Supporting information for

Persistent Four-Coordinate Iron Centered Radical Stabilized by π -Donation

Yusuke Sunada*, Shintaro Ishida, Fumiya Hirakawa, Yoshihito Shiota, Kazunari Yoshizawa, Shinji Kanegawa, Osamu Sato, Hideo Nagashima, and Takeaki Iwamoto*

Contents

1.	General	p. S-2
2.	Synthesis of 2	p. S-2
3.	Synthesis of 4	p. S-2
4.	Synthesis of 5	p. S-3
5.	Synthesis of 8	p. S-3
6.	Reaction of 2 with HSnBu ₃	p. S-4
7.	Reaction of 2 with 9,10-dihydroanthracene	p. S-4
8.	Possible reaction mechanism for the formation of 5 and 6 via homolytic	
	substitution (SH2)	p. S-5
9.	Possible reaction pathway for the formation of 7, 8 and 9 in the reaction of 2	
	with $HSnR_3$ (R = Ph, Bu)	p. S-5
10.	1 H, 13 C, 29 Si, 31 P NMR spectra of 2	p. S-6
11.	¹ H, ¹³ C, ²⁹ Si, ³¹ P NMR spectra of 4	p. S-8
12.	¹ H, ¹³ C, ²⁹ Si, ³¹ P NMR spectra of 5	p. S-10
13.	¹ H, ¹³ C, ²⁹ Si, ³¹ P NMR spectra of 8	p. S-12
14.	Variable temperature ¹ H NMR spectra of solution of 2 in toluene-d ₈	p. S-14
15.	ESR spectra	p. S-16
16.	IR spectra	p. S-17
17.	UV-vis-NIR spectra	p. S-20
18.	Thermodynamic analysis	p. S-22
19.	NMR spectra of the crude product obtained by the reaction of 2 with 1 .	p. S-24
20.	NMR spectra of the mixture of 8 and 9	p. S-25
21.	NMR spectra of the crude product obtained by the reaction of 2 with HSnPh ₃	p. S-27
22.	NMR spectra of the crude product obtained by the reaction of 2 with HSnBu ₃	p. S-29
23.	NMR spectra of the crude product obtained by the reaction of 2 with	
	9,10-dihydroanthracene	p. S-31
24.	Theoretical calculations	p. S-32
25.	X-ray diffraction analysis	p. S-82
26.	References	p. S-109

General. Manipulation of air and moisture sensitive organometallic compounds was carried out under a dry argon atmosphere using standard Schlenk tube techniques associated with a high-vacuum line. Alternatively, the experiments were performed in a glove box filled with dry nitrogen. All solvents (pentane, *n*-octane, diethyl ether, hexamethyldisiloxane (HMDSO), mesitylene, C₆D₆, toluene-d₈) were distilled over Ph₂CO/Na prior to use. ¹H, ¹³C, ²⁹Si, and ³¹P NMR spectra were recorded on a JEOL Lambda 600 spectrometer at ambient temperature unless otherwise noted. ¹H, ¹³C NMR chemical shifts (δ values) were given in ppm relative to the solvent signal (¹H, ¹³C) or standard resonances (²⁹Si; external SiMe₄, ³¹P; external H₃PO₄). Elemental analyses were performed by a Perkin Elmer 2400II/CHN analyzer. IR spectra were recorded on a JASCO FT/IR-550 spectrometer. UV-vis-NIR absorption spectra were recorded on a Shimadzu UV-3100PC UV-VIS-NIR scanning spectrophotometer. ESR spectra were recorded on a JEOL JES-FA 200 Electron Spin Resonance spectrometer. Fe₂(CO)₉¹, phosphinyl radical 1² were synthesized by the method reported in the literature. Nor-AZADO was purchased from Wako Pure Chemical Industries and was used without further purification.

Synthesis of 2. In a glove box, Fe₂(CO)₉ (200 mg, 0.55 mmol) was suspended in pentane (5 mL), and phosphinyl radical 1 (207 mg, 0.55 mmol) was added to the suspension. The resulting mixture was stirred at room temperature for 16 h. The mixture gradually changed from a golden yellow suspension to a dark red solution. The solvent was evaporated and the residue was extracted with pentane (10 mL). A small amount of insoluble materials was removed by centrifugation, and the mother liquid was concentrated to ca. 5 mL under vacuum. This mixture was cooled to 238 K overnight, from which dark red crystals of 2 were obtained in 86 % (based on 1) yield (244 mg). ¹H NMR (600 MHz, C₆D₆, r.t.) δ 0.38 (s, 72H, SiMe₃), 2.05 (br d, J_{H-P} = 9.3 Hz, 8H, CH₂). ¹H NMR (toluene-d₈, r.t.) δ 0.35 (s, 72H, SiMe₃), 2.03 (br d, $J_{H-P} = 9.9$ Hz, 8H, CH₂). ¹H NMR (600 MHz, toluene-d₈, 193 K) δ 0.31 (s, 18H, SiMe₃), 0.35 (s, 18H, SiMe₃), 0.37 (s, 18H, SiMe₃), 0.48 (s, 18H, SiMe₃), 1.69-1.87 (br, 8H, CH₂). ¹³C{¹H} NMR (151 MHz, C₆D₆, r.t.) δ 3.15 (s, SiMe₃), 38.33 (s, CH₂), 54.33 (d, J_{C-P} = 52 Hz, $C(SiMe_3)_2)$, 223.79 (br s, Fe-CO). ²⁹Si{¹H} NMR (119 MHz, C₆D₆, r.t.) δ 2.85 (d, $J_{Si-P} = 12.8$ Hz). $^{31}P{^{1}H}$ NMR (243 MHz, C₆D₆, r.t.) δ 425.9 (s). IR (ATR) vco = 1916, 1932, 1963, 2014 cm⁻¹. IR (in *n*-octane, 293 K) $v_{CO} = 1921$, 1940, 1968, 2017 cm⁻¹. UV-vis-NIR (*n*-octane, 293 K) λ_{max}/nm (ϵ/M^{-1} 1 cm⁻¹) = 380 (3.02×10⁴), 502 (6.26×10³), 720 (2.78×10³). Anal. Calcd. for C₃₈H₈₀O₆Si₈P₂Fe₂: C, 44.25; H, 7.82. Found: C, 44.08; H, 7.76.

Synthesis of 4. In a glove box, complex **2** (20 mg, 0.019 mmol) was dissolved in toluene (0.5 mL), and nor-AZADO (5.4 mg, 0.0038 mmol) was added to the solution. The resulting mixture was allowed to stand at room temperature for 16 h. The color of the solution gradually changed from dark red to dark green. The solvent was evaporated and the residue was extracted with pentane (5 mL). A small amount of insoluble materials was removed by centrifugation, and the solvent was removed under vacuum. The remaining crude product was dissolved in pentane (3 mL), and the solution was cooled to 238 K overnight to afford **4** as pale green crystals in 74 % yield (18 mg). ¹H NMR (600

MHz, C₆D₆, r.t.) δ 0.36 (s, 18H, SiMe₃), 0.47 (s, 18H, SiMe₃), 1.14-1.17 (m, 2H, CH₂ of nor-AZADO), 1.25-1.28 (m, 2H, CH₂ of nor-AZADO), 2.00-2.03 (m, 1H, CH of nor-AZADO), 2.08 (d, *J*_{H-P} = 9.9 Hz, 4H, CH₂), 2.11-2.19 (m, 5H, CH₂ and CH of nor-AZADO), 2.87 (s, 2H, NC*H* of nor-AZADO). ¹³C{¹H} NMR (151 MHz, C₆D₆, r.t.) δ 2.46 (s, SiMe₃), 34.07, 35.37, 37.19 (d, *J*_{C-P} = 79 Hz, C(SiMe₃)₂), 40.25, 43.27, 76.97 (s, *C*NH of nor-AZADO), 221.19 (d, *J*_{C-P} = 20.9 Hz, Fe-CO). ²⁹Si{¹H} NMR (119 MHz, C₆D₆, r.t.) δ 1.38, 1.54 (s, SiMe₃). ³¹P{¹H} NMR (243 MHz, C₆D₆, r.t.) δ 282.16 (s). IR (ATR) vco = 1892, 1958 cm⁻¹. Anal. Calcd. for C₂₆H₅₂O₃N₁Si₄P₁Fe₁: C, 49.90; H, 8.37; N, 2.24. Found: C, 49.66; H, 8.14; N, 2.08.

Synthesis of 5. In a glove box, complex **2** (20 mg, 0.019 mmol) was dissolved in toluene (0.5 mL), and **1** (14.6 mg, 0.039 mmol) was added to the solution. The resulting mixture was allowed to stand at room temperature for 18 h. The color of the solution gradually changed from dark red to dark green. The solvent was evaporated and the residue was extracted with pentane (5 mL). A small amount of insoluble materials was removed by centrifugation, and the solvent was removed under vacuum. The remaining crude product was dissolved in hexamethyldisiloxane (5 mL), and the solution was cooled to 238 K overnight to afford **5** as pale green crystals in 92 % yield (21 mg). ¹H NMR (600 MHz, C₆D₆, r.t.) δ 0.29 (s, 36H, C(Si*Me*₃)₂), 0.81 (s, 9H, Fe-Si*Me*₃), 1.97 (br d, *J*_{P-H} = 11.0 Hz, 4H, CH₂). ¹³C {¹H} NMR (151 MHz, C₆D₆, r.t.) δ 2.69 (s, C(Si*Me*₃)₂), 8.15 (s, Fe-Si*Me*₃), 27.80 (s, CH₂), 55.75 (d, *J*_{C-P} = 48.8 Hz, *C*(SiMe₃)₂), 218.77 (d, *J*_{C-P} = 9.3 Hz, Fe-CO). ²⁹Si {¹H} NMR (119 MHz, C₆D₆, r.t.) δ 3.74 (d, *J*_{Si-P} = 11.0 Hz, *C*(*Si*Me₃)₂), 29.05 (d, *J*_{Si-P} = 7.3 Hz, Fe-*Si*Me₃). ³¹P {¹H} NMR (243 MHz, C₆D₆, r.t.) δ 461.4 (s). IR (ATR) vco = 1900, 1987, 2031 cm⁻¹. Anal. Calcd. for C₂₂H₄₉O₃Si₅P₁Fe₁: C, 44.87; H, 8.39. Found: C, 44.64; H, 8.22.

Synthesis of 8. In a glove box, complex 2 (60 mg, 0.058 mmol) was dissolved in C₆D₆ (1.5 mL), and HSnPh₃ (81.7 mg, 0.232 mmol) and 1,3,5-teimethoxybenzene (internal standard; 9.8 mg, 0.058 mmol) was added to the solution. The resulting mixture was allowed to stand at room temperature for 16 h. The color of the solution gradually changed from dark red to brown. Complete consumption of 2 was confirmed by ¹H and ³¹P NMR spectra, then the solvent was evaporated. The residue was extracted with diethyl ether (5 mL), and the solution was cooled to 238 K overnight to afford the brown crystals. ¹H, ¹³C, and ³¹P NMR spectra of obtained brown crystals in C₆D₆ revealed that the crystals consist of complexes 8 and 9 in a ratio of 3 : 1 (8 mg). The mother liquid was again cooled to 238 K, then brown crystals of 8 was obtained as a single product in 26 % yield (26 mg). Spectral data for 8: ¹H NMR (600 MHz, C₆D₆, r.t.) δ -9.24 (d, 1H, J_{H-P} = 38.8 Hz, Fe-H, with a satellite signal due to the coupling with Sn, $J_{\text{H-Sn}} = 118.7 \text{ Hz}$, 0.17 (s, 18H, SiMe₃), 0.28 (s, 18H, SiMe₃), 1.66-1.85 (m, 4H, CH₂), 5.68 (d, 2H, J_{H-P} = 321.7 Hz, HP), 7.16-7.20 (m, 3H, C₆H₅), 7.23-7.30 (m, 6H, C₆H₅), 7.93-8.04 (m, 6H, C₆H₅). ¹³C{¹H} NMR (151 MHz, C₆D₆, r.t.) δ 1.91 (s, SiMe₃), 3.39 (s, SiMe₃), 22.57 (d, $J_{\text{H-P}} = 10.1 \text{ Hz}$, $C(\text{SiMe}_3)_2$), 37.0 (s, CH₂), 128.66 (s, para of C₆H₅), 128.73 (s, ortho of C_6H_5 , with a satellite signal due to the coupling with Sn, $J_{H-Sn} = 47.7 \text{ Hz}$), 137.32 (s, meta of C_6H_5 , with a satellite signal due to the coupling with Sn, $J_{H-Sn} = 37.6 \text{ Hz}$), 143.45 (s, *ipso* of C₆H₅, with a

satellite signal due to the coupling with Sn, $J_{H-Sn} = 381.5 \text{ Hz}$), 213.11 (br s, Fe-CO). ²⁹Si{¹H} NMR (119 MHz, C₆D₆, r.t.) δ 5.39 (d, $J_{Si-P} = 8.2 \text{ Hz}$), 8.20 (d, $J_{Si-P} = 2.7 \text{ Hz}$). ³¹P{¹H} NMR (243 MHz, C₆D₆, r.t.) δ 29.3 (s, with a satellite signal due to the coupling with Sn, $J_{P-Sn} = 98.6 \text{ Hz}$). ³¹P NMR (243 MHz, C₆D₆, r.t.) δ 29.3 (d, $J_{P-H} = 321.7 \text{ Hz}$). IR (ATR) v_{CO} or v_{Fe-H} = 2024, 1953, 1909 cm⁻¹ ^{(v}ibronic mixing prevents definitive assignments). Anal. Calcd. for C₃₇H₅₇O₃Si₄P₁Sn₁Fe₁: C, 51.21; H, 6.62. Found: C, 50.98; H, 6.48. Spectral data for **9** (complex **9** was obtained as the mixture with **8**. The actual ¹H, ¹³C and ³¹P NMR charts were given in Figures 12-1, 12-2 and 12-3. Spectral data of **9** were tentatively assigned by comparison with those of isolated **8**.): ¹H NMR (600 MHz, C₆D₆, r.t.) δ 0.21 (s, 36H, SiMe₃), 1.95 (br d, $J_{H-P} = 10.3 \text{ Hz}$, 4H, CH₂), 7.16-7.20 (m, 3H, C₆H₅), 7.23-7.28 (m, 6H, C₆H₅), 7.90-7.98 (m, 6H, C₆H₅). ¹³C{¹H} NMR (151 MHz, C₆D₆, r.t.) δ 2.78 (s, SiMe₃), 22.68 (d, $J_{H-P} = 14.4 \text{ Hz}$, *C*(SiMe₃)₂), 38.09 (s, CH₂), 128.52, 128.61, 137.60, 144.27 (s, C₆H₅) (satellite signals due to the coupling with Sn should be observed along with these peaks, however, the intensity of these peaks were too weak to observe the satellite signals.), 217.79 (br s, Fe-CO). ³¹P{¹H} NMR (243 MHz, C₆D₆, r.t.) δ 464.90 (s).

Reaction of 2 with HSnBu₃. In a glove box, complex **2** (20 mg, 0.019 mmol) was dissolved in C₆D₆ (0.5 mL), and HSnBu₃ (22.6 mg, 0.077 mmol) and 1,3,5-teimethoxybenzene (internal standard; 3.3 mg, 0.019 mmol) was added to the solution. The resulting mixture was allowed to stand at room temperature for 16 h. The color of the solution gradually changed from dark red to pale brown. The obtained crude product was analyzed by ¹H and ³¹P NMR spectra. Actual charts were given in Figures 13-1 and 13-2.

Reaction of 2 with 9,10-dihydroanthracene. In a glove box, complex **2** (20 mg, 0.019 mmol) was dissolved in C₆D₆ (0.5 mL), and 9,10-dehydroanthracene (3.5 mg, 0.019 mmol) and 1,3,5-teimethoxybenzene (internal standard; 3.3 mg, 0.019 mmol) was added to the solution. The resulting mixture was allowed to stand at room temperature for 16 h. The ¹H and ³¹P NMR spectra revealed that no reaction took place at this stage. Then, the mixture was allowed to stand at 333 K for 24 h, and no reaction took place which was confirmed by ¹H and ³¹P NMR spectra. Then the mixture was allowed to stand at 353K for 24 h. The ¹H and ³¹P NMR spectra revealed that partial decomposition including the formation of phosphaalkene **6** and free phosphine **7** occurred at this stage, however, formation of anthracene was not detected by ¹H NMR and GC-MS spectra. The actual NMR chart obtained after the reaction at 353K was attached in Figures 14-1 and 14-2.

In a similar manner, reaction of **2** (40 mg, 0.038 mmol) with 1,4-cyclohexadiene (3.1 mg, 0.038 mmol) was performed in the presence of anisole (4.1 mg, 0.038 mmol) as an internal standard. No reaction occurred at below 333K, and partial decomposition took place at 353K for 24 h without formation of benzene (confirmed by ¹H NMR and GC-MS).

Scheme S1. Possible reaction mechanism for the formation of 5 and 6 via homolytic substitution (S_H2).

Scheme S2. Possible reaction pathway for the formation of 7, 8 and 9 in the reaction of 2 with $HSnR_3$ (R = Ph, Bu).

<Note>: In the ¹H NMR spectrum of the crude product obtained by the reaction of **3** (*in situ* generated from **2**) with HSnPh₃, some unidentified signals were observed in the 7-8 ppm region in the ¹H NMR spectrum (see Figure S12-1), suggesting that iron species consisting of carbonyl and SnPh₃ ligands {such as "Fe(CO)_m(SnPh₃)_n (m+n = 5 or 6)" or "Fe(H)_l(CO)_m(SnPh₃)_n (l+m+n = 5 or 6)" shown in Scheme S2} may be generated in the course of this reaction.

Figure S1-1. ¹H NMR spectrum of solution of **2** in C₆D₆ at 293K.

Figure S1-2. ${}^{13}C{}^{1}H$ NMR spectrum of solution of 2 in C₆D₆ at 293K.

Figure S1-3. ²⁹Si $\{^{1}H\}$ NMR spectrum of solution of 2 in C₆D₆ at 293K.

Figure S1-4. ³¹P $\{^{1}H\}$ NMR spectrum of solution of **2** in C₆D₆ at 293K.

Figure S2-2. ¹³C $\{^{1}H\}$ NMR spectrum of 4 in C₆D₆ at 293K.

Figure S2-3. ²⁹Si $\{^{1}H\}$ NMR spectrum of 4 in C₆D₆ at 293K.

Figure S2-4. ³¹P{¹H} NMR spectrum of 4 in C₆D₆ at 293K.

Figure S3-1. ¹H NMR spectrum of 5 in C₆D₆ at 293K.

Figure S3-2. ¹³C $\{^{1}H\}$ NMR spectrum of 5 in C₆D₆ at 293K.

Figure S3-3. ²⁹Si $\{^{1}H\}$ NMR spectrum of 5 in C₆D₆ at 293K.

Figure S3-4. ${}^{31}P{}^{1}H$ NMR spectrum of 5 in C₆D₆ at 293K.

Figure S4-1. ¹H NMR spectrum of **8** in C₆D₆ at 293K.

Figure S4-2. ¹³C $\{^{1}H\}$ NMR spectrum of 8 in C₆D₆ at 293K.

Figure S4-3. ²⁹Si $\{^{1}H\}$ NMR spectrum of 8 in C₆D₆ at 293K.

Figure S4-4. ${}^{31}P{}^{1}H$ NMR spectrum of 8 in C₆D₆ at 293K.

Figure S5-1. ¹H NMR spectra of solution of 2 in toluene-d₈ at various temperature (193 K~353 K).

S-14

Figure S5-2. Enlarged view of ¹H NMR spectra of solution of **2** in toluene-d₈ at various temperature (273 K~353 K). The solid-circles and open-circles indicate signals of C₇D₇H and –CH₂- moiety of complex **2**.

ESR spectra

A toluene solution of **2** (ca. 0.12 mM) was prepared by dissolving **2** (1.4 mg, 1.36 x 10^{-3} mmol) in toluene (11 mL); the ESR spectrum was immediately recorded at 293 K. Measurements at 313 K and 333 K were carried out subsequently. The sample was allowed to stand in the instrument for 30 min at each temperature prior to the measurement.

Figure S6-1. ESR spectra of solution of 2 in toluene.

ESR spectrum of a flash-frozen toluene solution

A toluene solution of **2** (ca. 1.2 mM) was heated to 353 K, then this solution was flash-frozen. Then, the ESR spectrum was recorded at 77 K.

Figure S6-2. ESR spectrum of flash-frozen toluene solution measured at 77K.

Magnetic field (mT)

IR spectra in n-octane

An *n*-octane solution of **2** (ca. 0.12 mM) was prepared by dissolving **2** (1.3 mg, 1.24 x 10^{-3} mmol) in *n*-octane (10 mL) at room temperature; the IR spectrum was recorded immediately at 293 K. Next, the solution was allowed to stand for 10 min at 353 K, then the IR spectrum was measured again.

The time-course of IR spectra

An *n*-octane solution of **2** (ca. 0.12 mM) was prepared by dissolving **2** (1.3 mg, 1.24 x 10^{-3} mmol) in *n*-octane (10 mL). The IR spectrum was recorded at 353 K, then the temperature of the instrument was set to 293 K. The IR spectra were obtained periodically over 2 h.

Figure S7-2-2. The time-course of IR spectra of solution of 2 in *n*-octane after heating.

Figure S7-4. ATR-IR spectrum of 5 in the solid state.

Figure S7-5. ATR-IR spectrum of 8 in the solid state.

Wavenumber (cm⁻¹)

UV-vis-NIR spectra

An *n*-octane solution of **2** (ca. 0.12 mM) was prepared by dissolving **2** (1.3 mg, 1.24 x 10^{-3} mmol) in *n*-octane (10 mL) at room temperature. The UV-vis-NIR spectrum was recorded immediately at 293 K after preparing the solution (Figure S7-1). Next, this solution was allowed to stand for 10 min at 353 K, then the UV-vis-NIR spectrum was re-measured (Figure S7-2). Next, the sample was cooled to 293 K, and UV-vis-NIR spectra were recorded at 293K after 30 min, 1 h, 2 h, 3 h, and 5 h (Figure S7-3).

