Supporting Information

Contents

- 1. Instrumentation and Materials
- 2. Experimental Section
- 3. NMR Spectra
- 4. Mass Spectra
- 5. X-Ray Crystallographic Details
- 6. Cyclic Voltammograms
- 7. UV/Vis Absorption and Fluorescence Spectra
- 8. DFT Calculations
- 9. Supporting References

1. Instrumentation and Materials

Commercially available solvents and reagents were used without further purification unless otherwise noted. Dry dichloromethane was distilled over CaH₂. The spectroscopic grade solvents were used as solvents for all spectroscopic studies. Silica gel column chromatography was performed on Wakogel C-300. Alumina column chromatography was performed on Sumitomo γ -Alumina. Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silica gel 60 F254 (Merck 5554). UV/Visible absorption spectra were recorded on Shimadzu UV-3600 spectrometers. ¹H and ¹³C NMR spectra were recorded on a JEOL ECA-600 spectrometer (operating as 600 MHz for ¹H and 151 MHz for ¹³C) using the residual solvent as the internal reference for ¹H (δ = 7.26 ppm in CDCl₃) and for ¹³C (δ = 77.16 ppm in CDCl₃). Mass spectra were recorded on a BRUKER micrOTOF model using positive and negative mode and a Shimadzu AXIMA-CFRplus using positive-MALDI-TOF method with matrix. Single-crystal diffraction analysis data were collected at -180 °C with a Rigaku XtaLAB P200 by using graphite monochromated Cu- K_{α} radiation ($\lambda = 1.54187$ Å). The structures were solved by direct methods (SHELXS-97) and refined with full-matrix least square technique (SHELXL-97). Redox potentials were measured on an ALS electrochemical analyzer model 660.

2. Experimental Section

2.1 1M and 4M were synthesized according to ref. S1-4.

Ar = 3,5-di-*tert*-butylphenyl 1Ni

1Ni; ¹H NMR (CDCl₃, r.t.) δ (ppm): 10.63 (s, 1H, por-*meso*), 9.87 (s, 1H, por-*meso*), 9.53 (s, 1H, por- β), 9.26 (d, J = 4.8 Hz, 1H, por- β), 9.16 (d, J = 4.2 Hz, 1H, por- β), 9.14 (d, J = 4.2 Hz, 1H, por- β), 8.97 (overlapping d, J = 4.2 Hz, J = 4.2 Hz, 2H, por- β), 8.92 (d, J = 4.8 Hz, 1H, por- β), 7.93 (d, J = 1.8 Hz, 2H, aryl-*ortho*), 7.91 (d, J = 1.8 Hz, 2H, aryl-*ortho*), 7.77 (t, J = 1.8 Hz, 1H, aryl-*para*), 7.76 (t, J = 1.8 Hz, 1H, aryl-*para*), 1.64 (s, 12H, pinacol borate-methyl), and 1.52 (s, 36H, *t*Bu); ¹³C NMR (CDCl₃) δ (ppm): 149.2, 149.0, 146.3, 143.7, 143.5, 143.3, 143.2, 143.1, 143.0, 142.8, 142.5, 140.2, 140.1, 133.0, 132.8, 132.6, 132.1, 131.7, 129.3, 129.2, 126.5, 121.4, 121.2, 120.4, 119.3, 106.4, 104.8, 84.2, 35.2, 31.9, and 25.3; HR-APCI-TOF-MS m/z = 868.4480, calcd. for C₅₄H₆₄N₄¹⁰B₁⁵⁸Ni₁O₂ = 868.4507 [M+H]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 408 (212000), 520 (13000) and 553 nm (5000 M⁻¹cm⁻¹).

Ar = 3,5-di-*tert*-butylphenyl **1H**

1H; ¹H NMR (CDCl₃, r.t.) δ (ppm): 11.02 (s, 1H, por-*meso*), 10.26 (s, 1H, por-*meso*), 9.68 (s, 1H, por- β), 9.48 (d, J = 4.2 Hz, 1H, por- β), 9.38 (d, J = 4.2 Hz, 1H, por- β), 9.36 (d, J = 4.8 Hz, 1H, por- β), 9.13 (overlapping d, J = 4.2 Hz, J = 4.2 Hz, 1H+1H, por- β), 9.08 (d, J = 4.8 Hz, 1H, por- β), 8.16 (d, J = 1.8 Hz, 2H, aryl-*ortho*), 8.14 (d, J = 1.8 Hz, 2H, aryl-*ortho*), 7.85 (m, 2H, aryl-*para*), 1.71 (s, 12H, pinacol borate-methyl), 1.59 (s, 36H, *t*Bu), and -2.87 (s, 2H, inner *N*H); ¹³C NMR (CDCl₃) δ (ppm): 149.3, 149.1, 148.4, 147.5, 146.0, 145.0, 141.8, 140.63, 140.60, 132.9, 131.8, 131.6, 131.5, 131.30, 131.28, 130.43, 130.37, 121.3, 121.2, 120.1, 106.9, 106.8, 104.9, 84.4, 35.3, 32.0, and 25.4; HR-APCI-TOF-MS m/z = 812.5336, calcd. for C₅₄H₆₆N₄¹⁰B₁O₂ = 812.5310 [M+H]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 414 (415000), 509 (17000), 544 (6000), 583 (6000) and 638 nm (3000 M⁻¹cm⁻¹).

