Non-decarbonylative photochemical versus thermal activation of Bu₄N[Fe(CO)₃(NO)] – the Fe-catalyzed Cloke-Wilson rearrangement of vinyl and arylcyclopropanes

Che-Hung Lin,^[a] Dominik Pursley,^[a] Johannes E. M. N. Klein,^[a] Johannes Teske,^[a] Jennifer A. Allen,^[b] Fabian Rami,^{[a][c]} Andreas Köhn^[c] and Bernd Plietker^[a]*

[a] Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany, e-mail: bernd.plietker@oc.uni-stuttgart.de

[b] Mettler-Toledo GmbH, Ockerweg 3, D-35396 Giessen, Germany

[c] Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, DE-70569 Stuttgart, Germany.

Table of Contents

1. General Remarks	S2
2. IR spectra of TBA[Fe]	S2
3. UV spectrum of TBA[Fe]	S7
4. Fluorescence spectrum of TBA[Fe]	S7
5. Conversion-Time and Temperature-Time Plot for the Rearrangement	S8
of VCP 1 (measured by in-situ IR-spectroscopy)	
6. Preparation of Vinylclopropanes	S8-19
7. Preparation of Arylcyclopropanes	S19-24
8. NBu ₄ [Fe(CO) ₃ (NO)] (TBAFe)-catalyzed Cloke-Wilson Rearrangement of Vinylcyclopropanes	S24-38
9. NBu ₄ [Fe(CO) ₃ (NO)] (TBAFe)-catalyzed Cloke-Wilson Rearrangement of Arylcyclopropanes	S38-45
10. ¹ H and ¹³ C-NMR Spectra	S46-96
11. Additional Information for Crystals	S97-S144
12. Computed Structures and Energies	S145-S151
13. References	S152

1. General Remarks

All reactions sensitive to moisture and/or air were carried out under an atmosphere of dry nitrogen (N₂) using anhydrous solvents. Solvents were either dried by passing them through commercially available columns (*n*-pentane, CH₂Cl₂) or distilling them from CaH₂ (CCl₄, C₂H₂Cl₄, C₂H₄Cl₂, PhH). THF was freshly distilled from Na/benzophenone (ketyl radical). IR spectra were recorded on a Bruker Vector 22 FT-IR spectrometer equipped with a Specac Golden Gate ATR unit. High resolution mass spectra (HRMS) were recorded using a Finnigan MAT 95 spectrometer (EI) or a Bruker micrOTOF-Q spectrometer (ESI). NMR spectra were recorded on a Bruker Avance 250MHz, 300 MHz or 500 MHz spectrometer and calibrated using the residual non-deuterated solvent signal or tetramethylsilane (TMS) as an internal standard. Column chromatography (CC) was carried out using silica gel (60 Dm, 0.040-0.063 mm) and thin layer chromatography (TLC) was carried out using silica gel plated aluminum sheets (silica gel 60, F₂₅₄). High performance liquid chromatography (HPLC) was carried out using a K-501 pump and a K 2400 RI-detector in combination with a Eurospher-100 Si column by KNAUER. The photochemical reactions were carried out using a Heraeus Hg-Lamp (180 W), a ORIEL Xenon-Lamp (75 W), or a MEGAMAN Compact Fluorescent Lamp (23 W, 1395 Lumen).

2. IR spectra of TBA[Fe]

Figure S1: TBA[Fe] in CH₃CN - no irradiation.

Figure S2: TBA[Fe] in CH₃CN – after 6 h irradiation (180 W, Hg lamp).

Figure S3: TBA[Fe] + PPh₃ (1.5 equiv.) in CH₃CN - after 4 h irradiation (180 W, Hg lamp).

Figure S4: TBA[Fe] in DCM - no heating.

Figure S5: TBA[Fe] in DCM – after 6 h at 45 °C.

Figure S6: TBA[Fe] + PPh₃ (2 equiv.) in DCM - after 4 h at 45 °C.

Figure S7: TBA[Fe] in Toluene - no MW.

Figure S8: TBA[Fe] in Toluene - after 2 h MW at 120 °C.

Figure S9: TBA[Fe] + PPh₃ (2 equiv.) in Toluene - after 2 h MW at 120 °C.

3. UV spectrum of TBA[Fe]

Figure S10: UV spectrum of TBA[Fe] in CH₃CN.

4. Fluorescence spectrum of TBA[Fe]

Figure S11: Fluorescence spectrum of TBA[Fe] in CH₃CN. The excitation scan (blue) and emission scan (red).

5. Conversion-Time and Temperature-Time Plot for the Rearrangement of VCP <u>1 (measured by in-situ IR-spectroscopy)</u>

6. Preparation of Vinylclopropanes

1,1'-(2-Vinylcyclopropane-1,1-diyl)diethanone (1):^[1]

(*trans*)-1,4-Dibrombut-2-ene (4.278 g, 20 mmol, 1 equiv.) and K_2CO_3 (8.154 g, 59 mmol, 2.95 equiv.) were suspended in acetone (35 mL). 2,4-Pentanedione (2.0 mL, 20 mmol, 1.0 equiv.) was added drop wise and the mixture was heated to reflux for 14.75 h. The reaction mixture was cooled to room temperature and Et₂O (35 mL) was added. The resulting precipitate was removed via filtration and washed with Et₂O (2 x 25 mL). The solvent was removed under reduced pressure and the residue purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) yielding 1.547 g (51%) of the desired product **1** as a colorless oil.

 $R_f = 0.29 \text{ (}n\text{-pentane/Et}_2\text{O}, 4:1 \text{ (v/v)}\text{)}; {}^1\text{H-NMR} (250 \text{ MHz}, \text{CDCl}_3) \delta 5.33-5.28 \text{ (m, 2H)}, 5.17-5.13 \text{ (m, 1H)}, 2.67-2.58 \text{ (m, 1H)}, 2.27 \text{ (s, 3H)}, 2.17 \text{ (s, 3H)}, 1.84 \text{ (dd, } J = 7.1, 5.3 \text{ Hz}, 1\text{H}\text{)}, 1.49 \text{ (dd, } J = 8.8, 5.1 \text{ Hz}, 1\text{H}\text{)}$ ppm; ${}^{13}\text{C-NMR}$ (63 MHz, CDCl}3) δ 202.7, 202.4, 132.8, 118.9, 51.2, 32.4, 30.9, 26.9, 20.2 ppm; IR (ATR, neat) 3088, 3010, 1684, 1638 cm⁻¹; GC/MS (EI, 70 eV) m/z (%) 152 (M⁺, 5), 137 (40), 109 (100), 95 (22), 91 (33), 67 (44).

(2-Vinylcyclopropane-1,1-diyl)bis(phenylmethanone) (3):^[2]

1,3-Diphenyl-1,3-propanedione (3.364 g, 15 mmol, 1 equiv.) was dissolved in anhydrous THF (20 mL) under an atmosphere of dry nitrogen. NaH (1.200 g, 60% in mineral oil, 30 mmol) was added as a solid and the suspension stirred for 15 min at room temperature. (*trans*)-1,4-Dibrombut-2-ene (3.158 g, 15 mmol, 1 equiv.) was added and the reaction mixture stirred for 66 h at room temperature. The resulting suspension was diluted with Et₂O and the precipitate removed via filtration and washed with Et₂O. A saturated solution of NH₄Cl (100 mL) was added. The mixture was extracted with Et₂O (2 x 150 mL) and EtOAc (100 mL). The combined organic phases were dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified via column chromatography on silica gel eluting with petrol ether/EtOAc 20:1 to 10:1 (v/v) to yield a mixture of product and unreacted starting materials. Pure product was obtained via additional purification using HPLC eluting with petrol ether/EtOAc 20:1 giving 758 mg (18%) of **3** as a colorless solid.

 $R_f = 0.33$ (petrol ether/EtOAc, 20:1(v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 7.72-7.64 (m, 4H), 7.39-7.32 (m, 2H), 7.26-7.21 (m, 4H), 5.42-5.38 (m, 2H), 3.37-3.29 (m, 1H), 2.34 (dd, J = 4.4, 7.2 Hz, 1H), 1.58 (dd, J = 4.4, 8.6 Hz, 1H) ppm; ¹³C-NMR (63 MHz, CDCl₃) 196.7, 196.0, 138.1, 137.7, 133.0, 132.9, 132.85, 128.6, 128.43, 128.4, 118.7, 47.7, 31.2, 21.3 ppm; **IR** (ATR, neat) 3061, 2986, 1680, 1660, 1633, 1594, 1575, 1446 cm⁻¹; **HRMS** (ESI) calc. for [C₁₉H₁₆O₂ + Na⁺]: 299.1043, found 299.1036.

(**R**)-3: $[\alpha]_D^{20}$: +305.6 (c = 5.33, CHCl₃); (**S**)-3: $[\alpha]_D^{20}$: -305.6 (c = 5.33, CHCl₃).

Sample Name: DP65h2 Data File C:\HPCHEM\1\DATA\DP\DP65H200.D Chiralcel OD-H; Heptan/Isopropanol 95:5, 0.5 mL/min; 3µ 1 Injection Date : 27.05.15 14:26:59 Vial : 12 (R)-3 Sample Name : DP65h2 Acq. Operator : Dominik Inj Volume : 3 µl Method : C:\HPCHEM\1\METHODS\BPOD9_1.M Last changed : 22.05.15 15:55:29 by Dominik DAD1 A, Sig=235,4 Ref=550,100 (DP\DP65H200.D) 9.483 mAU 🕴 0 60 min 50 40 30 10 20 DAD1 B, Sig=240,4 Ref=550,100 (DP\DP65H200.D) mAU **6** 8 8 11.11 0-60 min 50 40 30 10 DAD1 C, Sig=220,4 Ref=550,100 (DP\DP65H200.D) 9:485 11.112 mAU 🗄 0-1 60 min 50 40 10 20 DAD1 D, Sig=212,4 Ref=550,100 (DP\DP65H200.D) 30 **9.863** mAU 1 0-1 60 mir 50 10 20 DAD1 E, Sig=210,20 Ref=550,100 (DP\DP65H200.D) 40 30 9.476 mAU n. 60 min 50 30 40 10 20 Area Percent Report Signal Sorted By : 1.0000 Multiplier : 1.0000 : Dilution Signal 1: DAD1 A, Sig=235,4 Ref=550,100 Height Area Area Peak RetTime Type Width 8 [min] [mAU*s] [mAU] # [min] ____|-----|--0.2796 4.96877e4 2640.18140 99.4388 9.483 PB 1 0.2726 280.42484 14.31167 0.5612 2 11.107 BP 4.99682e4 2654.49306 Totals : Results obtained with enhanced integrator!

Instrument 1 15.06.15 10:08:23 Dominik

Page 1 of 2

Sample Name: DP65H3 pata File C:\HPCHEM\1\DATA\DP\DP65H300.D Chiralcel OD-H; Heptan/Isopropanol 95:5, 0.5 mL/min; 3µ P٢ 1 Injection Date : 20.05.15 15:59:54 (S)-3 Vial : 12 Sample Name : DP65H3 : Dominik Acq. Operator Inj Volume : 3 µl : C:\HPCHEM\1\METHODS\BPOD9_1.M Acq. Method : 20.05.15 15:58:17 by Isabel Last changed (modified after loading) Analysis Method : C:\HPCHEM\1\METHODS\BPOD9_1.M hanged : 22.05.15 15:55:29 by Dominik DAD1 A, Sig=235,4 Ref=550,100 (DP\DP65H300.D) Last changed 1285 mAU ∃ 9.648 500 -0 40 min 35 20 25 30 10 15 DAD1 B, Sig=240,4 Ref=550,100 (DP\DP65H300.D) 112 mAU -9.648 500 15.1 0-40 min 35 5 10 15 DAD1 C, Sig=220,4 Ref=550,100 (DP\DP65H300.D) 30 20 25 11:285 mAU∃ 9.646 500 0 40 min 35 30 5 10 15 DAD1 D, Sig=212,4 Ref=550,100 (DP\DP65H300.D) 20 25 287 mAU 9.646 500 0 40 min 35 5 10 15 DAD1 E, Sig=210,20 Ref=550,100 (DP\DP65H300.D) 30 20 25 1284 mAU 648 500 -0 35 40 min 30 15 20 25 10 5 _______ Area Percent Report Signal Sorted By : 1.0000 : Multiplier 1.0000 Dilution ٠ Signal 1: DAD1 A, Sig=235,4 Ref=550,100 Area Height Width Area Peak RetTime Type 웅 [mAU*s] [mAU] [min] # [min] ____ ----|-----| ____ ---------16.65573 1.6750 0.2836 319.26849 9.648 PB 1 0.3328 1.87413e4 98.3250 825.64966 11.285 BB 2 842.30539 1.90606e4 Totals : Results obtained with enhanced integrator! Page 1 of 2 Instrument 1 26.05.15 10:57:42 Dominik

(anti) and (syn) Ethyl 1-acetyl-2-vinylcyclopropanecarboxylate (5a and 5b):^[1]

(*trans*)-1,4-Dibrombut-2-ene (1.390 g, 6.5 mmol) and K_2CO_3 (2.695 g, 19.5 mmol) were added to a dried flask under an atmosphere of dry nitrogen. Anhydrous ethanol (14 mL) was added followed by the drop wise addition of ethyl acetoacetate (0.8 mL, 6.5 mmol). The reaction mixture was heated to reflux for 15 h then cooled to room temperature and diluted with Et₂O (15 mL). The precipitate was removed via filtration and washed with Et₂O (2 x 10 mL). The solvent was removed under reduced pressure. The reaction gave rise to three major products: Diastereoisomer **5a** and **5b** alongside some dihydrofurane **6**. Diastereoisomer **5b** could be separated by regular column chromatography on silica gel eluting with petrol ether/EtOAc 20:1 (v/v) to give 0.457 g (39%) as a colorless oil. Diastereoisomer **5a** was purified via HPLC eluting again with petrol ether/EtOAc 20:1 (v/v) giving 0.231 g (20%) as a colorless oil. The yield of dihydrofurane **6** was not determined.

5a:

 $R_f = 0.29$ (petrol ether/EtOAc, 20:1 (v/v)); ¹H-NMR (250 MHz, CDCl₃) δ 5.35-5.26 (m, 2H), 5.15-5.11 (m, 1H), 4.33- 4.13 (m, 2H), 2.67-2.57 (m, 1H), 2.33 (s, 3H), 1.85 (dd, J = 7.5, 4.6 Hz, 1H), 1.53 (dd, J = 8.8, 4.6 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ 201.1, 170.4, 132.8, 118.9, 61.5, 42.7, 33.5, 30.5, 20.1, 14.1 ppm; **IR** (ATR, neat) 3088, 2984, 2929, 1702, 1637 cm⁻¹; **GC/MS** (EI, 70 eV) m/z (%) 182 (M⁺, found), 139 (54), 136 (45), 135 (48), 121 (100), 94 (65), 93 (56), 67 (55), 66 (98), 65 (43).

5b:

 $R_f = 0.23$ (petrol ether/EtOAc, 20:1 (v/v)); ¹H-NMR (250 MHz, CDCl₃) δ 5.58-5.44 (m, 1H), 5.29 (dd, J = 17.0, 1.6 Hz, 1H), 5.14 (dd, J = 10.1, 1.6 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 2.61 (ddd, J = 8.4, 8.4, 8.4 Hz, 1H), 2.40 (s, 3H), 1.76 (dd, J = 7.7, 4.4 Hz, 1H), 1.58 (dd, J = 8.9, 4.4 Hz, 1H), 1.30 (t, J = 7.1 Hz, 3H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ 202.0, 168.8, 133.1, 118.8, 61.4, 43.2, 34.3, 29.5, 23.1, 14.2 ppm; IR (ATR, neat) v 3088, 2984, 2938, 1724, 1695, 1638 cm⁻¹; GC/MS (EI, 70 eV) m/z (%) 182 (M⁺, found), 139 (61), 136 (43), 135 (50), 121 (100), 94 (64), 93 (56), 67 (54), 66 (97), 65 (44).

Figure S12: NOE-Spectra of 5a (red), 5b (blue) and the ¹H-spectrum of 5a (green).

(anti) and (syn) tert-Butyl 1-acetyl-2-vinylcyclopropane-1-carboxylate (7a and 7b):^[1]

NaH (0.800 g, 60% in mineral oil, 20 mmol) was suspended in anhydrous THF (16 mL) under an atmosphere of dry nitrogen. The reaction mixture was cooled to 0 °C (cryostat). *tert*-Butyl acetoacetate (1.6 mL, 9.51 mmol) was added drop wise and the reaction mixture stirred at 0 °C for 1 h. (*trans*)-1,4-Dibrombut-2-ene (2.034 g, 9.51 mmol) was added drop wise as a solution in anhydrous THF (6 mL). Upon completion of the addition the cooling bath was removed and the reaction mixture stirred for 40 h. The resulting suspension was diluted with Et_2O (20 mL) and the precipitate removed via filtration and washed with Et_2O (2 x 10 mL). The solvent was removed under reduced pressure. Diastereoisomer **7a** and **7b** alongside some dihydrofurane **8**. Diastereoisomer **7b** could be isolated via regular column chromatography on silica gel elution with petrol ether/EtOAc 20:1 (v/v) giving 0.267 g (13%) as a colorless oil. Diastereoisomer **7a** was isolated via HPLC eluting with petrol ether/EtOAc 20:1 (v/v) yielding 0.409 g (21%) as a colorless oil. The yield of dihydrofurane **8** was not determined.

7a:

 $R_f = 0.37$ (petrol ether/EtOAc, 20:1 (v/v)), ¹H-NMR (250 MHz, CDCl₃) δ 5.30-5.25 (m, 2H), 5.14-5.09 (m, 1H), 2.59-2.49 (m, 1H), 2.29 (s, 3H), 1.76 (dd, J = 7.5, 4.5 Hz, 1H), 1.49 (s, 9H), 1.45 (dd, J = 8.8, 4.6 Hz, 1H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ 201.4, 169.4, 133.1, 118.6, 82.3, 43.7, 32.8, 30.4, 28.0, 19.8 ppm; **IR** (ATR, neat) 2978, 2932, 1701, 1637 cm⁻¹; **GC/MS** (EI, 70 eV) m/z (%) 210 (M⁺, found), 154 (50), 135 (32), 121 (58), 111 (45), 94 (60), 66 (37), 57 (100).

7b:

 $R_f = 0.29$ (petrol ether/EtOAc, 20:1 (v/v)); ¹H-NMR (250 MHz, CDCl₃) δ 5.59-5.45 (m, 1H), 5.29 (dd, J = 17.2, 1.6 Hz, 1H), 5.14 (dd, J = 10.1, 1.6 Hz, 1H), 2.58 (ddd, J = 8.3, 8.3, 8.3 Hz, 1H), 2.40 (s, 3H), 1.69-1.62 (m, 1H), 1.51-1.46 (m, 1H), 1.49 (s, 9H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ 202.4, 167.8, 133.3, 118.4, 82.2, 44.2, 33.6, 29.5, 28.1, 22.9 ppm; IR (ATR, neat) 3087, 2978, 2934, 1719, 1696, 1638 cm⁻¹; GC/MS (EI, 70 eV) m/z (%) 210 (M⁺, found), 154 (47), 135 (32), 121 (57), 111 (48), 94 (57), 93 (29), 66 (37), 57 (100).