Figure S8-1. UV-vis-NIR spectrum of solution of **2** in *n*-octane at 293 K [$\lambda_{max}/nm (\epsilon/M^{-1}cm^{-1}) = 380 (3.02 \times 10^4), 502 (6.26 \times 10^3), 720 (2.78 \times 10^3)$].

Figure S8-2. UV-vis-NIR spectrum of solution of **2** in *n*-octane at 353 K. $[\lambda_{max}/nm (\epsilon/M^{-1}cm^{-1}) = 362 (2.93 \times 10^4), 496 (3.34 \times 10^3), 818 (9.14 \times 10^2)].$

Figure S8-3. The time-course of UV-vis-NIR spectra of solution of **2** in *n*-octane before and after heating.

Thermodynamic analysis

The thermodynamic parameters were estimated using variable temperature ¹H NMR spectra. The equilibrium constant (K_{eq}) between **2** and **3** was estimated by two independent methods described below, and the K_{eq} values are summarized in Table S1-1 and S1-2. Plots of $\ln(K_{eq})$ at various reciprocal temperatures are shown in Figure S5-1 and S5-2.

1) Estimation of K_{eq} using integral values

Complex 2 (10.0 mg, 9.7 x 10⁻³ mmol) was dissolved in C₆D₆ (16.5 mL); then mesitylene (2.7 μ L, 1.95 x 10⁻² mmol) was added as an internal standard. The initial concentration of **2** was ca. 0.588 mM. A portion of the solution (ca. 0.5 mL) was transferred into a J. Young NMR tube, and ¹H NMR spectra were measured at various temperatures. This solution was kept in the NMR instrument for 1 h at each temperature prior to the measurement, and ¹H NMR spectra were recorded at each temperature. The concentration of dinuclear complex **2** was calculated from the relative ratio of the integral value of the signals for the SiMe₃ group of **2** to that of the Me group of the internal standard (mesitylene), and the concentration of **3** was calculated from the following formula: [**3**]/2 = $c_0 - [$ **2**] ($c_0 =$ initial concentration of **2** = 0.588 mM). $K_{eq} = [$ **3** $]^2/[$ **2**].

Table S1-1. Equilibrium constants K_{eq} between **2** and **3** in C₆D₆ at various temperatures estimated by the values of integral.

Temp	T-1	[2]	[3]	$K_{ m eq}$	$\operatorname{Im}(V)$
(K)	(K ⁻¹)	(mmol L ⁻¹)	(mmol L ⁻¹)	$(mol L^{-1})$	$LII(\Lambda_{eq})$
343	0.002915	0.1068	0.9616	0.00866	-4.7494
333	0.003003	0.1705	0.8342	0.00408	-5.5013
323	0.003096	0.2515	0.6723	0.00180	-6.3215
313	0.003195	0.3132	0.5488	0.00096	-6.9467

Figure S9-1. A plot of $\ln(K_{eq})$ vs 1/T for the equilibrium between 2 and 3.

2) Estimation of K_{eq} by Evans method

Complex 2 (10.0 mg, 0.97 x 10^{-2} mmol) was dissolved in C₆D₆ (1.65 mL), then SiMe₄ (1.7 mg, 1.93 x 10^{-2} mmol) was added. The initial concentration of 2 was adjusted to ca. 5.88 mM. This solution was transferred into a J. Young NMR tube, and ¹H NMR spectra were measured at various temperatures. The solution was kept in the NMR instrument for 1 h at each temperature prior to measurement, and the ¹H NMR spectra were recorded at each temperature. The concentration of mononuclear complex 3 was estimated by the Evans method,³ in which the number of unpaired electrons at the iron center was assumed to be 1, and the concentration of 2 was calculated from the following formula: [2] = $c_0 - 0.5$ [3] (c_0 = initial concentration of 2 = 0.588 mM). $K_{eq} = [3]^2/[2]$.

Table S1-2. Equilibrium constants K_{eq} between **2** and **3** in C₆D₆ at various temperatures estimated by using Evans method.

Temp	T-1	[2]	[3]	$K_{ m eq}$	$\operatorname{In}(V)$
(K)	(K ⁻¹)	(mmol L ⁻¹)	(mmol L ⁻¹)	$(mol L^{-1})$	$LII(\Lambda_{eq})$
353	0.002833	2.1414	7.4696	0.02606	-3.6475
343	0.002915	2.7512	6.2501	0.01420	-4.2555
333	0.003003	3.5275	4.6975	0.00626	-5.0743
323	0.003096	4.2625	3.2275	0.00244	-6.0142
313	0.003195	4.7723	2.2078	0.00102	-6.8866

Figure S9-2. A plot of $\ln(K_{eq})$ vs 1/T for the equilibrium between 2 and 3.

Figure S10-1. ¹H NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with **1** in toluene at room temperature. The solid-circles and open-circles indicate signals of complex **5** and phosphaalkene **6**. Identification of **6** was achieved by comparison with the previously reported data.²

Figure S10-2. ³¹P{¹H} NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with **1** in toluene at room temperature. The solid-circles and open-circles indicate signals of **5** and **6**. Identification of **6** was achieved by comparison with the previously reported data.²

Figure S11-1. ¹H NMR spectrum (in C₆D₆ at room temperature) of the mixture of **8** and **9** formed by recrystallization of the crude product obtained from the reaction of **2** with HSnPh₃ in C₆D₆ at room temperature. The solid-circles and open-circles indicate signals of complex **8** and **9**.

Figure S11-2. ¹³C{¹H} NMR spectrum (in C₆D₆ at room temperature) of the mixture of **8** and **9** formed by recrystallization of the crude product obtained from the reaction of **2** with HSnPh₃ in C₆D₆ at room temperature. The solid-circles and open-circles indicate signals of complex **8** and **9**.

Figure S11-3. ³¹P{¹H} NMR spectrum (in C₆D₆ at room temperature) of the mixture of **8** and **9** formed by recrystallization of the crude product obtained from the reaction of **2** with HSnPh₃ in C₆D₆ at room temperature. The solid-circles and open-circles indicate signals of complex **8** and **9**.

Figure S12-1. ¹H NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with HSnPh₃ in C₆D₆ at room temperature. The solid-triangle, solid-circles, and opencircles indicate signals of free phosphine **7**, complex **8** and **9**. Identification of **7** was achieved by comparison with the previously reported data.² The solid-square indicates signals of internal standard (1,3,5-trimethoxybenzene).

Figure S12-2. ³¹P{¹H} NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with HSnPh₃ in C₆D₆ at room temperature. The solid-triangles, solid-circles, and open-circles indicate signals of free phosphine **7**, complex **8** and **9**. Identification of **7** was achieved by comparison with the previously reported data.²

Figure S12-3. ³¹P off-resonance NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with HSnPh₃ in C₆D₆ at room temperature. The solid-triangles and solid-circles indicate signals of free phosphine **7** and complex **8**. Identification of **7** was achieved by comparison with the previously reported data.²

Figure S13-1. ¹H NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with HSnBu₃ in C₆D₆ at room temperature. The solid-triangle and solid-circles indicate signals of free phosphine **7** and complex **8**'. Identification of **7** was achieved by comparison with the previously reported data.²

Figure S13-2. ³¹P{¹H} NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with HSnBu₃ in C₆D₆ at room temperature. The solid-triangle and solid-circles indicate signals of free phosphine **7** and complex **8**'. Identification of **7** was achieved by comparison with the previously reported data.²

S-29

Figure S13-3. ³¹P-off resonance NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with HSnBu₃ in C₆D₆ at room temperature. The solid-triangle and solid-circles indicate signals of free phosphine **7** and complex **8'**. Identification of **7** was achieved by comparison with the previously reported data.²

Figure S14-1. ¹H NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with 9,10-dihydroanthracne in C₆D₆ at 353 K for 24 h. The solid-triangle indicates signal of free phosphine **7**, and the solid-square indicates signals of internal standard (1,3,5-trimethoxybenzene). The solid-circles indicate signal of phosphaalkene **6**. Identification of **6** was achieved by comparison with the previously reported data.²

Figure S14-2. ³¹P{¹H} NMR spectrum (in C₆D₆ at room temperature) of the crude product obtained by the reaction of **2** with 9,10-dihydroanthracne in C₆D₆ at 353 K for 24 h. The solid-triangle indicates signal of free phosphine **7**. The solid-circles indicate signal of phosphaalkene **6**. Identification of **6** was achieved by comparison with the previously reported data.²

Theoretical calculations

All theoretical calculations were performed using the Gaussian 09 program package.⁴ All calculations of the compounds were carried out at the PBE0, B3LYP, and CAM-B3LYP functionals⁵ (Wachters-Hay basis^{6.7} for Fe atoms and D95** basis⁸ for H, and C, O, P, Si atoms). The Mayer bond order⁹ is used as a natural extension of the Wiberg bond order. No imaginary frequencies were found in the optimized structures. The optimized structure of 2_{opt} and 3_{opt} obtained by the calculation at the PBE0 level are shown in Figures S15 and S18, and their MO diagrams are summarized in Figures S16 and S19. Atomic coordinates and their energies of 2_{opt} and 3_{opt} calculated by PBE0 level of theory are summarized in Tables S3 and S4. The transition energies and oscillator strengths of all electron transitions of 2_{opt} and 3_{opt} were calculated by using the time-dependent DFT method¹⁰ (TD-DFT) at the PBE0, B3LYP or CAM-B3LYP level, and the results obtained by the calculation at the PBE0 level are summarized in Tables S5 and S6. Density distributions in (a) HOMO and (b) HOMO-1 of 2_{opt} as well as the density distributions in (a) α HOMO and (b) β HOMO of 3_{opt} are shown in Figures S17 and S21. The orbital interactions between the P ligand and the Fe(CO)₃ moiety in 3_{opt} are summarized in Figures S22 and S23. The results of TD-DFT calculated by B3LYP or CAM-B3LYP are summarized in Figures S24.

	Calcd. by PBE0	Calcd. by	Calcd. by	Exptl.		
	-	B3LYP	CAM-B3LYP	_		
	Bond lengths (Å)					
Fe(1)-Fe(2)	2.715	2.824	2.748	2.7374(10)		
Fe(1)-P(1)	2.095	2.129	2.091	2.0934(12)		
Fe(2)-P(2)	2.096	2.128	2.091	2.1047(13)		
Fe(1)-C(17)	1.781	1.799	1.788	1.796(4)		
Fe(1)-C(18)	1.740	1.761	1.756	1.771(4)		
Fe(1)-C(19)	1.777	1.796	1.785	1.794(4)		
Fe(2)-C(36)	1.780	1.800	1.788	1.799(4)		
Fe(2)-C(37)	1.740	1.761	1.755	1.766(4)		
Fe(2)-C(38)	1.778	1.794	1.786	1.790(4)		
Bond angles (deg)						
Fe(2)-Fe(1)-P(1)	139.55	138.76	138.75	142.66(4)		
Fe(1)-P(1)-C(1)	129.42	130.06	129.54	130.01(14)		
Fe(1)-P(1)-C(4)	132.36	131.30	131.98	131.20(11)		
C(1)-P(1)-C(4)	96.71	97.02	96.97	97.32(18)		
Fe(1)-Fe(2)-P(2)	138.69	140.71	140.77	132.61(4)		
Fe(2)-P(2)-C(20)	131.61	131.57	132.90	132.13(15)		
Fe(2)-P(2)-C(23)	129.97	129.79	128.09	129.04(12)		
C(20)-P(2)-C(23)	96 76	97.00	97.04	97 55(19)		

Table S2. Comparison between the DFT-optimized geometry and experimental structure of isolated complex **2**. Selected bond lengths and bond angles are shown.

Figure S15. Optimized structure of 2_{opt}.

Tabale S3. Cartesian coordinates of 2_{opt} in the closed shell singlet state.

Fe	-1.258627	0.792395	-0.547262
Fe	1.277433	0.878792	0.419366
Р	-3.124233	-0.023942	-0.057054
Р	3.133201	-0.023584	0.053274
Si	-4.702706	-1.113092	-2.603791
Si	-3.283158	-3.227160	-0.713892
Si	-4.950003	2.603942	0.613370
Si	-4.182997	0.461212	2.862503
Si	3.864462	-1.502013	2.855710
Si	3.503320	-3.180998	0.178361
Si	5.479537	2.190162	-0.173907
Si	4.238285	0.913769	-2.818435
0	-1.316052	3.237825	1.080658
0	-1.421825	2.340748	-2.990170
0	-0.039283	-1.449050	-1.998729
0	1.340410	3.062437	-1.544461
0	1.498368	2.805363	2.571375
0	0.011503	-1.090116	2.193986
С	-4.112393	-1.454063	-0.779644
С	-5.348265	-1.532136	0.155799
С	-5.769337	-0.130106	0.580846
С	-4.519843	0.715656	0.959650
С	-5.974853	0.283924	-2.766083
С	-5.664639	-2.617527	-3.253024
С	-3.286298	-0.726902	-3.785470
С	-4.655729	-4.515421	-0.461018
С	-2.342049	-3.775943	-2.261725
С	-2.121040	-3.425934	0.757647
С	-4.254759	3.289755	-1.008022
С	-4.431936	3.854562	1.938114
С	-6.842190	2.749456	0.514829
С	-5.726062	1.016907	3.822015
С	-3.930240	-1.350916	3.341441

С	-2.649066	1.339477	3.514779
C	-1.294556	2.236332	0.495441
C	-1.315844	1.735551	-2.008391
C	-0.519441	-0.589724	-1.383865
C	4.01/016	-1.449421	0.901855
Č	5.514820	-1.220841	0.551226
č	5.051502 4.615616	-0.559804	-0.814841
Č	4.013010	2 0/2062	-0.914147
č	2 600110	-2.043902	3.540102
č	3 447486	0 162269	3 650472
č	4 494735	-4 543230	1 056249
č	1.663110	-3.544691	0.312263
Č	3.963795	-3.402500	-1.646570
Ċ	6.289325	1.916995	1.520117
С	6.961856	2.637524	-1.275376
С	4.343307	3.680834	0.011664
С	2.679090	0.032008	-3.411744
C	4.035064	2.710730	-3.382030
C	5.699868	0.225208	-3.815775
C	1.322886	2.160689	-0.814976
Č	1.30/338	2.03/96/	1./14128
U U	0.300833	-0.331213	1.440/81
п Ц	-0.163042	-2.040004	-0.550025
H	-6.483924	-0.186857	1 411264
Ĥ	-6 308352	0 335539	-0 246892
Ĥ	-6 139963	0.445823	-3 839132
Ĥ	-5.658650	1.238532	-2.339584
Н	-6.940994	0.008781	-2.328180
Н	-6.059367	-2.348342	-4.240895
Н	-6.524972	-2.853084	-2.616350
Н	-5.069810	-3.526495	-3.372100
H	-2.934602	0.301182	-3.665142
H	-3.654362	-0.830502	-4.813840
H	-2.430288	-1.395680	-3.666910
H	-5.1/1050	-4.39/095	0.49//19
п	-4.182008	-5.505572	-0.454018
H	-2.073773	-4.317020	-1.234192 -2.101554
Ĥ	-1 414529	-3 222504	-2 419603
Ĥ	-2.932800	-3.728256	-3 180727
Ĥ	-1.408283	-2.605079	0.862397
Ĥ	-1.548418	-4.351501	0.621710
Н	-2.676785	-3.518989	1.695875
Н	-4.910782	4.106034	-1.335998
Н	-4.189461	2.564738	-1.822400
H	-3.255653	3.710357	-0.863647
H	-4.8/1008	4.81346/	1.632620
H U	-3.3304/9	3.995885	1.980/42
п	-4.802007	3.032333	0 522034
H	-7 350794	2 283613	1 365491
H	-7 257260	2 322880	-0 404415
Ĥ	-6.552682	0.310137	3.686650
Ĥ	-6.090692	2.013938	3.560112
Н	-5.482771	1.025089	4.891699
Н	-3.764385	-1.380388	4.425941
Н	-3.039214	-1.768682	2.864353
H	-4.789196	-1.994385	3.126691
H	-2.653853	2.422732	3.385724
H	-1./46660	0.938408	5.042969
П U	-2.3//80/	1.1233/8	4.388/10
п Н	5.995520 6 072757	-0.300/0/ _2 171295	1.2704/3 0.558060
H	5 433951	-2.171303 -1 304440	-1 591228
Ĥ	6 660495	-0.216286	-0 980732
Ĥ	5.432364	-2.241375	4.612644
Ĥ	6.318567	-1.270521	3.433515
Н	5.923694	-2.961143	3.073667
Н	1.569495	-2.442401	3.337783

Н	2.705287	-2.639878	4.671210
Н	2.761378	-3.756776	3.305554
Н	2.365103	0.304040	3.719347
Н	3.856493	1.033241	3.133641
Η	3.845863	0.158491	4.672888
Н	5.572196	-4.435963	0.886963
Н	4.196814	-5.504453	0.618727
Н	4.327102	-4.606981	2.134349
Н	1.484173	-4.558563	-0.067237
Н	1.086103	-2.854459	-0.308966
Η	1.277941	-3.492942	1.332385
Н	3.564328	-4.373181	-1.966882
Н	5.046620	-3.427401	-1.809899
Н	3.527805	-2.641398	-2.299321
Н	5.610043	1.545119	2.291147
Н	6.659400	2.893783	1.857761
Н	7.154569	1.247162	1.465213
Н	7.708449	1.835173	-1.289048
Н	7.448177	3.518035	-0.836660
Н	6.711961	2.882400	-2.310180
Н	4.953337	4.537551	0.324010
Н	3.592781	3.512606	0.790068
Н	3.823952	3.954714	-0.909078
Н	1.774875	0.533473	-3.056704
Н	2.609930	-1.014042	-3.102450
Н	2.670028	0.060858	-4.508760
Н	3.126443	3.176381	-2.995963
Н	3.940323	2.673595	-4.475245
Н	4.882030	3.361766	-3.152116
Н	5.565959	0.524779	-4.862480
Н	5.751398	-0.868258	-3.793866
Н	6.665394	0.618782	-3.481608

Figure S16. MO diagrams for 2_{opt} obtained from DFT calculations at the PBE0 level.

(OE=-0.078; P3-p=0.19 P4-p=0.17 Fe1-d=0.17 Fe2-d=0.15) (OE=-0.075; P4-p=0.18 P3-p=0.16 Fe2-d=0.13 Fe1-d=0.11)

HOMO-1 HOMO (OE=-0.209; Fe2-d=0.17 Fe1-d=0.17 P3-p=0.13 P4-p=0.12) (OE=-0.202; P4-p=0.14 Fe2-d=0.13 Fe1-d=0.12)

(OE=-0.202; P4-p=0.14 P3-p=0.14 Fe2-d=0.13 Fe1-d=0.12)
Figure S17. Density distributions in (a) HOMO and (b) HOMO-1 of 2_{opt} . The two plot planes (left and right) indicate the π -bonding interaction in the Fe-P bonds.

(a) HOMO

(b) HOMO-1

The plot planes are arranged in parallel with the Fe, P, and C(CO) atoms.

Figure S18. Optimized structure of 3_{opt}.

Table S4. Cartesian coordinates of $\mathbf{3}_{opt}$ in the doublet state.

Fe	0.016360	2.207397	-0.903133
Р	0.000582	0.219536	-0.099467
Si	2.232402	-1.840889	-1.112871
Si	2.733619	-0.017642	1.484496
Si	-2.570703	-1.300321	-1.182608
Si	-2.453579	-0.286028	1.847931
0	2.716348	2.623756	-2.060478
0	-2.783231	2.840750	-1.643724
0	0.213187	4.417692	1.009671
С	1.697717	2.381501	-1.571189
С	-1.720901	2.504917	-1.331720
С	0.134169	3.570612	0.222746
С	1.397328	-0.926784	0.393123
С	0.693306	-1.963514	1.310104
С	-0.708774	-2.253718	0.772330
С	-1.408001	-0.930034	0.345659
С	2.452803	-0.750815	-2.634966
С	3.934594	-2.538367	-0.647879
С	1.289719	-3.395723	-1.659737
С	1.959852	1.177016	2.728561
С	4.025469	0.967276	0.515574
С	3.637450	-1.306035	2.542651
С	-3.127687	-3.110631	-1.072097
С	-4.155512	-0.273320	-1.292619
С	-1.687919	-1.059415	-2.837930
С	-3.887118	-1.489512	2.170641
С	-3.124788	1.461013	1.630734
С	-1.465112	-0.284022	3.459932
Н	1.271775	-2.894196	1.383965
Н	0.611820	-1.571304	2.331977
Н	-1.298001	-2.796518	1.523223
Н	-0.617301	-2.930698	-0.080870
Н	3.171087	0.058014	-2.474373

Н	1.510373	-0.301879	-2.965012
Н	2.834541	-1.376129	-3.451560
Н	3.866383	-3.280605	0.154727
Н	4.669897	-1.782881	-0.357379
Η	4.325089	-3.053506	-1.534694
Η	1.892921	-3.870063	-2.444372
Η	0.300481	-3.204155	-2.083671
Н	1.184116	-4.126322	-0.849860
Н	1.244043	1.866026	2.271789
Н	2.770916	1.775784	3.161848
Н	1.469848	0.651509	3.554366
Н	4.911966	1.074399	1.153091
Н	3.667613	1.974434	0.286289
Н	4.347930	0.505324	-0.421549
Н	2.944650	-1.908076	3.140195
Н	4.285875	-0.767176	3.244970
H	4.267489	-1.984343	1.963109
H	-2.316415	-3.821668	-1.259862
H	-3.896125	-3.282777	-1.835629
H	-3.569442	-3.349407	-0.099008
H	-3.970830	0.788024	-1.469160
H	-4.805333	-0.370087	-0.418541
H	-4.713763	-0.653513	-2.157836
H	-1.497911	0.000193	-3.036128
H	-2.335279	-1.444988	-3.635709
H	-0.729293	-1.582348	-2.904937
H	-4.612477	-1.559567	1.355326
H	-4.425/21	-1.143200	3.061456
H	-3.524288	-2.500992	2.386807
H	-2.309042	2.183698	1.525995
H	-3.691319	1.726702	2.531765
H	-3.791393	1.569605	0.772090
H	-0.618338	0.406079	5.423964
H	-1.1011/6	-1.27/8/9	3.741935
Н	-2.133813	0.057190	4.260185

Figure S19. MO diagrams for 3_{opt} obtained from DFT calculations at the PBE0 level.