1Zn; ¹H NMR (CDCl₃, r.t.) δ (ppm): 11.04 (s, 1H, por-*meso*), 10.29 (s, 1H, por-*meso*), 9.78 (s, 1H, por- β), 9.55 (d, J = 4.2 Hz, 1H, por- β), 9.44 (d, J = 4.8 Hz, 1H, por- β), 9.42 (d, J = 4.8 Hz, 1H, por- β), 9.20 (d, J = 4.8 Hz, 1H, por- β), 9.19 (d, J = 4.8 Hz, 1H, por- β), 9.15 (d, J = 4.2 Hz, 1H, por- β), 8.16 (d, J = 1.8 Hz, 2H, aryl-*ortho*), 8.14 (d, J = 1.8 Hz, 2H, aryl-*ortho*), 7.85 (m, 2H, aryl-*para*), 1.71 (s, 12H, pinacol borate-methyl), and 1.59 (s, 36H, *t*Bu); ¹³C NMR (CDCl₃) δ (ppm): 153.2, 151.2, 151.0, 150.4, 150.0, 149.8, 149.7, 148.9, 148.8, 143.4, 141.7, 133.2, 133.0, 132.9, 132.7, 131.9, 131.6, 130.3, 130.1, 122.3, 121.2, 121.1, 121.0, 107.9, 106.0, 84.2, 35.2, 32.0, and 25.4; HR-APCI-TOF-MS m/z = 874.4402, calcd. for C₅₄H₆₄N₄¹⁰B₁⁶⁴Zn₁O₂= 874.4445 [*M*+H]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 414 (488000), 542 (23000) and 582 nm (9000 M⁻¹cm⁻¹).

2.2 General procedure for the synthesis of 2M.

1M (0.10 mmol), $Pt(cod)Cl_2$ (18.7 mg, 0.05 mmol), cod (0.20 mL, 1.63 mmol) and CsF (91.0 mg, 0.6 mmol) in THF (7.5 mL) was stirred at reflux for 24 hours under inert atmosphere. Then the mixture was cooled down to room temperature and THF was removed under vacuum. The residue was dissolved in small amount of CH_2Cl_2 and was subjected onto a column chromatography on silica using CH_2Cl_2 /hexane (v/v=1/1) as an eluent to give two bands. The second band was collected as the desired compound **2M**.

2Ni; 75.1 mg, 84% yield; ¹H NMR (CDCl₃, r.t.) δ (ppm): 10.66 (s, 2H, por-*meso*), 9.67 (s, 2H, por-*meso*), 9.12 (s, 2H, por- β), 8.98 (d, J = 4.8 Hz, 2H, por- β), 8.95 (d, J = 4.8 Hz, 2H, por- β), 8.94 (d, J = 4.8 Hz, 2H, por- β), 8.81 (d, J = 4.8 Hz, 2H, por- β), 8.76 (d, J = 4.8 Hz, 2H, por- β), 8.69 (d, J = 4.8 Hz, 2H, por- β), 7.81 (m, 4H, aryl-*ortho*), 7.77 (m, 4H, aryl-*ortho*), 7.76 (m, 2H, aryl-*para*), 7.70 (m, 2H, aryl-*para*), 5.88 (m, 4H, cod), 3.08 (m, 4H, cod), 2.84 (m, 4H, cod), 1.46 (s, 36H, *t*Bu), and 1.41 (s, 36H, *t*Bu); ¹³C NMR (CDCl₃) δ (ppm): 160.1, 148.8, 148.7, 144.9, 143.4, 142.2, 141.9, 141.8, 141.6, 140.9, 140.5, 136.5, 131.8, 131.74, 131.71, 131.3, 131.1, 130.6, 129.3, 129.0, 120.8, 120.5, 119.4, 116.2, 109.4, 107.2, 103.9, 35.1, 31.80, 31.78 and 30.7; MALDI-TOF-MS *m*/*z* = 1782.73, calcd. for C₁₀₄H₁₁₄N₈⁵⁸Ni₂¹⁹²Pt =1782.75 [*M*]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 400 (342000), 521 (32000) and 556 nm (16000 M⁻¹cm⁻¹).