Figure S13: NOE-Spectra of 7a (green), 7b (red) and the ¹H-spectrum of 7a (blue).

(anti) and (syn) Ethyl 1-benzoyl-2-vinylcyclopropane-1-carboxylate (9a and 9b):^[3]

Ethyl benzoylacetate (2.883 g, 15 mmol, 1 equiv.) was dissolved in anhydrous EtOH (20 mL) under an atmosphere of dry nitrogen. K_2CO_3 (4.146 g, 30 mmol, 2 equiv.) was added and the suspension stirred at room temperature for 15 min. Additional anhydrous EtOH (10 mL) was added prior to the addition of (*trans*)-1,4-dibrombut-2-ene (3.158 g, 15 mmol, 1 equiv.). The reaction mixture was stirred for 95 h

at room temperature. The reaction mixture was diluted with Et_2O and the precipitate removed via filtration and washed with additional Et_2O . The solvent was removed under reduced pressure. The residue was portioned between H₂O (30 mL) and Et_2O (40 mL). The Aqueous layer was extracted with Et_2O (3 x 40 mL). The combined organic extracts were dried over MgSO₄ and the solvent was removed under reduced pressure. The residue was purified via column chromatography on silica gel eluting with n-pentane/ Et_2O 20:1 (v/v) followed by HPLC eluting with petrol ether/EtOAc 20:1 (v/v) giving 1.374 g (37%) of diastereoisomer **9b** as a colorless oil and 936 mg (26%) of diastereoisomer **9a** as a colorless oil. The assignment of the diastereoisomers is based on the assignment of the ethyl and *tert*-butyl esters above.

9a:

 $R_f = 0.33$ (*n*-pentane/Et₂O, 20:1 (v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 7.84-7.80 (m, 2H), 7.55-7.750 (m, 1H), 7.45-7.40 (m, 1H), 5.33 (dd, J = 2.0, 16.9 Hz, 1H), 5.25-5.13 (m, 1H), 5.01 (dd, J = 2.0, 10.0 Hz, 1H), 4.14-3.90 (m, 2H), 2.96-2.88 (m, 1H), 1.95 (dd, J = 4.6, 7.4 Hz, 1H), 1.62 (dd, J = 4.6, 8.7 Hz, 1H), 0.92 (t, J = 7.2 Hz, 3H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 193.7, 171.0, 137.7, 133.2, 132.8, 128.5, 128.4, 118.6, 61.5, 39.8, 32.9, 19.6, 13.6 ppm; IR (ATR, neat) 2982, 1722, 1677, 1638, 1598, 1580, 1449 cm⁻¹; HRMS (ESI) calc. for [C₁₅H₁₆O₃ + Na⁺]: 267.0992, found 267.0977.

9b:

 $R_f = 0.33$ (*n*-pentane/Et₂O, 20:1 (v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 7.88-7.85 (m, 2H), 7.57-7.52 (m, 1H), 7.46-7.41 (m, 2H), 5.83-5.71 (m, 1H), 5.43-5.37 (m, 1H), 5.23-5.19 (m, 1H), 4.00 (q, J = 7.4 Hz, 2H), 2.79-2.71 (m, 1H), 1.94 (dd, J = 4.8, 7.7 Hz, 1H), 1.66 (dd, 4.8, 9.0 Hz, 1H), 0.90 (t, J = 7.1 Hz, 3H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 194.5, 169.3, 137.3, 133.1, 132.8, 128.5, 128.2, 118.8, 61.3, 40.6, 30.4, 21.6, 13.7 ppm; **IR** (ATR, neat) 3086, 2982, 1727, 1678, 1637, 1598, 1581, 1448 cm⁻¹; **HRMS** (ESI) calc. for [C₁₅H₁₆O₃ + Na⁺]: 267.0992, found 267.0980.

Ethyl 1-acetyl-2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropane-1-carboxylate (17):

A solution of diisopropylamine (1.55 mL, 11 mmol, 1.1 equiv.) in THF (20 mL) was cooled to -78 °C and 1.6 M *n*-BuLi (6.87 mL, 11 mmol, 1.1 equiv.) was added dropwise. The reaction mixture was warmed to room temperature for 15 min, then re-cool to -78 °C. Ethyl chrysanthemate (2.17 mL, 10 mmol, 1 equiv.) was added dropwise in to the reaction mixture and stirred for 30 min at -78 °C then 1 h at room temperature. The reaction mixture was re-cooled to -78 °C again and acetyl chloride (0.71 mL, 10 mmol, 1 equiv.) was added dropwise. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched by sat. NH₄Cl, diluted with water, and extract with three time of diethyl ether. The combined organic layers were dried over MgSO₄, filtered and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with *n*-pentane/EA 40:1 (v/v) to afford 1.3345 g (56%) of **17** as a colorless oil.

 $R_f = 0.37$ (*n*-pentane /EA, 40:1 (v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 5.03-5.00 (m, 1H), 4.19 (q, J = 7.1 Hz, 2H), 2.58 (d, J = 8.0 Hz, 1H), 2.27 (s, 3H), 1.73 (s, 3H), 1.71 (s, 3H), 1.33 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.11 (s, 3H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 201.3, 168.6, 137.1, 117.1, 60.8, 51.2, 34.8, 33.4, 30.2, 25.7, 22.0, 18.7, 18.0, 14.1 ppm; **IR** (ATR) 2980, 2929, 1733, 1700, 1446, 1377, 1355, 1304, 1274, 1178, 1095, 852 cm⁻¹; **HRMS** (ESI) calc. for [C₁₄H₂₂O₃ + Na⁺]: 261.1461, found: 261.1452.

1,1'-(2-(Prop-1-en-2-yl)cyclopropane-1,1-diyl)bis(ethan-1-one) (19):^[1]

1,4-Dibromo-2-methylbut-2-ene (1,59 g, 7 mmol, 1 equiv.) and K_2CO_3 (2,90 g, 21 mmol, 3 equiv.) were suspended in acetone (20 mL). 2,4-Pentanedione (0,7 mL, 7 mmol, 1.0 equiv.) was added drop wise and the mixture was heated to reflux for 18 h. The reaction mixture was cooled to room temperature and Et₂O (35 mL) was added. The resulting precipitate was removed via filtration and washed with Et₂O (2 x 25 mL). The solvent was removed under reduced pressure and the residue purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) yielding 378 mg (32%) of the desired product **19** as a yellow oil.

 $R_f = 0.38$ (*n*-pentane/Et₂O, 4:1 (v/v)); ¹H-NMR (250 MHz, CDCl₃) δ 4.94 (d, J = 0.8 Hz, 1H), 4.75 (s, 1H), 2.57 (t, J = 8.4 Hz, 1H), 2.23 (d, J = 1.2 Hz, 3H), 2.20 (d, J = 1.2 Hz, 3H), 1.94 (ddd, J = 8.0, 5.1, 1.0 Hz, 1H), 1.76 (d, J = 0.5 Hz, 3H), 1.50 – 1.41 (m, 1H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ 203.2, 202.5, 138.6, 113.9, 51.2, 35.9, 30.7, 27.8, 23.0, 19.2 ppm; IR (ATR) 2973, 2918, 1688, 1423, 1357, 1309, 1256 cm⁻¹; GC/MS (EI, 70 eV) m/z (%)166 (M⁺, found), 151 (14), 123 (67), 43 (100); HRMS (EI) calc. for [C₁₀H₁₄O₂]: 166.0994, found: 166.0991.

(2-Methyl-3-vinylcyclopropane-1,1-diyl)bis(phenylmethanone) (23):^[1]

The *title compound* was synthesized according to literature^[1] and was purified via column chromatography on silica gel eluting with PE/EA 40:1 (v/v) to afford **23** as a white solid.

 $R_f = 0.34$ (PE/EA 40:1 (v/v)); **mp** 108-111°C; ¹**H-NMR** (300 MHz, CDCl₃) δ 7.73-7.66 (m, 1H), 7.66-7.59 (m, 1H), 7.42-7.30 (m, 2H), 7.30-7.18 (m, 4H) 5.42-5.32 (m, 2H), 5.06-4.98 (m, 1H) 3.12-3.03 (m, 1H) 2.84-2.73 (m, 1H), 1.12 (d, J = 6.4 Hz, 3H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 196.5, 196.1,

138.6, 138.5, 133.3, 132.9, 132.8, 128.55, 128.53, 128.49, 128.42, 118.1, 53.6, 37.4, 27.3, 11.9 ppm; **IR** (ATR) 3062, 3027, 1720, 1656, 1490, 1346, 1310, 1125, 848, 761 cm⁻¹.

General Procedure I: Preparation of Olefin-Substituted VCPs^[1]

The appropriate vinylcyclopropane (1 equiv.) and 2^{nd} generation Grubbs catalyst (0.015 equiv.) was weighed into a dried Schlenk tube under an atmosphere of dry nitrogen. CH₂Cl₂ (0.6 M) was added followed by the appropriate alkene (10 equiv.). The Schlenk tube was sealed under an atmosphere of dry nitrogen and the mixture stirred at 45 °C for 16 h. The solvent was removed under reduced pressure and the residue subjected to column chromatography on silica gel.

(E)-1,1'-(2-(Hex-1-en-1-yl)cyclopropane-1,1-diyl)diethanone (11):

The reaction was carried out on a 5 mmol scale based on vinylcyclopropane **1**. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 511 mg (49%) of **11** as a tan oil.

 $R_f = 0.39$ (*n*-pentane/Et₂O, 4:1 (v/v)); ¹H NMR (300 MHz, CDCl₃) δ 5.80 – 5.66 (m, 1H), 4.93 (dd, J = 15.3, 8.5 Hz, 1H), 2.57 (q, J = 8.3 Hz, 1H), 2.26 (s, 3H), 2.15 (s, 3H), 1.98 (m, 2H), 1.80 (dd, J = 7.4, 5.1 Hz, 1H), 1.47 (dd, J = 8.8, 5.1 Hz, 1H), 1.34 – 1.25 (m, 4H), 0.88 (m, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 203.1, 136.0, 124.1, 51.2, 32.3, 32.1, 31.3, 30.9, 26.8, 22.1, 20.4, 13.8 ppm; IR (ATR) 2958, 2928, 2873, 2855, 1681, 1422, 1357, 1310, 1250, 1163, 1100, 968, 936 cm⁻¹; GC/MS (ESI) m/z (%) = 209.15 (M + H⁺, 28), 191 (15), 167 (16), 149 (20), 135 (13), 123 (23), 113 (100); HRMS (ESI) calc. for [C₁₂H₂₀O₂ + Na⁺]: 231.1356, found: 231.1346.

Methyl (E)-3-(2,2-diacetylcyclopropyl)acrylate (13):

The reaction was carried out on a 5 mmol scale based on vinylcyclopropane **1**. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 450 mg (43%) of **13** as a tan oil.

 $R_f = 0.19$ (*n*-pentane/Et₂O, 2:1 (v/v)); ¹H NMR (300 MHz, CDCl₃) δ 6.34 (dd, J = 15.5, 9.9 Hz, 1H), 6.05 (d, J = 15.5 Hz, 1H), 3.72 (s, 3H), 2.77 – 2.64 (m, 1H), 2.29 (s, 3H), 2.22 (s, 3H), 1.91 (dd, J = 7.0, 5.1 Hz, 1H), 1.59 (dd, J = 8.6, 5.1 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 201.6, 201.4, 165.9, 143.2, 124.0, 51.7, 51.7, 30.7, 30.5, 27.5, 21.4 ppm; IR (ATR) 2954, 2919, 2849, 1722, 1686, 1651, 1435, 1358, 1308, 1273, 1252,1204, 1148 cm⁻¹; GC/MS (ESI) m/z (%) = 211 (M + H⁺, 6), 137 (100), 119 (18), 111 (45); HRMS (ESI) calc. for [C₁₁H₁₄O₄ + Na⁺]: 233.0784, found: 233.0786.

1,1'-(2-(2-Methylprop-1-en-1-yl)cyclopropane-1,1-diyl)diethanone (15):

The reaction was carried out on 6 mmol scale based on vinylcyclopropane **1**. The *title compound* was purified via column chromatography on aluminium oxide (neutral) eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 854 mg (79%) of **15** as a pale yellow oil.

 $R_f = 0.34$ (*n*-pentane/Et₂O, 4:1 (v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 4.66-4.59 (m, 1H), 2.67 (dd, J = 8.6, 16.4 Hz, 1H), 2.22 (s, 3H), 2.18 (s, 3H), 1.78-1.72 (m, 4H), 1.69 (s, 3H), 1.52 (dd, J = 4.8, 8.9 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 203.3, 203.2, 138.5, 119.2, 51.0, 30.5, 29.2, 27.2, 25.6, 21.7, 18.4 ppm; IR (ATR) 2916, 1681, 1620, 1451, 1357, 1303, 1252, 1171, 1103, 933, 855, 823 cm⁻¹; GC/MS (ESI) m/z (%) = 181 (M + H⁺, 15), 163 (18), 145 (35), 121 (100), 113 (17), 105 (23); HRMS (ESI) calc. for [C₁₁H₁₆O₂ + Na⁺]: 203.1043, found: 203.1046.

1,1'-(2-Styrylcyclopropane-1,1-diyl)bis(ethan-1-one) (21)

The reaction was carried out on a 7 mmol scale based on vinylcyclopropane **1**. Styrene (210 mmol, 24 mL, 30 equiv.) was used as the source of alkene. The *title compound* was purified via column chromatography on silica gel eluting with petrol ether/EtOAc 5:1 (v/v) followed by semi-prep. HPLC eluting with petrol ether/EtOAc 5:1 (v/v) to afford 340 mg (21%) of **21** as a tan oil.

 $R_f = 0.25$ (petrol ether/EtOAc, 5:1 (v/v)); ¹H NMR (300 MHz, CDCl₃) δ 7.31 – 7.19 (m, 5H), 6.65 (d, J = 15.8 Hz, 1H), 5.66 (dd, J = 15.8, 9.0 Hz, 1H), 2.78 (dd, J = 16.3, 8.7 Hz, 1H), 2.28 (s, 3H), 2.21 (s, 3H), 1.96 (dd, J = 7.3, 5.1 Hz, 1H), 1.59 (dd, J = 8.7, 5.1 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ

202.68, 202.65, 136.38, 134.06, 128.64, 127.80, 126.14, 124.30, 51.62, 32.72, 30.98, 27.12, 21.07 ppm; **IR** (ATR) 3026, 1682, 1598, 1492, 1448, 1358 cm⁻¹; **GC/MS** (ESI) m/z (%) = 251 (100) [M⁺ + Na]; **HRMS** (ESI) calc. for [$C_{15}H_{16}O_2 + Na^+$]: 251.1043, found: 251.1030.

7. Preparation of Arylcyclopropanes

General Procedure II: Preparation of Arylcyclopropanes

The procedure was modified from the literature.^[4] A solution of bromine (1.02 mL, 20 mmol) in CH_2Cl_2 (5 mL) was added in a solution of dimethyl sulfide (7.34 mL, 100 mmol) in CH_3CN (20 mL) at 0 °C to give a yellow precipitate. The corresponding styrene derivative (20 mmol) was then added at the same temperature. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours. Diethyl ether (30 mL) was added to give a precipitate, which was then filtered and washed with diethyl ether to give the corresponding bromosulfonium bromide without further purification.

The bromosulfonium bromide (10 mmol) and potassium carbonate (4.15 g, 30 mmol) were dissolved in CH₂Cl₂:H₂O (1:1) mixture (200 mL). Pentane-2,4-dione (2.05 mL, 20 mmol), 1,3-diphenyl-1,3propanedione (4.49 g, 20 mmol) or methyl acetoacetate (2.15 mL, 20 mmol) was added and stirred at room temperature overnight. The CH₂Cl₂ layer was separated and the aqueous layer was extracted with 3 portions of CH₂Cl₂. The combined organic layers were dried over MgSO₄, filtered and then concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O (5:1 to 2:1) to give the desired arylcyclopropane.

1,1'-(2-Phenylcyclopropane-1,1-diyl)bis(ethan-1-one) (25):^[6]

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 5:1 (v/v) to afford 656 mg (22% two steps overall yield) of **25** as a colorless solid.

 $R_f = 0.23$ (*n*-pentane/Et₂O, 5:1 (v/v)); **mp** 61-62 °C [lit. 58 °C]; ¹**H-NMR** (300 MHz, CDCl₃) δ 7.31-7.21 (m, 3H), 7.15-7.12 (m, 2H), 3.29 (bt, J = 8.5 Hz, 1H), 2.28 (s, 3H), 2.26 (dd, J = 5.3, 7.9 Hz, 1H), 1.81 (s, 3H), 1.65 (dd, J = 5.3, 9.0 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 202.7, 202.2, 134.1, 128.5, 128.4, 127.5, 52.7, 33.6, 30.4, 27.7, 19.1 ppm; **IR** (ATR) 3098, 3065, 3020, 1702, 1681, 1453 cm⁻¹; **HRMS** (ESI): calc. for [C₁₃H₁₄O₂ + Na⁺]: 225.0886, found: 225.0871.

1,1'-(2-(p-Tolyl)cyclopropane-1,1-diyl)bis(ethan-1-one)) (27):^[6]

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 1000 mg (23% two steps overall yield) of **27** as a yellow solid.

 $R_f = 0.38$ (*n*-pentane /Et₂O, 3:1 (v/v)); **mp** 52-54 °C [lit.57.6-59 °C]; ¹**H NMR** (300 MHz, CDCl₃) δ 7.10 (m, 2H), 7.06 – 7.01 (m, 2H), 3.27 (t, J = 8.5 Hz, 1H), 2.32 (s, 3H), 2.30 – 2.23 (m, 4H), 1.84 (s, 3H), 1.67 (dd, J = 8.0, 4.3 Hz, 1H) ppm; ¹³**C NMR** (75 MHz, CDCl₃) δ (ppm) 202.9, 202.4, 137.3, 130.9, 129.2, 128.3, 52.7, 33.6, 30.5, 27.6, 21.1, 19.1 ppm; **IR** (ATR) 3013, 2923, 1681, 1517, 1425, 1356 cm⁻¹; **HRMS** (ESI): calc. for [C₁₄H₁₆O₂ + Na⁺]: 239.1043, found: 239.1033.

1,1'-(2-(4-(*tert*-Butyl)phenyl)cyclopropane-1,1-diyl)bis(ethan-1-one) (29):^[5]

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 504 mg (8% two steps overall yield) of **29** as a colorless solid.

 $R_f = 0.35$ (*n*-pentane /Et₂O, 3:1 (v/v)); **mp** 51-53 °C; ¹**H NMR** (300 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.08 – 7.03 (m, 2H), 3.25 (t, J = 8.5 Hz, 1H), 2.27 (s, 3H), 2.24 (dd, J = 8.0, 5.3 Hz, 1H), 1.82 (s, 3H), 1.65 (dd, J = 9.1, 5.3 Hz, 1H), 1.28 (s, 9H) ppm; ¹³C **NMR** (75 MHz, CDCl₃) δ 202.9, 202.6, 150.6, 130.9, 128.0, 125.5, 52.7, 34.4, 33.5, 31.3, 30.5, 27.7, 19.2 ppm; **IR** (ATR) 2962, 2869, 1684, 1518, 1425, 1359 cm⁻¹; **HRMS** (ESI): calc. for [C₁₇H₂₂O + Na⁺]: 281.1512, found: 281.1494.