Figure S20. Orbital interactions between the P ligand and the Fe(CO)₃ moiety in 3_{opt}.

Figure S21. Density distributions in (a) α HOMO and (b) β HOMO of **3**_{opt}. The plot plane for β HOMO indicates the π -bonding interaction between Fe and P atoms, whereas the plot plane for α HOMO indicates the non-bonding interaction between Fe and P atoms.

(b) β HOMO

Figure S22. Calculated electron density difference map that details the nature of the transition in 2_{opt} (red: electron density loss in transition, purple: electron density gain in transition).

Figure S23. Calculated electron density difference map that details the nature of the transition in $\mathbf{3}_{opt}$ (red: electron density loss in transition, purple: electron density gain in transition).

324 nm (f = 0.1117)

839 nm (f = 0.0053)

409 nm (f = 0.0520)

301 nm (f = 0.0234)

 Table S5. Transition Energies, Wavelengths, and Oscillator Strengths of the Electronic Transitions

of 2_{opt}.

Excited State 1: 269 -> 276 270 -> 277 271 -> 276 272 -> 277 273 -> 276 274 -> 277 275 -> 276 This state for optimizat Total Energy, E(TD-HF Copying the excited sta	Singlet-A 0.17716 -0.10083 0.10795 0.20560 0.35188 -0.24540 0.42736 ion and/or secon 7/TD-KS) = -74 te density for thi	1.8495 eV d-order correct 470.12262527 s state as the 1	670.36 nm ion. -particle Rho	f=0.0715 CI density.	<s**2>=0.000</s**2>
Excited State 2: 269 -> 277 272 -> 276 273 -> 277 274 -> 276 275 -> 277	Singlet-A -0.17654 -0.32306 -0.29809 0.39734 -0.26362	1.9342 eV	641.01 nm	f=0.0036	<s**2>=0.000</s**2>
Excited State 3: 271 -> 276 272 -> 277 273 -> 276 274 -> 277 275 -> 276	Singlet-A 0.13923 -0.15330 -0.26572 0.37730 0.44880	2.3982 eV	516.98 nm	f=0.0299	<s**2>=0.000</s**2>
Excited State 4: 270 -> 276 271 -> 277 272 -> 276 273 -> 277 274 -> 276 275 -> 277	Singlet-A -0.21741 0.21031 -0.11767 0.17162 0.38281 0.41376	2.4348 eV	509.22 nm	f=0.0003	<s**2>=0.000</s**2>
Excited State 5: 269 -> 276 270 -> 277 271 -> 276 272 -> 277 273 -> 276 274 -> 277 275 -> 276	Singlet-A -0.14827 -0.12527 0.17476 -0.16238 0.47876 0.30359 -0.16528	2.5456 eV	487.06 nm	f=0.1142	<s**2>=0.000</s**2>
Excited State 6: 269 -> 277 272 -> 276 273 -> 277 275 -> 277	Singlet-A -0.14402 -0.11196 0.53839 -0.35940	2.5667 eV	483.05 nm	f=0.0063	<s**2>=0.000</s**2>
Excited State 7: 270 -> 276 271 -> 276 271 -> 277 272 -> 276 273 -> 277 274 -> 276 274 -> 278 275 -> 277	Singlet-A 0.34883 -0.16970 -0.31978 0.19508 0.20860 0.27086 0.14172 0.12368	2.9050 eV	426.79 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 8: 270 -> 276 270 -> 277 271 -> 276 271 -> 277 273 -> 276 274 -> 277	Singlet-A 0.20831 -0.31997 0.35969 0.10266 -0.19876 -0.29510	2.9486 eV	420.48 nm	f=0.0233	<s**2>=0.000</s**2>

275 -> 276	-0.11047				
Excited State 9: 271 -> 278 273 -> 278 274 -> 277 275 -> 276 275 -> 278	Singlet-A 0.13676 0.27497 -0.13201 -0.10385 0.55362	3.0919 eV	400.99 nm	f=0.0005	<s**2>=0.000</s**2>
Excited State 10: 272 -> 278 273 -> 277 274 -> 276 274 -> 278 275 -> 279	Singlet-A -0.21536 -0.12106 -0.17064 0.57185 -0.10300	3.2167 eV	385.44 nm	f=0.0038	<s**2>=0.000</s**2>
Excited State 11: 265 -> 276 269 -> 276 270 -> 277 271 -> 276 272 -> 277 273 -> 278 274 -> 277 274 -> 279 275 -> 276 275 -> 281	Singlet-A -0.12274 0.26541 -0.13013 0.11530 0.40401 0.10593 0.28292 -0.10630 -0.21054 -0.11767	3.2422 eV	382.41 nm	f=0.4556	<s**2>=0.000</s**2>
Excited State 12: 263 -> 277 264 -> 276 265 -> 277 266 -> 276 272 -> 276	Singlet-A 0.13333 0.10894 0.36711 0.47435 -0.15405	3.3195 eV	373.50 nm	f=0.0040	<s**2>=0.000</s**2>
Excited State 13: 263 -> 276 264 -> 277 265 -> 276 266 -> 277 269 -> 276 271 -> 276 275 -> 276	Singlet-A 0.12898 0.10310 0.39087 0.43224 0.15069 0.13182 -0.10109	3.3476 eV	370.37 nm	f=0.0267	<s**2>=0.000</s**2>
Excited State 14: 266 -> 276 269 -> 277 270 -> 276 271 -> 277 272 -> 276 274 -> 276 275 -> 277 275 -> 279	Singlet-A 0.14955 0.20028 -0.12833 0.15532 0.38854 0.25320 -0.28565 0.16509	3.3772 eV	367.12 nm	f=0.0230	<s**2>=0.000</s**2>
Excited State 15: $269 \rightarrow 278$ $270 \rightarrow 277$ $271 \rightarrow 276$ $271 \rightarrow 277$ $271 \rightarrow 278$ $272 \rightarrow 277$ $273 \rightarrow 278$ $274 \rightarrow 279$ $275 \rightarrow 278$	Singlet-A -0.14023 0.25252 0.19668 -0.20196 0.32404 0.12423 0.21153 0.13863 -0.22206	3.6312 eV	341.44 nm	f=0.0326	<s**2>=0.000</s**2>
Excited State 16: 270 -> 276 270 -> 277 270 -> 278 271 -> 277 272 -> 278	Singlet-A 0.17186 0.20829 0.32913 0.29380 0.19888	3.6502 eV	339.66 nm	f=0.0040	<s**2>=0.000</s**2>

274 -> 278 275 -> 279	0.17850 -0.19358				
Excited State 17: 269 -> 276 269 -> 278 272 -> 277 272 -> 279 273 -> 278 275 -> 278	Singlet-A 0.37776 0.19021 -0.33966 0.11434 0.27994 -0.22387	3.7743 eV	328.50 nm	f=0.0635	<s**2>=0.000</s**2>
Excited State 18: 269 -> 277 270 -> 276 270 -> 278 271 -> 277 272 -> 276 272 -> 278 274 -> 278	Singlet-A 0.41509 0.15549 0.15312 0.16007 -0.22985 -0.29763 -0.13532	3.7963 eV	326.59 nm	f=0.0018	<s**2>=0.000</s**2>
Excited State 19: 273 -> 280 274 -> 282 275 -> 280	Singlet-A 0.17259 0.25820 0.56138	3.9119 eV	316.94 nm	f=0.0085	<s**2>=0.000</s**2>
Excited State 20: $269 \rightarrow 276$ $271 \rightarrow 278$ $272 \rightarrow 277$ $272 \rightarrow 280$ $273 \rightarrow 278$ $273 \rightarrow 282$ $274 \rightarrow 280$ $274 \rightarrow 284$ $275 \rightarrow 281$ $275 \rightarrow 282$	Singlet-A 0.11155 0.19439 -0.14621 -0.10782 -0.31736 0.12019 0.33656 -0.11656 -0.24173 0.16910	3.9315 eV	315.36 nm	f=0.0997	<s**2>=0.000</s**2>
Excited State 21: 269 -> 276 270 -> 277 271 -> 278 273 -> 278 273 -> 282 274 -> 280 275 -> 281 275 -> 282	Singlet-A -0.13528 -0.16541 -0.14896 0.25843 0.12646 0.39086 0.14121 0.27986	4.0122 eV	309.02 nm	f=0.0833	<s**2>=0.000</s**2>
Excited State 22: 270 -> 276 272 -> 276 274 -> 278 274 -> 281 275 -> 279	Singlet-A 0.20087 -0.13654 0.18653 0.16726 0.54601	4.0299 eV	307.66 nm	f=0.0051	<s**2>=0.000</s**2>
Excited State 23: 269 -> 276 270 -> 277 271 -> 276 271 -> 277 271 -> 278 274 -> 279 275 -> 281	Singlet-A 0.14283 -0.27065 -0.24580 0.11884 0.27808 0.38551 0.17067	4.0638 eV	305.10 nm	f=0.0029	<s**2>=0.000</s**2>
Excited State 24: 269 -> 277 270 -> 276 270 -> 277 270 -> 278 271 -> 276 271 -> 276 271 -> 277 271 -> 278	Singlet-A 0.14800 -0.24838 -0.13796 0.26498 0.10839 -0.26276 -0.11842	4.1474 eV	298.95 nm	f=0.0001	<s**2>=0.000</s**2>

$271 \rightarrow 279 \\ 272 \rightarrow 276 \\ 272 \rightarrow 278 \\ 273 \rightarrow 280 \\ 274 \rightarrow 281 \\ 274 \rightarrow 282$	-0.11436 -0.13936 0.16913 0.20187 0.19945 0.10031				
Excited State 25: 265 -> 277 266 -> 276 266 -> 278 269 -> 277 270 -> 278 272 -> 276 272 -> 278 273 -> 280 275 -> 280	Singlet-A 0.15520 -0.19481 -0.25410 0.25247 -0.20478 -0.11710 0.27189 0.16075 -0.11864	4.1600 eV	298.04 nm	f=0.0013	<s**2>=0.000</s**2>
Excited State 26: 265 -> 277 266 -> 278 269 -> 277 272 -> 276 272 -> 278 273 -> 280 274 -> 282 275 -> 279 275 -> 280	Singlet-A 0.10049 -0.14427 -0.18832 0.11623 -0.29457 0.42939 0.11015 0.12108 -0.23948	4.2054 eV	294.82 nm	f=0.0035	<s**2>=0.000</s**2>
Excited State 27: $269 \rightarrow 276$ $269 \rightarrow 278$ $270 \rightarrow 277$ $271 \rightarrow 276$ $271 \rightarrow 278$ $273 \rightarrow 281$ $274 \rightarrow 279$ $274 \rightarrow 284$ $275 \rightarrow 278$ $275 \rightarrow 281$	Singlet-A 0.19005 -0.14005 0.16806 0.20059 -0.19173 0.11076 0.20273 -0.10977 0.18601 0.32145	4.2207 eV	293.75 nm	f=0.0118	<s**2>=0.000</s**2>
Excited State 28: 265 -> 276 265 -> 277 266 -> 276 266 -> 278 270 -> 278 271 -> 280 273 -> 280 275 -> 279 275 -> 284	Singlet-A 0.10401 -0.19960 0.23779 0.26285 -0.15947 0.10026 0.26482 -0.11902 -0.19898	4.2793 eV	289.73 nm	f=0.0013	<s**2>=0.000</s**2>
Excited State 29: 263 -> 278 265 -> 276 265 -> 278 266 -> 277 269 -> 278 275 -> 282	Singlet-A 0.10276 0.34563 0.28127 -0.25893 0.13223 -0.13464	4.2935 eV	288.77 nm	f=0.0013	<s**2>=0.000</s**2>
Excited State 30: 268 -> 276 268 -> 277	Singlet-A 0.51658 -0.39691	4.3159 eV	287.27 nm	f=0.0276	<s**2>=0.000</s**2>
Excited State 31: 267 -> 276 267 -> 277 268 -> 276 269 -> 276 269 -> 278 269 -> 278 271 -> 276	Singlet-A 0.32051 0.30019 -0.11686 0.12507 -0.25337 -0.11494	4.3376 eV	285.84 nm	f=0.0175	<s**2>=0.000</s**2>

272 -> 279 274 -> 281 275 -> 282 275 -> 284	-0.13200 -0.10582 0.14784 0.13337				
Excited State 32: $266 \rightarrow 277$ $267 \rightarrow 276$ $267 \rightarrow 277$ $268 \rightarrow 277$ $269 \rightarrow 278$ $270 \rightarrow 277$ $272 \rightarrow 277$ $272 \rightarrow 279$ $274 \rightarrow 280$ $275 \rightarrow 281$ $275 \rightarrow 283$	Singlet-A 0.10439 0.33049 0.22784 -0.13101 0.28043 0.10491 0.11140 0.14642 0.10503 0.10371 -0.12526	4.3526 eV	284.85 nm	f=0.0220	<s**2>=0.000</s**2>
Excited State 33: $267 \rightarrow 276$ $267 \rightarrow 277$ $268 \rightarrow 276$ $273 \rightarrow 279$ $273 \rightarrow 280$ $274 \rightarrow 281$ $274 \rightarrow 281$ $274 \rightarrow 284$ $275 \rightarrow 281$ $275 \rightarrow 284$	Singlet-A -0.21939 -0.21769 0.10892 0.24693 0.16608 -0.11927 -0.23758 -0.11699 0.13830 0.30775	4.3650 eV	284.04 nm	f=0.0250	<s**2>=0.000</s**2>
Excited State 34: 265 -> 276 266 -> 277 271 -> 278 272 -> 280 274 -> 279 274 -> 281 274 -> 284 275 -> 281 275 -> 284 275 -> 287	Singlet-A -0.14182 0.10261 0.10505 -0.12249 -0.29764 0.17970 -0.25491 0.30499 -0.13136 -0.17094	4.3799 eV	283.08 nm	f=0.0029	<s**2>=0.000</s**2>
Excited State 35: 273 -> 279 274 -> 281 275 -> 279	Singlet-A 0.51461 0.34645 -0.12367	4.4081 eV	281.27 nm	f=0.0044	<s**2>=0.000</s**2>
Excited State 36: 269 -> 278 272 -> 279 273 -> 281 273 -> 282 273 -> 283 274 -> 279 274 -> 280 275 -> 282 275 -> 283	Singlet-A 0.16326 0.12603 0.12025 -0.13818 0.10773 0.11932 -0.24326 0.44463 0.12700	4.4820 eV	276.63 nm	f=0.0003	<s**2>=0.000</s**2>
Excited State 37: $271 \rightarrow 280$ $272 \rightarrow 282$ $273 \rightarrow 280$ $274 \rightarrow 282$ $274 \rightarrow 283$ $274 \rightarrow 283$ $274 \rightarrow 286$ $275 \rightarrow 280$ $275 \rightarrow 282$ $275 \rightarrow 284$ $275 \rightarrow 289$	Singlet-A -0.11651 -0.11503 -0.14682 0.44641 0.26250 0.10686 -0.13052 -0.10021 0.12378 0.14701	4.5007 eV	275.48 nm	f=0.0004	<s**2>=0.000</s**2>
Excited State 38:	Singlet-A	4.5575 eV S-48	272.05 nm	f=0.0019	<s**2>=0.000</s**2>

$272 \rightarrow 280 \\ 273 \rightarrow 282 \\ 274 \rightarrow 279 \\ 274 \rightarrow 289 \\ 275 \rightarrow 281 \\ 275 \rightarrow 282 \\ 275 \rightarrow 283 $	-0.18066 0.47555 0.16315 0.10214 -0.13023 -0.17397 0.24242				
Excited State 39: $269 \rightarrow 278$ $270 \rightarrow 280$ $271 \rightarrow 282$ $273 \rightarrow 281$ $273 \rightarrow 282$ $273 \rightarrow 283$ $274 \rightarrow 280$ $274 \rightarrow 280$ $274 \rightarrow 284$ $275 \rightarrow 281$ $275 \rightarrow 283$ $275 \rightarrow 283$ $275 \rightarrow 286$	Singlet-A -0.10826 -0.16933 -0.12781 0.11127 -0.15123 0.12558 0.20180 0.14728 0.11056 0.38836 0.14954	4.5736 eV	271.09 nm	f=0.0058	<s**2>=0.000</s**2>
Excited State 40: 269 -> 280 270 -> 278 272 -> 282 273 -> 279 274 -> 281 275 -> 279 275 -> 284	Singlet-A -0.11886 -0.12732 0.11495 -0.25863 0.33012 -0.16687 0.39021	4.6099 eV	268.95 nm	f=0.0030	<s**2>=0.000</s**2>
Excited State 41: 271 -> 278 273 -> 281 273 -> 282 274 -> 279 274 -> 280 274 -> 284 275 -> 281 275 -> 287 275 -> 288	Singlet-A 0.10957 0.21661 0.19789 -0.22026 -0.11767 0.30925 0.15633 0.18004 -0.14974	4.6800 eV	264.92 nm	f=0.0009	<s**2>=0.000</s**2>
Excited State 42: $263 \rightarrow 276$ $265 \rightarrow 277$ $265 \rightarrow 278$ $266 \rightarrow 277$ $272 \rightarrow 280$ $273 \rightarrow 281$ $273 \rightarrow 283$ $273 \rightarrow 290$ $275 \rightarrow 283$	Singlet-A 0.11450 -0.10065 -0.15681 -0.14146 -0.19162 0.40854 0.14034 -0.12545 -0.12294	4.7036 eV	263.60 nm	f=0.0043	<s**2>=0.000</s**2>
Excited State 43: 264 -> 276 265 -> 277 266 -> 276 266 -> 278 269 -> 277 274 -> 290 275 -> 287 275 -> 288	Singlet-A -0.13441 0.35222 -0.19577 0.28212 0.10649 0.10996 -0.12788 -0.11115	4.7126 eV	263.09 nm	f=0.0019	<s**2>=0.000</s**2>
Excited State 44: 265 -> 277 266 -> 278 270 -> 282 271 -> 280 274 -> 281 274 -> 282 274 -> 283 274 -> 283 274 -> 286	Singlet-A -0.10388 -0.13658 0.10902 0.18414 -0.14031 -0.19483 0.40519 0.13311	4.7297 eV	262.14 nm	f=0.0003	<s**2>=0.000</s**2>

275 -> 280 275 -> 289	0.11218 0.12398				
Excited State 45: 262 -> 276 263 -> 276 264 -> 276 264 -> 277 265 -> 278 266 -> 277 273 -> 281	Singlet-A -0.11574 0.29002 -0.23589 0.25969 -0.15943 -0.24159 -0.27223	4.7506 eV	260.99 nm	f=0.0048	<s**2>=0.000</s**2>
Excited State 46: 261 -> 276 262 -> 277 263 -> 276 263 -> 277 264 -> 276 266 -> 276 266 -> 278 268 -> 277	Singlet-A -0.11934 -0.10645 0.23872 0.36727 0.34155 -0.22674 0.15633 0.10354	4.7595 eV	260.50 nm	f=0.0038	<s**2>=0.000</s**2>
Excited State 47: 264 -> 277 265 -> 276 265 -> 278 267 -> 276 268 -> 276 268 -> 277 268 -> 277 273 -> 281	Singlet-A 0.10067 -0.12144 0.12091 0.12502 0.36187 0.47615 0.10520	4.7728 eV	259.77 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 48: $263 \rightarrow 276$ $264 \rightarrow 276$ $264 \rightarrow 277$ $265 \rightarrow 276$ $265 \rightarrow 278$ $267 \rightarrow 277$ $268 \rightarrow 276$ $268 \rightarrow 277$ $272 \rightarrow 280$ $273 \rightarrow 281$ $275 \rightarrow 288$	Singlet-A -0.14427 0.14390 -0.18997 0.23789 -0.18742 0.18742 0.17972 0.17215 -0.18045 -0.12732 -0.10344	4.7799 eV	259.39 nm	f=0.0006	<s**2>=0.000</s**2>
Excited State 49: $245 \rightarrow 277$ $253 \rightarrow 276$ $253 \rightarrow 277$ $263 \rightarrow 276$ $263 \rightarrow 277$ $265 \rightarrow 276$ $265 \rightarrow 277$ $265 \rightarrow 277$ $265 \rightarrow 278$ $268 \rightarrow 277$ $274 \rightarrow 282$ $274 \rightarrow 283$ $274 \rightarrow 287$ $274 \rightarrow 290$	Singlet-A 0.10428 0.12061 0.12330 -0.15470 -0.11360 0.13161 0.16465 -0.11819 0.16960 -0.11128 0.21471 -0.10819 -0.12064	4.7879 eV	258.96 nm	f=0.0037	<s**2>=0.000</s**2>
Excited State 50: 267 -> 276 267 -> 277	Singlet-A -0.41474 0.48664	4.7917 eV	258.75 nm	f=0.0009	<s**2>=0.000</s**2>
Excited State 51: 245 -> 276 254 -> 277 265 -> 278 272 -> 279 272 -> 280 273 -> 278 273 -> 281	Singlet-A 0.10745 -0.11235 -0.10605 -0.10930 0.20563 0.10673 0.22844	4.8124 eV	257.63 nm	f=0.0168	<s**2>=0.000</s**2>