2H; 50.3 mg, 60% yield; ¹H NMR (CDCl₃, r.t.) δ (ppm): 11.15(s, 2H, por-*meso*), 10.06 (s, 2H, por-*meso*), 9.42 (s, 2H, por- β), 9.24 (d, J = 4.2 Hz, 2H, por- β), 9.21 (d, J = 4.8 Hz, 2H, por- β), 9.13 (d, J = 4.2 Hz, 2H, por- β), 8.99 (d, J = 4.8 Hz, 2H, por- β), 8.91 (d, J = 4.2 Hz, 2H, por- β), 8.82 (d, J = 4.8 Hz, 2H, por- β), 8.02 (m, 4H, aryl-*ortho*), 7.98 (m, 4H, aryl-*ortho*), 7.84 (m, 2H, aryl-*para*), 7.78 (m, 2H, aryl-*para*), 6.06 (m, 4H, cod), 3.23 (m, 4H, cod), 2.95 (m, 4H, cod), 1.53 (s, 36H, *t*Bu), 1.44 (s, 36H, *t*Bu), -3.19 (s, 2H, inner NH) and -3.39 (s, 2H, inner NH); ¹³C NMR (CDCl₃) δ (ppm): 148.86, 148.81, 146.1, 143.8, 141.8, 141.3, 140.8, 139.9, 135.1, 133.2, 132.8, 132.3, 132.2, 131.8, 130.5, 130.1, 128.6, 128.3, 123.6, 120.8, 120.5, 120.2, 117.2, 107.9, 107.8, 107.7, 104.0, 35.12, 35.10, 31.84, 31.83 and 30.8; MALDI-TOF-MS *m*/*z* = 1671.20, calcd. for C₁₀₄H₁₁₈N₈¹⁹²Pt =1670.91[*M*]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 407 (431000), 427 (242000), 512 (31000), 577 (9000) and 631 nm (6000 M⁻¹cm⁻¹).

2Zn; 73.9 mg, 82% yield; ¹H NMR (CDCl₃, r.t.) δ (ppm): 11.11 (s, 2H, por-*meso*), 10.05 (s, 2H, por-*meso*), 9.44 (s, 2H, por- β), 9.27 (d, J = 4.2 Hz, 2H, por- β), 9.23 (d, J = 4.2 Hz, 2H, por- β), 9.21 (d, J = 4.8 Hz, 2H, por- β), 8.99 (m, 4H, por- β), 8.92 (d, J = 4.8 Hz, 2H, por- β), 7.99 (m, 4H, aryl-*ortho*), 7.98 (m, 4H, aryl-*ortho*), 7.88 (m, 2H, aryl-*para*), 7.77 (m, 2H, aryl-*para*), 6.10 (m, 4H, cod), 3.24 (m, 4H, cod), 2.96 (m, 4H, cod), 1.51 (s, 36H, *t*Bu), and 1.49 (s, 36H, *t*Bu); ¹³C NMR (CDCl₃) δ (ppm): 160.7, 156.2, 152.7, 150.6, 149.0, 148.9, 148.8, 148.6, 148.42, 148.38, 142.4, 141.9, 135.7, 131.9, 131.8, 131.0, 130.8, 130.3, 130.2, 129.8, 121.1, 120.5, 120.2, 118.2, 110.8, 107.1, 105.0, 35.1, 35.0, 31.81, 31.77 and 30.7; MALDI-TOF-MS m/z = 1794.45, calcd. for C₁₀₄H₁₁₄N₈⁶⁴Zn₂¹⁹²Pt =1794.73 [*M*]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 407 (507000), 424 (263000), 541 (45000) and 577 nm (13000 M⁻¹cm⁻¹); Fluorescence (CH₂Cl₂, $\lambda_{ex} = 410$ nm): $\lambda_{max} = 589$ and 632 nm, $\Phi_{F} < 0.001$.

2.4 General procedure for the synthesis of 3M.

A flask containing **2M** (0.050 mmol), triphenylphosphine (131.0 mg, 0.50 mmol) was purged with argon, charged with anhydrous toluene (10 mL) and stirred at reflux for 4 hours. After cooled down to room temperature, toluene was removed under vacuum. The residue was dissolved in CHCl₃ (20 mL) and washed with brine (20 mL) for three times. After dried over anhydrous sodium sulfate, the organic layer was evaporated to dryness under vacuum. The mixture was purified by column chromatography on silica using CH₂Cl₂/hexane (v/v=1/1) as an eluent to give **3M**.