1,1'-(2-(4-Fluorophenyl)cyclopropane-1,1-diyl)bis(ethan-1-one) (31):

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 815 mg (37% two steps overall yield) of **31** as a colorless oil.

 $R_f = 0.17$ (*n*-pentane/Et₂O, 3:1 (v/v));¹H-NMR (300 MHz, CDCl₃) δ 7.15-7.07 (m, 2H), 7.02-6.93 (m, 2H), 3.27 (t, J = 8.5 Hz, 1H), 2.28 (s, 3H), 2.22 (dd, J = 5.4, 7.9 Hz, 1H), 1.84 (s, 3H), 1.64 (dd, J = 5.4, 9.1 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 202.6, 201.9, 162.1 (d, J = 245.2 Hz), 130.0 (d, J = 8.1 Hz), 129.9 (d, J = 3.24 Hz), 115.5 (d, J = 21.5 Hz), 52.6, 32.8, 30.5, 27.8, 19.3 ppm; **IR** (ATR) 3010, 1684, 1605, 1512, 1430, 1359, 1224, 842 cm⁻¹; **HRMS** (ESI) calc. for [C₁₃H₁₃FO₂ + Na⁺]: 243.0792, found: 243.0802.

1,1'-(2-(4-Chlorophenyl)cyclopropane-1,1-diyl)bis(ethan-1-one) (33):^[6]

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 899 mg (38% two steps overall yield) of **33** as a colorless solid.

 $R_f = 0.28$ (*n*-pentane/Et₂O, 2:1 (v/v)); **mp** 77-78 °C [lit. 76.6-77.5 °C]; ¹H-NMR (300 MHz, CDCl₃) δ 7.29-7.22 (m, 2H), 7.10-7.04 (m, 2H), 3.26 (t, J = 8.5 Hz, 1H), 2.28 (s, 3H), 2.22 (dd, J = 5.3, 7.8 Hz, 1H), 1.86 (s, 3H), 1.64 (dd, J = 5.4, 9.1 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 202.4, 201.7, 133.4, 132.7, 129.7, 128.7, 52.7, 32.8, 30.5, 27.8, 19.1 ppm; **IR** (ATR) 3087, 3053, 1705, 1670, 1593, 1494, 1404, 1373, 1104, 851, 592, 560 cm⁻¹; **HRMS** (ESI) calc. for [C₁₃H₁₃ClO₂ + Na⁺]: 259.0496, found: 259.0485.

1,1'-(2-(4-Bromophenyl)cyclopropane-1,1-diyl)bis(ethan-1-one) (35):^[6]

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 534 mg (19% two steps overall yield) of **35** as a colorless solid.

 $R_f = 0.3$ (*n*-pentane/Et₂O, 3:1 (v/v)); **mp** 75-76 °C [lit. 72.2-73.2 °C]; ¹**H-NMR** (300 MHz, CDCl₃) δ 7.45-7.37 (m, 2H), 7.06-6.97 (m, 2H), 3.24 (t, J = 8.5, 1H), 2,28 (s, 3H), 2,22 (dd, J = 5.4, 7.8 Hz, 1H), 1.86 (s, 3H), 1.63 (dd, J = 5.4, 9.0 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 202.4, 201.7, 133.3, 131.7, 130.1, 121.6, 52.7, 32.8, 30.5, 27.8, 19.1 ppm; **IR** (ATR) 3008, 1681, 1491, 1357, 1027, 822 cm⁻¹; **HRMS** (ESI) calc. for [C₁₃H₁₃BrO₂ + Na⁺]: 280.0099, found: 280.0103.

1,1'-(2-(3-Methoxyphenyl)cyclopropane-1,1-diyl)bis(ethan-1-one) (37):

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 813 mg (35% two steps overall yield) of **37** as a colorless oil.

 $R_f = 0.21$ (*n*-pentane/Et₂O, 2:1 (v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 7.19 (t, J = 7.92 Hz, 1H), 6.81-6.75 (m, 1H), 6.74-6.65 (m, 2H), 3.78 (s, 3H) 3.26 (t, J = 8.5 Hz, 1H), 2.28 (s, 3H), 2.22 (dd, J = 5.3, 7.9 Hz, 1H), 1.84 (s, 3H), 1.64 (dd, J = 5.3, 9.0 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 202.7, 202.3, 159.6, 135.8, 129.5, 120.6, 114.1, 113.0, 55.2, 52.6, 33.5, 30.4, 27.7, 19.3 ppm; **IR** (ATR) 3006, 2926, 2838, 1683, 1601, 1584, 1492, 1358, 1256, 783, 721 cm⁻¹; **HRMS** (ESI) calc. for [C₁₄H₁₆O₃ + Na⁺]: 255.0992, found: 255.0981.

1,1'-(2-(3-Chlorophenyl)cyclopropane-1,1-diyl)bis(ethan-1-one) (39):

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 402 mg (17% two steps overall yield) of **39** as a colorless oil.

 $R_f = 0.24$ (*n*-pentane/Et₂O, 3:1 (v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 7.24-7.19 (m, 2H), 7.18-7.14 (m, 1H), 7.04-6.96 (m, 1H), 3.26 (t, J = 8.5 Hz, 1H), 2.29 (s, 3H), 2.22 (dd, J = 5.3, 7.9 Hz, 1H), 1.88 (s, 3H), 1.64 (dd, J = 5.4, 9.1 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 202.3, 201.6, 136.4, 134.4, 129.7, 128.7, 127.8, 126.5, 52.6, 32.7, 30.5, 27.8, 19.1 ppm; IR (ATR) 3009, 2927, 1687, 1598, 1421, 1309, 781, 699 cm⁻¹; HRMS (ESI) calc. for [C₁₃H₁₃ClO₂ + Na⁺]: 259.0496, found: 259.0483.

1,1'-(2-(3-Bromophenyl)cyclopropane-1,1-diyl)bis(ethan-1-one) (41):

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 712 mg (13% two steps overall yield) of **41** as a colorless oil.

 $R_f = 0.33$ (*n*-pentane /Et₂O, 3:1 (v/v)); ¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.35 (m, 1H), 7.32 (t, J = 1.8 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 7.8 Hz, 1H), 3.25 (t, J = 8.4 Hz, 1H), 2.29 (s, 3H), 2.22 (dd, J = 7.9, 5.4 Hz, 1H), 1.88 (s, 3H), 1.63 (dd, J = 9.0, 5.4 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 202.3, 201.6, 136.7, 131.7, 130.7, 130.0, 126.9, 122.6, 52.6, 32.7, 30.5, 27.9, 19.1 ppm; IR (ATR) 3059, 3010, 2923, 1683, 1594, 1564, 1478, 1421, 1357 cm⁻¹; HRMS (ESI): calc. for [C₁₃H₁₃BrO₂ + Na⁺]: 304.9972, found: 304.9974.

1,1'-(2-(2-Methoxyphenyl)cyclopropane-1,1-diyl)bis(ethan-1-one) (43):

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 760 mg (43% two steps overall yield) of **43** as a colorless solid.

 $R_f = 0.24$ (*n*-pentane /Et₂O, 3:1 (v/v)); **mp** 60-63 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.22 (m, 1H), 6.88 (m, 1H), 6.87 (m, 2H), 3.84 (s, 3H), 3.24 (t, J = 8.7 Hz, 1H), 2.30 – 2.25 (m, 4H), 1.82 (s, 3H), 1.69 (dd, J = 9.0, 5.3 Hz, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 203.9, 202.2, 158.6, 128.9, 128.6, 122.6, 120.4, 109.8, 55.3, 51.6, 30.2, 29.4, 27.1, 17.5 ppm; **IR** (ATR) 3006, 2939, 2838, 1682, 1601, 1495 cm⁻¹; **HRMS** (ESI): calc. for [C₁₄H₁₆O₃ + Na⁺]: 255.0992, found: 255.0982.

Methyl 1-acetyl-2-phenylcyclopropane-1-carboxylate (45)

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 5:1 (v/v) to afford 806 mg (24% two steps overall yield) of **45** as a colorless oil as a 3:1 mixture of *cis*-and *trans*-isomers.

 $R_f = 0.45$ (*n*-pentane/Et₂O, 5:1 (v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 7.30-7.11 (m, 5H cis, 5H trans), 3.81 (s, 3H trans); 3.35 (s, 3H cis), 3.28 (bt, J = 8.7 Hz, 1H cis), 3.27 (bt, J = 8.7 Hz, 1H trans), 2.45 (s, 3H cis), 2.31 (dd, J = 5.0, 8.1 Hz, 1H trans), 2.24 (dd, J = 4.6, 8.1 Hz, 1H cis), 1.93 (s, 3H trans), 1.74 (dd, J = 4.7, 9.2 Hz, 1H cis), 1.71 (dd, J = 5.1 9.1 Hz, 1H trans) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 202.2 (cis), 199.9 (trans), 171.0 (trans), 168.7 (cis), 134.8 (cis), 133.7 (trans), 128.7 (cis),

128.4 (trans), 128.3 (trans), 128.1 (cis), 127.5 (trans), 127.4 (cis), 52.6 (trans), 51.9 (cis), 44.6 (cis), 44.2 (trans), 35.5 (cis), 34.5 (trans), 30.2 (trans), 29.6 (cis), 21.6 (cis), 17.8 (trans) ppm; **IR** (ATR) 3031, 3005, 2952, 1733, 1690, 1604, 1499, 1454, 1435 cm⁻¹; **HRMS** (EI): calc. for $[C_{13}H_{14}O_3]$: 218.0943, found: 218.0947.

(2-Phenylcyclopropane-1,1-diyl)bis(phenylmethanone) (47)

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 10:1 (v/v) to afford 1.16 g (23% two steps overall yield) of **47** as a colorless solid.

 $R_f = 0.37$ (*n*-pentane/Et₂O, 10:1 (v/v)); **mp** 130-131 °C; ¹**H-NMR** (300 MHz, CDCl₃) δ 7.78-7.73 (m, 2H), 7.59-7.56 (m, 2H); 7.39-7.34 (m, 1H), 7.28-7.22 (m, 5H), 7.18- 7.05 (m, 5H), 3.99 (bt, J = 8.5 Hz, 1H), 2.84 (dd, J = 4.8, 8.2 Hz, 1H), 1.73 (dd, J = 5.0, 9.1 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 197.0, 194.4, 137.8, 137.7, 134.1, 132.9, 132.7, 128.6, 128.5, 128.4, 128.2, 128.1, 127.1, 49.8, 32.4, 19.7; **IR** (ATR) 3085, 3064, 3004, 1656, 1595, 1576, 1499, 1447 cm⁻¹; **HRMS** (ESI): calc. for [(C₂₃H₁₈O₂ + Na⁺]: 349.1199, found: 349.1195.

8. NBu₄[Fe(CO)₃(NO)] (TBAFe)-catalyzed Cloke-Wilson Rearrangement of <u>Vinylcyclopropanes</u>

General procedure III: Thermal conditions for the CWR of VCPs

TBAFe (10.3 mg, 0.025 mmol) was weighed into a dried Schlenk tube. Anhydrous CH_2Cl_2 (5 mL) was added and the mixture stirred until homogenous. 1 mL (0.005 mmol TBAFe) of this solution was transferred to a separate dried Schlenk tube which was subsequently charged with the appropriate vinylcyclopropane (0.5 mmol). The Schlenk tube was sealed under an atmosphere of dry nitrogen and heated to 45 °C for 14 h. The solvent was removed under reduced pressure and the residue subjected to column chromatography on silica gel.

General procedure IV: UV-Light conditions for the CWR of VCPs

A 10-mL Schlenk tube was charged with vinylcyclopropane (0.40 mmol, 1 equiv.), TBAFe (0.001 mmol, 0.025 equiv.), and CH₃CN (1 mL) under N₂. The reactions were carried out at room temperature under irradiation of UV light (180 W, Hg lamp or 75 W, Xenon lamp at distance of 15 cm) or Visible light (23 W, Compact Fluorescent Lamp at distance of 15 cm) for 3 h. The reaction was quenched with diethyl ether and concentrated *in vacuo*. Purification by silica column chromatography afforded the desired dihydrofuran product.

1-(2-Methyl-5-vinyl-4,5-dihydrofuran-3-yl)ethanone (2):^[1]

Thermal condition:

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 71.3 mg (94%) of **2** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 58.4 mg (96%) of **2** as a colorless oil.

UV-Light (75 W, Xenon Lamp) condition:

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 56.6 mg (93%) of **2** as a colorless oil.

Visible-Light (23 W, Compact Fluorescent Lamp) condition:

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 56.0 mg (92%) of **2** as a colorless oil.

 $R_f = 0.16$ (*n*-pentane/Et₂O, 2:1 (v/v)); ¹H-NMR (250 MHz, CDCl₃) δ 5.93 (ddd, J = 17.0, 10.3, 6.6 Hz, 1H), 5.31 (dt, J = 17.1, 1.1 Hz, 1H), 5.22 (dt, J = 10.4, 1.1 Hz, 1H), 5.09-4.99 (m, 1H), 3.18-3.08 (m, 1H), 2.78-2.69 (m, 1H), 2.24 (t, J = 1.4 Hz, 3H), 2.20 (s, 3H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ 194.4, 167.3, 136.7, 116.9, 111.9, 82.6, 36.3, 29.4, 15.0 ppm; IR (ATR, neat) 3409, 3086, 2989, 2923, 2864, 1670, 1593 cm⁻¹; GC/MS (EI, 70 eV) m/z (%) 152 (M⁺, 100), 137 (36), 109 (72), 95 (26), 91 (40), 67 (45).

Phenyl(2-phenyl-5-vinyl-4,5-dihydrofuran-3-yl)methanone (4):^[7]

Thermal condition:

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 10:1 (v/v) to afford 126.5 mg (92%) of **4** as a colorless solid.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 10:1 (v/v) to afford 102.8 mg (93%) of **4** as a colorless solid.

 $R_f = 0.13$ (*n*-pentane/Et₂O, 10:1 (v/v)); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.45-7.43 (m, 2H), 7.24-7.15 (m, 4H), 7.10-7.03 (m, 4H), 6.10 (ddd, J = 6.5, 10.2, 17.0 Hz, 1H), 5.46 (td, J = 1.1 Hz, 17.1 Hz, 1H), 5.23-5.33 (m, 2H), 3.45 (dd, J = 9.9, 14.7 Hz, 1H), 3.14 (dd, J = 8.3, 14.9 Hz, 1H) ppm; ¹³**C-NMR** (63 MHz, CDCl₃) δ 193.4, 165.5, 139.0, 136.6, 131.1, 130.0, 129.9, 129.4, 128.9, 127.6, 127.58, 117.2, 111.7, 82.5, 38.7 ppm; **IR** (ATR, neat) 3081, 3027, 2985, 2848, 1615, 1600, 1587, 1565, 1487 cm⁻¹; **HRMS** (ESI) calc. for [C₁₉H₁₆O₂+Na⁺]: 299.1043, found 299.1054.

(**R**)-4: $[\alpha]_D^{20}$: -22.5 (c = 5.33, CHCl₃); (**S**)-4: $[\alpha]_D^{20}$: +22.5 (c = 5.33, CHCl₃).

Sample Name: DP26A Data File C:\HPCHEM\1\DATA\DP\DP26A000.D Chiralcel OD-H; Heptan/Isopropanol 95:5, 0.5 mL/min; 3µ 1 -Ph Injection Date : 26.05.15 15:59:57 Vial : 12 : DP26A Sample Name Ph Acq. Operator : Dominik \cap Inj Volume : 3 µl Method : C:\HPCHEM\1\METHODS\BPOD9_1.M Last changed : 22.05.15 15:55:29 by Dominik (R)-4 Product of thermal condition DAD1 A, Sig=235,4 Ref=550,100 (DP\DP26A000.D) 17.489 mAU 0 mir 20 15 17.5 10 12.5 2.5 5 7.5 DAD1 B, Sig=240,4 Ref=550,100 (DP\DP26A000.D) 17.489 16.121 mAU 🗄 0 20 mir 15 17.5 10 12.5 2.5 5 7.5 DAD1 C, Sig=220,4 Ref=550,100 (DP\DP26A000.D) 17.490 mAU 1 0 20 mir 15 17.5 10 12.5 2.5 5 7.5 DAD1 D. Sig=212,4 Ref=550,100 (DP\DP26A000.D) 層 mAU 1 /= 0 mir 20 15 17.5 7.5 10 12.5 2.5 5 7.5 DAD1 E, Sig=210,20 Ref=550,100 (DP\DP26A000.D) 8 段 mAU ‡ 16.1 /₽ 0 20 min 15 17.5 7.5 10 12.5 2.5 5 ______ Area Percent Report Signal : Sorted By 1.0000 Multiplier : 1.0000 Dilution : Signal 1: DAD1 A, Sig=235,4 Ref=550,100 Area Peak RetTime Type Width Height Area [min] [mAU*s] [mAU] 8 # [min] _____| ____ ----| 62.94952 100.0000 1 17.489 BB 0.5846 2485.33032 62.94952 2485.33032 Totals : Results obtained with enhanced integrator! Page 1 of 2 Instrument 1 15.06.15 10:09:49 Dominik