$273 \rightarrow 290$ $274 \rightarrow 280$ $274 \rightarrow 284$ $274 \rightarrow 288$ $275 \rightarrow 282$ $275 \rightarrow 290$	0.14766 0.13912 -0.14644 -0.15692 -0.10793 0.19491				
Excited State 52: $269 \rightarrow 280$ $269 \rightarrow 282$ $270 \rightarrow 279$ $270 \rightarrow 282$ $271 \rightarrow 280$ $272 \rightarrow 280$ $272 \rightarrow 281$ $272 \rightarrow 281$ $272 \rightarrow 282$ $272 \rightarrow 283$ $273 \rightarrow 282$ $273 \rightarrow 282$ $273 \rightarrow 283$ $274 \rightarrow 289$ $275 \rightarrow 290$	Singlet-A 0.24551 0.10193 0.11407 0.10139 0.12176 -0.17163 0.11230 -0.23486 0.12012 -0.10730 -0.18745 -0.14238 0.11029	4.8634 eV	254.93 nm	f=0.0023	<s**2>=0.000</s**2>
Excited State 53: $269 \rightarrow 280$ $269 \rightarrow 282$ $271 \rightarrow 279$ $271 \rightarrow 281$ $272 \rightarrow 280$ $272 \rightarrow 282$ $272 \rightarrow 282$ $273 \rightarrow 282$ $273 \rightarrow 282$ $273 \rightarrow 283$ $273 \rightarrow 283$ $274 \rightarrow 289$ $275 \rightarrow 290$	Singlet-A 0.24704 -0.10596 0.12165 -0.10817 0.18064 -0.22522 0.10922 0.12513 0.20610 0.16015 -0.14223	4.8663 eV	254.78 nm	f=0.0020	<s**2>=0.000</s**2>
Excited State 54: $241 \rightarrow 276$ $245 \rightarrow 276$ $246 \rightarrow 277$ $253 \rightarrow 276$ $253 \rightarrow 277$ $254 \rightarrow 277$ $257 \rightarrow 276$ $265 \rightarrow 278$ $266 \rightarrow 277$ $269 \rightarrow 282$ $272 \rightarrow 280$ $273 \rightarrow 283$ $275 \rightarrow 283$ $275 \rightarrow 283$ $275 \rightarrow 286$ $275 \rightarrow 287$	Singlet-A 0.10695 0.16966 0.14335 0.17782 0.12370 -0.16569 0.10196 0.14594 0.11923 0.10203 -0.19689 0.19854 -0.16182 -0.10146 -0.11423	4.9241 eV	251.79 nm	f=0.0048	<s**2>=0.000</s**2>
Excited State 55: 254 -> 276 273 -> 284 274 -> 282 274 -> 290 275 -> 284 275 -> 287 275 -> 288 275 -> 289	Singlet-A 0.12302 0.33642 0.12533 -0.11942 -0.12798 0.23094 0.27781 0.13328	4.9469 eV	250.63 nm	f=0.0081	<s**2>=0.000</s**2>
Excited State 56: 254 -> 276 262 -> 276 271 -> 280 271 -> 282 272 -> 279 273 -> 289 274 -> 282 274 -> 290	Singlet-A -0.11407 0.12003 0.31527 -0.18278 -0.12195 -0.10125 0.16864 0.12451	4.9999 eV	247.98 nm	f=0.0039	<s**2>=0.000</s**2>

275 -> 283 275 -> 289 275 -> 290	-0.11541 0.10172 0.10866				
Excited State 57: $269 \rightarrow 279$ $272 \rightarrow 281$ $273 \rightarrow 284$ $273 \rightarrow 288$ $274 \rightarrow 287$ $274 \rightarrow 288$ $275 \rightarrow 284$ $275 \rightarrow 284$ $275 \rightarrow 287$ $275 \rightarrow 288$	Singlet-A -0.18408 0.22507 0.33797 0.10068 0.16486 -0.12012 -0.13422 -0.18072 -0.21515	5.0037 eV	247.78 nm	f=0.0058	<s**2>=0.000</s**2>
Excited State 58: $261 \rightarrow 276$ $261 \rightarrow 277$ $262 \rightarrow 276$ $262 \rightarrow 277$ $264 \rightarrow 276$ $270 \rightarrow 280$ $270 \rightarrow 282$ $271 \rightarrow 280$ $272 \rightarrow 279$ $274 \rightarrow 282$	Singlet-A 0.28880 -0.13541 -0.21286 0.23598 0.15674 0.16066 0.11766 0.13272 0.16500 0.11649	5.0127 eV	247.34 nm	f=0.0136	<s**2>=0.000</s**2>
Excited State 59: 261 -> 276 261 -> 277 262 -> 276 262 -> 277 263 -> 276 272 -> 279	Singlet-A 0.19687 0.32251 0.41555 0.16125 0.12840 0.17381	5.0278 eV	246.60 nm	f=0.0126	<s**2>=0.000</s**2>
Excited State 60: $261 \rightarrow 276$ $262 \rightarrow 277$ $264 \rightarrow 276$ $270 \rightarrow 280$ $270 \rightarrow 282$ $271 \rightarrow 282$ $271 \rightarrow 282$ $272 \rightarrow 279$ $274 \rightarrow 280$ $275 \rightarrow 290$	Singlet-A 0.30970 0.23100 0.11149 -0.26998 -0.13997 -0.16983 -0.14299 -0.10326 0.11245	5.0335 eV	246.32 nm	f=0.0016	<s**2>=0.000</s**2>
Excited State 61: $261 \rightarrow 276$ $269 \rightarrow 278$ $269 \rightarrow 281$ $270 \rightarrow 279$ $270 \rightarrow 284$ $271 \rightarrow 281$ $272 \rightarrow 279$ $273 \rightarrow 288$ $274 \rightarrow 284$ $275 \rightarrow 287$ $275 \rightarrow 290$	Singlet-A -0.11505 -0.10857 -0.14598 -0.19845 -0.11376 -0.13630 0.31351 0.10606 0.19718 -0.11371 0.20631	5.0468 eV	245.67 nm	f=0.0035	<s**2>=0.000</s**2>
Excited State 62: $273 \rightarrow 282$ $273 \rightarrow 283$ $273 \rightarrow 287$ $273 \rightarrow 288$ $273 \rightarrow 288$ $273 \rightarrow 290$ $274 \rightarrow 284$ $274 \rightarrow 289$ $275 \rightarrow 286$ $275 \rightarrow 287$ $275 \rightarrow 288$ $275 \rightarrow 288$ $275 \rightarrow 290$	Singlet-A 0.13082 0.28598 -0.15846 0.13118 -0.10486 -0.22571 -0.17004 0.13680 0.23372 -0.23230 0.13722	5.0954 eV	243.32 nm	f=0.0246	<s**2>=0.000</s**2>

Excited State 63: $269 \rightarrow 279$ $270 \rightarrow 278$ $270 \rightarrow 281$ $271 \rightarrow 279$ $271 \rightarrow 280$ $272 \rightarrow 281$ $273 \rightarrow 284$ $273 \rightarrow 289$ $274 \rightarrow 288$ $275 \rightarrow 287$ $275 \rightarrow 288$ $275 \rightarrow 289$	Singlet-A 0.23390 0.10383 0.14288 0.24284 -0.10255 -0.22163 0.28378 -0.11282 0.10279 -0.12263 -0.16560 0.16309	5.1200 eV	242.16 nm	f=0.0098	<s**2>=0.000</s**2>
Excited State 64: 269 -> 279 271 -> 280 272 -> 281 273 -> 287 273 -> 288 273 -> 288 273 -> 289 274 -> 288 274 -> 290 275 -> 287 275 -> 288	Singlet-A 0.12322 0.15558 -0.21275 0.23984 0.25297 0.24197 -0.12183 -0.13759 -0.11536 -0.11342	5.1744 eV	239.61 nm	f=0.0021	<s**2>=0.000</s**2>
Excited State 65: 257 -> 276 257 -> 277 258 -> 276 258 -> 277 259 -> 276 259 -> 276 260 -> 277 260 -> 277 273 -> 288 274 -> 288	Singlet-A -0.15042 0.13512 0.23758 -0.17059 0.25862 -0.21679 -0.22583 0.12397 -0.10487 -0.21266	5.1816 eV	239.28 nm	f=0.0032	<s**2>=0.000</s**2>
Excited State 66: 259 -> 277 260 -> 276 269 -> 279 271 -> 284 272 -> 281 272 -> 282 274 -> 286 274 -> 287 274 -> 288 275 -> 289	Singlet-A 0.11457 0.15114 0.10896 -0.10011 -0.25960 -0.18278 0.10288 0.32972 -0.16613 -0.13480	5.1907 eV	238.86 nm	f=0.0037	<s**2>=0.000</s**2>
Excited State 67: 258 -> 276 259 -> 276 259 -> 277 260 -> 276 271 -> 279 272 -> 279 273 -> 283 273 -> 286 273 -> 286 273 -> 290 274 -> 287 274 -> 288 275 -> 289	Singlet-A 0.12233 0.19006 -0.17061 -0.20276 -0.13422 0.10622 -0.18361 -0.11384 -0.18362 0.13459 0.25401 0.10830	5.1935 eV	238.73 nm	f=0.0052	<s**2>=0.000</s**2>
Excited State 68: 255 -> 276 255 -> 277 257 -> 276 257 -> 277 259 -> 276	Singlet-A 0.14928 0.11519 -0.18257 -0.11164 0.26414	5.2015 eV	238.36 nm	f=0.0003	<s**2>=0.000</s**2>

$259 \rightarrow 277 \\ 260 \rightarrow 276 \\ 260 \rightarrow 277 \\ 261 \rightarrow 276 \\ 261 \rightarrow 277 \\ 274 \rightarrow 287$	0.12149 0.29020 0.31047 0.11172 0.12677 -0.11747				
Excited State 69: $259 \rightarrow 276$ $260 \rightarrow 276$ $260 \rightarrow 277$ $270 \rightarrow 279$ $270 \rightarrow 281$ $271 \rightarrow 279$ $272 \rightarrow 282$ $273 \rightarrow 284$ $273 \rightarrow 284$ $273 \rightarrow 290$ $274 \rightarrow 282$ $274 \rightarrow 287$ $275 \rightarrow 284$ $275 \rightarrow 291$	Singlet-A 0.12752 0.14000 0.14595 0.11250 0.15656 0.22771 0.14756 -0.13604 -0.10326 0.10812 0.19372 -0.10559 0.14256	5.2107 eV	237.94 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 70: $269 \rightarrow 278$ $270 \rightarrow 279$ $270 \rightarrow 280$ $271 \rightarrow 281$ $271 \rightarrow 283$ $272 \rightarrow 279$ $272 \rightarrow 280$ $273 \rightarrow 282$ $273 \rightarrow 282$ $273 \rightarrow 286$ $273 \rightarrow 287$ $273 \rightarrow 288$ $273 \rightarrow 288$ $273 \rightarrow 288$ $273 \rightarrow 289$ $275 \rightarrow 287$ $275 \rightarrow 288$	Singlet-A 0.13331 -0.15755 0.20198 -0.11431 -0.11532 -0.18859 -0.10350 -0.19640 -0.10664 -0.15983 0.15854 -0.12669 0.18105 0.19022 -0.14198	5.2270 eV	237.20 nm	f=0.0005	<s**2>=0.000</s**2>
Excited State 71: 273 -> 284 274 -> 283 274 -> 286 274 -> 287 274 -> 288 275 -> 285 275 -> 289	Singlet-A -0.13011 -0.12430 0.10453 0.17167 -0.16115 0.36713 0.41999	5.2481 eV	236.25 nm	f=0.0027	<s**2>=0.000</s**2>
Excited State 72: 261 -> 277 262 -> 276 263 -> 276 263 -> 277 264 -> 276 264 -> 277 265 -> 276 266 -> 277	Singlet-A -0.16045 0.10607 -0.36788 0.20938 0.15882 0.43420 0.11583 -0.11026	5.2594 eV	235.74 nm	f=0.0018	<s**2>=0.000</s**2>
Excited State 73: 261 -> 276 262 -> 277 263 -> 276 263 -> 277 264 -> 276 264 -> 277 265 -> 277	Singlet-A 0.12199 -0.14322 -0.18369 0.42651 -0.34802 -0.22264 -0.15697	5.2609 eV	235.67 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 74: 258 -> 276 258 -> 277 259 -> 276	Singlet-A 0.34969 -0.28332 -0.22368	5.2834 eV	234.67 nm	f=0.0030	<s**2>=0.000</s**2>

259 -> 277 274 -> 287 275 -> 285 275 -> 289	0.13037 0.11050 -0.29752 0.10850				
Excited State 75: $257 \rightarrow 276$ $258 \rightarrow 276$ $258 \rightarrow 277$ $259 \rightarrow 277$ $260 \rightarrow 276$ $274 \rightarrow 287$ $275 \rightarrow 285$ $275 \rightarrow 286$ $275 \rightarrow 289$ $275 \rightarrow 290$	Singlet-A 0.10112 0.31619 -0.15296 0.15903 0.12605 -0.10693 0.35419 -0.11676 -0.15310 -0.10299	5.2866 eV	234.52 nm	f=0.0009	<s**2>=0.000</s**2>
Excited State 76: $256 \rightarrow 276$ $257 \rightarrow 277$ $257 \rightarrow 277$ $258 \rightarrow 277$ $259 \rightarrow 277$ $260 \rightarrow 276$ $260 \rightarrow 277$ $262 \rightarrow 277$ $262 \rightarrow 277$ $262 \rightarrow 277$ $262 \rightarrow 277$ $264 \rightarrow 277$ $275 \rightarrow 285$ $275 \rightarrow 289$	Singlet-A -0.20856 -0.14523 -0.22086 -0.19259 -0.13695 -0.16419 -0.10038 -0.15481 -0.12665 -0.15139 -0.12646 0.11236 0.25419 -0.13195	5.2934 eV	234.22 nm	f=0.0012	<s**2>=0.000</s**2>
Excited State 77: $255 \rightarrow 277$ $257 \rightarrow 276$ $270 \rightarrow 280$ $273 \rightarrow 283$ $273 \rightarrow 287$ $274 \rightarrow 288$ $275 \rightarrow 285$ $275 \rightarrow 286$ $275 \rightarrow 286$ $275 \rightarrow 288$ $275 \rightarrow 288$ $275 \rightarrow 289$ $275 \rightarrow 290$	Singlet-A -0.12995 0.17324 0.11890 0.10986 0.13841 0.13025 0.18227 0.30324 0.10171 -0.13745 0.23580	5.3099 eV	233.49 nm	f=0.0008	<s**2>=0.000</s**2>
Excited State 78: 254 -> 276 254 -> 277 255 -> 276 255 -> 277 256 -> 277 256 -> 277 257 -> 276 257 -> 277 257 -> 277 273 -> 290	Singlet-A -0.19768 0.14531 0.30765 -0.20985 -0.18182 0.12590 0.26307 -0.20435 0.10511	5.3136 eV	233.33 nm	f=0.0042	<s**2>=0.000</s**2>
Excited State 79: 253 -> 276 255 -> 276 255 -> 277 256 -> 276 256 -> 277 256 -> 277 275 -> 286	Singlet-A 0.10977 0.34590 0.25098 0.32462 0.27773 0.13160	5.3289 eV	232.67 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 80: 270 -> 279 273 -> 290 274 -> 285 274 -> 287 274 -> 288	Singlet-A -0.11652 0.30581 0.18477 0.12209 0.14899	5.3535 eV	231.60 nm	f=0.0119	<s**2>=0.000</s**2>

274 -> 290 275 -> 283 275 -> 286 275 -> 290	-0.12786 -0.11926 0.31174 -0.18624				
Excited State 81: 266 -> 279 270 -> 279 271 -> 281 272 -> 280 273 -> 283 273 -> 288 273 -> 290 274 -> 285 274 -> 287 274 -> 287 274 -> 288 274 -> 289 275 -> 283 275 -> 286 275 -> 290	Singlet-A -0.10926 0.16128 0.11099 0.10098 -0.10642 0.13414 -0.10173 0.20423 -0.17679 -0.18627 0.17920 -0.15810 0.23045 -0.18791	5.3606 eV	231.29 nm	f=0.0014	<s**2>=0.000</s**2>
Excited State 82: 261 -> 276 262 -> 277 273 -> 287 273 -> 288 273 -> 290 274 -> 286 274 -> 289 274 -> 289 274 -> 290 275 -> 287 275 -> 291	Singlet-A -0.16716 0.17490 0.17027 0.15512 0.13376 0.16827 0.13545 0.37135 0.16598 -0.14036	5.3783 eV	230.53 nm	f=0.0075	<s**2>=0.000</s**2>
Excited State 83: 261 -> 276 261 -> 277 262 -> 276 262 -> 277 263 -> 277 274 -> 290	Singlet-A -0.30703 0.24255 -0.19107 0.39778 0.14767 -0.14426	5.3830 eV	230.33 nm	f=0.0019	<s**2>=0.000</s**2>
Excited State 84: 253 -> 276 256 -> 276 256 -> 277 257 -> 276 261 -> 277 262 -> 276 262 -> 277 262 -> 277 264 -> 277	Singlet-A -0.10175 0.22324 0.17014 0.12628 0.12029 0.40487 -0.27922 -0.17199 0.12946	5.3893 eV	230.06 nm	f=0.0010	<s**2>=0.000</s**2>
Excited State 85: $249 \rightarrow 276$ $249 \rightarrow 277$ $250 \rightarrow 276$ $251 \rightarrow 276$ $251 \rightarrow 277$ $252 \rightarrow 276$ $254 \rightarrow 276$ $257 \rightarrow 276$ $257 \rightarrow 276$ $257 \rightarrow 277$ $260 \rightarrow 276$ $273 \rightarrow 289$ $274 \rightarrow 289$	Singlet-A 0.11500 -0.15190 0.26644 -0.16626 0.23521 0.12676 -0.25686 -0.19801 0.14721 0.11206 0.12403 0.16251	5.4256 eV	228.52 nm	f=0.0121	<s**2>=0.000</s**2>
Excited State 86: 250 -> 276 251 -> 276 251 -> 277 270 -> 279	Singlet-A -0.15300 0.10871 -0.10286 0.11900	5.4315 eV	228.27 nm	f=0.0130	<s**2>=0.000</s**2>

$273 \rightarrow 289$ $273 \rightarrow 290$ $274 \rightarrow 285$ $274 \rightarrow 289$ $274 \rightarrow 290$ $275 \rightarrow 286$ $275 \rightarrow 288$ $275 \rightarrow 288$ $275 \rightarrow 290$	0.12266 0.15148 -0.11647 0.39783 -0.14237 -0.11130 -0.13230 0.17636				
Excited State 87: 250 -> 276 250 -> 277 251 -> 276 252 -> 276 252 -> 277	Singlet-A -0.18714 0.26573 0.18955 0.45393 -0.25844	5.4382 eV	227.99 nm	f=0.0166	<s**2>=0.000</s**2>
Excited State 88: $250 \rightarrow 276$ $250 \rightarrow 277$ $251 \rightarrow 276$ $251 \rightarrow 277$ $252 \rightarrow 276$ $252 \rightarrow 277$ $253 \rightarrow 276$ $254 \rightarrow 277$ $273 \rightarrow 287$ $273 \rightarrow 289$	Singlet-A 0.21625 0.14472 0.29118 0.13374 -0.12580 0.22409 0.11617 -0.13781 -0.11735 0.24378	5.4432 eV	227.78 nm	f=0.0193	<s**2>=0.000</s**2>
Excited State 89: $249 \rightarrow 276$ $250 \rightarrow 276$ $250 \rightarrow 277$ $251 \rightarrow 276$ $252 \rightarrow 277$ $254 \rightarrow 277$ $256 \rightarrow 276$ $261 \rightarrow 277$ $273 \rightarrow 287$ $273 \rightarrow 289$ $274 \rightarrow 291$	Singlet-A 0.17469 -0.13941 -0.14084 -0.19326 -0.10594 0.14992 -0.12115 0.11879 -0.15978 0.28567 0.11681	5.4484 eV	227.56 nm	f=0.0023	<s**2>=0.000</s**2>
Excited State 90: 249 -> 276 249 -> 277 251 -> 276 251 -> 277 253 -> 276 253 -> 277 253 -> 277 273 -> 287	Singlet-A 0.36392 0.24320 0.16761 0.18549 0.23060 0.20055 0.11579	5.4637 eV	226.92 nm	f=0.0299	<s**2>=0.000</s**2>
Excited State 91: 270 -> 279 271 -> 278 271 -> 281 272 -> 284 273 -> 288 273 -> 289 273 -> 290 274 -> 291 275 -> 292	Singlet-A 0.14125 0.10714 0.12915 0.12470 0.17598 -0.16820 0.19346 0.30948 0.26924	5.4692 eV	226.70 nm	f=0.0207	<s**2>=0.000</s**2>
Excited State 92: 272 -> 284 272 -> 289 274 -> 285 274 -> 291 275 -> 286 275 -> 291	Singlet-A -0.17194 0.10081 0.46888 0.12931 -0.22151 -0.13880	5.5047 eV	225.23 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 93: 266 -> 279	Singlet-A -0.10013	5.5130 eV S-57	224.89 nm	f=0.0312	<s**2>=0.000</s**2>

$\begin{array}{c} 269 & -> & 279 \\ 272 & -> & 283 \\ 272 & -> & 284 \\ 272 & -> & 287 \\ 272 & -> & 288 \\ 272 & -> & 289 \\ 273 & -> & 287 \\ 273 & -> & 289 \\ 274 & -> & 283 \\ 274 & -> & 286 \\ 275 & -> & 291 \end{array}$	-0.14087 -0.12508 -0.18004 0.10840 -0.11898 0.13106 -0.11018 0.14910 -0.15175 0.11770 0.27567				
Excited State 94: $265 \rightarrow 281$ $266 \rightarrow 279$ $266 \rightarrow 280$ $269 \rightarrow 278$ $272 \rightarrow 284$ $272 \rightarrow 289$ $273 \rightarrow 287$ $273 \rightarrow 288$ $273 \rightarrow 289$ $273 \rightarrow 289$ $273 \rightarrow 289$ $273 \rightarrow 289$ $274 \rightarrow 284$ $274 \rightarrow 285$ $274 \rightarrow 286$ $275 \rightarrow 288$ $275 \rightarrow 291$	Singlet-A -0.12561 0.16496 -0.16810 -0.12655 0.10366 -0.10455 0.13661 -0.16375 0.10468 -0.13017 -0.10304 0.23550 0.11012 -0.13558 -0.11202 0.16834	5.5234 eV	224.47 nm	f=0.0891	<s**2>=0.000</s**2>
Excited State 95: 271 -> 283 272 -> 284 273 -> 287 273 -> 288 273 -> 290 273 -> 292 274 -> 285 274 -> 287 274 -> 287 274 -> 291 275 -> 286 275 -> 290	Singlet-A 0.12230 0.17921 -0.14383 0.12725 0.11106 -0.16441 0.29606 0.10291 -0.23682 -0.13750 0.13646	5.5362 eV	223.95 nm	f=0.0426	<s**2>=0.000</s**2>
Excited State 96: 265 -> 279 266 -> 281 269 -> 280 269 -> 284 269 -> 289 272 -> 281 272 -> 282 272 -> 283 272 -> 283 272 -> 286 272 -> 290 273 -> 291 274 -> 292 275 -> 291	Singlet-A -0.18360 0.13408 0.11288 -0.11141 -0.12763 -0.19873 0.15965 0.33932 0.10808 -0.10079 0.13949 0.11613 0.15262	5.5622 eV	222.90 nm	f=0.0030	<s**2>=0.000</s**2>
Excited State 97: 257 -> 276 258 -> 276 258 -> 277 259 -> 276 259 -> 277 260 -> 277	Singlet-A 0.12467 -0.14799 -0.19761 -0.35523 -0.27235 0.41208	5.5731 eV	222.47 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 98: 249 -> 277 257 -> 277 259 -> 276 259 -> 277	Singlet-A -0.10558 -0.10991 -0.10225 0.40893	5.5802 eV	222.18 nm	f=0.0009	<s**2>=0.000</s**2>

260 -> 276 260 -> 277	-0.38905 0.28893				
Excited State 99: 269 -> 279 269 -> 284 273 -> 285 273 -> 291 274 -> 283 274 -> 286 274 -> 290 275 -> 285	Singlet-A 0.10388 0.10308 0.13846 0.16392 -0.18910 0.49412 -0.14182 -0.13025	5.5831 eV	222.07 nm	f=0.0005	<s**2>=0.000</s**2>
Excited State 100: $257 \rightarrow 277$ $258 \rightarrow 276$ $258 \rightarrow 277$ $269 \rightarrow 279$ $269 \rightarrow 284$ $271 \rightarrow 279$ $272 \rightarrow 287$ $273 \rightarrow 291$ $274 \rightarrow 286$ $274 \rightarrow 290$ $275 \rightarrow 291$	Singlet-A -0.17773 0.15842 0.19369 0.11738 -0.15208 -0.15208 -0.10330 0.22142 -0.17008 0.12849 0.14908	5.6153 eV	220.80 nm	f=0.0058	<s**2>=0.000</s**2>

Table S6. Transition Energies, Wavelengths, and Oscillator Strengths of the Electronic Transitions of $\mathbf{3}_{opt}$.