3Ni; 60.1 mg, 81% yield; ¹H NMR (CDCl₃, r.t.) δ (ppm): 10.24 (s, 2H, por-*meso*), 9.97 (s, 2H, por-*meso*), 9.49 (s, 2H, por- β), 9.25 (d, J = 4.2 Hz, 2H, por- β), 9.22 (d, J = 4.2 Hz, 2H, por- β), 9.11 (d, J = 4.2 Hz, 2H, por- β), 9.01 (d, J = 4.2 Hz, 2H, por- β), 8.90 (d, J = 4.8 Hz, 2H, por- β), 8.89 (d, J = 4.8 Hz, 2H, por- β), 8.14 (d, J = 1.8 Hz, 4H, aryl-*ortho*), 7.93 (d, J = 1.8 Hz, 4H, aryl-*ortho*), 7.75 (t, J = 1.8 Hz, 2H, aryl-*para*), 7.70 (t, J = 1.8 Hz, 2H, aryl-*para*), 1.50 (s, 36H, *t*Bu), and 1.49 (s, 36H, *t*Bu); ¹³C NMR (CDCl₃) δ (ppm): 149.1, 149.0, 143.31, 143.27, 143.24, 143.1, 142.9, 142.8, 142.3, 142.0, 140.1, 139.9, 139.4, 134.0, 132.9, 132.8, 132.6, 132.2, 132.1, 132.0, 129.1, 129.0, 128.2, 121.23, 121.18, 119.9, 119.8, 105.5, 104.9, 35.0, 31.8 and 31.7; MALDI-TOF-MS *m*/*z* = 1482.79, calcd. for C₉₆H₁₀₂N₈⁵⁸Ni₂ = 1482.69 [*M*]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 408 (223000), 523 (35000) and 568 nm (26000 M⁻¹cm⁻¹).

3H; 52.1 mg, 76% yield; ¹H NMR (CDCl₃, r.t.) δ (ppm): 10.75(s, 2H, por-*meso*), 10.38 (s, 2H, por-*meso*), 9.77 (s, 2H, por- β), 9.52 (d, J = 4.8 Hz, 2H, por- β), 9.42 (d, J = 4.8 Hz, 2H, por- β), 9.29 (d, J = 4.2 Hz, 2H, por- β), 9.14 (d, J = 4.8 Hz, 2H, por- β), 9.11 (d, J = 4.8 Hz, 2H, por- β), 9.07 (d, J = 4.8 Hz, 2H, por- β), 8.42 (d, J = 1.8 Hz, 4H, aryl-*ortho*), 8.15 (d, J = 1.8 Hz, 4H, aryl-*ortho*), 7.82 (t, J = 1.8 Hz, 2H, aryl-*para*), 7.79 (t, J = 1.8 Hz, 2H, aryl-*para*), 1.57 (s, 36H, *t*Bu), 1.56 (s, 36H, *t*Bu), -2.65 (s, 2H, inner *N*H) and -2.69 (s, 2H, inner *N*H); ¹³C NMR (CDCl₃) δ (ppm): 150.7, 149.2, 149.1, 148.4, 148.3,

144.6, 142.5, 140.9, 140.6, 140.3, 134.3, 132.8, 132.6, 130.6, 130.4, 130.2, 130.1, 129.9, 121.2, 121.1, 120.8, 120.7, 105.5, 105.1, 35.11, 35.09, 31.83 and 31.75; MALDI-TOF-MS m/z = 1370.96, calcd. for C₉₆H₁₀₆N₈ =1370.85 [*M*]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 410 (312000), 511 (44000), 544 (14000), 583 (16000) and 637 nm (3000 M⁻¹cm⁻¹).

3Zn; 58.4 mg, 78% yield; ¹H NMR (CDCl₃, r.t.) δ (ppm): 10.89 (s, 2H, por-*meso*), 10.41 (s, 2H, por-*meso*), 9.90 (s, 2H, por- β), 9.54 (d, J = 4.8 Hz, 2H, por- β), 9.51 (d, J = 4.8 Hz, 2H, por- β), 9.32 (d, J = 4.2 Hz, 2H, por- β), 9.24 (d, J = 4.2 Hz, 2H, por- β), 9.23 (d, J = 4.2 Hz, 2H, por- β), 9.16 (d, J = 4.2 Hz, 2H, por- β), 8.42 (d, J = 1.2 Hz, 4H, aryl-*ortho*), 8.16 (d, J = 1.2 Hz, 4H, aryl-*ortho*), 7.84 (t, J = 1.2 Hz, 2H, aryl-*para*), 7.78 (t, J = 1.2 Hz, 2H, aryl-*para*), 1.58 (s, 36H, *t*Bu), and 1.57 (s, 36H, *t*Bu); ¹³C NMR (CDCl₃) δ (ppm): 150.9, 150.6, 150.5, 149.84, 149.78, 149.6, 149.3, 148.80, 148.75, 141.8, 141.5, 140.0, 134.7, 133.1, 133.0, 132.7, 132.0, 131.8, 131.7, 129.92, 129.88, 121.8, 121.0, 120.9, 106.3, 106.2, 35.12, 35.10, 31.9 and 31.8; MALDI-TOF-MS m/z = 1494.77, calcd. for C₉₆H₁₀₂N₈⁶⁴Zn₂ = 1494.68 [*M*]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε) = 411 (294000), 544 (44000) and 584 nm (19000 M⁻¹cm⁻¹); Fluorescence (CH₂Cl₂, $\lambda_{ex} = 411$ nm): $\lambda_{max} = 590$ and 640 nm, $\Phi_{F} = 0.049$.

