values. To determine the lifetime of a 

principal lifetime component in such cases, we have recalculated the lifetime from the intensity-

weighed mean lifetime using fixed amplitudes of 95% and 5% for the principal and minor 

components respectively. The above mentioned complication affects the following data points: 

1) 70% glycerol, 10 ˚C. 
2) 80% glycerol, 10 ˚C, 20 ˚C, 30 ˚C. 
3) 90 % glycerol, 20 ˚C, 30 ˚C. 
4) 100% glycerol, 30 ˚C, 40 ˚C, 50 ˚C. 

 

 

Figure S6. The viscosity-temperature relationship for the 3:7 methanol/glycerol mixture. The 

viscosity data points (blue circles) were measured in the bulk solution using a viscometer and the 

temperature dependence was fitted with a function obtained from Cheng et al (shown as an insert).5 

This fit was used for calculating predicted temperature maps from viscosity maps.   
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Figure S7. a) The difference between the temperature maps measured with 3 (Figure 5d, main text) 

and predicted temperature maps calculated from viscosity maps measured with 3 using the 

viscosity-temperature relationship in Figure S6. b) The plot of pixel viscosity versus pixel 

temperature as measured in Figure 5, main text, using combined ratiometric and lifetime data 

collection. The pixels from each image are colour-coded blue (149s), green (273s) and red (956s). 

The temperature-viscosity curve measured for 70% methanol-glycerol bulk solution (Figure S6) is 

also shown as a red line. 

The data above helps visualise the error of our method for measuring the temperature. 

Figure S7a indicates that the error is below 5 ˚C (indicated by a blue colour) in most pixels.  

A higher error observed in 149s image might have resulted from rapid initial heating of the sample 

during the data acquisition periods needed for the acquisition of viscosity and temperature maps 

(the time needed to measure two images is ca 60 seconds). 
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