Excited State 1: 135B ->138B 136B ->138B 136B ->138B 136B ->140B 136B ->140B 136B ->144B 137B ->138B 137B ->139B 137B ->140B This state for optimi Total Energy, E(TD- Copying the excited	2.310-A -0.19341 0.65822 0.29841 0.15795 0.14877 -0.52334 -0.18819 -0.11012 zation and/or se -HF/TD-KS) = state density fo	0.8409 eV 1 econd-order -3735.0470 r this state a	474.39 nm correction. 05016 s the 1-partic	f=0.0012 le RhoCI de	<s**2>=1.084 ensity.</s**2>
Excited State 2: 135B ->138B 135B ->139B 135B ->140B 135B ->144B 135B ->146B 135B ->146B 135B ->147B 136B ->138B 136B ->139B	2.304-A 0.82148 0.23357 0.21630 0.15750 0.10672 0.12312 0.30466 0.10165	1.0107 eV	1226.73 nm	f=0.0031	<s**2>=1.077</s**2>
Excited State 3: 137A ->139A 138A ->139A 137B ->139B 137B ->146B 138A <-139A 137B <-139B	2.877-A -0.18898 0.78592 -0.56220 0.10009 0.12942 -0.14385	1.4777 eV	839.04 nm	f=0.0053	<s**2>=1.820</s**2>
Excited State 4: 137A ->139A 138A ->139A 134B ->138B 135B ->138B	2.596-A -0.10377 -0.20185 -0.39745 -0.15461	1.7589 eV	704.92 nm	f=0.0018	<s**2>=1.435</s**2>

135B ->139B 136B ->139B 136B ->144B 136B ->144B 136B ->146B 137B ->138B 137B ->139B	-0.13125 0.48818 0.10028 -0.12955 0.60336 -0.15758				
Excited State 5: 138A ->139A 132B ->138B 134B ->138B 134B ->139B 134B ->140B 134B ->144B 134B ->144B 135B ->139B 136B ->139B 137B ->138B 137B ->139B	2.447-A -0.14528 0.10951 0.81636 0.14142 0.14868 0.12004 0.10275 -0.11455 0.28196 0.22008 -0.11276	1.8418 eV	673.17 nm	f=0.0010	<s**2>=1.247</s**2>
Excited State 6: 137A ->139A 138A ->139A 134B ->138B 135B ->138B 136B ->138B 136B ->139B 136B ->146B 137B ->138B 137B ->139B	2.609-A 0.22649 0.24383 0.12971 -0.19315 0.55354 -0.37492 0.16802 0.51736 0.18578	2.0147 eV	615.41 nm	f=0.0042	<s**2>=1.452</s**2>
Excited State 7: 136A ->139A 135B ->138B 135B ->139B 135B ->146B 136B ->139B	3.176-A -0.30769 -0.25005 0.79069 -0.22819 0.21772	2.1324 eV	581.44 nm	f=0.0009	<s**2>=2.272</s**2>
Excited State 8: 137A ->139A 137A ->140A 137A ->145A 138A ->139A 135B ->139B 136B ->138B 136B ->139B	2.406-A 0.83528 -0.10069 0.10417 0.24949 -0.13206 -0.17804 0.33282	2.4568 eV	504.66 nm	f=0.0013	<s**2>=1.197</s**2>
Excited State 9: 132A ->139A 134A ->139A 132B ->139B 134B ->138B 134B ->139B 134B ->144B 134B ->146B	3.092-A -0.13372 0.13259 0.10644 -0.13964 0.85759 0.12821 -0.27875	2.6460 eV	468.57 nm	f=0.0021	<s**2>=2.140</s**2>
Excited State 10: 136A ->139A 137A ->139A 137A ->140A 138A ->140A 138A ->145A 134B ->141B 135B ->143B 136B ->143B 136B ->139B 136B ->140B 137B ->139B 137B ->140B	2.792-A -0.22104 0.12817 0.13599 0.69342 -0.14163 0.18683 -0.13046 -0.18336 -0.25853 -0.35284 0.11441	2.8578 eV	433.85 nm	f=0.0071	<s**2>=1.699</s**2>
Excited State 11: 132A ->139A	2.615-A -0.16174	2.9462 eV	420.83 nm	f=0.0251	<s**2>=1.459</s**2>

133A ->139A 136A ->139A 136A ->143A 137A ->139A 138A ->139A 138A ->140A 135B ->139B 136B ->139B 136B ->140B 137B ->139B	$\begin{array}{c} -0.17145\\ 0.66777\\ 0.10924\\ -0.19403\\ 0.23653\\ 0.33793\\ 0.17891\\ 0.13924\\ -0.13020\\ 0.29083\end{array}$				
Excited State 12: 131A ->139A 132A ->139A 133A ->139A 136A ->139A 137A ->139A 138A ->139A 138A ->140A 135B ->139B 136B ->140B 137B ->139B	2.500-A 0.21161 0.13170 0.27695 0.54305 0.22368 -0.30651 -0.13649 0.27854 0.10726 -0.43883	3.0322 eV	408.89 nm	f=0.0520	<s**2>=1.312</s**2>
Excited State 13: 132A ->141A 134A ->141A 137A ->139A 137A ->140A 137A ->140A 137A ->140A 134B ->140A 134B ->141B 136B ->140B 136B ->144B 137B ->139B 137B ->140B	3.353-A 0.12211 -0.12073 -0.11491 -0.47496 -0.13303 0.52062 -0.14776 0.32698 -0.11033 0.10413 -0.39532	3.2276 eV	384.13 nm	f=0.0066	<s**2>=2.561</s**2>
Excited State 14: 132A ->139A 134A ->139A 138A ->141A 136B ->141B 137B ->141B	2.772-A 0.14115 -0.14919 0.91029 0.10702 -0.16243	3.4475 eV	359.63 nm	f=0.0033	<s**2>=1.671</s**2>
Excited State 15: 131A ->139A 132A ->139A 132A ->140A 133A ->139A 134A ->139A 134A ->140A 137A ->141A 138A ->141A 138B ->141B 135B ->141B 136B ->141B 137B ->143B	3.322-A 0.14876 -0.17892 0.11879 0.14288 0.22533 -0.10350 -0.40257 -0.11104 -0.10309 -0.17308 -0.14152 0.55592 -0.42764 0.10422	3.6037 eV	344.05 nm	f=0.0013	<s**2>=2.508</s**2>
Excited State 16: 134A ->140A 136A ->139A 136A ->140A 137A ->143A 138A ->141A 138A ->142A 138A ->142A 138A ->143A 135B ->138B 135B ->140B 135B ->146B 135B ->147B	3.417-A 0.10338 -0.13640 -0.51663 -0.11501 -0.11123 0.23573 -0.20660 -0.21223 0.55357 0.15437 0.15208	3.6165 eV	342.83 nm	f=0.0015	<s**2>=2.669</s**2>

135B ->148B 136B ->140B 137B ->140B	-0.10252 0.15756 0.12395				
Excited State 17: 128A ->139A 131A ->139A 132A ->139A 133A ->139A 134A ->139A 135A ->139A 135A ->139A 137A ->141A 138A ->141A 134B ->139B 135B ->140B 136B ->140B 136B ->141B 137B ->141B	2.782-A -0.10010 0.27564 -0.41146 0.23063 0.49953 -0.11548 0.15363 0.30030 -0.16556 0.22478 0.11579 -0.17617 0.18807	3.6495 eV	339.73 nm	f=0.0016	<s**2>=1.686</s**2>
Excited State 18: 132A ->139A 134A ->139A 134A ->141A 136A ->141A 137A ->139A 137A ->140A 137A ->140A 137A ->142A 138A ->142A 138A ->142A 138A ->142A 138A ->143B 135B ->141B 135B ->141B 135B ->143B 136B ->140B 136B ->140B 136B ->146B 137B ->146B	$\begin{array}{c} 3.136\text{-A} \\ & -0.14641 \\ & 0.12833 \\ & -0.13960 \\ & 0.19866 \\ & 0.10807 \\ & 0.20205 \\ & -0.13347 \\ & 0.11961 \\ & 0.52365 \\ & 0.37702 \\ & -0.25630 \\ & 0.11889 \\ & -0.23212 \\ & 0.20667 \\ & -0.19610 \\ & -0.14767 \\ & 0.13755 \end{array}$	3.6914 eV	335.87 nm	f=0.0040	<s**2>=2.209</s**2>
Excited State 19: 131A ->139A 132A ->139A 133A ->139A 134A ->139A 137A ->140A 138A ->139A 135B ->141B 136B ->139B 137B ->139B	2.463-A 0.22401 0.30063 0.60196 -0.16010 0.34417 0.14724 -0.10270 0.21486 0.32787	3.8213 eV	324.46 nm	f=0.1117	<s**2>=1.266</s**2>
Excited State 20: 133A ->139A 134A ->141A 136A ->141A 138A ->142A 134B ->142B 135B ->144B 135B ->144B 135B ->144B 136B ->140B 136B ->140B 137B ->140B	3.283-A 0.10952 0.11911 -0.30969 0.46022 0.11016 0.62637 -0.10144 0.11041 -0.10779 0.20261 -0.24230	3.8935 eV	318.44 nm	f=0.0017	<s**2>=2.445</s**2>
Excited State 21: 136A ->140A 137A ->141A 137A ->143A 138A ->142A 138A ->143A 138A ->146A 135B ->140B 135B ->141B	2.893-A -0.29945 -0.10144 -0.15160 -0.34873 0.74639 -0.11113 0.12420 0.15448	3.9701 eV	312.29 nm	f=0.0057	<s**2>=1.843</s**2>

136B ->141B	0.11397				
Excited State 22: 121A ->139A 133A ->139A 137A ->139A 137A ->140A 137A ->142A 137A ->142A 137A ->143A 137A ->143A 137A ->143A 138A ->142A 138A ->142A 138B ->143B 135B ->141B 135B ->143B 135B ->145B 136B ->139B 136B ->140B 137B ->140B	2.695-A 0.10537 0.10210 -0.14690 -0.49303 0.31655 0.17416 0.11586 0.13869 0.20509 0.10905 0.15220 -0.12804 0.16233 -0.15174 0.53270	3.9857 eV	311.07 nm	f=0.0021	<s**2>=1.566</s**2>
Excited State 23: 135A ->139A 137A ->140A 137A ->142A 137A ->142A 137A ->143A 138A ->140A 138A ->144A 138A ->145A 135B ->140B 135B ->141B 135B ->143B 136B ->143B 136B ->144B 136B ->144B 136B ->144B 137B ->146B	$\begin{array}{r} 3.116\text{-A} \\ -0.15224 \\ 0.28464 \\ -0.22290 \\ -0.13912 \\ 0.13638 \\ -0.11731 \\ 0.37814 \\ -0.11458 \\ 0.25841 \\ -0.11734 \\ 0.10015 \\ 0.28584 \\ 0.11462 \\ 0.11935 \\ -0.27609 \\ 0.38299 \\ 0.20867 \\ 0.12624 \end{array}$	4.0754 eV	304.22 nm	f=0.0148	<s**2>=2.177</s**2>
Excited State 24: 133A ->139A 135A ->139A 137B ->140B	2.963-A 0.10447 0.94235 0.12651	4.1151 eV	301.29 nm	f=0.0234	<s**2>=1.944</s**2>
Excited State 25: 131A ->141A 132A ->141A 134A ->141A 135A ->139A 136A ->142A 136A ->142A 136A ->142A 137A ->140A 137A ->142A 137A ->142A 137A ->142A 138A ->142A 138A ->142A 138A ->142A 138A ->143A 138A ->145A 138B ->141B 135B ->141B 135B ->143B 136B ->140B 136B ->140B 136B ->140B 137B ->140B 137B ->146B	3.129-A 0.10233 -0.19165 0.16218 0.16118 -0.16976 0.17819 0.11353 0.15220 0.13467 0.42364 0.20563 0.26166 0.33277 -0.17109 -0.14409 0.17967 -0.12827 0.25467 -0.11295 0.13233 -0.10328 -0.10376	4.1369 eV	299.70 nm	f=0.0101	<s**2>=2.197</s**2>
Excited State 26: 136A ->140A 136A ->142A	2.767-A 0.32189 -0.13845	4.2253 eV	293.43 nm S-63	f=0.0001	<s**2>=1.664</s**2>

136A ->143A 137A ->141A 137A ->143A 138A ->145A 133B ->138B 134B ->138B 134B ->138B 134B ->140B 135B ->140B 135B ->140B 136B ->144B 136B ->143B 136B ->145B 137B ->143B	-0.12894 -0.30329 -0.10889 -0.12385 0.65635 0.12036 -0.19078 0.22893 -0.12388 -0.11551 0.11927 -0.10831 -0.15251				
Excited State 27: 136A ->140A 136A ->142A 136A ->143A 137A ->141A 137A ->143A 133B ->138B 134B ->140B 135B ->140B 135B ->141B 135B ->146B	2.711-A -0.30917 0.11726 0.13852 0.24204 0.11676 0.73925 0.12289 -0.25001 -0.10932 0.12890	4.2325 eV	292.93 nm	f=0.0000	<s**2>=1.588</s**2>
Excited State 28: 136A ->139A 136A ->140A 136A ->142A 137A ->141A 137A ->142A 137A ->142A 137A ->143A 134B ->140B 135B ->140B 135B ->142B 135B ->144B 135B ->146B 136B ->141B 137B ->141B	2.687-A 0.13382 0.24175 -0.10694 0.54342 0.11560 -0.21857 0.32044 0.28111 0.11709 -0.19086 -0.14901 0.33499 -0.27541	4.2458 eV	292.01 nm	f=0.0078	<s**2>=1.555</s**2>
Excited State 29: $136A \rightarrow 140A$ $136A \rightarrow 142A$ $137A \rightarrow 141A$ $137A \rightarrow 142A$ $137A \rightarrow 143A$ $138A \rightarrow 143A$ $138A \rightarrow 143A$ $138A \rightarrow 146A$ $134B \rightarrow 140B$ $135B \rightarrow 138B$ $135B \rightarrow 140B$ $135B \rightarrow 143B$ $136B \rightarrow 143B$ $136B \rightarrow 144B$ $136B \rightarrow 144B$ $136B \rightarrow 144B$ $136B \rightarrow 144B$ $137B \rightarrow 141B$ $137B \rightarrow 143B$ $137B \rightarrow 145B$	$\begin{array}{c} 3.044\text{-A} \\ 0.22173 \\ 0.12784 \\ -0.14681 \\ -0.14681 \\ -0.19216 \\ 0.19216 \\ 0.12846 \\ -0.10428 \\ 0.16550 \\ -0.10712 \\ 0.31439 \\ 0.16134 \\ -0.10138 \\ 0.21917 \\ -0.30299 \\ 0.13089 \\ 0.29827 \\ 0.25985 \\ 0.32569 \\ -0.27940 \end{array}$	4.3060 eV	287.94 nm	f=0.0017	<s**2>=2.066</s**2>
Excited State 30: 136A ->142A 136A ->143A 137A ->140A 137A ->141A 138A ->141A 138A ->145A 134B ->141B 135B ->140B 135B ->141B	3.229-A 0.19385 -0.29790 0.14431 0.14081 -0.29099 0.41174 -0.19609 0.10423	4.3530 eV	284.82 nm	f=0.0122	<s**2>=2.357</s**2>

135B ->143B 135B ->145B 136B ->140B 136B ->143B 136B ->143B 136B ->145B 137B ->140B 137B ->141B	0.38445 -0.19289 0.27922 0.18703 -0.12930 0.16404 -0.14960				
Excited State 31: 133A ->139A 136A ->141A 136A ->143A 137A ->140A 137A ->140A 137A ->142A 138A ->144A 138A ->144A 138A ->145A 123B ->138B 124B ->138B 124B ->138B 124B ->138B 135B ->141B 135B ->141B 135B ->145B 136B ->143B 136B ->142B 136B ->142B 136B ->144B 136B ->144B 136B ->144B 137B ->146B	3.049-A -0.11406 -0.13229 -0.20237 0.21484 0.14755 0.11489 -0.14151 0.45484 0.10489 0.12308 0.12901 0.19127 -0.20192 0.17320 -0.14573 -0.13309 0.10969 -0.10074 0.11492 0.17097 0.26067 -0.21181 -0.23016	4.3808 eV	283.01 nm	f=0.0015	<s**2>=2.074</s**2>
Excited State 32: $132A \rightarrow 141A$ $136A \rightarrow 141A$ $136A \rightarrow 143A$ $138A \rightarrow 145A$ $124B \rightarrow 138B$ $128B \rightarrow 138B$ $129B \rightarrow 138B$ $134B \rightarrow 141B$ $135B \rightarrow 141B$ $135B \rightarrow 140B$ $135B \rightarrow 143B$ $136B \rightarrow 138B$ $136B \rightarrow 138B$ $136B \rightarrow 139B$ $136B \rightarrow 140B$ $136B \rightarrow 140B$ $137B \rightarrow 142B$ $137B \rightarrow 144B$	$\begin{array}{c} 2.997\text{-A} \\ 0.14607 \\ -0.22869 \\ 0.19817 \\ -0.24335 \\ 0.12420 \\ 0.11929 \\ 0.17502 \\ -0.27104 \\ -0.20486 \\ -0.15038 \\ -0.19906 \\ 0.15146 \\ -0.12476 \\ -0.12251 \\ 0.28696 \\ 0.26908 \\ 0.37822 \\ 0.10149 \\ -0.18162 \end{array}$	4.4269 eV	280.07 nm	f=0.0060	<s**2>=1.995</s**2>
Excited State 33: 123A ->139A 128A ->139A 131A ->139A 132A ->139A 132A ->140A 134A ->139A 134A ->139A 136A ->140A 136A ->140A 137A ->141A 137A ->141A 137A ->141B	3.032-A 0.12933 0.11528 -0.19424 0.45487 -0.14159 0.68948 0.14154 0.11630 -0.13861 -0.11734 0.10032 -0.10278	4.4657 eV	277.64 nm	f=0.0018	<s**2>=2.049</s**2>
Excited State 34: 132A ->139A 134A ->139A	2.867-A -0.22352 -0.16931	4.5253 eV	273.98 nm	f=0.0003	<s**2>=1.805</s**2>

$134A \rightarrow 140A$ $136A \rightarrow 140A$ $136A \rightarrow 142A$ $137A \rightarrow 141A$ $137A \rightarrow 143A$ $132B \rightarrow 138B$ $134B \rightarrow 138B$ $134B \rightarrow 140B$ $134B \rightarrow 140B$ $135B \rightarrow 146B$ $135B \rightarrow 141B$ $135B \rightarrow 144B$ $135B \rightarrow 144B$ $136B \rightarrow 141B$ $137B \rightarrow 141B$	$\begin{array}{c} 0.12012\\ -0.10121\\ -0.12371\\ -0.22347\\ 0.15756\\ 0.60705\\ -0.16639\\ 0.32230\\ 0.10127\\ 0.12662\\ 0.10201\\ -0.16153\\ -0.14260\\ -0.15221\\ -0.22346\end{array}$				
Excited State 35: 136A ->141A 137A ->142A 137A ->143A 138A ->145A 132B ->138B 134B ->140B 136B ->141B 137B ->141B	2.782-A 0.21189 0.16191 -0.11437 -0.20971 0.56497 -0.14557 0.34176 0.49876	4.5733 eV	271.10 nm	f=0.0043	<s**2>=1.684</s**2>
Excited State 36: $132A \rightarrow 139A$ $132A \rightarrow 140A$ $133A \rightarrow 139A$ $134A \rightarrow 140A$ $134A \rightarrow 140A$ $134A \rightarrow 141A$ $136A \rightarrow 141A$ $137A \rightarrow 140A$ $137A \rightarrow 143A$ $137A \rightarrow 145A$ $138A \rightarrow 145A$ $138A \rightarrow 145A$ $132B \rightarrow 138B$ $134B \rightarrow 140B$ $134B \rightarrow 140B$ $134B \rightarrow 143B$ $135B \rightarrow 141B$ $135B \rightarrow 141B$ $136B \rightarrow 141B$ $136B \rightarrow 144B$ $137B \rightarrow 144B$ $137B \rightarrow 146B$	$\begin{array}{c} 2.922\text{-A} \\ 0.11489 \\ 0.19111 \\ 0.10174 \\ -0.15377 \\ 0.11650 \\ -0.25649 \\ -0.18683 \\ 0.12397 \\ -0.22325 \\ -0.14755 \\ -0.11801 \\ 0.33844 \\ 0.36137 \\ -0.30042 \\ -0.11957 \\ -0.15602 \\ 0.12912 \\ -0.18829 \\ -0.12642 \\ 0.23415 \\ -0.13842 \\ 0.14608 \end{array}$	4.6041 eV	269.29 nm	f=0.0060	<s**2>=1.885</s**2>
Excited State 37: 136A ->141A 137A ->142A 137A ->143A 137A ->145A 138A ->145A 135B ->141B 135B ->143B 136B ->143B 136B ->140B 136B ->140B 136B ->144B 136B ->144B 137B ->146B	2.933-A 0.57839 0.19265 0.19628 -0.28303 0.18627 0.19157 -0.13549 -0.19517 0.16245 -0.12613 0.12944 -0.23732 -0.13333 0.17137	4.6392 eV	267.25 nm	f=0.0050	<s**2>=1.901</s**2>
Excited State 38: 131A ->140A 132A ->140A 132A ->141A 133A ->139A	3.039-A -0.15173 0.13048 0.12732 -0.17845	4.6652 eV	265.76 nm	f=0.0028	<s**2>=2.058</s**2>