1

Instrument 1 15.06.15 09:26:53 Dominik

Page 1 of 2

File C:\HPCHEM\	C:\HPCHEM\1\DATA\DP\CL-24A00.D S				Sample Name: CL-24A		
Chiralcel OD-H; 1	Heptan/Isop	ropanol 95:5	5, 0.5 mL/mi	n; 3µ			
Sample Name	: 22.05.15 : CL-24A : Dominik	14:34:47	 	Vial :	 11	O Ph	
Last changed	: 22.05.15 (modified	14:33:48 by after load	BPOD9 _1.M y Dominik ing)	J VOIUME .		Ph	
Analysis Method Last changed DAD1 A, Sig=235,4	: C:\HPCHEM : 22.05.15 Ref=550,100 (DP\CL-	15:55:29 D	BPOD9_1.M y Dominik		of photoc	hemical con	
mAU 10				17.821			
mAU	5 Ref=550,100 (DP\CL-	10 24A00.D)	15	17.824	20	min	
10 0 DAD1 C. Sig=220.4	5 Ref=550,100 (DP\CL	10 -24A00.D)	15		20	min	
mAU 10 0			I I	17.823	1 		
	5 Ref=550,100 (DP\CL	-24A00.D)	15	12.18	20	min	
10-1 0-1 DAD1 F. Sig=210.2	5 20 Ref=550,100 (DP\C	10 L-24A00.D)	15		20	mìn	
mAU = 10		,		17.821	·····		
	5	10	15	5	20	min	
	A	rea Percent	Report	***********			
Sorted By Multiplier Dilution	: :	Signal 1.0000 1.0000					
Signal 1: DAD1				_			
Peak RetTime Ty # [min]	[min]	[mAU*s]	Height [mAU]	& 			
1 17.821 BB	0.5863	908.40143 908.40143	21.91522 .	100.0000			
Results obtain	ed with end	nanced integ	rator!				
trument 1 26.05.	15 10:55:5	3 Dominik			Page 1 o	£ 2	

-

```
Sample Name: CL-24B
ata File C:\HPCHEM\1\DATA\DP\CL-24B00.D
  Chiralcel OD-H; Heptan/Isopropanol 95:5, 0.5 mL/min; 3µ
   1
    Injection Date : 22.05.15 14:59:51
                                                             Vial : 10
                    : CL-24B
    Sample Name
                                                                                 ·Ph
   Acq. Operator
                   : Dominik
                                                       Inj Volume : 3 µl
                     : C:\HPCHEM\1\METHODS\BPOD9 1.M
   Acq. Method
                                                                                 ⊃h
                     : 22.05.15 14:33:48 by Dominik
    Last changed
                       (modified after loading)
                                                                          (S)-4
    Analysis Method : C:\HPCHEM\1\METHODS\BPOD9_1.M
                                                            Product of photochemical condition
                     : 22.05.15 15:55:29 by Dominik
    Last changed
           DAD1 A, Sig=235,4 Ref=550,100 (DP\CL-24B00.D)
                                                            16.267
                                                                 17.777
       mAU
        50
        0
                                                                                 min
                                                                17.5
                                                                        20
                                                12.5
                                                         15
                                         10
           2.5 5 7.5
DAD1 B, Sig=240,4 Ref=550,100 (DP\CL-24B00.D)
                                                             16.266
                                                                 17.830
       mAU -
        50
         0
                                                                                 mir
                                                                17.5
                                                                        20
                                                12.5
                                                         15
           2.5 5 7.5
DAD1 C, Sig=220,4 Ref=550,100 (DP\CL-24B00.D)
                                         10
                                                             16.265
       mAU -
        50 -
         0 -
                                                                         20
                                                                                 mir
                                                                17.5
                                                 12.5
                                                         15
                                         10
                                 75
                  2.5
           DAD1 D, Sig=212,4 Ref=550,100 (DP\CL-24B00.D)
                                                                  17.791
       mAU -
         50
         0
                                                                         20
                                                                                 min
                                                                17.5
                                                 12.5
                                                         15
                                          10
                                  75
            2.5 5 7.5
DAD1 E, Sig=210,20 Ref=550,100 (DP\CL-24B00.D)
                                                             16.265
        mAU -
         50
         0
                                                                         20
                                                                                  min
                                                                 17.5
                                                 12.5
                                                         15
                                          10
                                  7.5
                  2.5
                                                             _____
                               Area Percent Report
                                                       Signal
                             :
     Sorted By
                                    1.0000
     Multiplier
                             :
                                    1.0000
                             :
     Dilution
     Signal 1: DAD1 A, Sig=235,4 Ref=550,100
                                                           Area
                                               Height
      Peak RetTime Type Width
                                    Area
                                                             8
                                  [mAU*s]
                                               [mAU]
                          [min]
       # [min]
                                                         ____|
                                               -----1
                         -----|
        --|----|----|
                                              113.80764
                                                          97.3832
                          0.5276 4053.75537
         1 16.267 BB
2 17.777 BB
                                                          2.6168
                                                2.71816
                          0.4835 108.92802
                                  4162.68339 116.52580
      Totals :
       Results obtained with enhanced integrator!
                                                                     Page 1 of 2
  Instrument 1 26.05.15 10:58:12 Dominik
```


Ethyl 2-methyl-5-vinyl-4,5-dihydrofuran-3-carboxylate (6):^[1]

Thermal condition:

Starting from diastereoisomer **5a**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 84.6 mg (93%) of **6** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

Starting from diastereoisomer **5a**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 68.5 mg (94%) of **6** as a colorless oil.

Visible-Light (23 W, Compact Fluorescent Lamp) condition:

Starting from diastereoisomer **5a**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 67.8 mg (93%) of **6** as a colorless oil.

Thermal condition:

Starting from diastereoisomer **5b**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 83.9 mg (92%) of **6** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

Starting from diastereoisomer **5b**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 67.1 mg (92%) of **6** as a colorless oil.

Visible-Light (23 W, Compact Fluorescent Lamp) condition:

Starting from diastereoisomer **5b**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 67.1 mg (92%) of **6** as a colorless oil.

 $R_f = 0.26$ (*n*-pentane/Et₂O, 15:1 (v/v)); ¹**H-NMR** (250 MHz, CDCl₃) δ 5.93 (ddd, J = 17.1, 10.3, 6.6 Hz, 1H), 5.29 (dt, J = 17.1, 1.2 Hz, 1H), 5.20 (dt, J = 10.3, 1.1 Hz, 1H), 5.08-4.98 (m, 1H), 4.17 (q, J = 7 Hz, 2H), 3.12-3.01 (m, 1H), 2.72-2.62 (m, 1H), 2.21 (t, J = 1.5 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ 167.5, 166.1, 136.9, 116.6, 101.7, 82.5, 59.5, 35.6, 14.4, 14.1 ppm; **IR** (ATR, neat) 2981, 2928, 2870, 1695, 1642 cm⁻¹; **GC/MS** (EI, 70 eV) m/z (%) 182 (M⁺, 54), 139 (53), 137 (55), 135 (46), 121 (100), 94 (64), 93 (54), 67 (50), 66 (83), 65 (30), 55 (25).

tert-Butyl 2-methyl-5-vinyl-4,5-dihydrofuran-3-carboxylate (8):^[1]

Thermal condition:

Starting from diastereoisomer **7a**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 98.7 mg (94%) of **8** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

Starting from diastereoisomer **7a**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 71.5 mg (85%) of **8** as a colorless oil.

Thermal condition:

Starting from diastereoisomer **7b**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 62.9 mg (60%) of **8** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

Starting from diastereoisomer **7b**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 15:1 (v/v) to afford 76.5 mg (91%) of **8** as a colorless oil.

 $R_f = 0.37$ (*n*-pentane/Et₂O, 15:1 (v/v)); ¹**H-NMR** (250 MHz, CDCl₃) δ 5.93 (ddd, J = 17.0, 10.3, 6.7 Hz 1H), 5.29 (dt, J = 17.2, 1.2 Hz, 1H), 5.19 (dt, J = 10.4, 1.1 Hz, 1H), 5.04-4.94 (m, 1H), 3.07-2.97

(m, 1H), 2.68-2.58 (m, 1H), 2.17 (t, J = 1.6 Hz, 3H), 1.48 (s, 9H) ppm; ¹³C-NMR (63 MHz, CDCl₃) δ 166.2, 165.6, 137.1, 116.5, 103.1, 82.2, 79.5, 35.9, 28.4, 14.1 ppm; **IR** (ATR, neat) 2975, 2928, 2869, 1687, 1645 cm⁻¹; **GC/MS** (EI, 70 eV) m/z (%) 210 (M⁺, 32), 154 (63), 137 (63), 135 (55), 121 (91), 111 (88), 94 (100), 93 (47), 66 (56), 57 (46).

Ethyl 2-phenyl-5-vinyl-4,5-dihydrofuran-3-carboxylate (10):^[8]

Thermal condition:

Starting from diastereoisomer **9a**: 5 mol% TBAFe were used The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 10:1 (v/v) to afford 106.4 (87%) of **10** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

Starting from diastereoisomer **9a**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 10:1 (v/v) to afford 88.9 (91%) of **10** as a colorless oil.

Thermal condition:

Starting from diastereoisomer **9b**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 10:1 (v/v) to afford 104.9 mg (86%) of **10** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

Starting from diastereoisomer **9b**: The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 10:1 (v/v) to afford 89.9 mg (92%) of **10** as a colorless oil.

 $R_f = 0.27$ (*n*-pentane/Et₂O, 10:1 (v/v)); ¹H-NMR (250 MHz, CDCl₃) δ 7.81-7.77 (m, 2H), 7.42-7.33 (m, 3H), 6.03 (ddd, J = 6.5, 10.3, 17.1 Hz, 1H), 5.41-5.12 (m, 3H), 4.13 (q, J = 7.2 Hz, 2H), 3.30 (dd, J = 10.6, 15.1 Hz, 1H), 2.92 (dd, J = 8.3, 15.1 Hz, 1H), 1.20 (t, J = 7.2, 3H) ppm; ¹³C NMR (63 MHz, CDCl₃) δ 165.2, 164.6, 136.8, 130.3, 129.9, 129.3, 127.6, 116.8, 102.1, 82.0, 59.7, 37.3, 14.2 ppm; IR S33

(ATR) 2980, 2867, 1703, 1680, 1623, 1597, 1574, 1493, 1446 cm⁻¹; **HRMS** (**ESI**) calc. for $[C_{15}H_{16}O_3+Na^+]$ 267.0992, found 267.0994.

(*E*)-1-(5-(hex-1-en-1-yl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (12):

Thermal condition:

This reaction was performed using 5 mol-% TBAFe. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 90 mg (87%) of **12** as a brown oil.

UV-Light (180 W, Hg Lamp) condition:

This reaction was performed by using 5 mol-% TBAFe for 6 hours. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 72.5 mg (87%) of **12** as a yellow oil.

 $R_f = 0.22$ (*n*-pentane/Et₂O, 4:1 (v/v)); ¹H NMR (300 MHz, CDCl₃) δ 5.76 (m, 1H), 5.61 – 5.51 (m, 1H), 5.00 (dd, J = 18.0, 8.0 Hz, 1H), 3.09 (m, 1H), 2.71 (m, 1H), 2.22 (t, J = 1.3 Hz, 3H), 2.19 (s, 3H), 2.07 (dd, J = 13.6, 6.8 Hz, 2H), 1.44 – 1.27 (m, 4H), 0.90 (t, J = 7.1 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 194.6, 167.4, 135.1, 128.5, 112.1, 83.2, 36.7, 31.8, 30.9, 29.4, 22.2, 15.0, 13.9 ppm; IR (ATR) 2957, 2927, 2857, 1671, 1591, 1381, 1216, 1132, 1061, 967, 926, 625 cm⁻¹; GC/MS (ESI) m/z (%)209 (M + H⁺, 25), 167 (16), 149 (18), 123 (25), 113 (100); HRMS (ESI) calc. for [C₁₃H₂₀O₂ + Na⁺] 231.1356, found: 231.1358.

Methyl (E)-3-(4-acetyl-5-methyl-2,3-dihydrofuran-2-yl)acrylate (14):

Thermal condition:

This reaction was performed using 5 mol-% TBAFe. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 101 mg (96%) of **14** as a red oil.

UV-Light (180 W, Hg Lamp) condition:

This reaction was performed by using 5 mol-% TBAFe for 6 hours. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 74.8 mg (89%) of **14** as a yellow oil.

 $R_f = 0.19$ (*n*-pentane /Et₂O, 2:1 (v/v)); ¹H NMR (300 MHz, CDCl₃) δ 6.93 (dd, J = 15.6, 4.8 Hz, 1H), 6.02 (d, J = 15.6 Hz, 1H), 5.28 – 5.16 (m, 1H), 3.76 (s, 3H), 3.30 – 3.15 (m, 1H), 2.77 (dd, J = 14.0, 7.1 Hz, 1H), 2.26 (s, 3H), 2.21 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 194.0, 166.8, 166.2, 145.2, 120.8, 111.6, 79.5, 51.7, 36.0, 29.4, 14.7 ppm; IR (ATR) 2953, 2923, 1722, 1673, 1597,1435, 1389, 1362, 1305, 1272, 1219, 1172, 987, 928, 732, 625 cm⁻¹; GC/MS (ESI) m/z (%) 211 (M + H⁺, 17), 137 (100), 119 (12); HRMS (ESI) calc. for [C₁₁H₁₄O₄ + H⁺]: 211.0965, found: 211.0961.

1-(2-Methyl-5-(2-methylprop-1-en-1-yl)-4,5-dihydrofuran-3-yl)ethan-1-one (16):

Thermal condition:

The reaction was performed on a 0.275 mmol scale using 5 mol-% TBAFe. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 27 mg (54%) of **16** as a purple oil.

UV-Light (180 W, Hg Lamp) condition:

This reaction was performed by using 5 mol-% TBAFe for 6 hours. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 54.1 mg (75%) of **16** as a colorless oil.

Visible-Light (23 W, Compact Fluorescent Lamp) condition:

This reaction was performed by using 5 mol-% TBAFe for 6 hours. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 4:1 (v/v) to afford 54.8 mg (76%) of **16** as a colorless oil.

 $R_f = 0.25$ (*n*-pentane/Et₂O, 4:1(v/v)); ¹H NMR (300 MHz, CDCl₃) δ 5.39 – 5.23 (m, 2H), 3.17 – 3.02 (m, 1H), 2.73 – 2.58 (m, 1H), 2.21 (t, J = 1.4 Hz, 3H), 2.19 (s, 3H), 1.78 (s, 3H), 1.74 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 194.7, 167.9, 138.5, 124.2, 112.1, 79.3, 37.1, 29.4, 25.8, 18.3, 15.2 ppm; IR (ATR) v 2972, 2916, 2859, 1714, 1669, 1589, 1451, 1380, 1216, 1132, 928, 865, 625 cm⁻¹; GC/MS (ESI) m/z (%) 181 (M⁺, 21), 163 (18), 145 (25),123 (100), 113 (24),105 (25); HRMS (ESI) calc. for [C₁₁H₁₆O₂ + Na⁺]: 203.1043, found: 203.1039.

Ethyl 2,4,4-trimethyl-5-(2-methylprop-1-en-1-yl)-4,5-dihydrofuran-3-carboxylate (18):

UV-Light (180 W, Hg Lamp) condition:

This reaction was performed by using 10 mol-% TBAFe in THF (1 ml) for 24 hours. The *title compound* was purified via column chromatography on silica gel eluting with PE/EA 20:1 (v/v) to afford 93.3 mg (98%) of **18** as a colorless oil.

UV-Light (75 W, Xenon Lamp) condition:

This reaction was performed by using 10 mol-% TBAFe in THF (1 ml) for 24 hours. The *title compound* was purified via column chromatography on silica gel eluting with PE/EA 20:1 (v/v) to afford 91.5 mg (96%) of **18** as a colorless oil.

Visible-Light (23 W, Compact Fluorescent Lamp) condition:

This reaction was performed by using 10 mol-% TBAFe in THF (1 ml) for 24 hours. The *title compound* was purified via column chromatography on silica gel eluting with PE/EA 20:1 (v/v) to afford 18.1 mg (19%) of **18** as a colorless oil.

 $R_f = 0.35$ (PE/EA 20:1(v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 5.32 (qd, J = 1.3, 9.8 Hz, 1H), 4.78 (d, J = 9.8 Hz, 1H), 4.18 (dq, J = 1.7, 7.1 Hz, 2H), 2.17 (s, 3H), 1.82 (d, J = 1.2 Hz, 3H), 1.74 (d, J = 1.3 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H), 1.23 (s, 3H), 1.05 (s, 3H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 167.7, 166.1, 139.7, 119.2, 119.9, 88.5, 59.0, 46.2, 26.2, 25.6, 21.8, 18.4, 14.9, 14.3 ppm; IR (ATR) 1693, 1628, 1334, 1308, 1253, 1078, 1061, 976, 951, 776 cm⁻¹; HRMS (ESI) calc. for [C₁₄H₂₂O₃ + Na⁺]: 261.1461, found: 261.1460.

1-(2-Methyl-5-(prop-1-en-2-yl)-4,5-dihydrofuran-3-yl)ethan-1-one (20)

Thermal condition:

This reaction was performed using 5 mol-% TBAFe. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 80 mg (96%) of **20** as a yellow oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 64.5 mg (97%) of **20** as a yellow oil.
$R_f = 0.46$ (*n*-pentane/Et₂O 2:1 (v/v)); ¹H NMR (300 MHz, CDCl₃) δ 5.05 – 4.97 (m, 2H), 4.91 – 4.88 (m, 1H), 3.09 (ddq, J = 13.5, 10.6, 1.4 Hz, 1H), 2.76 (ddq, J = 14.1, 8.4, 1.5 Hz, 1H), 2.25 (t, J = 1.5 Hz, 3H), 2.21 (s, 3H), 1.74 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 194.4, 167.6, 143.3, 112.1, 112.0, 84.8, 35.3, 29.4, 17.0, 14.9 ppm; IR (Film) 2918, 2865, 1672, 1598, 1389, 1219 cm⁻¹; GC/MS (EI, 70 eV) m/z (%) = 166 (30) [M⁺], 123 (37), 43 (100) HRMS (EI) calc. for [C₁₀H₁₄O₂]: 166.0994, found: 166.0995.

(E)-1-(2-Methyl-5-styryl-4,5-dihydrofuran-3-yl)ethan-1-one (22)

Thermal condition:

This reaction was performed on a 0.25 mmol scale using 5 mol-% TBAFe. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 56 mg (98%) of **22** as a brown oil.

UV-Light (180 W, Hg Lamp) condition:

This reaction was performed by using 5 mol-% TBAFe for 6 hours. The *title compound* was purified via column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 89.5 mg (98%) of **22** as a brown oil.

 $R_f = 0.25$ (*n*-pentane/Et₂O, 4:1(v/v)); ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.23 (m, 5H), 6.62 (d, J = 15.8 Hz, 1H), 6.26 (dd, J = 15.8, 7.3 Hz, 1H), 5.26 – 5.15 (m, 1H), 3.19 (m, 1H), 2.83 (m, 1H), 2.26 (t, J = 1.4 Hz, 3H), 2.21 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 194.46, 167.39, 135.97, 132.57, 128.66, 128.22, 127.63, 126.71, 112.09, 82.74, 36.76, 29.48, 15.08 ppm; IR (Film) 2922, 2863, 1669, 1592, 1494, 1449, 1423, 1219 cm⁻¹; HRMS (ESI) calc. for [C₁₅H₁₆O₂ + Na⁺] 251.1043, found: 251.1040.

(4-Methyl-2-phenyl-5-vinyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (24):^[1]

Thermal condition:

The *title compound* was purified via column chromatography on silica gel eluting with PE/EA 20:1 (v/v) to afford 52 mg (72%) of **24** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified via column chromatography on silica gel eluting with PE/EA 20:1 (v/v) to afford 106.7 mg (92%) of **24** as a colorless oil.

 $R_f = 0.33$ (PE/EA, 20:1 (v/v)); ¹H-NMR (300 MHz, CDCl₃) δ 7.56-7.47 (m, 2H), 7.27-7.19 (m, 3H), 7.19-7.12 (m, 1H), 7.12-7.00 (m, 4H), 6.07 (ddd, J = 6.8, 10.4, 17.1 Hz, 1H), 5.44 (td, J = 1.2, 17.2 Hz, 1H), 5.30 (td, J = 1.0, 10.4 Hz, 1H), 4.77- 4.69 (m, 1H), 3.58-3.46 (m, 1H), 1.36 (d, J = 6.6 Hz, 3H) ppm; ¹³C-NMR (75 MHz, CDCl₃) δ 193.8, 164.3, 139.2, 135.9, 131.4, 130.03, 129.97, 129.4, 129.0, 127.7, 127.6, 117.5, 116.8, 90.2, 46.5, 17.9 ppm; IR (ATR) 3061, 2958, 1721, 1613, 1593, 1572, 1490, 1447, 1158, 889, 729, 692 cm⁻¹; HRMS (ESI) calc. for [C₂₀H₁₈O₂ + Na⁺]: 313.1199, found: 313.1193.