2.5 General procedure for the synthesis of 5Ni and 5Zn.

4M (0.10 mmol), $Pt(cod)Cl_2$ (37.4 mg, 0.10 mmol) and CsF (182.0 mg, 1.20 mmol) in 1,4dioxane (20 mL) were stirred at reflux for 12 h under inert atmosphere. Then the mixture was cooled down to room temperature and 1,4-dioxane was removed under vacuum. The residue was dissolved in small amount of CH_2Cl_2 and was filtered. Then CH_2Cl_2 was removed and the crude mixture was purified by recrystallization from CH_2Cl_2 /methanol twice to give pure **5Ni** and **5Zn**.

5Ni: 104.0 mg, 84% yield; ¹H NMR (CDCl₃, -50 °C) δ (ppm): 11.86 (s, 2H, por-*meso*), 8.76 (s, 4H, por- β), 8.69 (d, J = 4.8 Hz, 4H, por- β), 8.65 (d, J = 4.8 Hz, 4H, por- β), 8.62 (m, 4H, aryl-*ortho*), 8.49

(m, 2H, aryl-*para*), 7.62 (m, 4H, aryl-*ortho*), 7.59 (m, 2H, aryl-*para*), 7.14 (m, 4H, aryl-*ortho*), 7.13 (m, 2H, aryl-*para*), 5.73 (m, 8H, cod), 2.96 (m, 8H, cod), 2.76 (m, 8H, cod), 1.65 (s, 36H, *t*Bu), 1.53 (s, 18H, *t*Bu), 1.27 (s, 18H, *t*Bu), and 1.10 (s, 36H, *t*Bu); ¹³C NMR (CDCl₃) δ (ppm): 158.9, 148.5, 148.0, 144.4, 142.3, 140.7, 140.5, 135.5, 130.7, 130.1, 128.5, 120.5, 120.1, 118.6, 116.4, 108.4, 104.1, 35.05, 34.97, 31.7, 30.6 and 30.3; MALDI-TOF-MS *m*/*z* = 2356.95, calcd. for C₁₃₂H₁₅₂N₈⁵⁸Ni₂¹⁹²Pt₂ =2357.02 [*M*-COD]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 412 (333000) and 530 nm (43000 M⁻¹cm⁻¹).

5Zn; 87.0 mg, 70% yield; ¹H NMR (CDCl₃, r.t.) δ (ppm): 12.89 (s, 2H, por-*meso*), 8.97 (s, 4H, por- β), 8.72 (d, J = 4.8 Hz, 4H, por- β), 8.70 (d, J = 4.8 Hz, 4H, por- β), 8.25 (t, J = 1.8 Hz, 4H, aryl-*ortho*), 8.03 (t, J = 1.8 Hz, 2H, aryl-*para*), 7.81 (t, J = 1.8 Hz, 4H, aryl-*ortho*), 7.78 (t, J = 1.8 Hz, 4H, aryl-*ortho*), 7.70 (t, J = 1.8 Hz, 2H, aryl-*para*), 7.61 (t, J = 1.8 Hz, 2H, aryl-*para*), 6.26 (m, 8H, cod), 3.39 (m, 4H, cod), 3.16 (m, 4H, cod), 3.07 (m, 4H, cod), 2.98 (m, 4H, cod), 1.67 (s, 36H, *t*Bu), 1.42 (s, 36H, *t*Bu), 1.41 (s, 18H, *t*Bu), and 1.36 (s, 18H, *t*Bu); UV/Vis (CH₂Cl₂): MALDI-TOF-MS m/z = 2371.00, calcd. for C₁₃₂H₁₅₂N₈⁶⁴Zn₂Pt₂ =2371.00 [*M*-COD]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 421 (219000) and 548 nm (32000 M⁻¹cm⁻¹); Fluorescence (CH₂Cl₂, $\lambda_{ex} = 420$ s nm): $\lambda_{max} = 599$ and 643 nm, $\Phi_{F} < 0.001$.