$\begin{array}{c} 133A -> 140A\\ 134A -> 140A\\ 134A -> 141A\\ 136A -> 141A\\ 136A -> 141A\\ 137A -> 140A\\ 137A -> 140A\\ 137A -> 142A\\ 137A -> 145A\\ 137A -> 145A\\ 138A -> 145A\\ 134B -> 140B\\ 134B -> 140B\\ 134B -> 141B\\ 135B -> 141B\\ 135B -> 146B\\ 136B -> 141B\\ 136B -> 141B\\ 136B -> 143B\\ 137B -> 143B\\ 137B -> 145B\\ 137B -> 146B\\ 137B -> 1$	$\begin{array}{c} -0.14803\\ -0.15395\\ -0.11709\\ 0.11180\\ 0.13040\\ 0.12421\\ 0.12722\\ 0.10860\\ -0.18994\\ -0.21099\\ -0.20546\\ 0.25809\\ -0.12728\\ -0.32465\\ -0.23409\\ -0.30910\\ 0.36595\\ -0.11989\\ -0.13980\end{array}$				
Excited State 39: $134A \rightarrow 142A$ $136A \rightarrow 140A$ $136A \rightarrow 141A$ $136A \rightarrow 142A$ $136A \rightarrow 142A$ $136A \rightarrow 142A$ $136A \rightarrow 142A$ $137A \rightarrow 142A$ $138A \rightarrow 146A$ $129B \rightarrow 138B$ $132B \rightarrow 138B$ $132B \rightarrow 141B$ $135B \rightarrow 144B$ $135B \rightarrow 141B$ $136B \rightarrow 141B$ $136B \rightarrow 141B$ $137B \rightarrow 144B$ $137B \rightarrow 144B$ $137B \rightarrow 144B$ $137B \rightarrow 144B$ $137B \rightarrow 144B$ $137B \rightarrow 145B$	$\begin{array}{r} 3.016\text{-A} \\ -0.10821 \\ 0.28918 \\ 0.18881 \\ 0.37923 \\ 0.21325 \\ 0.14183 \\ -0.37358 \\ 0.11233 \\ 0.22000 \\ 0.15328 \\ 0.16770 \\ 0.28240 \\ 0.11091 \\ -0.11341 \\ 0.10486 \\ -0.23449 \\ -0.21249 \\ 0.11631 \\ 0.10739 \end{array}$	4.7077 eV	263.37 nm	f=0.0052	<s**2>=2.024</s**2>
Excited State 40: $124A \rightarrow 139A$ $131A \rightarrow 139A$ $132A \rightarrow 139A$ $133A \rightarrow 140A$ $133A \rightarrow 140A$ $136A \rightarrow 142A$ $137A \rightarrow 142A$ $137A \rightarrow 142A$ $138B \rightarrow 138B$ $123B \rightarrow 138B$ $124B \rightarrow 138B$ $126B \rightarrow 138B$ $126B \rightarrow 138B$ $127B \rightarrow 138B$ $129B \rightarrow 138B$ $130B \rightarrow 138B$ $131B \rightarrow 138B$ $131B \rightarrow 138B$ $136B \rightarrow 140B$ $136B \rightarrow 140B$ $136B \rightarrow 144B$ $137B \rightarrow 142B$ $137B \rightarrow 144B$ $137B \rightarrow 146B$	$\begin{array}{c} 2.849\text{-A} \\ 0.14219 \\ 0.35657 \\ 0.16524 \\ -0.18964 \\ 0.13356 \\ -0.11435 \\ -0.19095 \\ 0.10333 \\ 0.12414 \\ 0.17195 \\ 0.21750 \\ 0.12643 \\ 0.13491 \\ 0.28190 \\ 0.41150 \\ -0.14622 \\ 0.15481 \\ 0.12554 \\ -0.19469 \\ -0.18135 \\ -0.14918 \\ -0.11342 \\ 0.16237 \\ 0.16468 \end{array}$	4.7211 eV	262.62 nm	f=0.0071	<s**2>=1.779</s**2>
Excited State 41: 124A ->139A 131A ->139A 132A ->139A	2.899-A 0.20744 0.51767 0.22098	4.7276 eV	262.26 nm	f=0.0044	<s**2>=1.851</s**2>

$133A ->139A \\ 137A ->143A \\ 123B ->138B \\ 124B ->138B \\ 124B ->138B \\ 128B ->138B \\ 129B ->138B \\ 136B ->140B \\ 136B ->144B \\ 137B ->139B \\ 137B ->142B \\ 137B ->143B \\ 137B ->144B \\ 137B ->144B \\ 137B ->146B \\ $	$\begin{array}{c} -0.41634\\ 0.17445\\ -0.10479\\ -0.11312\\ -0.16398\\ -0.24160\\ 0.16039\\ 0.14625\\ 0.11584\\ 0.10951\\ -0.12996\\ -0.22067\\ 0.12886\end{array}$				
Excited State 42: $131A \rightarrow 139A$ $133A \rightarrow 139A$ $137A \rightarrow 141A$ $137A \rightarrow 142A$ $137A \rightarrow 142A$ $137A \rightarrow 143A$ $138A \rightarrow 146A$ $132B \rightarrow 138B$ $134B \rightarrow 140B$ $134B \rightarrow 140B$ $134B \rightarrow 146B$ $134B \rightarrow 146B$ $135B \rightarrow 140B$ $135B \rightarrow 144B$ $136B \rightarrow 143B$ $137B \rightarrow 143B$	2.767-A -0.17698 0.11102 0.26622 -0.37399 0.51497 -0.20377 0.13104 0.10890 -0.34649 -0.18953 -0.10650 0.13686 -0.12189 0.11372 -0.11849 -0.21066	4.7610 eV	260.42 nm	f=0.0047	<\$**2>=1.664
Excited State 43: 138A ->146A 128B ->138B 129B ->138B 131B ->138B 132B ->138B 135B ->146B 136B ->145B 137B ->143B 137B ->145B	2.558-A 0.31200 -0.10938 -0.13816 0.81974 0.16885 0.10265 0.10027 -0.10054 -0.11839	4.8167 eV	257.40 nm	f=0.0004	<s**2>=1.386</s**2>
Excited State 44: 138A ->146A 131B ->138B 134B ->146B 135B ->144B 135B ->146B 136B ->145B 136B ->145B 137B ->141B 137B ->143B 137B ->145B	2.893-A 0.53515 -0.46860 -0.17984 0.14905 0.21645 0.22615 -0.16267 -0.24314 -0.23984	4.8315 eV	256.62 nm	f=0.0011	<s**2>=1.842</s**2>
Excited State 45: 121A ->139A 122A ->139A 123A ->139A 125A ->139A 126A ->139A 126A ->139A 130A ->139A 131A ->140A 132A ->140A 133A ->140A 133A ->140A 137A ->142A 137A ->145A 136B ->139B 136B ->140B 136B ->144B	$\begin{array}{r} 2.776\text{-A} \\ -0.27738 \\ -0.32302 \\ 0.17536 \\ 0.37453 \\ -0.22460 \\ -0.36614 \\ 0.14316 \\ -0.17705 \\ -0.15859 \\ -0.15859 \\ -0.15884 \\ -0.32277 \\ -0.12856 \\ -0.10444 \\ 0.13114 \\ -0.12090 \\ -0.10307 \end{array}$	4.8598 eV	255.12 nm	f=0.0039	<s**2>=1.677</s**2>

136B ->146B	0.21567				
Excited State 46: 122A ->139A 125A ->139A 127A ->139A 131A ->139A 132A ->140A 133A ->140A 134A ->140A 136A ->141A 136A ->142A 137A ->142A 137A ->142A 137A ->143A 138A ->140B 135B ->140B 135B ->140B 135B ->144B 136B ->144B 137B ->143B 137B ->144B	$\begin{array}{c} 2.854\text{-A} \\ -0.11361 \\ 0.14180 \\ -0.14476 \\ 0.10008 \\ 0.25261 \\ 0.22450 \\ -0.14823 \\ -0.12420 \\ -0.13439 \\ 0.18468 \\ 0.21175 \\ -0.19431 \\ 0.17193 \\ -0.15444 \\ 0.36389 \\ -0.25871 \\ 0.11980 \\ 0.14266 \\ -0.12037 \\ 0.34340 \end{array}$	4.9094 eV	252.55 nm	f=0.0077	<s**2>=1.786</s**2>
Excited State 47: 125A ->139A 127A ->139A 131A ->139A 131A ->140A 133A ->140A 136A ->141A 136A ->143A 138A ->146A 128B ->138B 129B ->138B 134B ->140B 134B ->143B 135B ->144B 135B ->144B 136B ->146B 137B ->146B	$\begin{array}{c} 2.675\text{-}\text{A} \\ 0.11077 \\ -0.13350 \\ 0.18854 \\ 0.33381 \\ 0.53095 \\ 0.12837 \\ 0.27584 \\ 0.20882 \\ -0.10832 \\ -0.12039 \\ -0.12039 \\ -0.17051 \\ 0.11004 \\ 0.10596 \\ -0.19998 \\ 0.11896 \\ 0.15815 \\ -0.19581 \end{array}$	4.9269 eV	251.65 nm	f=0.0041	<s**2>=1.539</s**2>
Excited State 48: 132A ->140A 132A ->141A 134A ->140A 136A ->141A 136A ->142A 136A ->142A 137A ->142A 137A ->142A 137A ->143A 138A ->146A 134B ->140B 135B ->144B 135B ->144B 135B ->144B 136B ->144B 136B ->144B 136B ->144B 137B ->144B 137B ->144B 137B ->146B	$\begin{array}{c} 2.565\text{-A} \\ -0.15457 \\ 0.14125 \\ 0.12753 \\ -0.29587 \\ 0.20759 \\ -0.12183 \\ 0.44237 \\ 0.30844 \\ 0.17687 \\ -0.15313 \\ -0.17122 \\ -0.20820 \\ 0.11698 \\ 0.10921 \\ -0.11488 \\ -0.12042 \\ -0.16945 \\ 0.27683 \\ 0.14132 \end{array}$	4.9565 eV	250.15 nm	f=0.0087	<s**2>=1.395</s**2>
Excited State 49: 133B ->139B	2.781-A 0.97296	4.9800 eV	248.96 nm	f=0.0091	<s**2>=1.684</s**2>
Excited State 50: 126B ->138B 128B ->138B 129B ->138B	2.470-A 0.15335 -0.15602 0.32961	5.0063 eV	247.66 nm	f=0.0004	<s**2>=1.276</s**2>

130B ->138B	0.91370				
Excited State 51: 132A ->139A 132A ->140A 134A ->140A 136A ->142A 136A ->143A 138A ->144A 138A ->146A 127B ->138B 128B ->138B 129B ->138B 130B ->138B 134B ->140B 135B ->146B	2.711-A -0.10905 -0.23276 0.20871 0.19882 0.12457 -0.20476 0.21714 -0.10896 0.56826 -0.24801 0.19400 -0.14861 0.18718 -0.27996	5.0407 eV	245.97 nm	f=0.0011	<s**2>=1.587</s**2>
Excited State 52: $132A \rightarrow 139A$ $132A \rightarrow 140A$ $134A \rightarrow 140A$ $138A \rightarrow 144A$ $138A \rightarrow 146A$ $127B \rightarrow 138B$ $128B \rightarrow 138B$ $129B \rightarrow 138B$ $130B \rightarrow 138B$ $134B \rightarrow 140B$ $135B \rightarrow 144B$ $135B \rightarrow 144B$ $136B \rightarrow 144B$	$\begin{array}{c} 2.669\text{-A} \\ 0.13161 \\ 0.24856 \\ -0.22151 \\ 0.19367 \\ -0.13370 \\ -0.10428 \\ 0.60107 \\ -0.29166 \\ 0.19542 \\ 0.12095 \\ 0.10487 \\ -0.22804 \\ 0.25799 \\ -0.14334 \end{array}$	5.0457 eV	245.72 nm	f=0.0002	<s**2>=1.531</s**2>
Excited State 53: 131A ->140A 132A ->139A 132A ->140A 134A ->140A 136A ->142A 137A ->143A 138A ->144A 138A ->144A 138A ->144B 135B ->144B 136B ->145B 137B ->144B 137B ->145B	2.730-A 0.11024 -0.11611 -0.20034 0.20734 -0.11459 -0.13312 0.73117 0.21976 -0.11574 0.13165 0.13044 -0.14973 -0.26876	5.0684 eV	244.62 nm	f=0.0064	<s**2>=1.613</s**2>
Excited State 54: 130A ->139A 132A ->140A 132A ->141A 133A ->141A 133A ->141A 134A ->140A 136A ->142A 136A ->143A 137A ->143A 137A ->145A 138A ->144A 138A ->146A 128B ->138B 136B ->146B 136B ->144B 136B ->144B 136B ->144B 136B ->144B 137B ->142B 137B ->144B 137B ->144B 137B ->146B	$\begin{array}{c} 2.668\text{-A} \\ 0.18270 \\ 0.16603 \\ -0.12856 \\ -0.19300 \\ -0.15268 \\ 0.40242 \\ 0.16619 \\ 0.10467 \\ 0.17856 \\ 0.27147 \\ 0.31886 \\ -0.10624 \\ -0.19297 \\ -0.12406 \\ -0.17803 \\ -0.11815 \\ -0.15349 \\ 0.14122 \\ -0.23595 \\ 0.23053 \\ -0.12797 \end{array}$	5.0804 eV	244.04 nm	f=0.0017	<s**2>=1.529</s**2>

Excited State 55: 130A ->139A 136A ->143A 137A ->142A 137A ->145A 138A ->145A 138A ->145A 138A ->145A 138B ->146A 136B ->144B 136B ->145B 136B ->146B 137B ->142B 137B ->144B 137B ->145B	$\begin{array}{c} 2.876\text{-A} \\ 0.48725 \\ -0.15402 \\ 0.14930 \\ 0.26520 \\ -0.41159 \\ -0.14585 \\ -0.19023 \\ -0.18649 \\ 0.10502 \\ -0.12283 \\ 0.28524 \\ -0.27567 \\ -0.18224 \end{array}$	5.0884 eV	243.66 nm	f=0.0041	<s**2>=1.818</s**2>
Excited State 56: 125B ->138B 127B ->138B 129B ->138B 130B ->138B	2.475-A -0.10458 0.93319 -0.26964 0.11050	5.0949 eV	243.35 nm	f=0.0001	<s**2>=1.281</s**2>
Excited State 57: 121A ->139A 125A ->139A 128A ->139A 130A ->139A 137A ->142A 137A ->145A 138A ->144A 136B ->144B 136B ->146B 137B ->142B 137B ->145B	2.903-A 0.15065 -0.16905 0.16485 0.77976 -0.14022 -0.10540 0.12095 0.19580 0.11585 -0.18984 0.19594 0.16069	5.1086 eV	242.70 nm	f=0.0018	<s**2>=1.857</s**2>
Excited State 58: 120A ->139A 125A ->139A 128A ->139A 129A >139A	2.952-A 0.10655 0.16787 0.63691	5.1448 eV	240.99 nm	f=0.0013	<s**2>=1.928</s**2>
$\begin{array}{c} 129A > 139A \\ 130A > 139A \\ 131A > 139A \\ 132A > 139A \\ 136A > 143A \\ 136A > 143A \\ 135B > 143B \\ 135B > 146B \\ 135B > 146B \\ 136B > 143B \\ 136B > 145B \\ 137B > 143B \\ 137B > 145B \\ 137B > 145B \\ 137B > 149B \end{array}$	$\begin{array}{c} 0.16295\\ -0.16072\\ 0.10324\\ -0.20430\\ -0.10578\\ -0.10495\\ 0.12340\\ 0.10169\\ -0.30714\\ 0.11342\\ -0.13307\\ 0.34833\\ 0.10201 \end{array}$				

Excited State 60: $128A \rightarrow 139A$ $137A \rightarrow 143A$ $125B \rightarrow 138B$ $126B \rightarrow 138B$ $128B \rightarrow 138B$ $129B \rightarrow 138B$ $135B \rightarrow 143B$ $135B \rightarrow 144B$ $135B \rightarrow 144B$ $136B \rightarrow 144B$ $136B \rightarrow 144B$ $136B \rightarrow 144B$ $137B \rightarrow 144B$ $137B \rightarrow 144B$	2.726-A 0.21558 0.11529 0.43728 -0.40140 0.13159 0.17975 -0.11226 0.19539 0.10113 0.36949 -0.10217 -0.20608 0.33744 -0.15139	5.1883 eV	238.97 nm	f=0.0047	<s**2>=1.608</s**2>
Excited State 61: 137A ->145A 123B ->139B 124B ->139B 125B ->138B 126B ->138B 126B ->138B 128B ->139B 129B ->139B 135B ->145B 136B ->144B 137B ->142B 137B ->143B	2.650-A 0.25737 0.12168 0.14270 0.69285 0.13137 0.14330 0.21450 -0.10446 -0.13313 0.13729 -0.28571 -0.10480	5.1924 eV	238.78 nm	f=0.0012	<s**2>=1.505</s**2>
Excited State 62: 128A ->139A 129A ->139A 136A ->142A 136A ->143A 137A ->145A 137A ->146A 125B ->138B 126B ->138B 128B ->138B 135B ->144B 136B ->143B 137B ->142B 137B ->145B	$\begin{array}{c} 2.754\text{-A} \\ 0.33988 \\ 0.23110 \\ 0.14669 \\ 0.15290 \\ -0.17425 \\ -0.14731 \\ 0.27403 \\ 0.48227 \\ -0.12985 \\ -0.19347 \\ 0.12457 \\ 0.24431 \\ 0.15126 \\ -0.25663 \end{array}$	5.2024 eV	238.32 nm	f=0.0167	<s**2>=1.646</s**2>
Excited State 63: 128A ->139A 129A ->139A 132A ->141A 136A ->142A 137A ->145A 123B ->139B 124B ->139B 125B ->138B 126B ->138B 126B ->138B 128B ->139B 134B ->144B 135B ->144B 135B ->144B 137B ->144B 137B ->144B 137B ->145B	$\begin{array}{c} 2.783\text{-A} \\ -0.30864 \\ -0.18318 \\ 0.10137 \\ -0.16946 \\ -0.17387 \\ -0.11444 \\ -0.12498 \\ 0.33268 \\ 0.41216 \\ -0.11599 \\ -0.19703 \\ 0.10986 \\ 0.11219 \\ 0.23061 \\ -0.12877 \\ 0.17680 \\ -0.12757 \\ 0.26018 \end{array}$	5.2080 eV	238.06 nm	f=0.0088	<s**2>=1.686</s**2>
Excited State 64: 129A ->139A 131A ->141A 133A ->141A 137A ->146A	2.824-A -0.11276 0.10280 0.12579 0.12382	5.2260 eV	237.25 nm 8-72	f=0.0078	<s**2>=1.743</s**2>
124B ->139B 129B ->139B 136B ->144B 136B ->145B 137B ->142B 137B ->142B 137B ->143B 137B ->144B 137B ->147B	$\begin{array}{c} 0.10034\\ 0.13309\\ 0.12468\\ -0.13360\\ 0.69932\\ 0.18689\\ 0.42171\\ -0.12755\end{array}$				
---	--	-----------	-----------	----------	---------------------
Excited State 65: 126A ->139A 127A ->139A 128A ->139A 129A ->139A 131A ->139A	2.889-A -0.14944 0.20878 -0.34819 0.85115 0.10586	5.2349 eV	236.84 nm	f=0.0027	<s**2>=1.836</s**2>
Excited State 66: 127A ->139A 129A ->139A 132A ->142A 132A ->142A 132A ->143A 136A ->142A 137A ->145A 137A ->146A 132B ->139B 134B ->138B 134B ->139B 134B ->142B 134B ->144B 134B ->144B 134B ->145B 135B ->146B 137B ->145B 137B ->146B	3.009-A 0.11249 -0.18605 0.11537 0.11113 -0.1271 -0.19104 0.18444 -0.37401 -0.11619 0.18551 -0.10767 0.18701 0.41311 0.13120 0.17760 0.14213 -0.16077 -0.21121 -0.24404	5.2861 eV	234.55 nm	f=0.0068	<s**2>=2.013</s**2>
Excited State 67: 127A ->139A 128A ->139A 131A ->141A 132A ->141A 133A ->141A 136A ->143A 132B ->139B 134B ->139B 134B ->141B 134B ->144B 134B ->144B 134B ->144B 134B ->145B 135B ->146B	2.784-A 0.12261 0.10313 -0.13943 -0.20626 -0.29434 -0.11908 0.66290 -0.15032 -0.10297 -0.11293 0.32383 0.10811 0.12660 -0.17713	5.3025 eV	233.82 nm	f=0.0026	<s**2>=1.688</s**2>
Excited State 68: 127A ->139A 131A ->141A 132A ->142A 133A ->141A 136A ->141A 136A ->141A 136A ->142A 137A ->145A 134B ->142B 134B ->142B 134B ->142B 134B ->144B 134B ->144B 135B ->144B 135B ->145B	3.002-A -0.13714 -0.19140 0.11030 -0.29449 -0.11494 -0.17420 0.15570 0.13317 -0.13908 0.31000 0.23251 -0.31661 0.24007 0.10992 -0.10400 -0.25156	5.3074 eV	233.61 nm	f=0.0068	<s**2>=2.003</s**2>

