Supplementary for

Structural basis of head to head polyketide fusion by CorB

Georg Zocher,^{a,#} Joachim Vilstrup,^{b,#} Daniel Heine,^c Asis Hallab,^d Emilie Goralski,^e Christian Hertweck,^{c,f} Mark Stahl,^g Till F. Schäberle^{e*} and Thilo Stehle^{a,h*}

^a Interfaculty Institute of Biochemistry, University Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.

^b Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK 8000 Aarhus C, Denmark.

^c Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745 Jena, Germany.

^d Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany.

^e Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.

^f Chair for Natural Product Chemistry, Friedrich Schiller University, 07737 Jena, Germany.

^g Center for Plant Molecular Biology, University Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany.

^h Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.

[#] Authors contributed equally to this work

* To whom correspondence should be addressed:

For structural biology: Thilo Stehle, Interfaculty Institute of Biochemistry, University Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany, Tel.: +49-7071-2973043; Fax: +49-7071-295565; E-mail: <u>thilo.stehle@uni-tuebingen.de</u>, and for biochemistry Till Schäberle, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany, Tel.: +49 228 73 2676; E-mail: <u>till.schaeberle@uni-bonn.de</u>

Figure S1. Result of the feeding experiments with labelled precursors

KS	Box1	Box2	Box3	Box4
#1	CASSL	EAHGTG	NIGH	
#2	CSSSL	ETHGTG	NIGH	
#3	CSSSL	EAHGTG	NVGH	
#4	CSSSL	EAHGTG	NIGH	
#5	CSASL	ECAAAG	NVGH	
#6	CSSSL	ETHGTG	NIGH	
#7	CASSL	EAHGTG	NIGH	
#8	CSSSL	ECHGTG	NIGH	
#9	CSSSL	EAHGTG	NAGH	
#10	CSSSL	EAHGTG	NIGH	
#11	CSSSL	EAHGSG	NTGH	
#12	CSSSL	EAHGTG	NIGH	
#13	CSSSL	EAHGTG	NIGH	
CorB	CLSFF	HMNGAE	VIPH	ANC
CorD	S ASGN	NAHGSA	WTGH	

Figure S4. Conserved motifs of ketosynthase (KS) protein(domain)s encoded in the corallopyronin A gene cluster. The here analyzed CorB is boxed in red. CorD is involved in β -branching. KS domain #5 is inactive, due to the incomplete catalytic triad.

	CorB-ox	CorB-red	CorB-1
Wavelength [Å]	1.00000	1.5418	0.91840
Resolution [Å]	30-1.54 (1.58-1.54)	50-1.70 (1.80-1.70)	30-1.31 (1.34-1.31)
Space group	C222(1)	C222(1)	C222(1)
Unit cell dimension [Å]			
а	62.9	62.7	62.7
b	106.3	105.2	105.3
с	104.7	104.6	104.7
Measured reflections	659331 (29700)	146340 (22889)	840246 (132631)
Unique reflections	52020 (3695)	34975 (5725)	84188 (13261)
Redundancy	12.7 (8.0)	4.2 (4.0)	10.0 (10.0)
Completeness [%]	99.7 (97.3)	90.3 (92.5)	98.3 (99.7)
I/<σ(I)	22.1 (2.1)	11.1 (2.9)	16.9 (1.9)
CC1/2	100.0 (80.9)	99.6 (83.5)	99.9 (76.0)
Wilson B [Å ²]	24.3	20.4	19.6
No. of Atoms			
Chain A	2541	2594	2601
Ions/Water	255	317	341
Average B-Factors [Å ²]			
Chain A	33.8	18.8	18.3
Ions/Water	39.4	27.9	28.2
R _{work} [%]	17.7	19.7	17.5
R _{free} [%]	18.2	23.1	18.8
Rmsd bond angles [°]	1.33	0.010	1.16
Rmsd bond length [Å]	0.008	1.231	0.007
Ramachandran outliers [%]	0.7	0.6	0.6
Ramachandran favored [%]	96.1	95.3	96.2

Table S1. Data collection and refinement statistics.

Values in parentheses are for the highest resolution shell.

Figure S5 Topology plot of CorB.

Figure S6Stereoview into the active site of CorB for CorB-ox (a) for CorB-red (b) and for
CorB-1 after incubation with 1 (c). The $(2F_0-F_c)$ -electron density map (blue) for
CorB-ox and CorB-red is shown at a contour level of 1.5. The substrate mimic 1
(violet) was modeled into the unbiased (F_0-F_c) -difference electron density map
(green) depicted at a contour level of 2.9.

Figure S7 Theoretically expected molecular mass of all molecules used in the ESI-MS experiments.

