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1. Material and Methods

1.1 Material and instruments

All chemicals and solvents were purchased from commercial suppliers with the highest
grade. Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), trypsin-EDTA
and penicillin/streptomycin were purchased from Invitrogen. Chemicals were used directly in
the experiment without further purification, unless otherwise specified. All reactions were
monitored by TLC on pre-coated silica plates (Merck 60 F254, 250 um thickness), and spots
were visualized by UV light or iodine. Merck silica gel 60 (70-200 mesh) was used for column
chromatography purification. '"H NMR and *C NMR spectra were recorded on a Bruker NMR
spectrometer (400 MHz or 300 MHz). Chemical shifts are reported in parts per million relative
to internal standard tetramethylsilane (Si(CH3); = 0.00 ppm) or residual solvent peaks
(DMSO-dg = 2.50 ppm, CD;0D = 3.31 ppm). 'H NMR coupling constants (J) are reported in
Hertz (Hz), and multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), m
(multiplet), dd (doublet of doublet). Mass spectra were obtained on a PC Sciex APl 150 EX
ESI-MS system using electrospray ionization (ESI). Infrared (IR) spectra were recorded on a
Perkin Elmer Spectrum 1000. For liquids and oils samples, thin films on NaCl plates were used.
For solids and crystals, KBr discs were used. Crystal data were collected on an Oxford
Diffraction Gemini S Ultra X-ray single-crystal diffractometer. The structures were solved using
direct methods and refined by the SHELXL-97 program. UV absorption spectra were obtained
on Shimadzu 1700 UV/Vis Spectrometer. Fluorescence signal was recorded with a
FluoroMax-4 fluorescence photometer. Fluorescence images were acquired using a Leica

TCS SP5 or SPE Confocal Scanning Microscope. pH value was recorded with a FiveEasy '



Fe20 pH meter. HPLC analysis was performed on a Waters column (4.6 mm x 250 mm,
Symmetryshield™ RP18) using a Waters 2489 HPLC system. Flow rate was set at 1.0
mL/min.

1.2 Synthesis of 4F-2CN-Cys
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4F-2CN (200 mg, 1.0 mmol) and L-Cysteine (605 mg, 5.0 mmol) were first dissolved in 10
mL of DMF. Triethylamine (278 pL, 2 mmol) was then added to the DMF solution. The mixture
was stirred at room temperature for 30 min and the reaction solution changed to yellow color.
Water was added to the reaction mixture and a white precipitate appeared. The pH value of
the solution was adjusted to 6 with 6M HCI. The resulting solution was then filtered to obtain a
yellow solid (241 mg) with 86% yield. "H NMR (300 MHz, DMSO-dg) d 13.29 (s, 1H), 7.63 (d, J
= 3.5 Hz, 1H), 4.58 (q, J = 2.7, 1H), 3.46 (dd, J; = 2.7 Hz, J, = 9.8 Hz, 1H), 3.21 (dd, J, = 2.7
Hz, J, = 9.9 Hz, 1H); ¥C NMR (400 MHz, DMSO-dg) 6 170.98, 148.65, 148.52, 146.15,
146.01, 141.99, 141.85, 141.41, 139.54, 139.40, 118.09, 118.06, 111.20, 111.18, 110.89,
100.85, 104.15, 104.12, 104.01, 103.97, 88.62, 88.47, 51.83, 24.82; 'F NMR (400 MHz,
DMSO-dg) & -134.73, -134.79, -148.27, -148.33; ESI-MS: Calcd. for Cy;H4FoN50,S [M-H]
280.0; found 280.2.