136B ->144B 136B ->145B 136B ->146B 137B ->145B 137B ->146B	0.11154 -0.12805 0.11175 -0.10009 0.35883				
Excited State 69: 124A ->139A 125A ->139A 126A ->139A 127A ->139A 129A ->139A 131A ->139A 134B ->143B 134B ->145B	2.915-A -0.12128 0.30614 -0.33334 0.76148 -0.24978 0.10566 0.12073 -0.11394	5.3274 eV	232.73 nm	f=0.0150	<s**2>=1.874</s**2>
Excited State 70: 125A ->139A 126A ->139A 131A ->141A 132A ->141A 132A ->142A 132A ->142A 132A ->143A 133A ->141A 134A ->142A 136A ->141A 137A ->145A 132B ->139B 134B ->144B 134B ->144B 134B ->144B 135B ->144B 135B ->144B 135B ->144B 136B ->146B 137B ->146B	3.042-A 0.17169 0.40760 0.11428 0.14590 0.12083 -0.11920 0.23219 -0.13226 -0.14880 -0.11374 0.34266 0.10396 0.43734 -0.13413 -0.20037 0.10675 0.10603 -0.17667 -0.16504	5.3658 eV	231.06 nm	f=0.0031	<s**2>=2.064</s**2>
Excited State 71: 125A ->139A 126A ->139A 127A ->139A 128A ->139A 132B ->139B 134B ->143B 135B ->145B	2.943-A 0.55331 0.62835 0.12454 -0.22146 -0.13031 -0.24607 -0.12753	5.3690 eV	230.92 nm	f=0.0002	<s**2>=1.915</s**2>
Excited State 72: 126A ->139A 131A ->141A 133A ->141A 133A ->143A 134A ->143A 134A ->143A 137A ->146A 123B ->139B 124B ->139B 124B ->139B 129B ->139B 132B ->139B 132B ->139B 134B ->143B 135B ->143B 136B ->144B 136B ->144B 136B ->144B 137B ->145B 137B ->145B	$\begin{array}{c} 2.948\text{-A} \\ 0.26028 \\ -0.12531 \\ -0.20830 \\ 0.10038 \\ 0.10959 \\ -0.17731 \\ 0.13081 \\ 0.12077 \\ 0.14208 \\ 0.22110 \\ -0.32342 \\ 0.18333 \\ -0.17896 \\ 0.17753 \\ 0.3937 \\ 0.19536 \\ -0.12422 \\ 0.30137 \\ 0.17078 \\ 0.18907 \end{array}$	5.3748 eV	230.68 nm	f=0.0049	<s**2>=1.922</s**2>
Excited State 73: 124A ->139A 125A ->139A	2.776-A -0.10412 -0.16218	5.4192 eV	228.79 nm	f=0.0041	<s**2>=1.676</s**2>

$\begin{array}{c} 131A & ->141A\\ 132A & ->140A\\ 132A & ->141A\\ 132A & ->142A\\ 133A & ->140A\\ 133A & ->141A\\ 133A & ->142A\\ 134A & ->142A\\ 134A & ->142A\\ 136A & ->142A\\ 136A & ->142A\\ 136A & ->142A\\ 136A & ->143A\\ 137A & ->145A\\ 124B & ->139B\\ 128B & ->139B\\ 128B & ->139B\\ 128B & ->139B\\ 134B & ->144B\\ 134B & ->144B\\ 134B & ->144B\\ 135B & ->144B\\ 135B & ->145B\\ 135B & ->145B\\ 136B & ->145B\\ 136B & ->145B\\ 136B & ->146B\\ 136B & ->145B\\ 136B & ->146B\\ 136B & ->145B\\ 137B & ->146B\\ 137B & ->146B\\ \end{array}$	$\begin{array}{c} -0.14672\\ -0.10015\\ 0.10827\\ -0.15130\\ -0.16592\\ -0.15409\\ -0.16949\\ -0.13280\\ 0.13163\\ -0.25046\\ 0.30613\\ -0.25046\\ 0.30613\\ -0.16653\\ 0.11136\\ 0.11813\\ 0.17063\\ 0.15504\\ -0.11865\\ -0.16416\\ 0.14211\\ -0.29471\\ 0.13874\\ -0.17245\\ -0.30606\\ -0.24083\end{array}$				
Excited State 74: $132A \rightarrow 141A$ $134A \rightarrow 141A$ $134A \rightarrow 141A$ $134A \rightarrow 143A$ $136A \rightarrow 143A$ $123B \rightarrow 138B$ $124B \rightarrow 138B$ $126B \rightarrow 138B$ $128B \rightarrow 138B$ $128B \rightarrow 138B$ $129B \rightarrow 138B$ $129B \rightarrow 139B$ $132B \rightarrow 139B$ $132B \rightarrow 139B$ $134B \rightarrow 145B$ $134B \rightarrow 146B$ $136B \rightarrow 144B$ $136B \rightarrow 146B$ $136B \rightarrow 146B$ $136B \rightarrow 146B$ $137B \rightarrow 146B$	$\begin{array}{c} 2.732\text{-}\text{A} \\ 0.20580 \\ -0.15952 \\ -0.10737 \\ 0.16369 \\ 0.21971 \\ 0.37971 \\ -0.17818 \\ -0.13598 \\ 0.11651 \\ -0.22737 \\ 0.18315 \\ 0.15948 \\ -0.18012 \\ 0.16527 \\ 0.20200 \\ -0.21659 \\ -0.13617 \\ 0.11091 \\ 0.25502 \\ 0.30481 \end{array}$	5.4389 eV	227.96 nm	f=0.0012	<s**2>=1.616</s**2>
Excited State 75: 124A ->139A 132A ->141A 136A ->143A 136A ->145A 123B ->138B 124B ->138B 126B ->138B 126B ->138B 134B ->143B 134B ->146B 135B ->145B 136B ->142B 136B ->145B 137B ->145B 137B ->149B	$\begin{array}{r} 2.794\text{-}A \\ -0.14758 \\ 0.11177 \\ 0.17852 \\ -0.12737 \\ -0.23887 \\ -0.37007 \\ 0.14416 \\ 0.21328 \\ -0.17771 \\ 0.19694 \\ -0.22281 \\ -0.11208 \\ 0.32632 \\ 0.41613 \\ 0.22425 \\ 0.12549 \end{array}$	5.4611 eV	227.03 nm	f=0.0022	<s**2>=1.702</s**2>
Excited State 76: 123A ->139A 124A ->139A 131A ->139A 123B ->138B 123B ->139B	2.736-A -0.13285 0.53506 -0.20705 -0.24054 0.14589	5.4921 eV	225.75 nm	f=0.0013	<s**2>=1.621</s**2>

$124B \rightarrow 138B$ $126B \rightarrow 138B$ $128B \rightarrow 139B$ $129B \rightarrow 139B$ $131B \rightarrow 139B$ $135B \rightarrow 143B$ $135B \rightarrow 145B$ $135B \rightarrow 146B$ $136B \rightarrow 145B$ $136B \rightarrow 146B$	$\begin{array}{c} -0.36299\\ 0.11696\\ 0.12702\\ 0.15803\\ 0.21187\\ -0.28738\\ 0.15190\\ 0.16418\\ -0.10615\\ -0.12342\\ -0.11648\\ 0.16412\end{array}$				
Excited State 77: 123A $>$ 139A 124A $>$ 139A 125A $>$ 139A 125A $>$ 139A 126A $>$ 139A 131A $>$ 139A 133A $>$ 142A 123B $>$ 138B 124B $>$ 138B 131B $>$ 139B 135B $>$ 145B 135B $>$ 146B 136B $>$ 145B 136B $>$ 145B 136B $>$ 145B 137B $>$ 145B 137B $>$ 145B 137B $>$ 146B	$\begin{array}{c} 2.904\text{-}A \\ -0.10955 \\ 0.50603 \\ 0.16932 \\ -0.14627 \\ -0.15145 \\ -0.12812 \\ 0.16530 \\ 0.22829 \\ -0.22934 \\ -0.22934 \\ -0.22993 \\ 0.15859 \\ 0.18923 \\ 0.18887 \\ -0.29888 \\ 0.10441 \\ 0.14960 \\ -0.29783 \end{array}$	5.5056 eV	225.20 nm	f=0.0022	<s**2>=1.858</s**2>
Excited State 78: 121A ->139A 122A ->139A 123A ->139A 125A ->139A 126A ->139A 126A ->139A 137A ->142A 136A ->146A 137A ->145A 124B ->138B 131B ->139B 134B ->143B 135B ->143B 135B ->144B 135B ->144B	2.907-A 0.21802 0.37469 -0.13304 0.35488 -0.25177 -0.18257 -0.13768 -0.18118 0.13208 0.13316 0.30389 -0.10027 -0.12330 0.30578 0.26676 0.11723	5.5909 eV	221.76 nm	f=0.0058	<s**2>=1.863</s**2>
Excited State 79: 134A ->145A 136A ->140A 136A ->144A 136A ->145A 137A ->146A 135B ->144B 135B ->146B 136B ->145B	2.779-A -0.19931 0.12961 -0.24377 0.83735 0.13687 0.13055 -0.11341 0.17900	5.6205 eV	220.59 nm	f=0.0002	<s**2>=1.681</s**2>
Excited State 80: 121A ->139A 122A ->139A 125A ->139A 131A ->143A 133A ->143A 122B ->138B 123B ->138B 124B ->138B 134B ->144B	2.606-A 0.10326 0.17183 0.11805 -0.11736 -0.17470 0.25448 0.66154 -0.48813 0.19476	5.6276 eV	220.31 nm	f=0.0007	<s**2>=1.447</s**2>

Excited State 81: $122A \rightarrow 139A$ $131A \rightarrow 143A$ $132A \rightarrow 142A$ $133A \rightarrow 141A$ $133A \rightarrow 142A$ $133A \rightarrow 142A$ $133A \rightarrow 143A$ $137A \rightarrow 146A$ $123B \rightarrow 138B$ $124B \rightarrow 138B$ $132B \rightarrow 139B$ $134B \rightarrow 139B$ $134B \rightarrow 142B$ $134B \rightarrow 144B$ $134B \rightarrow 146B$ $137B \rightarrow 145B$	2.900-A 0.10987 -0.20548 0.15785 0.18626 0.17019 -0.32901 -0.23233 -0.30944 0.21030 -0.12391 -0.12933 -0.14630 0.51379 -0.18628 0.10566	5.6352 eV	220.02 nm	f=0.0029	<s**2>=1.852</s**2>
Excited State 82: $122A \rightarrow 139A$ $124A \rightarrow 139A$ $131A \rightarrow 143A$ $133A \rightarrow 142A$ $133A \rightarrow 142A$ $136A \rightarrow 146A$ $137A \rightarrow 145A$ $131B \rightarrow 139B$ $134B \rightarrow 145B$ $135B \rightarrow 143B$ $135B \rightarrow 145B$ $135B \rightarrow 145B$ $136B \rightarrow 144B$ $136B \rightarrow 146B$	$\begin{array}{c} 2.887\text{-}\text{A} \\ 0.18480 \\ 0.29883 \\ 0.12238 \\ 0.17598 \\ 0.18840 \\ 0.18724 \\ -0.20115 \\ 0.61132 \\ 0.10964 \\ 0.15289 \\ -0.22979 \\ -0.19830 \\ -0.17508 \\ 0.10566 \end{array}$	5.6543 eV	219.27 nm	f=0.0067	<s**2>=1.834</s**2>
Excited State 83: 121A $>$ 139A 122A $>$ 139A 124A $>$ 139A 125A $>$ 139A 131A $>$ 142A 131A $>$ 142A 131A $>$ 142A 132A $>$ 141A 132A $>$ 142A 133A $>$ 142A 133A $>$ 142A 133A $>$ 142A 133A $>$ 142A 134A $>$ 141A 134A $>$ 142A 136A $>$ 143A 137A $>$ 145A 123B $>$ 138B 129B $>$ 139B 131B $>$ 139B 134B $>$ 143B 134B $>$ 145B 135B $>$ 145B 135B $>$ 146B	$\begin{array}{c} 2.653\text{-}\text{A} \\ 0.14447 \\ 0.29241 \\ -0.16249 \\ 0.14068 \\ -0.11443 \\ -0.14222 \\ -0.17742 \\ -0.26883 \\ -0.28505 \\ -0.15051 \\ 0.16597 \\ 0.13594 \\ -0.10266 \\ 0.10923 \\ -0.21751 \\ -0.16641 \\ 0.10332 \\ -0.26627 \\ 0.26255 \\ 0.10785 \\ -0.23142 \\ -0.10484 \\ 0.19960 \end{array}$	5.6735 eV	218.53 nm	f=0.0114	<s**2>=1.509</s**2>
Excited State 84: 121A ->139A 122A ->139A 123A ->139A 124A ->139A 125A ->139A 131A ->142A 131A ->142A 132A ->141A 132A ->142A 133A ->142A 133A ->143A 134A ->141A	2.772-A -0.13165 -0.34469 0.15827 0.32670 -0.14678 -0.19621 -0.11782 -0.25167 -0.28983 -0.24446 0.12260	5.7039 eV	217.37 nm	f=0.0003	<s**2>=1.671</s**2>

134A ->142A 134A ->143A 131B ->139B 134B ->143B 137B ->146B	0.12939 -0.13597 0.44876 0.10254 0.12107				
Excited State 85: 135A ->140A 137B ->149B	3.124-A 0.94000 -0.12136	5.7503 eV	215.62 nm	f=0.0005	<s**2>=2.190</s**2>
Excited State 86: 122A ->139A 123A ->139A 133A ->143A 135A ->140A 138A ->147A 138A ->150A 122B ->138B 123B ->138B 136B ->142B 137B ->145B 137B ->147B 137B ->149B 137B ->150B	3.046-A -0.16741 -0.34312 -0.10065 -0.17295 -0.22752 0.13115 -0.21199 0.11796 -0.45809 0.11277 0.47570 -0.26676 -0.10843	5.7745 eV	214.71 nm	f=0.0010	<s**2>=2.070</s**2>
Excited State 87: 123A ->139A 137A ->146A 122B ->138B 123B ->138B 124B ->138B 136B ->142B	2.455-A -0.18192 0.12936 0.90045 -0.21885 0.16206 -0.12546	5.7887 eV	214.18 nm	f=0.0003	<s**2>=1.256</s**2>
Excited State 88: 122A ->139A 123A ->139A 124A ->139A 138A ->147A 122B ->138B 136B ->142B 137B ->147B 137B ->149B	2.987-A 0.29732 0.68740 0.14246 -0.13321 0.12638 -0.42302 0.26462 0.14714	5.7997 eV	213.78 nm	f=0.0010	<s**2>=1.980</s**2>
Excited State 89: 131A ->142A 132A ->142A 132A ->143A 133A ->141A 133A ->142A 133A ->142A 133A ->143A 134A ->142A 134A ->143A 137A ->146A 122B ->138B 136B ->145B	2.847-A 0.19166 -0.18160 -0.20340 -0.14493 0.18496 -0.18434 0.20471 0.11477 0.73149 -0.12600 0.11858	5.8268 eV	212.78 nm	f=0.0094	<s**2>=1.776</s**2>
Excited State 90: 126B ->139B 129B ->139B 130B ->139B	2.863-A 0.14521 0.22092 0.93983	5.8281 eV	212.74 nm	f=0.0001	<s**2>=1.799</s**2>
Excited State 91: 122A ->139A 123A ->139A 131A ->143A 132A ->142A 133A ->141A 133A ->142A 133A ->142A 133A ->143A 134A ->142A 135A ->140A	2.969-A -0.13274 -0.26268 0.17402 -0.17188 0.16291 -0.10600 0.24478 0.10799 0.13910	5.8335 eV	212.54 nm	f=0.0009	<s**2>=1.954</s**2>

138A ->148A 138A ->149A 138A ->150A 130B ->139B 134B ->142B 134B ->142B 136B ->142B 136B ->142B 136B ->145B 137B ->145B 137B ->145B 137B ->148B 137B ->149B 137B ->150B	$\begin{array}{c} 0.10229\\ 0.21979\\ -0.25348\\ -0.16120\\ -0.10097\\ 0.24858\\ -0.33314\\ -0.17953\\ -0.12583\\ -0.1195\\ 0.38035\\ 0.14660\end{array}$				
Excited State 92: 123A ->139A 131A ->143A 132A ->142A 133A ->141A 133A ->143A 134A ->142A 134A ->142A 134B ->144B 135B ->142B 136B ->142B 136B ->142B 136B ->143B 136B ->144B 137B ->147B 137B ->148B 137B ->149B	2.969-A 0.11994 0.10363 -0.17726 0.14350 0.18110 0.12926 -0.39742 0.18024 0.26841 0.49516 0.11878 0.16540 0.37952 -0.11899 -0.12749	5.8764 eV	210.99 nm	f=0.0005	<s**2>=1.954</s**2>
Excited State 93: 125B ->139B 127B ->139B 128B ->139B 129B ->139B 130B ->139B	2.861-A 0.14100 -0.17605 0.84779 -0.40860 0.11578	5.8800 eV	210.86 nm	f=0.0001	<s**2>=1.797</s**2>
Excited State 94: 122A ->139A 123A ->139A 131A ->143A 132A ->141A 132A ->142A 133A ->142A 133A ->142A 133A ->142A 133A ->142A 133A ->142A 134A ->142A 138A ->147A 138A ->147A 138A ->148A 138A ->149A 138A ->150A 134B ->144B 136B ->142B 137B ->145B 137B ->149B 137B ->149B 137B ->150B	$\begin{array}{r} 2.886\text{-A} \\ -0.10767 \\ -0.16586 \\ -0.18375 \\ -0.12060 \\ 0.17619 \\ -0.16773 \\ 0.13856 \\ -0.27135 \\ -0.11086 \\ -0.42062 \\ 0.12463 \\ 0.11163 \\ -0.10864 \\ -0.23780 \\ 0.19486 \\ -0.13136 \\ -0.20083 \\ 0.44570 \\ 0.15887 \end{array}$	5.9017 eV	210.08 nm	f=0.0022	<s**2>=1.833</s**2>
Excited State 95: 132A ->143A 133A ->142A 134A ->143A 138A ->147A 127B ->139B 129B ->139B 135B ->142B 135B ->144B 137B ->147B 137B ->148B 137B ->149B	2.780-A 0.12060 0.10878 -0.12777 0.44333 0.53837 -0.17362 0.42385 0.12319 0.23725 -0.10303 0.12151	5.9307 eV	209.05 nm	f=0.0069	<s**2>=1.682</s**2>

Excited State 96: 132A ->143A 133A ->142A 134A ->143A 138A ->147A 125B ->139B 127B ->139B 129B ->139B 135B ->142B 137B ->147B 137B ->148B	2.761-A -0.16936 -0.10670 0.15974 -0.37111 -0.10874 0.73636 -0.19286 -0.11630 -0.22139 0.10286	5.9345 eV	208.92 nm	f=0.0044	<s**2>=1.656</s**2>
Excited State 97: 132A ->143A 134A ->142A 134A ->142A 138A ->147A 127B ->139B 135B ->140B 135B ->142B 135B ->144B 137B ->147B 137B ->148B	2.912-A -0.25341 -0.11729 0.20335 -0.10006 -0.19708 -0.11553 0.73276 0.23015 -0.25944 0.13128	5.9404 eV	208.71 nm	f=0.0027	<s**2>=1.870</s**2>
Excited State 98: $122A \rightarrow 139A$ $131A \rightarrow 142A$ $132A \rightarrow 142A$ $132A \rightarrow 143A$ $133A \rightarrow 142A$ $134A \rightarrow 142A$ $134A \rightarrow 142A$ $134A \rightarrow 142A$ $136A \rightarrow 146A$ $137A \rightarrow 145A$ $138A \rightarrow 147A$ $134B \rightarrow 145B$ $135B \rightarrow 142B$ $135B \rightarrow 142B$ $136B \rightarrow 142B$ $137B \rightarrow 148B$	$\begin{array}{c} 2.685\text{-A} \\ 0.13331 \\ 0.21209 \\ -0.13240 \\ 0.28608 \\ 0.25520 \\ 0.20184 \\ -0.24698 \\ 0.11690 \\ 0.34615 \\ 0.16879 \\ -0.32688 \\ -0.21297 \\ 0.16391 \\ 0.11299 \\ -0.14645 \\ -0.16418 \\ -0.32723 \\ 0.10547 \end{array}$	5.9940 eV	206.85 nm	f=0.0019	<\$**2>=1.553
Excited State 99: 132A ->143A 134A ->143A 134A ->146A 136A ->146A 137A ->144A 138A ->147A 126B ->139B 134B ->141B 134B ->143B 134B ->145B 137B ->147B	2.853-A -0.18062 0.14953 -0.14018 0.26640 0.68184 0.13187 -0.10119 -0.12084 -0.28187 -0.27772 0.13492	6.0177 eV	206.03 nm	f=0.0146	<s**2>=1.785</s**2>
Excited State 100: 124B ->139B 125B ->139B 126B ->139B 128B ->139B 129B ->139B	2.852-A 0.10399 -0.16400 0.87172 -0.10961 -0.36891	6.0258 eV	205.75 nm	f=0.0075	<s**2>=1.783</s**2>

Figure S24-1. The calculated absorption spectra based on B3LYP level of theory. The upper chart indicates the actual spectrum of 2 (black line) and calculated spectrum of 2_{opt} (red solid bars), whereas the lower chart includes the actual spectrum of 3 (black line) and calculated spectrum of 3_{opt} (red solid bars).

Figure S24-2. The calculated absorption spectra based on CAM-B3LYP level of theory. The upper chart indicates the actual spectrum of 2 (black line) and calculated spectrum of 2_{opt} (red solid bars), whereas the lower chart includes the actual spectrum of 3 (black line) and calculated spectrum of 3_{opt} (red solid bars).