	Protein and Source	PDB entry	Sequence identity [%]	C-rmsd [Å]	# of aligned residues
FabH	Aquifex aeolicus vf5	2EBD	34	2.1	304
FabH	Burkholderia Xenovorans	4DEF	25	2.4	322
FabH	Vibrio Cholerae	4NHD	30	2.5	313
FabH	Escherichia coli	1HND	31	2.4	313
FabH	Staphylococcus aureus	1ZOW	27	2.3	307
FabH	Xanthomonas oryzae	3FK5	22	2.3	309
FabH	Haemophilus influenzae	3IL3	29	2.7	312
FabH	Xanthomonas Campestris Olea	4KTI	22	2.4	307
FabH	Thermus thermophilus hb8	1UB7	29	2.4	310
FabH	Mycobacterium tuberculosis	2QNX	29	2.8	318

Table S2. Structure comparison using DALI to FabH enzymes from different organisms

Protein and Source		PDB entry	Sequence identity [%]	C-rmsd [Å]	# of aligned residues
PqsD	Pseudomonas aeruginosa paol	3H77	26	2.5	305
PKS11	Mycobacterium tuberculosis	4JAP	22	2.8	303
STEELY1	Dictyostelium discoideum	2H84	19	2.7	302
Pentaketid Synthase	Neurospora crassa	3EU0	17	2.9	300
HMG-CoA Synthase	Brassica juncea	2F9A	16	2.4	300
Chalcone Synthase 2	Medicago sativa	1U0W	22	3.0	305
Pentaketide Chromone Synthase	Aloe arborescens	2D3M	18	3.0	305
Curcumin Synthase	Curcuma longa	30V3	21	3.0	304
PKS1	Ectocarpus siliculosus	4B0N	17	2.9	303
2-Pyrone Synthase	Gerbera hybrid cultivar	1EE0	20	3.0	306
Stilbene Synthase	Vitis vinifera	3TSY	20	3.0	305
Malonyl transferase	Streptomyces tendae	3S3L	17	2.9	298

Table S3. Structure comparison using DALI to the closest 12 non-redundant enzymes

Figure S8 Structure comparison of CorB with FabH, PKS and HMG-CoA synthase. CorB is shown in pink. The catalytic triad is emphasized by colored spheres.

Figure S9 Complete ESI-MS spectra of (a) CorB, (b) CorB incubated with substrate 1, and (c) CorB incubated with substrate 2.

Gene	Primer	Sequence 5'-3'
corB	CorB_TOPO_up	CACCATGAATCAGGGTGGTGTCTT
	CorB_TOPO_dn	TCAGTAGGTGAAGACCATTCC
corB_C121A	C121A for	ATCACCGTCAATGCCTCGGCCCTGAGCTTCTTCGTC
	C121A rev	GACGAAGAAGCTCAGGGCCGAGGCATTGACGGTGAT
corB_C121S	C121S for	TGCCGTCAATGCCTCGTCCCTGAGCTTCTTCGTC
	C121S rev	GACGAAGAAGCTCAGGGACGAGGCATTGAC
corB_H264A	H264A for	GGTACGTCATCCCGGCTCAGCCGAGCCGCGTGG
	H264A rev	CCACGCGGCTCGGCTGAGCCGGGATGACGTACC
corB_H264F	H264F neu f	GGTACGTCATCCCGTTTCAGCCGAGCCGCGTGG
	H264F neu r	CCACGCGGCTCGGCTGAAACGGGATGACGTACC
corB_N292A	N292A for	ATCGACCGGTTCGCCGCCTGCATCGGCGCCTCC
	N292A rev	GGAGGCGCCGATGCAGGCGGCGAACCGGTC

Table S4.Oligonucleotides used in this work.

Plasmid / Strain	Genotype	Reference
Corallococcus coralloides B035 Escherichia coli One Shot®TOP10	Wild type F ⁻ mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK	Erol et al., 2010
	rpsL (Str ^K) endA1 nupG	Invitrogen
Escherichia coli BL21 (DE3) Star	F^{-} ompT hsdS _B ($r_{B}^{-}m_{B}^{-}$) gal dcm rne131 (DE3)	Invitrogen
pET151TOPO	N-terminal 6xHis tag, TEV protease cleavage site	Invitrogen
pET151TOPO+CorB	corB	this work
pET151TOPO+CorB_C121A	corB_C121A	this work
pET151TOPO+CorB_C121S	corB_C121S	this work
pET151TOPO+CorB_H264A	corB_H264A	this work
pET151TOPO+CorB_H264F	<i>corB</i> _H264F	this work
pET151TOPO+CorB_N292A	corB_N292A	this work
E. coli TFS-CorB	corB	this work
E. coli TFS-CorB_C121A	corB_C121A	this work
E. coli TFS-CorB_C121S	corB_C121S	this work
E. coli TFS-CorB_H264A	corB_H264A	this work
E. coli TFS-CorB_H264F	<i>corB</i> _H264F	this work
E. coli TFS-CorB_N292A	corB_N292A	this work

Table S5. Strains and plasmids used in this work.