1.3 Procedure for fluorescence measurement
1.3.1 Procedure for sensitivity and selectivity test

Appropriate amount of the probe (4F-2CN) was dissolved in DMSO to prepare 1 mM stock



solution. The probe was then diluted in PB buffer (10 mM, pH 7.4) to afford a final
concentration of 10 uM. The amino acids were prepared as 100 mM or 10 mM stock solutions
in PB buffer (10 mM, pH 7.4). For sensitivity experiments, different concentrations of
Cys/Hcy/GSH were added to separate portions of the probe solution and mixed thoroughly.
For selectivity experiments, appropriate amount of Cys/Hcy/GSH and other biological analytes
were added to separate portions of the probe solution. The reaction mixture was shaken
uniformly at 37°C for 2h before emission spectra measurement. The fluorescence spectra
were collected using a FluoroMax-4 fluorescence photometer with a 10 mm quartz cuvette.
1.3.2 Procedure for kinetic test
The probe, 4F-2CN, was dissolved in DMSO to prepare 10 mM stock solution. Cys/Hcy/GSH
were dissolved in PB buffer to prepare 100 mM stock solution. The probe and the
corresponding thiols were then diluted in PB buffer (10 mM, pH 7.4) to afford 3 mL of solution
with final concentration of 10 uM 4F-2CN and 100 pM Cys/Hcy/GSH individually. The
fluorescence intensity of the reaction mixture was measured at different time points.
1.3.3 Detection Limit
Detection limit or limit of detection (LOD) was estimated from the standard deviation of the
blank and the corresponding linear regression equation. Specifically we used the following
equation in this study [1]:

LOD = 3o/m,
x is the mean of the blank measures; xi is the values of blank measures; n is the number of

tested blank measure (n = 11). m is the slope of the linear regression equation derived from



fluorescence intensity and concentration.

1.3.4 Determination of quantum yield

The quantum vyields of the fluorophores were calculated by comparing the integrated area of
the emission spectrum of the sample with that of a reference solution. Specifically, the

guantum yield was determined by the following equation [2]:

_ Ireference Asample
(Dsample - Qreference

Isample Areference

Where @ is quantum yield; | is the absorption intensity at the excitation wavelength; A is the

integrated fluorescent intensity. In this study, Coumarin 6 in absolute ethanol was used as the

standard, which has a quantum vyield of 0.78.



2. Supplementary Figures

S: start material
M: mixture

m R: reaction solution
OO M

DCM/MeOH Hex/EA DCM/MeOH/HAc
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Fig. S1 TLC experiments of 4F-2CN analogues with Cys. 4F-2CN analogues and Cys were
mixed in DMF/PBS = 1:1, incubated for 2h. Results indicated that no reaction has occurred
between the analogues and Cys.
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Fig. S2 FT-IR spectra of 4F-2CN-Cys (A), Cys (B) and 4F-2CN (C). 4F-2CN-Cys shows
several characteristic IR absorption peaks, e.g. the peak at 2252 cm-1 (CN) and 992 cm-1
(C-F stretching). In addition, the peak at 2551 cm-1, which belongs to S-H in cysteine, has
disappeared in 4F-2CN-Cys, indicating that nucleophilic substitution has occurred.
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Fig. S4 'H NMR spectrum of 4F-2CN-Cys. The chemical shift at 13.29 ppm (a) represents the
proton of the carboxylic acid group. The chemical shift at 7.62 ppm (b) belongs to the proton of
the amine group. The chemical shift at 4.60 ppm (c) represents the proton next to an amine
group. The chemical shift at 3.47 and 3.21 ppm belong to proton d and proton e respectively.
The two protons are split into dd pattern due to the adjacent chiral proton.
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Fig. S5 3¢ NMR spectrum of 4F-2CN-Cys. The four peaks at chemical shift from 148.65 to
146.01 ppm belong to one carbon. The splitting of the carbon signal is due to the coupling of
the carbon and the two adjacent fluorine atoms. Similarly, the four peaks at chemical shift from
141.99 to 139.40 ppm belong to one carbon.
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Fig. S6 °F NMR spectrum of 4F-2CN-Cys. The spectrum shows two doublet peaks at 134
and 148 ppm. Because the molecule is unsymmetrical, the two fluorine atoms of 4F-2CN show
different chemical shift. Each fluorine signal is split into two peaks by the adjacent fluorine
atom.



Fig. S7 X-ray structure of 4F-2CN-Cys. Color codes: oxygen, red; nitrogen, blue; carbon, light
gray; fluorine, green; sulfur, yellow; hydrogen, white.

Fig. S8 Unit cell packing diagram of 4F-2CN-Cys. Color codes: oxygen, red; nitrogen, blue;
carbon, light gray; fluorine, green; sulfur, yellow; hydrogen, white.