<u>9. NBu₄[Fe(CO)₃(NO)] (TBAFe)-catalyzed Cloke-Wilson Rearrangement of Arylcyclopropanes</u>

Table 1. Optimization of Cloke-Wilson Rearrangement of Arylcyclopropanes underThermal/Microwave Condition.

Entry ^[a]	Solvent	Temp./heating method	Time	Conversion ^[b]
1	CH_2Cl_2	45 °C (oil bath)	14 h	< 5%
2	THF	120 °C (oil bath)	14.5 h	< 5%
3	THF	120 °C (MW)	1 h	< 5%
4	PhMe	120 °C (MW)	1 h	< 5%
5	CH ₃ CN	120 °C (MW)	1 h	8%
6	<i>n</i> -Pentane	120 °C (MW)	1 h	11%
7	DMF	120 °C (MW)	1 h	66%
8	DMF	120 °C (MW)	1 h	< 5%
10	DMF	120 °C (oil bath)	1 h	16%
11	DMF	120 °C (MW)	2 h	79%

[a] Reaction were performed on a 0.25 mmol scale in absolute solvents. [b] Determined via GC-intergration.

Table 2. Optimization of Cloke-Wilson Rearrangement of Arylcyclopropanes under UV-LightCondition.

[a] 0.4 mmol substrate, 10 mol% TBA[Fe], 1 mL solvent, 180 W Hg-lamp, 20 °C, 24 h. [b] Isolated yield.

General procedure V: Microwave conditions for the CWR of ACPs

TBAFe (5.2 mg, 0.0125 mmol, 0.05 equiv.) and the corresponding ACP (0.25 mmol, 1 equiv.) were weighed into a dried 10 mL microwave tube. Anhydrous DMF (1 mL) was added and the tube was sealed under an atmosphere of dry nitrogen. The reaction mixture was stirred for 2 h at 120 $^{\circ}$ C under microwave conditions. The product was obtained via chromatography on silica gel.

General procedure VI: UV-Light conditions for the CWR of ACPs

A 10-mL Schlenk tube was charged with Arylcyclopropane (0.40 mmol, 1 equiv.), TBAFe (0.04 mmol, 0.1 equiv.), and DMF (1 mL) under N₂. The reactions were carried out at room temperature under irradiation of UV light (180 W, Hg lamp or 75 W, Xe lamp at distance of 15 cm) or Visible light (23 W, Compact Fluorescent Lamp at distance of 15 cm) for 24 h. The reaction was quenched with diethyl ether and concentrated *in vacuo*. Purification by silica column chromatography afforded the desired dihydrofuran product.

1-(2-Methyl-5-phenyl-4,5-dihydrofuran-3-yl)ethan-1-one (26)^[9]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 50 mg (99%) of **26** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 66.3 mg (82%) of **26** as a colorless oil.

UV-Light (75 W, Xenon Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 46.1 mg (57%) of **26** as a colorless oil.

Visible-Light (23 W, Compact Fluorescent Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 4.0 mg (5%) of **26** as a colorless oil.

 $R_f = 0.46$ (*n*-Pentane/Et₂O, 2:1 (v/v)); ¹**H** NMR (300 MHz, CDCl3) δ 7.41-7.29 (m, 5H), 5.60 (dd, J = 8.4, 10.6 Hz, 1H), 3.40 (qdd, J = 1.5, 10.7, 14.3 Hz, 1H), 2.97 (qdd, J = 1.5, 8.4, 14.2 Hz, 1H), 2.31 (t, J = 1.5 Hz, 3H), 2.22 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl3) δ 194.4, 167.4, 141.2, 128.7, 128.2, 125.6, 111.8, 83.1, 38.7, 29.4, 15.0 ppm; **IR** (ATR) 3063, 3032, 3002, 2954, 2919, 2865, 1670, 1595, 1495, 1452, 1423 cm⁻¹; **HRMS** (ESI): calc. for [C₁₃H₁₄O₂ + Na⁺]: 225.0886, found: 225.0892.

1-(2-Methyl-5-(p-tolyl)-4,5-dihydrofuran-3-yl)ethan-1-one (28)^[9]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 54 mg (99%) of **28** as a yellow oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 73.5 mg (85%) of **28** as a colorless oil.

 $R_f = 0.21$ (*n*-pentane/Et₂O, 3:1 (v/v)); ¹**H** NMR (300 MHz, CDCl₃) δ 7.25 – 7.15 (m, 4H), 5.56 (dd, J = 10.6, 8.4 Hz, 1H), 3.36 (m, 1H), 2.96 (m, 1H), 2.35 (s, 3H), 2.30 (t, J = 1.5 Hz, 3H), 2.21 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 194.5, 167.5, 138.3, 138.1, 129.4, 125.7, 111.9, 83.3, 38.7, 29.5, 21.2, 15.0 ppm; **IR** (Film) 2921 (w), 2864 (w), 1670 (m), 1592 (s), 1516 (m), 1423 (m), 1381 (m),1359 (m) cm⁻¹; **GC/MS** (ESI) m/z (%) = 239 (100) [M⁺ + Na]; **HRMS** (ESI) calc. for [C₁₄H₁₆O₂ + Na⁺]: 239.1043, found: 239.1033.

1-(5-(4-(*tert*-Butyl)phenyl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (30)^[5]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 48 mg (75%) of **30** as a yellow oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 79.6 mg (77%) of **30** as a yellow oil.

 $R_f = 0.31$ (*n*-pentane/Et₂O, 3:1 (v/v)); ¹**H** NMR (300 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.27 (dt, J = 2.0, 1.2 Hz, 2H), 5.57 (dd, J = 10.6, 8.4 Hz, 1H), 3.37 (m, 1H), 3.00 (m, 1H), 2.30 (t, J = 1.5 Hz, 3H), 2.21 (s, 3H), 1.32 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 194.5, 167.5, 151.4, 138.2, 125.7, 125.6, 111.9, 83.2, 38.5, 34.6, 31.3, 29.5, 15.0 ppm; **IR** (Film) 2959 (m), 2867 (w), 1671 (m), 1595 (s), 1512 (w), 1382 (m) cm⁻¹; **GC/MS** (EI, 70 eV) m/z (%) = 258 (100) [M⁺], 243 (69), 169 (25), 57 (25), 43 (57); **HRMS** (EI) calc. for [C₁₇H₂₂O₂]: 258.1620, found: 258.1622.

1-(5-(4-Fluorophenyl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (32)^[10]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 42 mg (76%) of **32** as a yellow oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 54.6 mg (62%) of **32** as a yellow oil.

 $R_f = 0.21$ (*n*-pentane/Et₂O, 3:1 (v/v)); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.36-7.26 (m, 2H), 7.12-7.01 (m, 2H), 5.57 (dd, J = 8.4, 10.4 Hz, 1H), 3.46-3.32 (m, 1H), 3.00-2.88 (m, 1H), 2.30 (t, J = 1.4 Hz, 3H), 2.22 (s, 3H) ppm; ¹³**C-NMR** (75 MHz, CDCl₃) δ 194.3, 167.2, 162.5 (d, J = 245.5 Hz), 137.1 (d, J = 3.2 Hz), 127.5 (d, J = 8.2 Hz), 115.6 (d, J = 21.2 Hz), 111.9, 82.5, 38.8, 29.5, 15.0 ppm; **IR** (ATR) 2924, 1671, 1593, 1510, 1424, 1216, 929, 833, 624. 611 cm⁻¹; **HRMS** (ESI) calc. for [C₁₃H₁₃FO₂ + Na⁺]: 243.0792, found: 243.0785.

1-(5-(4-Chlorophenyl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (34)^[9]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 54 mg (92%) of **34** as a yellow oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 71.3 mg (75%) of **34** as a yellow oil.

 $R_f = 0.18$ (*n*-pentane/Et₂O, 3:1 (v/v)); ¹**H-NMR** (300 MHz, CDCl3) δ 7.39-7.32 (m, 2H), 7.30-7.22 (m, 2H), 5.56 (dd, J = 8.3, 10.7 Hz, 1H), 3.48-3.33 (m, 1H), 2.97-2.86 (m, 1H), 2.30 (t, J = 1.5 Hz, 3H), 2.21 (s, 3H) ppm; ¹³**C-NMR** (75 MHz, CDCl₃) δ 194.3, 167.2, 139.8, 134.0, 128.9, 127.0, 111.9, 82.3, 38.8, 29.5, 15.0 ppm; **IR** (ATR) 2921, 1672, 1592, 1492, 1381, 1215, 1134, 930, 624 cm⁻¹; **HRMS** (ESI) calc. for [C₁₃H₁₃ClO₂ + Na⁺]: 259.0496, found: 259.0484.

1-(5-(4-Bromophenyl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (36)^[10]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 3:1 (v/v) to afford 68 mg (97%) of **36** as a yellow oil.

 $R_f = 0.22$ (*n*-pentane/Et₂O, 3:1 (v/v)); ¹**H** NMR (300 MHz, CDCl₃) δ 7.54 – 7.48 (m, 2H), 7.24 – 7.17 (m, 2H), 5.55 (dd, J = 10.7, 8.3 Hz, 1H), 3.39 (m, 1H), 2.91 (m, 1H), 2.31 (t, J = 1.5 Hz, 3H), 2.22 (s, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ 194.3, 167.2, 140.4, 131.9, 127.3, 122.1, 111.9, 82.4, 38.7, 29.5, 15.0 ppm; **IR** (Film) 2922 (w), 2866 (w), 1671 (m), 1601 (s), 1488 (m), 1382 (m) cm⁻¹; **GC/MS** (EI, 70 eV) m/z (%) = 280 (63) [M⁺], 186 (28), 115 (23), 14,5 (100); **HRMS** (EI) calc. for [C₁₃H₁₃BrO₂]: 280.0099, found: 280.0097.

1-(5-(3-Methoxyphenyl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (38)

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 49 mg (85%) of **38** as a yellow oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 86.4 mg (93%) of **38** as a yellow oil.

 $R_f = 0.27$ (*n*-pentane/Et₂O, 2:1 (v/v)); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.34-7.26 (m, 3H), 6.94-6.82 (m, 1H), 5.56 (dd, J = 8.4, 10.7 Hz, 1H), 3.82 (s, 3H), 3.45-3.32 (m, 1H), 3.03-2.90 (m, 1H), 2.31 (t, J = 1.5 Hz, 3H), 2.21 (s, 3H) ppm; ¹³**C-NMR** (75 MHz, CDCl₃) δ 194.4, 167.4, 159.9, 142.9, 129.9, 117.8, 113.4, 111.9, 111.3, 83.0, 55.3, 38.8, 29.5, 15.0 ppm; **IR** (ATR) 2938, 2837, 1670, 1586, 1489, 1383,

1259, 1216, 926, 782, 697, 625 cm⁻¹; **HRMS** (ESI) calc. for $[C_{14}H_{16}O_3 + Na^+]$: 255.0992, found: 255.0974.

1-(5-(3-Chlorophenyl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (40)^[9]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 53 mg (90%) of **40** as a yellow oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 68.1 mg (72%) of **40** as a yellow oil.

 $R_f = 0.32$ (*n*-pentane/Et₂O, 2:1 (v/v)); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.35-7.27 (m, 3H), 7.24-7.15 (m, 1H), 5.56 (dd, J = 8.3, 10.7 Hz, 1H), 3.47-3.35 (m, 1H), 2.99-2.87 (m, 1H), 2.32 (t, J = 1.5 Hz, 3H), 2.22 (s, 3H) ppm; ¹³**C-NMR** (75 MHz, CDCl₃) δ 194.3, 167.2, 143.4, 134.7, 130.1, 128.3, 125.7, 123.7, 111.9, 82.2, 38.8, 29.5, 15.0 ppm; **IR** (ATR) 2998, 2922, 1672, 1593, 1383, 1360, 1215, 923, 785, 693, 624 cm⁻¹; **HRMS** (ESI) calc. for [C₁₃H₁₃ClO₂ + Na⁺]: 259.0496, found: 259.0492.

1-(5-(3-Bromophenyl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (42)

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 59 mg (84%) of **42** as a yellow oil.

 $R_f = 0.29$ (*n*-pentane/Et₂O, 2:1 (v/v)); ¹**H** NMR (300 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.26 – 7.23 (m, 2H), 5.55 (dd, J = 10.7, 8.3 Hz, 1H), 3.40 (m, 1H), 2.93 (m, 1H), 2.32 (t, J = 1.5 Hz, 3H), 2.22 (s, 3H) ppm; ¹³**C** NMR (75 MHz, CDCl₃) δ 194.3, 167.2, 143.7, 131.3, 130.4, 128.6, 124.2, 122.8, 111.9, 82.1, 38.8, 29.5, 14.9 ppm; **IR** (Film) 2922 (w), 2865 (w),1672 (m), 1595 (s), 1475 (w), 1424 (m), 1385 (m) cm⁻¹; **GC/MS** (ESI) m/z (%) = 303 (100) [M⁺ + Na]; **HRMS** (ESI) calc. for [C₁₃H₁₃BrO₂ + Na⁺]: 302.9991, found: 302.9969.

1-(5-(2-Methoxyphenyl)-2-methyl-4,5-dihydrofuran-3-yl)ethan-1-one (44)

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 48 mg (83%) of **44** as a yellow oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 38.1 mg (41%) of **44** as a yellow oil.

 $R_f = 0.44$ (*n*-pentane/Et₂O, 2:1 (v/v)); ¹**H** NMR (300 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 6.97 (m, 1H), 6.90 (m, 1H), 5.87 (dd, J = 10.7, 8.0 Hz, 1H), 3.84 (s, 3H), 3.42 (m, 1H), 2.79 (m, 1H), 2.34 (t, J = 1.5 Hz, 3H), 2.18 (s, 3H) ppm; ¹³**C** NMR (75 MHz, CDCl₃) δ 194.8, 167.5, 155.9, 129.9, 128.9, 125.3, 120.6, 111.9, 110.4, 78.8, 55.4, 38.2, 29.5, 15.0 ppm; **IR** (Film) 2938 (w), 2838 (w), 1670 (m), 1588 (s), 1492 (m), 1462 (m), 1437 (m) cm⁻¹; **GC/MS** (ESI) m/z (%) = 255 (100) [M⁺ + Na]; **HRMS** (ESI) calc. for [C₁₄H₁₆O₃ + Na⁺]: 255.0992, found: 255.0978.

Methyl 2-methyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (46)^[9]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 40 mg (74%) of **46** as a colorless oil.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 2:1 (v/v) to afford 70.7 mg (81%) of **46** as a colorless oil.

 $R_f = 0.27$ (*n*-pentane/Et₂O, 10:1 (v/v)); ¹**H-NMR** (300 MHz, CDCl₃) δ 7.41-7.27 (m, 5H), 5.59 (dd, J = 8.3, 10.7 Hz, 1H), 3.71 (s, 3H), 3.33 (qdd, J = 1.6, 10.8, 14.5 Hz, 1H), 2.91 (qdd, J = 1.6, 8.3, 14.5 Hz, 1H), 2.29 (t, J = 1.6 Hz, 3H) ppm; ¹³**C-NMR** (75 MHz, CDCl₃) δ 168.0, 166.4, 141.5, 128.7, 128.2, 125.7, 101.4, 83.2, 50.9, 37.9, 14.1 ppm; **IR** (ATR) 3032, 2949, 1690, 1647, 1495, 1435 cm⁻¹; **HRMS** (ESI): calc. for [C₁₃H₁₄O₃ + Na⁺]: 241.0835, found: 241.0832.

(2,5-Diphenyl-4,5-dihydrofuran-3-yl)(phenyl)methanone (48)^[11]

Thermal condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 5:1 (v/v) to afford 76 mg (93%) of **48** as a colorless solid.

UV-Light (180 W, Hg Lamp) condition:

The *title compound* was purified by column chromatography on silica gel eluting with *n*-pentane/Et₂O 5:1 (v/v) to afford 52.2 mg (40%) of **48** as a colorless solid.

 $R_f = 0.33$ (*n*-pentane/Et₂O, 5:1 (v/v)); Mp. 111-112 °C; ¹H-NMR (250 MHz, CDCl₃) δ 7.51-7.05 (m, 15H), 5.85 (bt, J = 9.5 Hz, 1H), 3.71 (dd, J = 10.3, 15.1 Hz, 1H), 3.39 (dd, J = 9.0, 15.1 Hz, 1H) ppm; ¹³C-NMR (63 MHz, CDCl₃) 193.4, 165.5, 141.1, 139.0, 131.2 , 130.1, 129.9, 129.5, 128.9, 128.8, 128.3, 127.7, 127.6, 125.9, 111.8, 83.2, 41.1 ppm; **IR** (ATR) 3061, 3030, 1611, 1592, 1573, 1492, 1446 cm⁻¹; **HRMS** (ESI): calc. for [C₂₃H₁₈O₂ + Na⁺]: 349.1199, found: 349.1215.

10. ¹H and ¹³C-NMR Spectra

<u>11. Additional information for Crystals</u>

Figure S14: X-ray structure of compound (R)-3

Table 3. Crystal data and structure refinement for compound (R)-3.

Identification code	s2179lc
Empirical formula	C19 H16 O2
Formula weight	276.32
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system, space gro	oup Monoclinic, C 2
Unit cell dimensions	a = 14.3210(8) A alpha = 90 deg.
	b = 8.9769(5) A beta = 91.660(2)
	c = 11.7100(7) A gamma = 90 deg.

Z, Calculated density 4, 1.220 Mg/m³

Absorption coefficient 0.618 mm^-1

F(000)

Crystal size 0.59 x 0.40 x 0.23 mm

584

Theta range for data collection 3.78 to 65.82 deg.

Limiting indices -16<=h<=16, -9<=k<=10, -13<=l<=13

Reflections collected / unique 8918 / 2432 [R(int) = 0.0386]

Completeness to theta = 65.82 98.3 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7528 and 0.6481

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2432 / 1 / 191

Goodness-of-fit on F^2 1.032

Final R indices [I>2sigma(I)] R1 = 0.0232, wR2 = 0.0611

R indices (all data) R1 = 0.0232, wR2 = 0.0612

Absolute structure parameter 0.04(16)

Extinction coefficient 0.0046(3)

Largest diff. peak and hole 0.152 and -0.117 e.A^-3

Table 4. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for s2179lc. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	Z	U(eq)	
O(1)	8220(1)	9840(1)	1002(1)	24(1)
C(1)	6872(1)	11133(1)	1633(1)	20(1)
O(2)	5476(1)	11548(1)	2652(1)	30(1)
C(2)	7035(1)	12823(1)	1512(1)	22(1)
C(3)	6736(1)	11912(2)	491(1)	25(1)
C(4)	7733(1)	10182(1)	1798(1)	19(1)
C(5)	7995(1)	9741(1)	2991(1)	19(1)
C(6)	8571(1)	8501(1)	3169(1)	22(1)
C(7)	8859(1)	8112(2)	4265(1)	26(1)

C(8)	8596(1)	8970(2)	5191(1)	28(1)
C(9)	8031(1)	10208(2)	5016(1)	28(1)
C(10)	7723(1)	10585(1)	3923(1)	23(1)
C(11)	6006(1)	10654(1)	2228(1)	21(1)
C(12)	5796(1)	9026(1)	2243(1)	21(1)
C(13)	6034(1)	8118(1)	1328(1)	22(1)
C(14)	5790(1)	6619(1)	1320(1)	25(1)
C(15)	5331(1)	6018(2)	2237(1)	26(1)
C(16)	5107(1)	6911(2)	3162(1)	27(1)
C(17)	5330(1)	8410(2)	3161(1)	25(1)
C(18)	7985(1)	13444(1)	1643(1)	23(1)
C(19)	8159(1)	14773(2)	2084(1)	26(1)

 Table 5.
 Bond lengths [A] and angles [deg] for s2179lc.