2.6 Synthesis of 6Ni.

A flask containing **5Ni** (24.7 mg, 0.010 mmol), triphenylphosphine (52.4 mg, 0.20 mmol) was purged with argon, charged with anhydrous toluene (10 mL) and stirred at reflux for 3 h. After cooled down to room temperature, toluene was removed under vacuum. The residue was dissolved in CHCl₃ (10 mL) and washed with brine (10 mL) for three times. After dried over anhydrous sodium sulfate, the organic layer was evaporated to dryness under vacuum. The mixture was purified by a silica gel column using CH_2Cl_2 /hexane ($\nu/\nu=1/1$) as the eluent to give **6Ni**.

6Ni; 20.1mg, 78% yield; ¹H NMR (CDCl₃, -60 °C) δ (ppm): 11.79 (s, 2H, por-*meso*), 9.00 (s, 2H, por-β), 8.93 (d, *J* = 4.2 Hz, 2H, por-β), 8.87 (d, *J* = 4.2 Hz, 2H, por-β), 8.76 (d, *J* = 4.2 Hz, 2H, por-β), 8.72 (s, 2H, aryl-*ortho*), 8.57 (s, 2H, aryl-*ortho*), 8.55 (d, *J* = 4.2 Hz, 2H, por-β), 8.39 (s, 2H, aryl-*ortho*),

8.01 (s, 2H, por- β), 7.71 (s, 2H, aryl-*para*), 7.69 (s, 2H, aryl-*para*), 7.66 (s, 2H, aryl-*para*), 7.34 (s, 2H, aryl-*ortho*), 7.19 (s, 2H, aryl-*ortho*), 6.98 (m, 12H, phenyl), 6.95 (s, 2H, aryl-*ortho*), 6.51 (m, 6H, phenyl), 6.35 (m, 12H, phenyl), 1.76 (s, 18H, *t*Bu), 1.66 (s, 18H, *t*Bu), 1.63 (s, 18H, *t*Bu), 1.39 (s, 18H, *t*Bu), 1.31 (s, 18H, *t*Bu), and 1.29 (s, 18H, *t*Bu); ¹³C NMR (CDCl₃) δ (ppm): 164.4, 151.3, 148.8, 148.7, 148.4, 145.5, 143.6, 143.3, 142.6, 141.4, 141.3, 140.5, 140.4, 140.34, 140.29, 138.3, 134.3, 133.3, 131.3, 131.2, 131.05, 130.98, 130.86, 130.7, 129.1, 128.9, 128.5, 128.2, 127.0, 120.71, 120.67, 120.1, 119.3, 118.3, 115.5, 108.5, 35.0, 31.9, 31.8 and 31.7; MALDI-TOF-MS *m/z* = 2579.21, calcd. for C₁₆₀H₁₇₀N₈⁵⁸Ni₂P₂¹⁹²Pt =2579.14 [*M*]⁺; UV/Vis (CH₂Cl₂): λ_{max} (ε)= 421 (235000), 538 (34000) and 604 nm (27000 M⁻¹cm⁻¹).

3. NMR Spectra

Figure S3-1. ¹H NMR spectrum of **2Zn** in CDCl₃ at room temperature.

Figure S3-2. ¹H NMR spectrum of 2H in CDCl₃ at room temperature.

Figure S3-3. ¹H NMR spectrum of 2Ni in CDCl₃ at room temperature.

Figure S3-4. ¹H-¹H NOESY chart of **2Ni** measured in CDCl₃ at room temperature.

Figure S3-5. ¹H NMR spectrum of **3Zn** in CDCl₃ at room temperature.

Figure S3-6. ¹H NMR spectrum of **3H** in CDCl₃ at room temperature.

Figure S3-7. ¹H NMR spectrum of 3Ni in CDCl₃ at room temperature.

Figure S3-8. ¹H NMR spectrum of 5Zn in CDCl₃ at room temperature.

Figure S3-9. ¹H NMR spectrum of 5Ni in CDCl₃ at -50 °C.

Figure S3-10. ¹H NMR spectrum of 6Ni in CDCl₃ at -60 °C.

Figure S3-11. ¹³C NMR spectrum of 2Ni in CDCl₃ at room temperature.

Figure S3-12. ¹³C NMR spectrum of 2H in CDCl₃ at room temperature.

Figure S3-13. ¹³C NMR spectrum of **2Zn** in CDCl₃ at room temperature.

Figure S3-14. ¹³C NMR spectrum of 3Ni in CDCl₃ at room temperature.

Figure S3-15. ¹³C NMR spectrum of **3H** in CDCl₃ at room temperature.

Figure S3-16. ¹³C NMR spectrum of **3Zn** in CDCl₃ at room temperature.