Table S1. Selected crystallographic data for 4F-2CN-Cys.

Compound 4F-2CN-Cys

Chemical formula CuHsF2N30,S, H,O

Formula Mass 299.26



Crystal system
a, A
b, A
c, A
a, deg
B, deg
y, deg
v, A
TIK
space group
Z
Peaicd> 9/ cm’
wavelength, A
abs coeff (1), mm™
Crystal size
Final R indices [l >20(l)]
R indices (all data)

CCDC number

monoclinic

26.261(3)

5.1620(4)

9.7804(10)

90.0

111.188(12)

90.0

1236.2(2)

173(2)

C1l21

1.608

1.54178 (Cu Ka)

2.715

0.41*0.06*0.01 mm

R1=0.0293, wR2=0.0308

R1=0.0857, wR2=0.0848

CCDC 1402255

Table S2. Selected bond lengths (A) for 4F-2CN-Cys.

S(1)-C(5) 1.805(3) S(1)-C(6) 1.754(2)
F(1)-C(9) 1.335(3) F(2)-C(10) 1.342(3)
0(1)-C(3) 1.203(4) 0(2)-H(2) 0.8400

0(2)-C(3) 1.313(3) N(1)-C(1) 1.144(4)




N(2)-C(2) 1.149(4) N(3)-H(3) 0.8800

N(3)-C(4) 1.441(3) N(3)-C(7) 1.371(3)

C(1)-C(8) 1.432(4) C(2)-C(11) 1.431(4)

C(3)-C(4) 1.524(4) C(4)-H(4) 1.0000

C(4)-C(5) 1.520(3) C(5)-H(5A) 0.9900

C(5)-H(5B) 0.9900 C(6)-C(7) 1.421(4)
C(6)-C(11) 1.397(4) C(7)-C(8) 1.416(3)

C(8)-C(9) 1.393(4) C(9)-C(10) 1.367(4)
C(10)-C(11) 1.387(4)

Table S3. Selected bond angles (°) for 4F-2CN-Cys.

C(6)-S(1)-C(5) 100.08(14) C(3)-0(2)-H(2) 109.5
C(4)-N(3)-H(3) 1185 C(7)-N(3)-H(3) 118.5
C(7)-N(3)-C(4) 123.0(2) N(1)-C(1)-C(8) 177.9(3)
N(2)-C(2)-C(11) 179.2(3) 0(1)-C(3)-0(2) 124.1(2)
0(1)-C(3)-C(4) 124.7(2) 0(2)-C(3)-C(4) 111.1(2)
N(3)-C(4)-C(3) 112.2(2) N(3)-C(4)-H(4) 107.7
N(3)-C(4)-C(5) 111.6(2) C(3)-C(4)-H(4) 107.7
C(5)-C(4)-C(3) 109.8(2) C(5)-C(4)-H(4) 107.7
S(1)-C(5)-H(5A) 109.4 S(1)-C(5)-H(5B) 109.4
C(4)-C(5)-S(1) 111.28(18) C(4)-C(5)-H(5A) 109.4
C(4)-C(5)-H(5B) 109.4 H(5A)-C(5)-H(5B) 108.0
C(7)-C(6)-S(1) 122.7(2) C(11)-C(6)-S(1) 118.1(2)
N(3)-C(7)-C(6) 123.02) N(3)-C(7)-C(8) 119.7(2)
C(8)-C(7)-C(6) 117.3(2) C(7)-C(8)-C(1) 121.0(2)




C(9)-C(8)-C(1) 117.5(2) C(9)-C(8)-C(7) 121.4(2)

F(1)-C(9)-C(8) 119.2(2) F(1)-C(9)-C(10) 120.2(2)
C(10)-C(9)-C(8) 120.6(2) F(2)-C(10)-C(9) 121.0(2)
F(2)-C(10)-C(11) 119.9(2) C(9)-C(10)-(C11) 119.2(2)
C(6)-C(11)-C(2) 119.7(2) C(10)-C(11)-C(2) 118.1(2)
C(10)-C(11)-C(6) 122.1(2)

Table S4. Quantum yield of 4F-2CN-Cys, 4F-2CN and coumarin 6.