O(1)-C(4)	1.2193(14)
C(1)-C(11)	1.5030(16)
C(1)-C(4)	1.5080(17)
C(1)-C(3)	1.5170(16)
C(1)-C(2)	1.5418(17)
O(2)-C(11)	1.2202(15)
C(2)-C(18)	1.4742(17)
C(2)-C(3)	1.5007(17)
C(2)-H(2)	1.0000
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900

C(4)-C(5)	1.4898(17)
C(5)-C(10)	1.3926(17)
C(5)-C(6)	1.3972(17)
C(6)-C(7)	1.3818(18)
C(6)-H(6)	0.9500
C(7)-C(8)	1.3898(19)
C(7)-H(7)	0.9500
C(8)-C(9)	1.3863(19)
C(8)-H(8)	0.9500
C(9)-C(10)	1.3838(18)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-C(12)	1.4921(17)
C(12)-C(17)	1.3964(17)
C(12)-C(13)	1.3969(17)
C(13)-C(14)	1.3903(19)
C(13)-H(13)	0.9500
C(14)-C(15)	1.3841(18)
C(14)-H(14)	0.9500
C(15)-C(16)	1.3933(19)
C(15)-H(15)	0.9500
C(16)-C(17)	1.382(2)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(18)-C(19)	1.321(2)
C(18)-H(18)	0.9500
C(19)-H(19A)	0.9500
C(19)-H(19B)	0.9500

C(11)-C(1)-C(4)	117.47(10)
C(11)-C(1)-C(3)	117.00(10)
C(4)-C(1)-C(3)	117.27(10)
C(11)-C(1)-C(2)	116.97(10)
C(4)-C(1)-C(2)	116.31(10)
C(3)-C(1)-C(2)	58.75(8)
C(18)-C(2)-C(3)	122.09(10)
C(18)-C(2)-C(1)	120.30(10)
C(3)-C(2)-C(1)	59.80(8)
C(18)-C(2)-H(2)	114.6
C(3)-C(2)-H(2)	114.6
C(1)-C(2)-H(2)	114.6
C(2)-C(3)-C(1)	61.45(7)
C(2)-C(3)-H(3A)	117.6
C(1)-C(3)-H(3A)	117.6
C(2)-C(3)-H(3B)	117.6
C(1)-C(3)-H(3B)	117.6
H(3A)-C(3)-H(3B)	114.7
O(1)-C(4)-C(5)	121.11(10)
O(1)-C(4)-C(1)	121.88(10)
C(5)-C(4)-C(1)	116.93(10)
C(10)-C(5)-C(6)	119.57(11)
C(10)-C(5)-C(4)	121.48(10)
C(6)-C(5)-C(4)	118.84(10)
C(7)-C(6)-C(5)	119.92(11)
C(7)-C(6)-H(6)	120.0
C(5)-C(6)-H(6)	120.0

120.27(12)
119.9
119.9
119.93(12)
120.0
120.0
120.10(12)
120.0
120.0
120.19(11)
119.9
119.9
120.76(11)
122.12(11)
117.08(10)
119.48(11)
119.90(11)
120.58(11)
120.20(11)
119.9
119.9
119.82(12)
120.1
120.1
120.27(12)
119.9
119.9
120.07(11)

C(17)-C(16)-H(16)	120.0
C(15)-C(16)-H(16)	120.0
C(16)-C(17)-C(12)	120.12(11)
C(16)-C(17)-H(17)	119.9
C(12)-C(17)-H(17)	119.9
C(19)-C(18)-C(2)	123.10(11)
C(19)-C(18)-H(18)	118.5
C(2)-C(18)-H(18)	118.5
C(18)-C(19)-H(19A)	120.0
C(18)-C(19)-H(19B)	120.0
H(19A)-C(19)-H(19B)	120.0

Symmetry transformations used to generate equivalent atoms:

Table 6. Anisotropic displacement parameters (A^2 x 10^3) for s2179lc. The anisotropicdisplacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	U11	U22	U33	U23	U13	U12
O(1)	26(1)	22(1)	25(1)	-4(1)	6(1)	0(1)
C(1)	24(1)	16(1)	21(1)	-1(1)	-1(1)	0(1)
O(2)	26(1)	24(1)	41(1)	-7(1)	7(1)	1(1)
C(2)	26(1)	16(1)	23(1)	2(1)	-1(1)	1(1)
C(3)	30(1)	22(1)	23(1)	3(1)	-3(1)	-1(1)
C(4)	21(1)	13(1)	23(1)	-2(1)	3(1)	-4(1)

C(5)	16(1)	16(1)	25(1)	-1(1)	2(1)	-3(1)
C(6)	20(1)	16(1)	30(1)	-1(1)	3(1)	-2(1)
C(7)	24(1)	18(1)	36(1)	6(1)	-3(1)	-1(1)
C(8)	27(1)	31(1)	26(1)	9(1)	-3(1)	-6(1)
C(9)	28(1)	31(1)	24(1)	-2(1)	4(1)	-1(1)
C(10)	22(1)	21(1)	25(1)	0(1)	2(1)	3(1)
C(11)	20(1)	22(1)	22(1)	-1(1)	-2(1)	2(1)
C(12)	16(1)	22(1)	24(1)	0(1)	-1(1)	1(1)
C(13)	22(1)	22(1)	24(1)	1(1)	1(1)	-1(1)
C(14)	22(1)	22(1)	31(1)	-4(1)	1(1)	0(1)
C(15)	21(1)	19(1)	40(1)	3(1)	0(1)	-1(1)
C(16)	21(1)	29(1)	31(1)	7(1)	4(1)	-3(1)
C(17)	21(1)	28(1)	25(1)	0(1)	2(1)	1(1)
C(18)	27(1)	19(1)	22(1)	4(1)	2(1)	3(1)
C(19)	26(1)	22(1)	31(1)	1(1)	-1(1)	-1(1)

Table 7. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for s2179lc.

	x	у	Z	U(eq)	
H(2)	6532	134	60	1830	26
H(3A)	7204		725	-99	30
H(3B)	6087	120	041	189	30

H(6)	8764	7926	2537	27
H(7)	9238	7255	4387	31
H(8)	8804	8708	5942	34
H(9)	7855	10798	5648	33
H(10)	7325	11421	3808	27
H(13)	6364	8525	709	27
H(14)	5937	6009	688	30
H(15)	5169	4992	2235	32
H(16)	4800	6491	3795	32
H(17)	5165	9021	3786	30
H(18)	8496	12862	1399	27
H(19A)	7660	15377	2334	32
H(19B)	8784	15126	2152	32

Table 8. Torsion angles [deg] for s2179lc.

C(11)-C(1)-C(2)-C(18)	141.50(11)
C(4)-C(1)-C(2)-C(18)	-4.50(16)
C(3)-C(1)-C(2)-C(18)	-111.82(13)
C(11)-C(1)-C(2)-C(3)	-106.68(11)
C(4)-C(1)-C(2)-C(3)	107.33(11)
C(18)-C(2)-C(3)-C(1)	108.91(12)
C(11)-C(1)-C(3)-C(2)	106.63(11)
C(4)-C(1)-C(3)-C(2)	-105.70(11)
C(11)-C(1)-C(4)-O(1)	135.43(11)
C(3)-C(1)-C(4)-O(1)	-12.09(16)

-78.75(14)
-47.73(14)
164.75(10)
98.09(12)
151.98(11)
-24.89(16)
-24.20(17)
158.93(10)
0.65(17)
176.91(10)
-1.54(17)
1.02(18)
0.41(18)
-1.30(18)
0.77(17)
-175.39(11)
141.85(12)
-70.54(15)
-3.75(16)
-40.41(14)
107.20(12)
173.99(10)
-33.00(17)
149.23(11)
144.85(11)
-32.92(16)
1.42(17)
-176.44(11)

C(12)-C(13)-C(14)-C(15)	-1.71(18)
C(13)-C(14)-C(15)-C(16)	0.54(18)
C(14)-C(15)-C(16)-C(17)	0.93(18)
C(15)-C(16)-C(17)-C(12)	-1.22(18)
C(13)-C(12)-C(17)-C(16)	0.05(17)
C(11)-C(12)-C(17)-C(16)	177.93(11)
C(3)-C(2)-C(18)-C(19)	142.07(12)
C(1)-C(2)-C(18)-C(19)	-146.68(12)

Symmetry transformations used to generate equivalent atoms:

Figure S15: X-ray structure of compound (S)-3

Table 9. Crystal data and structure refinement for (S)-3.

Identification code	s21811c
Empirical formula	C19 H16 O2
Formula weight	276.32
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system, space gro	oup Monoclinic, C 2
Unit cell dimensions	a = 14.3185(10) A alpha = 90 deg.
	b = 8.9738(6) A beta = 91.675(3)
	c = 11.7148(8) A gamma = 90 deg.

Volume	1504.61(18) A^3

Z, Calculated density 4, 1.220 Mg/m³

Absorption coefficient 0.619 mm^-1

F(000) 584

Crystal size 0.53 x 0.49 x 0.27 mm

Theta range for data collection 3.77 to 65.86 deg.

```
Limiting indices -16<=h<=16, -9<=k<=10, -13<=l<=13
```

Reflections collected / unique 8708 / 2353 [R(int) = 0.0340]

Completeness to theta = 65.86 96.5 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7528 and 0.6797

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2353 / 1 / 191

Goodness-of-fit on F^2 1.055

Final R indices [I>2sigma(I)] R1 = 0.0233, wR2 = 0.0593

R indices (all data) R1 = 0.0233, wR2 = 0.0594

Absolute structure parameter 0.00(16)

Extinction coefficient 0.0041(2)

Largest diff. peak and hole 0.137 and -0.101 e.A^-3

Table 10. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for s2181lc. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х у	Z	U(eq)	
O(1)	1780(1)	159(1)	8999(1)	25(1)
C(1)	3128(1)	-1133(1)	8367(1)	21(1)
O(2)	4524(1)	-1548(1)	7348(1)	31(1)
C(2)	2965(1)	-2823(1)	8489(1)	23(1)
C(3)	3264(1)	-1913(2)	9509(1)	26(1)
C(4)	2267(1)	-183(1)	8201(1)	20(1)
C(5)	2006(1)	258(1)	7010(1)	20(1)
C(6)	1431(1)	1499(1)	6832(1)	23(1)
C(7)	1142(1)	1889(2)	5737(1)	27(1)
C(8)	1404(1)	1031(2)	4810(1)	29(1)

C(9)	1968(1)	-206(2)	4985(1)	28(1)
C(10)	2276(1)	-584(1)	6078(1)	23(1)
C(11)	3994(1)	-654(1)	7773(1)	22(1)
C(12)	4204(1)	975(1)	7759(1)	22(1)
C(13)	3967(1)	1883(2)	8671(1)	23(1)
C(14)	4210(1)	3380(2)	8681(1)	26(1)
C(15)	4669(1)	3982(2)	7762(1)	27(1)
C(16)	4893(1)	3089(2)	6839(1)	28(1)
C(17)	4670(1)	1591(2)	6839(1)	26(1)
C(18)	2016(1)	-3445(1)	8357(1)	23(1)
C(19)	1841(1)	-4772(2)	7916(1)	27(1)

 Table 11.
 Bond lengths [A] and angles [deg] for s2181lc.

O(1)-C(4)	1.2221(14)
C(1)-C(11)	1.5026(16)
C(1)-C(4)	1.5064(17)
C(1)-C(3)	1.5167(17)
C(1)-C(2)	1.5423(18)
O(2)-C(11)	1.2198(15)
C(2)-C(18)	1.4722(17)
C(2)-C(3)	1.4992(18)
C(2)-H(2)	1.0000
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(5)	1.4877(17)

C(5)-C(10)	1.3923(17)
C(5)-C(6)	1.3972(18)
C(6)-C(7)	1.3809(18)
C(6)-H(6)	0.9500
C(7)-C(8)	1.392(2)
C(7)-H(7)	0.9500
C(8)-C(9)	1.384(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.3839(18)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-C(12)	1.4931(18)
C(12)-C(13)	1.3940(18)
C(12)-C(17)	1.3972(17)
C(13)-C(14)	1.388(2)
C(13)-H(13)	0.9500
C(14)-C(15)	1.3870(19)
C(14)-H(14)	0.9500
C(15)-C(16)	1.391(2)
C(15)-H(15)	0.9500
C(16)-C(17)	1.381(2)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(18)-C(19)	1.320(2)
C(18)-H(18)	0.9500
C(19)-H(19A)	0.9500
C(19)-H(19B)	0.9500

117.52(10)
117.00(10)
117.29(10)
116.97(10)
116.24(10)
58.69(8)
122.11(11)
120.34(11)
59.80(8)
114.6
114.6
114.6
61.51(8)
117.6
117.6
117.6
117.6
114.7
121.09(11)
121.81(11)
117.03(10)
119.41(11)
121.56(11)
118.93(10)
120.03(11)
120.0
120.0
120.25(12)

C(6)-C(7)-H(7)	119.9
C(8)-C(7)-H(7)	119.9
C(9)-C(8)-C(7)	119.87(12)
C(9)-C(8)-H(8)	120.1
C(7)-C(8)-H(8)	120.1
C(10)-C(9)-C(8)	120.12(12)
C(10)-C(9)-H(9)	119.9
C(8)-C(9)-H(9)	119.9
C(9)-C(10)-C(5)	120.31(12)
C(9)-C(10)-H(10)	119.8
C(5)-C(10)-H(10)	119.8
O(2)-C(11)-C(12)	120.79(11)
O(2)-C(11)-C(1)	122.18(12)
C(12)-C(11)-C(1)	116.99(10)
C(13)-C(12)-C(17)	119.51(11)
C(13)-C(12)-C(11)	120.69(11)
C(17)-C(12)-C(11)	119.76(11)
C(14)-C(13)-C(12)	120.34(11)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(15)-C(14)-C(13)	119.71(12)
C(15)-C(14)-H(14)	120.1
C(13)-C(14)-H(14)	120.1
C(14)-C(15)-C(16)	120.23(13)
C(14)-C(15)-H(15)	119.9
C(16)-C(15)-H(15)	119.9
C(17)-C(16)-C(15)	120.18(11)
C(17)-C(16)-H(16)	119.9

C(15)-C(16)-H(16)	119.9
C(16)-C(17)-C(12)	120.00(12)
C(16)-C(17)-H(17)	120.0
C(12)-C(17)-H(17)	120.0
C(19)-C(18)-C(2)	123.14(11)
C(19)-C(18)-H(18)	118.4
C(2)-C(18)-H(18)	118.4
C(18)-C(19)-H(19A)	120.0
C(18)-C(19)-H(19B)	120.0
H(19A)-C(19)-H(19B)	120.0

Table 12. Anisotropic displacement parameters (A^2 x 10^3) for s21811c. The anisotropicdisplacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	U11	U22	U33	U23	U13	U12
O(1)	27(1)	24(1)	25(1)	-3(1)	7(1)	0(1)
C(1)	24(1)	18(1)	22(1)	-2(1)	1(1)	0(1)
O(2)	25(1)	27(1)	41(1)	-7(1)	7(1)	2(1)
C(2)	27(1)	17(1)	24(1)	2(1)	1(1)	2(1)
C(3)	30(1)	24(1)	24(1)	3(1)	-2(1)	-1(1)
C(4)	21(1)	15(1)	23(1)	-3(1)	4(1)	-4(1)

C(5)	16(1)	18(1)	25(1)	-1(1)	3(1)	-3(1)
C(6)	21(1)	18(1)	31(1)	-1(1)	3(1)	-3(1)
C(7)	24(1)	20(1)	36(1)	6(1)	-1(1)	-1(1)
C(8)	27(1)	34(1)	26(1)	8(1)	-3(1)	-6(1)
C(9)	27(1)	33(1)	25(1)	-2(1)	4(1)	-1(1)
C(10)	23(1)	22(1)	25(1)	0(1)	3(1)	2(1)
C(11)	20(1)	24(1)	22(1)	-1(1)	-1(1)	2(1)
C(12)	17(1)	23(1)	25(1)	0(1)	-1(1)	1(1)
C(13)	22(1)	24(1)	25(1)	1(1)	2(1)	-2(1)
C(14)	22(1)	23(1)	32(1)	-4(1)	2(1)	-1(1)
C(15)	22(1)	20(1)	40(1)	4(1)	0(1)	-1(1)
C(16)	22(1)	31(1)	31(1)	8(1)	5(1)	-2(1)
C(17)	21(1)	30(1)	26(1)	0(1)	3(1)	1(1)
C(18)	27(1)	21(1)	22(1)	4(1)	3(1)	3(1)
C(19)	26(1)	23(1)	32(1)	1(1)	0(1)	-1(1)

Table 13. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for s21811c.

	x	у	Z	U(eq)	
H(2)	3467	-346	51	8171	27
H(3A)	3912	-20	043	9810	31
H(3B)	2796	-17	726	10097	31

H(6)	1239	2076	7463	27
H(7)	762	2746	5616	32
H(8)	1196	1293	4059	35
H(9)	2144	-797	4353	34
H(10)	2673	-1422	6192	28
H(13)	3637	1475	9290	28
H(14)	4063	3990	9313	31
H(15)	4832	5009	7763	33
H(16)	5199	3509	6207	33
H(17)	4834	979	6214	31
H(18)	1505	-2862	8602	28
H(19A)	2340	-5376	7666	32
H(19B)	1216	-5124	7849	32

 Table 14.
 Torsion angles [deg] for s21811c.

C(11)-C(1)-C(2)-C(18)	-141.50(11)
C(4)-C(1)-C(2)-C(18)	4.48(16)
C(3)-C(1)-C(2)-C(18)	111.84(13)
C(11)-C(1)-C(2)-C(3)	106.65(12)
C(4)-C(1)-C(2)-C(3)	-107.36(11)
C(18)-C(2)-C(3)-C(1)	-108.95(13)
C(11)-C(1)-C(3)-C(2)	-106.61(12)
C(4)-C(1)-C(3)-C(2)	105.58(12)
C(11)-C(1)-C(4)-O(1)	-135.45(12)
C(3)-C(1)-C(4)-O(1)	12.19(17)

78.76(15)
47.69(15)
-164.67(10)
-98.10(12)
-151.97(12)
24.92(16)
24.36(17)
-158.75(10)
-0.49(17)
-176.90(11)
1.36(18)
-0.91(18)
-0.41(19)
1.28(19)
-0.83(18)
175.49(11)
-141.75(12)
70.52(15)
3.80(17)
40.50(15)
-107.24(13)
-173.96(11)
-144.85(12)
32.94(16)
33.06(18)
-149.15(11)
-1.49(18)
176.43(11)

C(12)-C(13)-C(14)-C(15)	1.75(18)
C(13)-C(14)-C(15)-C(16)	-0.56(18)
C(14)-C(15)-C(16)-C(17)	-0.91(18)
C(15)-C(16)-C(17)-C(12)	1.17(18)
C(13)-C(12)-C(17)-C(16)	0.02(18)
C(11)-C(12)-C(17)-C(16)	-177.92(11)
C(3)-C(2)-C(18)-C(19)	-142.11(13)
C(1)-C(2)-C(18)-C(19)	146.59(12)

Figure S16: X-ray structure of compound (R)-4

Table 15. Crystal data and structure refinement for (\mathbf{R}) -4.