Figure S3-17. ¹³C NMR spectrum of 5Ni in CDCl₃ at room temperature.

Figure S3-18. ¹³C NMR spectrum of 6Ni in CDCl₃ at room temperature.

4. Mass Spectra

Figure S4-1. Simulated (bottom) and observed (top) MALDI-TOF-MS of 2Zn.

Figure S4-2. Simulated (bottom) and observed (top) MALDI-TOF-MS of 2H.

Figure S4-3. Simulated (bottom) and observed (top) MALDI-TOF-MS of 2Ni.

Figure S4-4. Simulated (bottom) and observed (top) MALDI-TOF-MS of 3Zn.

Figure S4-5. Simulated (bottom) and observed (top) MALDI-TOF-MS of 3H.

Figure S4-6. Simulated (bottom) and observed (top) MALDI-TOF-MS of 3Ni.

Figure S4-7. Simulated (bottom) and observed (top) MALDI-TOF-MS of 5Zn.

Figure S4-8. Simulated (bottom) and observed (top) MALDI-TOF-MS of 5Ni.

Figure S4-9. Simulated (bottom) and observed (top) MALDI-TOF-MS of 6Ni.

5. X-Ray Crystallographic Details

Figure S5-1. X-ray crystal structure of **2Zn**. (a) Top view. (b) Side view. Thermal ellipsoids were scaled to 30% probability. *tert*-Butyl groups, hydrogen atoms and solvent molecules were omitted for clarity.

Figure S5-2. X-ray crystal structure of **5Ni**. (a) Top view. (b) Side view. Thermal ellipsoids were scaled to 30% probability. *tert*-Butyl groups, hydrogen atoms and solvent molecules were omitted for clarity.

*Explanation for a "level A" alert: The alert comes from the rotational disorder of *tert*-Butyl groups.

Compound	2Zn	2 H	3Zn	5Ni	6Ni
Empirical	$C_{106}H_{120}N_8O_2Pt_1\\$	$C_{104}H_{118}N_8Pt$	$C_{106}H_{112}N_{10}Zn_2$	$C_{140}H_{162}N_8Ni_2Pt$	$C_{160}H_{170}N_8Ni_2P_2$
Formula	$Zn_2 \cdot 3(CHCl_3) \cdot 2$	$\cdot 2(CHCl_3)$	(CHCl ₃)	₂ ·7.3(CHCl ₃)	Pt·4(CHCl ₃)·0.8
	(CO)				(CO)·0.2(O)
M_W	2278.05	1913.89	1776.20	3336.17	3082.57
Crystal System	Triclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space Group	<i>P</i> -1 (No.2)	<i>P</i> 2 ₁ / <i>c</i> (No.14)	<i>C</i> 2/ <i>c</i> (No.15)	<i>P</i> -1 (No.2)	C 2/c (No.15)
a [Å]	14.8426(3)	20.8774(6)	31.53(1)	19.4832(10)	64.086(14)
<i>b</i> [Å]	20.1100(4)	15.8099(5)	8.731(2)	20.2466(16)	12.967(3)
<i>c</i> [Å]	21.2677(4)	30.4880(9)	36.552(13)	21.267(3)	40.547(8)
α [deg]	63.3696(7)	90	90	86.76(2)	90
β [deg]	78.2695(7)	99.1261(18)	113.582(11)	81.40(2)	102.600(5)
γ [deg]	71.6398(7)	90	90	67.434(11)	90
Volume [Å ³]	5371.33(18)	9935.8(5)	9222(5)	7659.6(12)	32884(12)
Ζ	2	4	4	2	8
Density	1.409	1.279	1.279	1.446	1.245
$[Mg/m^3]$					
Completeness	0.976	0.996	0.979	0.971	0.974
Goodness-of-fit	1.011	1.003	1.000	1.060	1.021
$R_1\left[I > 2\sigma(I)\right]$	0.0791	0.0707	0.0553	0.0685	0.0947
$wR_2[I > 2\sigma(I)]$	0.2151	0.1632	0.1470	0.1561	0.2538
R_1 (all data)	0.0946	0.0946	0.0754	0.0701	0.1095
wR_2 (all data)	0.2363	0.1792	0.1642	0.1570	0.2710
CCDC	1406330	1406329	1406343	1406331	1406332

Table S5-1. Crystal data and structure refinements for 2Zn, 2H, 3Zn, 5Ni and 6Ni.

Crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow solvent diffusion of methanol into their respective solutions in chloroform. In the case of **3Zn**, a drop of pyridine was added to its chloroform solution.

6. Cyclic Voltammograms

Figure S6-1. (a) Cyclic voltammogram and (b) differential-pulse voltammogram of Ni^{II} porphyrin (Ni1) measured in benzonitrile.