Compound Aex Aem € o

X N 4
J@\/IL 460 nm 500 nm 5.34x10 0.78
Et,N )

Coumarin 6

CN
F S

FﬁHlCOOH 420 nm 500 nm 1.34x10* 0.35
CN
4F-2CN-Cys
CN
F. F

F F 312 nm 350 nm 3.29x10° ND
CN

4F-2CN
ND = “not determined”
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Fig. S9 (A) Absorption spectrum of 4F-2CN (50 uM) in PB buffer (10 mM, pH 7.4). (B)
Time-dependent absorbance changes of 4F-2CN (50 uM) in PB buffer monitored at three
different wavelengths (305 nm, 350 nm and 420 nm).
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Fig. S10 Time-dependent fluorescence spectra of 4F-2CN (10 yM) with 100 uM of Cys (A),
Hcy (B) and GSH (C) excited at 420 nm respectively (PB buffer, pH 7.4, 10 mM).
Corresponding fluorescence intensity changes of 4F-2CN with Cys (D), Hey (E) and GSH (F)
excited at 420 nm respectively.
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Fig. S11 Time-dependent fluorescence spectra of 4F-2CN (10 yM) with 100 uM of Cys (A),
Hcy (B) and GSH (C) excited at 350 nm respectively (PB buffer, pH 7.4, 10 mM)).
Corresponding fluorescence intensity changes of 4F-2CN with Cys (D), Hey (E) and GSH (F)
excited at 350 nm respectively.
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Fig. S12 Fluorescence response of 4F-2CN with addition of various concentrations of Cys.
The fluorescence intensity was measured using EX/Em =420 / 500 nm.
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Fig. S13 Fluorescence response of 4F-2CN with addition of various concentrations of HCy.
The fluorescence intensity was measured using EX/Em = 350 / 450 nm.
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Fig. S14 Fluorescence response of 4F-2CN with addition of various concentrations of GSH.

The fluorescence intensity was measured using ExX/Em = 350 / 450 nm.
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Fig. S15 HPLC profiles of the reactions of 4F-2CN with Cys, Hcy and GSH after 2h of
incubation. HPLC conditions: 1 mL/min flow rate, 10% B to 100% B over 30 min, detected at
254 nm. Solvent A is water with 0.1% trifluoroacetic acid, and solvent B is acetonitrile with 0.1%

trifluoroacetic acid.
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Fig. S16 Mass spectrum of the reaction product of 4F-2CN and Hcy.
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Fig. S17 Mass spectrum of the reaction product of 4F-2CN and GSH.
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Fig. S19 'H NMR spectrum of 4F-2CN-Hcy.
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Fig. S21 °F NMR spectrum of 4F-2CN-Hcy.
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Fig. S22 'H NMR spectrum of 4F-2CN-GSH.
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Fig. S24 "F NMR spectrum of 4F-2CN-GSH.
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Fluorescence intensity was measured at an excitation wavelength of 350 nm; (B)
Fluorescence intensity was measured at an excitation wavelength of 420 nm. Various analytes
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Fig. S26 MTT assay with different concentrations of 4F-2CN in A549 cells after 24 h incubation
at 37 °C.
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Fig. S27 Two-photon excited fluorescence emission spectra of Fluorl, 4F-2CN-Cys,
4F-2CN-GSH and 4F-2CN-Hcy in PB buffer (Ex: 860 nm). Fluorl is a two-photon fluorophore
commonly used for cell imaging studies.
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Fig. 28 Fluorescence response of 4F-2CN (20 pM) with thiol mixtures. (A) Fluorescence
spectra of 4F-2CN in the presence of Cys/Hcy (10 uM/100 uM) excited at 350 nm and 420 nm
respectively; (B) Fluorescence spectra of 4F-2CN in the presence of Cys/GSH (10 uM/100 uM)
excited at 350 nm and 420 nm respectively; (C) Fluorescence spectra of 4F-2CN in the
presence of GSH/Hcy (10 uM/100 uM) excited at 350 nm and 420 nm respectively.
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