Identification code	s2180lc	
Empirical formula	C19 H16 O2	
Formula weight	276.32	
Temperature	100(2) K	
Wavelength	1.54178 A	
Crystal system, space group Monoclinic, P 21		
Unit cell dimensions	a = 6.3155(3) A alpha = 90 deg. b = 7.7433(4) A beta = 100.579(3) c = 15.0935(9) A gamma = 90 deg.	

725.57(7) A^3

Z, Calculated density 2, 1.265 Mg/m³

Absorption coefficient 0.641 mm^-1

F(000) 292

Crystal size 0.54 x 0.20 x 0.08 mm

Theta range for data collection 2.98 to 65.87 deg.

Limiting indices -6<=h<=7, -8<=k<=9, -17<=l<=17

Reflections collected / unique 8588 / 2439 [R(int) = 0.0583]

Completeness to theta = 65.87 98.7 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7528 and 0.5323

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2439 / 1 / 191

Goodness-of-fit on F^2 1.043

Final R indices [I>2sigma(I)] R1 = 0.0382, wR2 = 0.0971

R indices (all data) R1 = 0.0386, wR2 = 0.0976

Absolute structure parameter 0.2(2)

Extinction coefficient 0.0060(16)

Largest diff. peak and hole 0.198 and -0.246 e.A^-3

Table 16. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for s2180lc. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х у	Z	U(eq)	
O(1)	5947(2)	3292(2)	4181(1)	18(1)
C(1)	3155(3)	4361(2)	3164(1)	15(1)
O(2)	-162(2)	5438(2)	2431(1)	22(1)
C(2)	3397(3)	5597(2)	3948(1)	18(1)
C(3)	5585(3)	5046(2)	4509(1)	18(1)
C(4)	4597(2)	3063(2)	3371(1)	16(1)
C(5)	4920(3)	1410(2)	2937(1)	16(1)
C(6)	3169(3)	413(2)	2536(1)	19(1)
C(7)	3479(3)	-1129(2)	2117(1)	21(1)
C(8)	5556(3)	-1704(2)	2108(1)	24(1)

C(9)	7312(3)	-743(3)	2520(1)	26(1)
C(10)	7004(3)	808(2)	2930(1)	21(1)
C(11)	1423(3)	4550(2)	2379(1)	16(1)
C(12)	1598(3)	3720(2)	1498(1)	17(1)
C(13)	-243(3)	2969(2)	994(1)	19(1)
C(14)	-154(3)	2200(2)	172(1)	23(1)
C(15)	1751(3)	2234(3)	-167(1)	23(1)
C(16)	3570(3)	3008(3)	322(1)	21(1)
C(17)	3514(3)	3723(2)	1161(1)	18(1)
C(18)	7429(3)	6141(2)	4363(1)	21(1)
C(19)	8672(3)	7004(3)	5014(2)	30(1)

 Table 17.
 Bond lengths [A] and angles [deg] for s2180lc.

O(1)-C(4)	1.367(2)
O(1)-C(3)	1.478(2)
C(1)-C(4)	1.354(2)
C(1)-C(11)	1.465(2)
C(1)-C(2)	1.507(2)
O(2)-C(11)	1.229(2)
C(2)-C(3)	1.542(2)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(18)	1.489(2)
C(3)-H(3)	1.0000
C(4)-C(5)	1.469(2)

C(5)-C(6)	1.392(2)
C(5)-C(10)	1.398(2)
C(6)-C(7)	1.383(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.387(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.385(3)
C(8)-H(8)	0.9500
C(9)-C(10)	1.381(3)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-C(12)	1.499(2)
C(12)-C(13)	1.394(2)
C(12)-C(17)	1.396(2)
C(13)-C(14)	1.386(3)
C(13)-H(13)	0.9500
C(14)-C(15)	1.392(3)
C(14)-H(14)	0.9500
C(15)-C(16)	1.383(3)
C(15)-H(15)	0.9500
C(16)-C(17)	1.389(3)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(18)-C(19)	1.321(3)
C(18)-H(18)	0.9500
C(19)-H(19A)	0.9500
C(19)-H(19B)	0.9500

C(4)-O(1)-C(3)	108.01(12)
C(4)-C(1)-C(11)	129.13(15)
C(4)-C(1)-C(2)	108.89(14)
C(11)-C(1)-C(2)	121.64(14)
C(1)-C(2)-C(3)	101.91(13)
C(1)-C(2)-H(2A)	111.4
C(3)-C(2)-H(2A)	111.4
C(1)-C(2)-H(2B)	111.4
C(3)-C(2)-H(2B)	111.4
H(2A)-C(2)-H(2B)	109.3
O(1)-C(3)-C(18)	107.50(13)
O(1)-C(3)-C(2)	104.38(13)
C(18)-C(3)-C(2)	114.07(15)
O(1)-C(3)-H(3)	110.2
C(18)-C(3)-H(3)	110.2
C(2)-C(3)-H(3)	110.2
C(1)-C(4)-O(1)	113.11(15)
C(1)-C(4)-C(5)	133.39(15)
O(1)-C(4)-C(5)	113.35(14)
C(6)-C(5)-C(10)	119.05(16)
C(6)-C(5)-C(4)	120.82(15)
C(10)-C(5)-C(4)	120.13(15)
C(7)-C(6)-C(5)	120.64(15)
C(7)-C(6)-H(6)	119.7
C(5)-C(6)-H(6)	119.7
C(6)-C(7)-C(8)	119.71(16)
C(6)-C(7)-H(7)	120.1
C(8)-C(7)-H(7)	120.1

120.23(17)
119.9
119.9
120.11(16)
119.9
119.9
120.24(17)
119.9
119.9
120.00(15)
119.35(14)
120.62(14)
119.60(15)
118.23(14)
122.15(14)
120.04(16)
120.0
120.0
120.04(16)
120.0
120.0
120.12(16)
119.9
119.9
120.10(15)
120.0
120.0
120.03(15)

C(16)-C(17)-H(17)	120.0
С(12)-С(17)-Н(17)	120.0
C(19)-C(18)-C(3)	123.55(18)
C(19)-C(18)-H(18)	118.2
C(3)-C(18)-H(18)	118.2
C(18)-C(19)-H(19A)	120.0
C(18)-C(19)-H(19B)	120.0
H(19A)-C(19)-H(19B)	120.0

Table 18. Anisotropic displacement parameters (A^2 x 10^3) for s2180lc. The anisotropicdisplacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	U11	U22	U33	U23	U13	U12
O (1)	13(1)	19(1)	18(1)	-2(1)	-7(1)	3(1)
C(1)	10(1)	16(1)	18(1)	-3(1)	-1(1)	-1(1)
O(2)	14(1)	26(1)	25(1)	-2(1)	-3(1)	7(1)
C(2)	14(1)	17(1)	20(1)	-4(1)	-2(1)	1(1)
C(3)	15(1)	20(1)	17(1)	-4(1)	-4(1)	0(1)
C(4)	8(1)	20(1)	17(1)	1(1)	-3(1)	-3(1)
C(5)	14(1)	15(1)	17(1)	3(1)	-1(1)	2(1)
C(6)	12(1)	20(1)	22(1)	5(1)	-2(1)	-1(1)

C(7)	20(1)	18(1)	23(1)	1(1)	-1(1)	-4(1)
C(8)	28(1)	15(1)	30(1)	-2(1)	7(1)	0(1)
C(9)	16(1)	22(1)	42(1)	-3(1)	8(1)	3(1)
C(10)	12(1)	19(1)	31(1)	-1(1)	-1(1)	0(1)
C(11)	10(1)	13(1)	21(1)	1(1)	-3(1)	0(1)
C(12)	12(1)	16(1)	19(1)	1(1)	-4(1)	3(1)
C(13)	12(1)	19(1)	23(1)	0(1)	-2(1)	0(1)
C(14)	18(1)	23(1)	23(1)	-4(1)	-6(1)	-3(1)
C(15)	23(1)	25(1)	20(1)	-3(1)	-1(1)	-1(1)
C(16)	15(1)	24(1)	24(1)	-1(1)	2(1)	2(1)
C(17)	12(1)	16(1)	22(1)	1(1)	-4(1)	0(1)
C(18)	14(1)	19(1)	27(1)	-3(1)	-1(1)	2(1)
C(19)	13(1)	32(1)	43(1)	-16(1)	2(1)	-2(1)

Table 19. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for s2180lc.

	x	y z	U(eq)	
H(2A)	2218	5453	4294	21
H(2B)	3429	6811	3745	21
H(3)	5502	5011	5164	22
H(6)	1748	798	2551	22
H(7)	2276	-1793	1837	25

H(8)	5774	-2761	1818	29
H(9)	8731	-1151	2521	31
H(10)	8212	1468	3208	25
H(13)	-1559	2984	1214	22
H(14)	-1395	1649	-160	27
H(15)	1802	1725	-735	28
H(16)	4861	3051	83	25
H(17)	4781	4214	1506	21
H(18)	7727	6224	3770	25
H(19A)	8411	6945	5613	36
H(19B)	9828	7684	4883	36

Table 20.Torsion angles [deg] for s2180lc.

C(4)-C(1)-C(2)-C(3)	14.66(17)
C(11)-C(1)-C(2)-C(3)	-171.48(15)
C(4)-O(1)-C(3)-C(18)	-104.38(15)
C(4)-O(1)-C(3)-C(2)	17.11(16)
C(1)-C(2)-C(3)-O(1)	-18.63(16)
C(1)-C(2)-C(3)-C(18)	98.41(16)
C(11)-C(1)-C(4)-O(1)	-177.88(16)
C(2)-C(1)-C(4)-O(1)	-4.62(18)
C(11)-C(1)-C(4)-C(5)	-2.7(3)
C(2)-C(1)-C(4)-C(5)	170.54(17)
C(3)-O(1)-C(4)-C(1)	-8.32(18)
C(3)-O(1)-C(4)-C(5)	175.51(12)

-38.6(3)
136.56(15)
141.99(19)
-42.9(2)
-1.5(2)
179.04(15)
1.0(3)
0.3(3)
-1.1(3)
0.5(3)
0.8(3)
-179.78(16)
154.56(17)
-17.9(3)
-27.6(3)
159.87(15)
-42.0(2)
140.22(16)
136.18(17)
-41.6(2)
1.3(3)
179.49(16)
-2.4(3)
1.2(3)
1.3(3)
-2.4(3)
1.1(2)
-176.98(16)

O(1)-C(3)-C(18)-C(19)	-123.66(19)
C(2)-C(3)-C(18)-C(19)	121.1(2)

Figure S17: X-ray structure of compound (S)-4

Table 21. Crystal data and structure refinement for (S)-4.

Identification code	s2182lc
Empirical formula	C19 H16 O2
Formula weight	276.32
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system, space gro	oup Monoclinic, P 21
Unit cell dimensions	a = 6.309(2) A alpha = 90 deg. b = 7.753(2) A beta = 100.736(14)
	c = 15.117(5) A gamma = 90 deg.

Volume	726.5(4) A^3

Z, Calculated density 2, 1.263 Mg/m³

Absorption coefficient 0.640 mm^-1

F(000) 292

Crystal size 0.41 x 0.37 x 0.31 mm

Theta range for data collection 2.98 to 65.60 deg.

Limiting indices -4<=h<=7, -9<=k<=9, -17<=l<=16

Reflections collected / unique 8149 / 2402 [R(int) = 0.0335]

Completeness to theta = 65.60 96.6 %

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.7528 and 0.6318

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2402 / 1 / 191

Goodness-of-fit on F² 1.014

Final R indices [I>2sigma(I)] R1 = 0.0234, wR2 = 0.0573

R indices (all data) R1 = 0.0237, wR2 = 0.0576

Absolute structure parameter -0.03(16)

Extinction coefficient 0.0085(7)

Largest diff. peak and hole 0.112 and -0.133 e.A^-3

Table 22. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for s2182lc. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x y	Z	U(eq)		
O(1)	4054(1)	6709(1)	5822(1)	20(1)	
C(1)	6846(2)	5641(2)	6839(1)	18(1)	
O(2)	10165(1)	4563(1)	7568(1)	25(1)	
C(2)	6601(2)	4406(2)	6050(1)	20(1)	
C(3)	4420(2)	4950(2)	5495(1)	20(1)	
C(4)	5397(2)	6933(2)	6627(1)	17(1)	
C(5)	5073(2)	8589(2)	7065(1)	18(1)	
C(6)	6831(2)	9587(2)	7464(1)	20(1)	
C(7)	6520(2)	11131(2)	7884(1)	22(1)	

C(8)	4446(2)	11706(2)	7893(1)	26(1)
C(9)	2685(2)	10747(2)	7483(1)	28(1)
C(10)	2996(2)	9190(2)	7068(1)	23(1)
C(11)	8566(2)	5453(2)	7621(1)	18(1)
C(12)	8397(2)	6281(2)	8502(1)	17(1)
C(13)	10238(2)	7028(2)	9007(1)	21(1)
C(14)	10150(2)	7799(2)	9827(1)	24(1)
C(15)	8252(2)	7763(2)	10168(1)	25(1)
C(16)	6428(2)	6988(2)	9678(1)	23(1)
C(17)	6487(2)	6274(2)	8840(1)	19(1)
C(18)	2567(2)	3859(2)	5633(1)	23(1)
C(19)	1331(2)	3001(2)	4986(1)	32(1)

 Table 23.
 Bond lengths [A] and angles [deg] for s2182lc.

O(1)-C(4)	1.3586(15)
O(1)-C(3)	1.4835(15)
C(1)-C(4)	1.3540(18)
C(1)-C(11)	1.4553(18)
C(1)-C(2)	1.5143(17)
O(2)-C(11)	1.2373(16)
C(2)-C(3)	1.5312(18)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(18)	1.4894(19)
C(3)-H(3)	1.0000

C(4)-C(5)	1.4758(18)
C(5)-C(10)	1.3921(19)
C(5)-C(6)	1.3942(18)
C(6)-C(7)	1.386(2)
C(6)-H(6)	0.9500
C(7)-C(8)	1.385(2)
C(7)-H(7)	0.9500
C(8)-C(9)	1.384(2)
C(8)-H(8)	0.9500
C(9)-C(10)	1.391(2)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-C(12)	1.4999(17)
C(12)-C(13)	1.3922(18)
C(12)-C(17)	1.3936(18)
C(13)-C(14)	1.3861(19)
C(13)-H(13)	0.9500
C(14)-C(15)	1.390(2)
C(14)-H(14)	0.9500
C(15)-C(16)	1.385(2)
C(15)-H(15)	0.9500
C(16)-C(17)	1.3888(19)
C(16)-H(16)	0.9500
C(17)-H(17)	0.9500
C(18)-C(19)	1.313(2)
C(18)-H(18)	0.9500
C(19)-H(19A)	0.9500
C(19)-H(19B)	0.9500

C(4)-O(1)-C(3)	107.83(9)
C(4)-C(1)-C(11)	129.35(11)
C(4)-C(1)-C(2)	108.43(11)
C(11)-C(1)-C(2)	121.88(11)
C(1)-C(2)-C(3)	101.96(10)
C(1)-C(2)-H(2A)	111.4
C(3)-C(2)-H(2A)	111.4
C(1)-C(2)-H(2B)	111.4
C(3)-C(2)-H(2B)	111.4
H(2A)-C(2)-H(2B)	109.2
O(1)-C(3)-C(18)	107.46(10)
O(1)-C(3)-C(2)	104.49(10)
C(18)-C(3)-C(2)	114.54(11)
O(1)-C(3)-H(3)	110.0
C(18)-C(3)-H(3)	110.0
C(2)-C(3)-H(3)	110.0
C(1)-C(4)-O(1)	113.46(11)
C(1)-C(4)-C(5)	132.97(11)
O(1)-C(4)-C(5)	113.42(10)
C(10)-C(5)-C(6)	119.09(12)
C(10)-C(5)-C(4)	120.13(11)
C(6)-C(5)-C(4)	120.76(11)
C(7)-C(6)-C(5)	120.56(12)
C(7)-C(6)-H(6)	119.7
C(5)-C(6)-H(6)	119.7
C(8)-C(7)-C(6)	119.81(12)
C(8)-C(7)-H(7)	120.1

C(6)-C(7)-H(7)	120.1
C(9)-C(8)-C(7)	120.26(13)
C(9)-C(8)-H(8)	119.9
C(7)-C(8)-H(8)	119.9
C(8)-C(9)-C(10)	119.96(13)
C(8)-C(9)-H(9)	120.0
C(10)-C(9)-H(9)	120.0
C(9)-C(10)-C(5)	120.28(12)
C(9)-C(10)-H(10)	119.9
C(5)-C(10)-H(10)	119.9
O(2)-C(11)-C(1)	119.80(11)
O(2)-C(11)-C(12)	119.29(11)
C(1)-C(11)-C(12)	120.89(11)
C(13)-C(12)-C(17)	119.35(11)
C(13)-C(12)-C(11)	118.38(11)
C(17)-C(12)-C(11)	122.23(11)
C(14)-C(13)-C(12)	120.12(12)
C(14)-C(13)-H(13)	119.9
C(12)-C(13)-H(13)	119.9
C(13)-C(14)-C(15)	120.26(12)
C(13)-C(14)-H(14)	119.9
C(15)-C(14)-H(14)	119.9
C(16)-C(15)-C(14)	119.83(12)
C(16)-C(15)-H(15)	120.1
C(14)-C(15)-H(15)	120.1
C(15)-C(16)-C(17)	120.03(12)
C(15)-C(16)-H(16)	120.0
C(17)-C(16)-H(16)	120.0

C(16)-C(17)-C(12)	120.33(12)	
C(16)-C(17)-H(17)	119.8	
С(12)-С(17)-Н(17)	119.8	
C(19)-C(18)-C(3)	123.75(13)	
C(19)-C(18)-H(18)	118.1	
C(3)-C(18)-H(18)	118.1	
C(18)-C(19)-H(19A)	120.0	
C(18)-C(19)-H(19B)	120.0	
H(19A)-C(19)-H(19B)	120.0	

Table 24. Anisotropic displacement parameters (A² x 10³) for s2182lc. The anisotropic displacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	U11	U22	U33	U23	U13	U12
O(1)	20(1)	19(1)	20(1)	-2(1)	0(1)	3(1)
C(1)	17(1)	18(1)	19(1)	-2(1)	5(1)	0(1)
O(2)	19(1)	28(1)	26(1)	-2(1)	3(1)	8(1)
C(2)	20(1)	19(1)	21(1)	-3(1)	4(1)	2(1)
C(3)	22(1)	21(1)	17(1)	-4(1)	2(1)	0(1)
C(4)	14(1)	20(1)	18(1)	1(1)	4(1)	-2(1)
C(5)	19(1)	17(1)	17(1)	1(1)	3(1)	1(1)

C(6)	18(1)	20(1)	22(1)	4(1)	3(1)	0(1)
C(7)	25(1)	18(1)	24(1)	0(1)	5(1)	-4(1)
C(8)	32(1)	17(1)	31(1)	-2(1)	13(1)	-1(1)
C(9)	23(1)	23(1)	42(1)	-4(1)	13(1)	2(1)
C(10)	18(1)	21(1)	31(1)	-2(1)	4(1)	0(1)
C(11)	17(1)	15(1)	22(1)	1(1)	4(1)	0(1)
C(12)	17(1)	17(1)	17(1)	2(1)	1(1)	2(1)
C(13)	17(1)	23(1)	22(1)	2(1)	3(1)	1(1)
C(14)	22(1)	26(1)	22(1)	-2(1)	0(1)	-3(1)
C(15)	29(1)	27(1)	18(1)	-3(1)	3(1)	0(1)
C(16)	20(1)	27(1)	24(1)	0(1)	8(1)	1(1)
C(17)	17(1)	19(1)	20(1)	2(1)	1(1)	0(1)
C(18)	19(1)	24(1)	27(1)	-3(1)	5(1)	2(1)
C(19)	20(1)	36(1)	41(1)	-15(1)	7(1)	-2(1)

Table 25. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² $x \ 10^{3}$) for s2182lc.

	x	y z	U(eq)	
H(2A)	6573	3192	6250	24
H(2B)	7777	4555	5705	24
H(3)	4503	4987	4841	24
H(6)	8254	9206	7447	24

H(7)	7726	11793	8165	27
H(8)	4231	12762	8182	31
H(9)	1265	11152	7484	34
H(10)	1785	8534	6786	28
H(13)	11557	7009	8790	25
H(14)	11392	8354	10157	29
H(15)	8206	8268	10737	30
H(16)	5136	6944	9914	28
H(17)	5220	5779	8496	23
H(18)	2261	3780	6224	28
H(19A)	1598	3056	4389	39
H(19B)	170	2325	5115	39

Table 26. Torsion angles [deg] for s2182lc.