*It is known that 5,15-diarylporphyrinatonickel(II) undergoes electrochemical oxidation to form oligomers, that may cause irreversible oxidation waves.^[S5]

Figure S6-2. (a) Cyclic voltammogram and (b) differential-pulse voltammogram of **2Ni** measured in benzonitrile.

Figure S6-3. (a) Cyclic voltammogram and (b) differential-pulse voltammogram of **3Ni** measured in benzonitrile.

Figure S6-4. (a) Cyclic voltammogram and (b) differential-pulse voltammogram of 5Ni measured in benzonitrile.

Figure S6-5. (a) Cyclic voltammogram and (b) differential-pulse voltammogram of **6Ni** measured in benzonitrile.

Table S6-1. Summary of the electrochemical potentials. The potentials were determined by cyclic voltammetry (CV) and differential-pulse voltammetry (DPV) as shown in Figure S6-1–S6-4. The potentials [V] were determined vs ferrocene/ferrocenium ion couple by CV or DPV in 0.1 M Bu₄NPF₆ in benzonitrile. Working electrode: Pt. Counter electrode: Pt wire. Reference electrode: Ag/AgClO₄. Scan rate: 0.05 V/s.

	$E^{1/2}_{ox2}$	E ^{1/2} _{ox1}	$E^{1/2}_{red1}$	$E^{1/2}_{red2}$	ΔE_{HL}
Ni1 ^[a]		0.53 ^[b]	-1.76		2.29
2Ni		0.36 ^[b]	-1.87		2.23
3Ni		0.62 ^[b]	-1.69	-1.80	2.31
5Ni		0.28 ^[b]	-1.97		2.25
6Ni	0.50	0.32	-1.87	$-2.07^{[b]}$	2.19

[a] 5,15-Bis(3,5-di-*tert*-butylphenyl)porphyrinatonickel(II). [b] Irreversible peak.

7. UV/Vis Absorption and Fluorescence Spectra

Figure S7-1. UV/Vis absorption spectra of 2Zn, 2H, 3Zn, 3H, and 5Zn in CH₂Cl₂.

Figure S7-2. UV/V is absorption and fluorescence spectra of 2Zn, 3Zn and 5Zn in CH_2Cl_2 .

Figure S7-3. UV/V is absorption spectra of 2Ni, 3Ni, 5Ni, 6Ni and Ni1 in CH_2Cl_2 .

8. DFT Calculations

All calculations were carried out using the *Gaussian 09* program.^[S6] Initial geometries were obtained from X-ray structures and 3,5-di-*tert*-butylphenyl groups were replaced with hydrogen atoms or phenyl groups to reduce the calculation costs. Calculations were performed by the density functional theory (DFT) method with restricted B3LYP (Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional)^[S7] level, employing basis sets 6-31G(d) for C, N, H, and P, and LANL2DZ for Ni and Pt.

Figure S8-1. Kohn-Sham representations of the molecular orbitals of 2Ni.

261 LUMO+3 (-1.98 eV)

260 LUMO+2 (-2.11 eV)

258 LUMO (-2.27 eV)

256 HOMO-1 (-5.16 eV)

259 LUMO+1 (-2.12 eV)

257 HOMO (-5.04 eV)

255 HOMO-2 (-5.17 eV)

Figure S8-2. Kohn-Sham representations of the molecular orbitals of 3Ni.

Figure S8-3. Kohn-Sham representations of the molecular orbitals of 5Ni.

Figure S8-4. Kohn-Sham representations of the molecular orbitals of 6Ni.

Figure S8-5. MO diagrams of Ni1, 2Ni, and 5Ni.

Figure S8-6. MO diagrams of Ni1, 3Ni, and 6Ni.

9. Supporting References

[S1] H. Hata, H. Shinokubo and A. Osuka, J. Am. Chem. Soc., 2005, 127, 8264.

[S2] H.-W Jiang, T. Tanaka, H. Mori, K. H. Park, D. Kim and A. Osuka, *J. Am. Chem. Soc.*, 2015, **137**, 2219.

[S3] Q. Hao, Y. Zeng, T. Yu, J. Chen, G. Yang and Y. Li, Chem. Asian J., 2013, 8, 1015.

[S4] K. Fujimoto, H. Yorimitsu and A. Osuka, Org. Lett., 2014, 16, 972.

[S5] T. Ogawa, Y. Nishimoto, N. Yoshida, N. Ono and A. Osuka, Angew. Chem., Int. Ed., 1999, 38, 176.

[S6] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[S7] (a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 1372; (b) C. Lee, W. Yang and R. G. Parr *Phys. Rev. B*, 1998, **37**, 785.