C(4)-C(1)-C(2)-C(3)	-14.87(13)
C(11)-C(1)-C(2)-C(3)	171.19(12)
C(4)-O(1)-C(3)-C(18)	104.62(11)
C(4)-O(1)-C(3)-C(2)	-17.45(12)
C(1)-C(2)-C(3)-O(1)	18.92(12)
C(1)-C(2)-C(3)-C(18)	-98.37(12)
C(11)-C(1)-C(4)-O(1)	177.93(12)
C(2)-C(1)-C(4)-O(1)	4.59(14)
C(11)-C(1)-C(4)-C(5)	2.7(2)
C(2)-C(1)-C(4)-C(5)	-170.64(12)

8.45(13)
-175.36(10)
-142.14(14)
42.64(16)
39.1(2)
-136.11(11)
2.06(18)
-179.19(11)
-1.27(19)
-0.2(2)
0.8(2)
0.1(2)
-1.45(19)
179.79(12)
-154.48(13)
18.08(19)
27.5(2)
-159.98(11)
41.75(17)
-140.18(12)
-136.11(13)
41.96(18)
-1.81(18)
-179.73(12)
2.9(2)
-1.5(2)
-1.1(2)
2.2(2)

C(13)-C(12)-C(17)-C(16)	-0.76(18)
C(11)-C(12)-C(17)-C(16)	177.08(12)
O(1)-C(3)-C(18)-C(19)	123.69(14)
C(2)-C(3)-C(18)-C(19)	-120.72(15)

12. Computed Structures and Energies

** All coordinates in atomic units (1 Bohr = 52.91772 pm) ** ** Energies in atomic units (1 Hartree = 27.2114 eV = 2625.5 kJ/mol) ** ** unless noted otherwise **								
DFT equilib	rium stru	ictures						
Functional: PBE Basis set: def2-TZVPP' (def2-TZVPP with g function deleted) Standard MOLPRO 2012.1 settings for grid and convergence, no density fitting								
== DFT(PBE) !RKS STATE		лλ	-1733.360499612	2880				
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O 9 O	7.00 8.00 6.00 8.00 6.00 6.00 8.00	2.998552204 5.000998269 -1.498998999 -1.498998999 -2.501423614	0.000000000 0.000000000 0.000000000					
!RKS STATE	1.1 Energ		-1733.396901697 -1733.398829769					
	7.00 8.00 6.00 8.00 6.00 6.00 8.00	-0.069957393 -0.832651617 3.377209198 5.150074396 -1.411618442 -1.411618442 -2.620352187	0.00000000 -0.00000000 0.00000000	0.508335874 3.649094114 5.718454654 -1.398629183 -2.662399212 -0.986843255 -0.986843255 -1.910147911 -1.910147911				
with COSMO: !RKS STATE outlying-ch	1.1 Energ	-	-1733.433448818 -1733.437290040					
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O 9 O	8.00	0.000870345 0.000481016 -0.000452780 2.990223790 4.983793759 -1.494634868 -1.494634868 -2.492824141 -2.492824141	0.00000000 0.00000000 -0.00000000 -0.00000000	0.387417122 3.521243393 5.779415725 -1.127942718 -2.094188233 -1.127981538 -1.127981538 -2.094554148 -2.094554148				
== DFT(PBE) !RKS STATE		ıA	-1733.299110756	5056				
1 FE 2 N	26.00 7.00	-0.092964634 0.567562711	0.000000000 0.000000000	0.417659140 3.746053097				

3 0 4 C 5 0 6 C 7 C 8 0 9 0	8.00 6.00 8.00 6.00 6.00 8.00 8.00	-0.672857877 2.896872518 4.719171879 -1.431390152 -1.431390152 -2.277503091 -2.277503091	0.00000000 0.00000000 -2.722960968 2.722960968 -4.517936300 4.517936300	5.678530812 -1.174975631 -2.443862833 -1.052061424 -1.052061424 -2.049203911 -2.049203911
== DFT(PBE) !RKS STATE		JY	-1733.282036224	4798
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O 9 O	26.00 7.00 8.00 6.00 8.00 6.00 6.00 8.00 8.00	0.071080246 -0.312563037 0.733964904 3.254489035 5.173266099 -1.680740369 -1.680740369 -2.779379199 -2.779379199	0.00000000 0.00000000 0.00000000 0.000000	0.377628746 3.804117604 5.831574266 -0.770088349 -1.895200958 -1.259937137 -1.259937137 -2.403641560 -2.403641560
== DFT(PBE) !RKS STATE		JY	-1733.246849623	1230
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O 9 O	26.00 7.00 8.00 6.00 8.00 6.00 8.00 8.00	0.437938693 -0.068428284 -0.825343686 3.380006955 5.157097646 -1.416123789 -1.416123789 -2.624512818 -2.624512818	0.00000000 0.00000000 0.00000000 0.000000	0.505366761 3.646486387 5.718036106 -1.396974805 -2.654107868 -0.989169617 -0.989169617 -1.909796716 -1.909796716
with COSMO: !RKS STATE outlying-ch	1.1 Energ		-1733.248143038 -1733.248085866	
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O 9 O	26.00 7.00 8.00 6.00 8.00 6.00 8.00 8.00	0.439264784 -0.069957393 -0.832651617 3.377209198 5.150074396 -1.411618442 -1.411618442 -2.620352187 -2.620352187	-0.00000000 -0.00000000 -0.00000000 -0.00000000 -2.403750972 2.403750972 -3.971228390 3.971228390	0.508335874 3.649094114 5.718454654 -1.398629183 -2.662399212 -0.986843255 -0.986843255 -1.910147911 -1.910147911
with COSMO: !RKS STATE outlying-ch	1.1 Energ		-1733.249664594 -1733.249547636	
1 FE 2 N 3 O 4 C 5 O 6 C	26.00 7.00 8.00 6.00 8.00 6.00	0.438266310 -0.068450687 -0.832854601 3.375037243 5.148288647 -1.410140809	-0.00000000 -0.00000000 0.00000000 0.00000000	0.507709324 3.649159111 5.717662314 -1.397755513 -2.661863355 -0.986372688

6.00 -1.410140809 2.400551319 -0.986372688 7 C 8 0 8.00 -2.620003592 -3.968692711 -1.910646295 90 8.00 -2.620003592 3.968692711 -1.910646295 With functional PBE0 Basis set: def2-TZVPP' (def2-TZVPP with g function deleted) Standard MOLPRO 2012.1 settings for grid and convergence, no density fitting == DFT(PBE0) S0 == !RKS STATE 1.1 Energy -1733.231908495653 0.000870217 1 FE 26.00 0.00000000 0.380884496 7.00 0.000548642 3.457509662 2 N 0.000000000 8.00 -0.000246558 0.000000000 5.684726717 3 0 0.00000000 -1.112498206 4 C 6.00 2.973100491 4.946003263 0.00000000 -2.054371884 5 O 8.00 6.00 -1.486184264 -2.573277054 -1.112677897 6 C 6.00-1.4861842642.5732770548.00-2.473954709-4.2808599188.00-2.4739547094.280859918 7 С -1.112677897 8 O -2.055010538 -2.055010538 9 0 == DFT(PBE0) D0 == !RKS STATE 1.2 Energy -1733.130691912380
 0.00000000
 0.530957643

 0.00000000
 3.597721730

 0.00000000
 5.60165
 26.00 1 FE 0.452009029 7.00 2 N -0.128395527 3 0 8.00 -0.964670470 0.00000000 6.00 3.340337968 0.00000000 -1.460985099 4 C 5.057802539 5 O 8.00 0.00000000 -2.743112007 6 C 6.00 -1.367564966 -2.499930961 -0.935308307 7 C 6.00 -1.367564966 2.499930961 -0.935308307 8.00 -2.510977749 -4.089440877 -1.817386680 8 0 8.00 -2.510977749 4.089440877 -1.817386680 9 0

Summary of main bond distances (Aangstroem units) and angles (degrees)

PBE				
	SO	Т1	Т2	DO
E(rlx)[a]		-0.87	-0.72	-0.36
Fe-N	1.66	1.80	1.82	1.68
N-O	1.20	1.22	1.21	1.17
Fe-C	1.78	1.79	1.79	1.85
[b]		1.78	1.76	1.79
C-0	1.17	1.18	1.18	1.15
[b]		1.18	1.18	1.16
Fe-N-O	180.0	136.1	146.3	169.1
N-Fe-C	116.7	106.8	116.2	132.0
[b]		120.3	115.5	110.4

[a] Relaxation energy relative to vertical excitation

[b] Cs symmetric structure: First row is bond (bond angle) in symmetry plane, second row pair of bonds (bond angles) that are mirror images of each other

PBE0

	SO	DO
Fe-N	1.63	1.65

N-O	1.18	1.15
Fe-C	1.76	1.86
		1.81
C-0	1.16	1.15
		1.13
Fe-N-O	180.0	168.1
N-Fe-C	116.7	135.3

CASSCF:

	S0	S1	Τ1	Т2	DO
E(rlx)[a]		-1.00	-0.76	-0.82	-1.07
Fe-N	1.68	1.92	1.88	1.88	1.72
N-O	1.18	1.21	1.20	1.20	1.18
Fe-C	1.87	2.13	1.97	2.12	2.22
[b]		2.04	2.05	2.03	2.18
C-0	1.12	1.11	1.14	1.11	1.10
[d]		1.13	1.12	1.13	1.10
Fe-N-O	180.0	144.0	179.7	151.7	178.1
N-Fe-C	116.3	101.4	153.1	98.1	126.0
[d]		126.8	105.3	126.9	117.6

[a],[b] see above (DFT/PBE table)

```
SO energies at PBE SO structure
Q: Davidson correction
P: Pople correction
```

MRCI -1731.428254 MRCI+Q -1731.808903 MRCI+P -1731.909357

Vertical singlet excitation energies in eV

state	CASCI	MRCI	MRCI+Q	MRCI+P
2 a'	3.19	3.40	3.51	3.57
3 a'	3.22	3.48	3.64	3.72
4 a'	4.41	4.27	4.15	4.08
5 a'	4.87	4.82	4.75	4.71
1 a"	2.78	3.07	3.26	3.35
2 a"	3.17	3.41	3.55	3.62
3 a"	4.41	4.28	4.17	4.11
4 a"	4.24	4.31	4.34	4.36

Vertical triplet excitation energies in eV

st	tate	CASCI	MRCI	MRCI+Q	MRCI+P
1	a'	1.76	2.12	2.32	2.46
2	a'	2.44	2.76	2.94	3.07

4 a' 3 5 a' 4 1 a" 2 2 a" 2 3 a" 3	8.54 3. 9.95 5. 2.44 2. 2.56 2. 3.54 3.	643.79853.98415.69772.96943.15854.00174.31	4.10	
D0 energie	es at PBE S	0 structure		
MRCI -17 MRCI+Q -17 MRCI+P -17	31.719366			
D0 energie	es at PBE D	0 structure		
	81.389292 731.744156 731.831563			
CASSCF equ	librium st	ructures		
State-aver	aging over	all states fo	ns in 9 orbitals or which energies eometry optimizat	
!MCSCF STA !MCSCF STA !MCSCF STA	S0 == ATE 1.1 Ene ATE 2.1 Ene ATE 3.1 Ene ATE 1.2 Ene ATE 2.2 Ene	rgy rgy	-1730.015514833 -1729.918912514 -1729.918176160 -1729.936200784 -1729.918179504	030 312 939
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O 9 O	26.00 7.00 8.00 6.00 8.00 6.00 8.00 8.00	0.000062883	$\begin{array}{c} 0.00000000\\ 0.00000000\\ 0.00000000\\ 0.00000000$	3.538006347
!MCSCF STA !MCSCF STA !MCSCF STA	S1 == ATE 1.1 Ene ATE 2.1 Ene ATE 3.1 Ene ATE 1.2 Ene ATE 2.2 Ene	rgy rgy	-1729.982944111 -1729.946780947 -1729.920384919 -1729.972853807 -1729.935905975	037 964 584 (opt)
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O	26.00 7.00 8.00 6.00 8.00 6.00 8.00	-0.195740782 0.008030046 1.452623545 3.692569366 5.721177180 -2.150169370 -3.189161253	0.00000000 0.00000000 0.00000000 0.000000	0.564863223 4.188436498 5.960390854 -0.449973682 -0.988770543 -1.635673302 -1.635673302 -2.991362916

9 0	8.00 -3.189161253	3.775594803 -2.991362916
!MCSCF STAT !MCSCF STAT !MCSCF STAT !MCSCF STAT !MCSCF STAT !MCSCF STAT !MCSCF STAT	es with state-averagin E 1.1 Energy E 2.1 Energy E 3.1 Energy E 1.2 Energy E 2.2 Energy E 1.1 Energy E 2.1 Energy E 1.2 Energy E 1.2 Energy E 2.2 Energy	<pre>eg over both singlet and triplet: -1729.985935371660 (S0) -1729.943104258666 -1729.918249447044 -1729.974099986737 (S1) -1729.934153143957 -1729.982761065275 (T1) -1729.947850926034 -1729.973100916846 (T2) -1729.949894592875</pre>
== CASSCF T1 !MCSCF STATE !MCSCF STATE !MCSCF STATE !MCSCF STATE	1.1 Energy 2.1 Energy 1.2 Energy	-1729.990020295988 (opt) -1729.962349845576 -1729.965227444419 -1729.962354411238
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O 9 O	26.00-0.0001313157.000.0006545618.000.0001419446.003.1988744858.004.9141711456.00-1.5995957106.00-1.5995957108.00-2.4572606458.00-2.457260645	0.000000000.7600923910.000000004.3544008540.000000006.6300125200.00000000-1.3257384500.000000000-2.581479216-2.770077783-1.3260874262.770077783-1.326087426-4.255341574-2.5821196664.255341574-2.582119666
== CASSCF T2 !MCSCF STATE !MCSCF STATE !MCSCF STATE !MCSCF STATE	1.1 Energy 2.1 Energy 1.2 Energy	-1729.985645768347 -1729.950754330550 -1729.973711712628 (opt) -1729.951339366952
1 FE 2 N 3 O 4 C 5 O 6 C 7 C 8 O 9 O	26.000.1234333437.000.7980990798.000.1191133976.003.9072067778.005.8910516816.00-2.0917133536.00-2.0917133538.00-3.3277397308.00-3.327739730	0.000000000.4666379430.000000003.9612091420.000000006.1301201710.00000000-0.8347716800.000000000-1.523104539-2.480213594-1.4570434972.480213594-1.457043497-3.768140342-2.6325650643.768140342-2.632565064
== CASSCF D0 !MCSCF STATE !MCSCF STATE !MCSCF STATE !MCSCF STATE	1.1 Energy 2.1 Energy 1.2 Energy	-1730.035557829641 -1730.019712230712 -1730.074805310643 (opt) -1730.004886507394
1 FE 2 N 3 O 4 C 5 O 6 C	26.000.1877140157.00-0.0526892918.00-0.2920485386.003.7466629508.005.6037852366.00-1.776310055	0.000000000.7259739120.000000003.9646579920.000000006.1804735320.000000000-1.4805690740.000000000-2.412137105-2.976010749-1.334493722

7	С	6.00	-1.776310055	2.976010749	-1.334493722
8	0	8.00	-2.820403077	-4.582651913	-2.144268949
9	0	8.00	-2.820403077	4.582651913	-2.144268949

Figure S18. PBE/def2-TZVPP' calculated equilibrium structure in the D_0 state (left) and the T_1 state (right).

13. References

- [1] R. K. Bowman and J. S. Johnson, Org. Lett. 2006, 8, 573-576.
- [2] H. Braun and G. Huber, *Tetrahedron Lett.* 1976, **17**, 2121-2124.
- [3] D. Jacoby, J. P. Celerier, G. Haviari, H. Petit and G. Lhommet, *Synthesis* 1992, 9, 884-887.
- [4] P. Gopinath and S. Chandrasekaran, J. Org. Chem., 2011, **76**, 700-703.
- [5] P. Huang, R. Zhang, Y. Liang abd D. Dong, Org. Lett. 2012, 14, 5196-5199.
- [6] O. Itoh, N. Yamamoto, K. Nakano, T. Sugita and K. Ichikawa, *Bull. Chem. Soc. Jpn.* 1975, 48, 3698-370.
- [7] H. Murakami, Y. Matsui, F. Ozawa and M. Yoshifuji, *J. Organomet. Chem.* 2006, **691**, 3151-3156.
- [8] E. G. Harris and R. G. Fayter, Jr., National Distillers and Chemical Corp., USA . 1987, pp. 11 pp. Cont.-in-part of U.S. 14,515,978.
- [9] E. Baciocchi and R. Ruzziconi, J. Org. Chem. 1991, 56, 4772-4778.
- [10] M. Lau, M. Sher, A. Villinger, C. Fischer and P. Langer, Eur. J. Org. Chem. 2010, 3743-3753.
- [11] B. M. Casey, C. A. Eakin, J. Jiao, D. V. Sadasivam and R. A. Flowers, *Tetrahedron* 2009, 65, 10762-10768.