S-81

X-ray data collection and reduction

X-ray crystallography was performed on a Rigaku Saturn CCD area detector with graphite monochromated Mo-K α radiation (λ =0.71075 Å). The data were collected at 123(2) K using ω scan in the θ range of 1.55 $\leq \theta \leq$ 30.60 deg (2), 1.88 $\leq \theta \leq$ 30.66 deg (4), 2.08 $\leq \theta \leq$ 30.47 deg (5) and 3.03 $\leq \theta \leq$ 27.48 deg (8). The data obtained were processed using Crystal-Clear (Rigaku) on a Pentium computer, and were corrected for Lorentz and polarization effects. The structures were solved by direct methods¹¹, and expanded using Fourier techniques¹². Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F^2 was based on 12,402 observed reflections and 505 variable parameters for 2, 7,658 observed reflections and 325 variable parameters for 4, 7,170 observed reflections and 289 variable parameters for 5, and 9,661 observed reflections and 422 variable parameters for 8. Neutral atom scattering factors were taken from Cromer and Waber¹³. All calculations were performed using SHELXL-97¹⁴. Details of final refinement as well as the bond lengths and angle are summarized in Tables S7, S8, S9 and S10, and the numbering scheme employed is also shown in Figures S25, 26, 27 and 28, which were drawn with ORTEP at 50% probability ellipsoids.

Figure S25. ORTEP drawing of 2 (50% probability of the thermal ellipsoids)

Empirical Formula Formula Weight Crystal Color, Habit **Crystal Dimensions** Crystal System Lattice Type Lattice Parameters Space Group Z value D_{calc} F000 μ (MoK α) Diffractometer Radiation Voltage, Current Temperature **Detector Aperture** Data Images ω oscillation Range (χ =45.0, ϕ =0.0) **Exposure Rate Detector Swing Angle Detector Position Pixel Size** $2\theta_{max}$ No. of Reflections Measured Corrections Structure Solution Refinement Function Minimized Least Squares Weights $2\theta_{max}$ cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables **Reflection/Parameter Ratio** Residuals: R1 ($I > 2.00\sigma(I)$) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map

Table S7-1. Crystal data and structure refinement for 2

C₃₈H₈₀Fe₂O₆P₂Si₈ 1031.37 red, platelet 0.050 X 0.020 X 0.020 mm monoclinic Primitive a = 15.6926(12) Åb = 17.5019(12) Åc = 21.2042(17) Å $\beta = 110.6328(14)^{\circ}$ $V = 5450.2(7) Å^3$ $P2_1/c$ (#14) 4 1.257 g/cm³ 2200.00 8.037 cm⁻¹ Saturn724 MoKα (λ = 0.71075 Å) multi-layer mirror monochromated 50kV, 40mA 123 K 72.8 x 72.8 mm 720 exposures -105.0 - 75.00 $80.0 \text{ sec.}/^{\circ}$ -14.850 40.15 mm 0.070 mm 55.00 Total: 52592 Unique: $12402 (R_{int} = 0.1118)$ Lorentz-polarization Direct Methods (SIR2008) Full-matrix least-squares on F^2 $\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$ $\omega = 1/[\sigma^2(Fo^2) + (0.0722 \cdot P)^2 + 10.6473 \cdot P]$ where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ 55.00 All non-hydrogen atoms 12402 505 24.56 0.0716 0.0829 0.1846 1.092 0.001 1.20 e⁻/Å³ $-0.81 \text{ e}^{-}/\text{Å}^{3}$

Table S7-2.	Atomic	coordinates	and	B _{iso} /	Bea
-------------	--------	-------------	-----	--------------------	-----

atom	Х	V	Z	Bea
Fe1	0.63753(4)	0.00563(3)	0.74022(3)	2.167(11)
Fe2	0.70293(4)	0.09218(3)	0.65975(3)	2.356(11)
P1	0.61672(6)	0.00639(5)	0.83246(4)	1.804(15)
P2	0.82505(6)	0.08855(5)	0.63974(5)	2.153(16)
Sil	0.68699(8)	-0.15121(6)	0.90833(6)	3.08(2)
S12	0.80445(7)	-0.00180(6)	0.95545(5)	2.266(17)
S13	0.39861(7)	0.00480(7)	0.78925(6)	2.74(2)
514 Si5	0.51007(8) 0.01258(8)	0.14113(0) 0.25257(6)	0.8/339(0)	2.94(2)
Si6	1.01251(7)	0.23337(0) 0.10723(6)	0.08002(0) 0.75867(6)	2.93(2) 2.517(18)
Si7	0.78921(9)	0.10729(0) 0.09290(7)	0.48235(6)	2.917(10) 2.99(2)
Si8	0.70921(9) 0.82148(8)	-0.06597(6)	0.55925(6)	2.601(19)
Õ1	0.4778(2)	0.0917(2)	0.65338(16)	3.97(6)
O2	0.5748(2)	-0.13849(18)	0.67055(18)	4.22(7)
03	0.8298(2)	-0.04213(18)	0.78622(15)	3.36(5)
04	0.5927(2)	-0.0219(2)	0.56309(16)	4.00(6)
05	0.5784(2)	0.2070(2)	0.5779(2)	4.99(8)
06	0.7448(2)	0.19350(17)	0.77/64(17)	3.55(6)
C_{1}	0.6822(2)	-0.0411(2)	0.91341(18)	2.07(5)
C_2	0.0277(3) 0.5273(3)	-0.0221(3)	0.9004(2) 0.0100(2)	3.13(8) 3.06(7)
C_4	0.5275(3) 0.5155(2)	-0.0132(3) 0.0331(2)	0.9190(2) 0.85400(18)	2.00(7)
Č5	0.5737(4)	-0.1980(3)	0.8922(4)	5.93(15)
Č6	0.7594(4)	-0.1872(3)	0.9946(3)	4.30(10)
Č7	0.7306(4)	-0.1901(3)	0.8438(3)	4.54(11)
C8	0.8317(3)	0.0043(3)	1.0487(2)	3.36(8)
C9	0.8975(3)	-0.0616(3)	0.9446(3)	3.53(8)
C10	0.8164(3)	0.0966(2)	0.9267(2)	3.49(8)
CII	0.4048(3)	-0.0822(3)	0.7410(3)	3.95(9)
C12 C12	0.33/2(3)	0.0810(3)	0.7281(3)	4.29(10)
C13	0.5218(5) 0.4087(3)	-0.0195(3) 0.1700(3)	0.8377(3) 0.8855(3)	4.35(10) 4.06(10)
C14	0.4087(3) 0.6026(4)	0.1700(3) 0.1664(4)	0.8833(3) 0.9577(3)	6.41(17)
C16	0.5020(4) 0.5371(4)	0.1004(4) 0.2006(3)	0.9977(3) 0.8084(3)	4.90(12)
Č17	0.5410(3)	0.0600(2)	0.6888(2)	2.81(7)
C18	0.5997(3)	-0.0814(2)	0.6968(2)	2.97(7)
C19	0.7554(3)	-0.0210(2)	0.76866(19)	2.55(6)
C20	0.9321(3)	0.1446(2)	0.6735(2)	2.43(6)
C21	0.9810(3)	0.1307(2)	0.6214(2)	2.65(6)
C22	0.9520(3)	0.0534(2)	0.5868(2)	2.64(6)
C23 C24	0.84/9(3)	0.0432(2) 0.2055(2)	0.56804(19)	2.40(6)
C24 C25	0.9983(4) 0.0271(4)	0.3033(3) 0.2804(3)	0.0333(3) 0.7671(3)	4.18(10) 2.88(0)
C25 C26	0.9271(4) 0.7972(3)	0.2894(3) 0.2878(3)	0.7071(3) 0.6263(3)	424(10)
C27	1 1214(3)	0.2676(3) 0.1638(3)	0.0203(3) 0.7852(3)	371(8)
Č28	0.9650(3)	0.1110(3)	0.8276(2)	3.36(8)
C29	1.0467(3)	0.0060(2)	0.7529(2)	3.33(8)
C30	0.8352(4)	0.1895(3)	0.4748(3)	4.54(10)
C31	0.8175(4)	0.0373(3)	0.4164(2)	3.74(8)
C32	0.6632(3)	0.1049(3)	0.4590(3)	4.24(10)
C33	0.8191(3) 0.7125(2)	-0.1112(2)	0.0380(2)	3.10(7)
C34 C35	0.7155(5) 0.9165(3)	-0.0939(3)	0.409/(2)	3.33(8)
C36	0.6392(3)	0.0202(3)	0.5577(5) 0.6017(2)	3 14(7)
Č37	0.6261(3)	0.1618(3)	0.6113(3)	3.61(8)
C38	0.7317(3)	0.1508(2)	0.7335(2)	2.87(7)

 $B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Table S7-3.	Anisotropic	displacement	parameters
-------------	-------------	--------------	------------

atom	U11	U22	U33	U12	U13	U23
Fe1	0.0290(3)	$0.0\overline{2}\overline{5}8(3)$	0.0295(3)	-0.00177(19)	0.0127(2)	0.0001(2)
Fe2	0.0304(3)	0.0278(3)	0.0339(3)	0.0025(2)	0.0145(2)	0.0051(2)

P1	0.0231(4)	0.0215(4)	0.0254(4)	0.0008(3)	0.0103(3)	0.0019(3)
P2	0.0291(5)	0.0229(4)	0.0312(5)	0.0015(3)	0.0123(4)	0.0020(4)
Si1	0.0421(6)	0.0233(5)	0.0453(7)	-0.0032(4)	0.0077(5)	0.0070(5)
Si2	0.0276(5)	0.0278(5)	0.0302(5)	-0.0006(4)	0.0096(4)	-0.0028(4)
Ši3	0.0247(5)	0.0415(6)	0.0372(6)	-0.0018(4)	0.0102(4)	0.0024(5)
Si4	0.0372(6)	0.0302(5)	0.0509(7)	0.0032(4)	0.0241(5)	-0.0056(5)
Si5	0.0372(0)	0.0302(3)	0.0505(7)	0.0032(4)	0.027(5)	0.0000(5)
Sis	0.0420(0)	0.0208(3)	0.0320(7)	-0.0013(4)	0.0227(3)	0.0022(3)
510	0.0304(3)	0.0291(3)	0.0334(0)	-0.0033(4)	0.0107(4)	-0.0011(4)
517	0.0408(7)	0.0307(0)	0.0323(0)	0.0080(3)	0.0108(3)	0.0070(3)
S18	0.0356(6)	0.0252(5)	0.03/6(6)	0.0013(4)	0.0124(5)	-0.0008(4)
01	0.0349(17)	0.0/3(2)	0.0440(18)	0.0125(15)	0.0154(14)	0.0156(16)
02	0.064(2)	0.0397(18)	0.060(2)	-0.0163(15)	0.0253(18)	-0.0153(15)
03	0.0367(16)	0.0479(18)	0.0461(17)	0.0065(13)	0.0184(13)	0.0083(14)
04	0.0463(19)	0.064(2)	0.0380(17)	-0.0115(16)	0.0106(14)	-0.0070(15)
05	0.055(2)	0.068(2)	0.076(3)	0.0325(18)	0.0345(19)	0.041(2)
06	0.0549(19)	0.0364(16)	0.0519(19)	-0.0043(14)	0.0292(16)	-0.0041(14)
Č1	0.0281(17)	0.0248(16)	0.0271(17)	0.0012(13)	0.0116(14)	0.0040(13)
Č2	0.037(2)	0.058(3)	0.029(2)	0.0092(19)	0.0182(17)	0.0124(18)
$\overline{C3}$	0.032(2)	0.054(3)	0.033(2)	0.0093(18)	0.0147(17)	0.0159(18)
C_{4}	0.052(2)	0.0314(18)	0.033(2)	0.0038(14)	0.0110(14)	0.0139(10)
C5	0.0230(17)	0.0314(10)	0.0271(17) 0.103(5)	0.0030(1+)	0.0110(14)	0.0047(14)
C5 C6	0.057(3)	0.044(3)	0.103(3)	-0.021(2)	0.000(3)	0.021(3)
C_{7}	0.004(3)	0.032(2)	0.038(3)	0.003(2)	0.009(2)	0.013(2)
C_{1}	0.083(4)	0.023(2)	0.001(5)	0.003(2)	0.022(5)	-0.002(2)
	0.039(2)	0.049(3)	0.037(2)	-0.0020(18)	0.0105(18)	-0.0015(19)
C9	0.030(2)	0.051(3)	0.051(3)	0.0044(18)	0.0115(19)	-0.008(2)
CIO	0.052(3)	0.03/(2)	0.049(3)	-0.0118(19)	0.023(2)	-0.0042(19)
CII	0.040(2)	0.055(3)	0.049(3)	-0.006(2)	0.008(2)	-0.010(2)
C12	0.042(3)	0.068(3)	0.047(3)	0.009(2)	0.008(2)	0.007(2)
C13	0.037(2)	0.070(3)	0.063(3)	-0.013(2)	0.023(2)	-0.002(3)
C14	0.057(3)	0.039(2)	0.074(3)	0.014(2)	0.042(3)	0.007(2)
C15	0.072(4)	0.069(4)	0.089(5)	0.018(3)	0.012(3)	-0.047(3)
C16	0.091(4)	0.025(2)	0.101(4)	0.002(2)	0.071(4)	0.002(2)
C17	0.035(2)	0.042(2)	0.034(2)	-0.0046(17)	0.0154(17)	-0.0006(17)
C18	0.036(2)	0.039(2)	0.041(2)	-0.0084(17)	0.0180(18)	-0.0023(18)
C19	0.041(2)	0.0284(18)	0.0312(19)	-0.0005(16)	0.0174(17)	0.0043(15)
Č20	0.036(2)	0.0223(17)	0.036(2)	-0.0024(14)	0.0151(16)	0.0018(14)
$\tilde{C}21$	0.035(2)	0.0327(19)	0.037(2)	-0.0040(15)	0.0177(17)	0.0010(16)
C_{22}	0.035(2)	0.0327(17)	0.037(2)	0.0010(15)	0.0177(17)	-0.0010(10)
C_{23}^{22}	0.039(2)	0.035(2)	0.030(2)	-0.0003(10)	0.0177(17)	0.0020(14)
C_{24}	0.057(2)	0.0203(17)	0.0277(10)	0.007(2)	0.0107(10)	0.0020(14)
C24 C25	0.000(3)	0.031(2)	0.079(4)	-0.007(2)	0.036(3)	0.003(2)
C_{23}	0.003(3)	0.028(2)	0.000(5)	-0.0113(19)	0.033(3)	-0.013(2)
C20 C27	0.030(3)	0.030(2)	0.077(4)	0.010(2)	0.020(3)	0.014(2)
C27	0.037(2)	0.049(3)	0.054(3)	-0.0066(19)	0.014(2)	-0.006(2)
C28	0.040(2)	0.048(2)	0.038(2)	-0.0031(19)	0.0110(18)	0.0030(19)
C29	0.041(2)	0.03/(2)	0.042(2)	0.0039(17)	0.0060(19)	0.0054(18)
C30	0.084(4)	0.045(3)	0.045(3)	0.003(3)	0.025(3)	0.016(2)
C31	0.058(3)	0.055(3)	0.031(2)	0.006(2)	0.018(2)	0.0016(19)
C32	0.051(3)	0.069(3)	0.040(3)	0.022(2)	0.015(2)	0.015(2)
C33	0.045(2)	0.0295(19)	0.044(2)	0.0029(17)	0.0161(19)	0.0031(17)
C34	0.049(3)	0.041(2)	0.040(2)	-0.0027(19)	0.011(2)	-0.0043(18)
C35	0.048(3)	0.034(2)	0.067(3)	0.0005(19)	0.029(2)	-0.001(2)
C36	0.028(2)	0.049(2)	0.041(2)	0.0002(18)	0.0118(17)	0.0034(19)
C37	0.045(2)	0.047(3)	0.053(3)	$0.006(2)^{-1}$	0.028(2)	$0.012(2)^{-1}$
C38	0.039(2)	0.032(2)	0.046(2)	0.0016(16)	0.0250(19)	0.0077(18)
	× /	× /	× /	· · /	< <i>'</i>	

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S7-4. Bond lengths (Å)

atom	atom	distance	atom	atom	distance
Fe1	Fe2	2.7374(10)	Fe1	P1	2.0934(12)
Fe1	C17	1.796(4)	Fe1	C18	1.771(4)
Fe1	C19	1.794(4)	Fe2	P2	2.1047(13)
Fe2	C36	1.799(4)	Fe2	C37	1.766(4)
Fe2	C38	1.790(4)	P1	C1	1.858(3)
P1	C4	1.861(4)	P2	C20	1.857(4)

P2	C23	1.859(5)	Si1	C1	1.933(4)
Si1	C5	1.862(6)	Si1	Č6	1.889(5)
Si1	C7	1.860(7)	Si2	C1	1.935(4)
Si2	C8	1.872(5)	Si2	C9	1.875(5)
Si2	C10	1.859(5)	Si3	C4	1.928(3)
Si3	C11	1.856(5)	Si3	C12	1.873(5)
Si3	C13	1.887(7)	Si4	C4	1.936(4)
Si4	C14	1.859(6)	Si4	C15	1.874(6)
Si4	C16	1.850(7)	Si5	C20	1.946(4)
Si5	C24	1.874(6)	Si5	C25	1.873(6)
Si5	C26	1.869(5)	Si6	C20	1.918(4)
Si6	C27	1.881(5)	Si6	C28	1.862(6)
Si6	C29	1.868(4)	Si7	C23	1.931(4)
Si7	C30	1.867(6)	Si7	C31	1.880(6)
Si7	C32	1.873(5)	Si8	C23	1.949(4)
Si8	C33	1.860(5)	Si8	C34	1.877(4)
Si8	C35	1.886(6)	O1	C17	1.154(5)
02	C18	1.143(5)	O3	C19	1.154(5)
04	C36	1.151(5)	05	C37	1.147(6)
06	C38	1.158(5)	C1	C2	1.561(7)
C2	C3	1.518(5)	C3	C4	1.552(6)
C20	C21	1.571(7)	C21	C22	1.531(5)
C22	C23	1.549(6)			()

Table S7-5. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom	angle
Fe2	Fe1	P1	142.66(4)	Fe2	Fe1	C17	75.51(16)
Fe2	Fe1	C18	106.41(17)	Fe2	Fe1	C19	77.57(14)
P1	Fe1	C17	100.83(16)	P1	Fe1	C18	110.93(17)
P1	Fe1	C19	99.76(14)	C17	Fe1	C18	94.81(18)
C17	Fe1	C19	$153.0(2)^{2}$	C18	Fe1	C19	93.89(18)
Fe1	Fe2	P2	132.61(4)	Fe1	Fe2	C36	78.40(16)
Fe1	Fe2	C37	114.53(19)	Fe1	Fe2	C38	78.87(15)
P2	Fe2	C36	99 60(16)	P2	Fe2	C37	112 76(19)
$\bar{P}\bar{2}$	Fe2	Č38	103.10(15)	C36	Fe2	Č37	89.1(2)
C36	Fe2	C38	155.2(2)	C37	Fe2	C38	91.3(2)
Fe1	P1	C1	13001(14)	Fe1	P1	C4	13120(11)
C1	P1	Č4	97.32(18)	Fe2	P2	Č20	132.13(15)
Fe2	P2	C23	129.04(12)	C20	P2	$\overline{C23}$	97 55(19)
C1	Sil	Č5	1133(2)	Č1	Sil	Č6	107 49(18)
Čĺ	Sil	Č7	115.9(2)	Č5	Sil	ČĞ	103 8(3)
Č5	Sil	Č7	105.8(3)	Č6	Sil	Č7	109.7(2)
Čĺ	Si2	Č8	109.0(3)	Čľ	Si2	Č9	115 68(18)
Čĺ	Si2	Č10	112 13(18)	Č8	Si2	Č9	105 3(2)
Č8	Si2	Č10	1064(2)	ČŠ	Si2	Č10	107.7(2)
C4	Si3	CII	112 43(19)	Č4	Si3	C12	1160(2)
Č4	Si3	Č13	1075(2)	ČİI	Si3	C12	1084(2)
Č11	Si3	C13	1064(3)	C12	Si3	C13	105.4(3)
C4	Si4	C14	1110(2)	C4	Si4	C15	1124(2)
Č4	Si4	Č16	112.2(2)	Č14	Si4	C15	1012(3)
Č14	Si4	C16	1110(3)	C15	Si4	C16	108.5(3)
C20	Si5	C24	107.6(2)	C20	Si5	C25	115.86(19)
C_{20}^{20}	Si5	$C^{2}6$	11424(18)	C_{24}^{20}	Si5	C_{25}^{25}	1065(2)
C^{24}	Si5	C_{26}	107.5(2)	C^{25}	Si5	C_{26}^{26}	104.7(3)
C_{20}	Si6	C_{27}	107.3(2) 109.3(2)	C_{20}^{20}	Si6	C28	1145(2)
C_{20}^{20}	Si6	C_{29}^{27}	11175(18)	C_{27}^{20}	Si6	C_{28}^{20}	108.6(2)
C_{27}	Si6	C^{29}	105 5(2)	C_{28}^{27}	Si6	C_{29}	106.0(2) 106.8(2)
C^{23}	Si7	C_{30}	11471(19)	C_{23}^{20}	Si7	C31	107.9(2)
C_{23}	Si7	C_{32}	114.71(17)	C_{30}	Si7	C31	107.9(2) 101.9(3)
C_{30}	Si7	C32	1063(3)	C31	Si7	C32	1114(2)
C^{23}	Si8	C33	11370(19)	C^{23}	Si8	C34	115.68(18)
C_{23}	Si8	C35	107.9(2)	C_{33}	Si8	C34	1072(2)
C_{33}	Si8	C35	107.9(2) 105.6(2)	C34	Si8	C35	107.2(2) 105.9(2)
D1	C1	Sil	103.0(2) 111/10(18)	P1	C1	Si2	103.9(2) 113.7(2)
P1	C_1	C^2	1042(2)	Sil	C1	Si2	109 17(17)
Sil	\tilde{C}^{1}	\tilde{C}^2	106.8(3)	Si2	\tilde{C}^{1}	C^2	107.9(2)
C1	\tilde{C}^{1}	\tilde{C}	110.0(3)	C^2	\tilde{C}^{1}	\tilde{C}^2_{4}	1100(4)
P1	$\widetilde{C4}$	Si3	116 2(2)	P1	C_{4}	Si4	1110.0(7)
P1	$\widetilde{C4}$	C3	104.0(3)	Si3	$\widetilde{C4}$	Si4	10957(17)
11	UΤ	05	107.0(3)	515	U-T	T	107.57(17)

Si3	C4	C3	106.5(3)	Si4	C4	C3	109.2(3)
Fe1	C17	O1	176.3(4)	Fe1	C18	O2	177.8(5)
Fe1	C19	O3	176.4(3)	P2	C20	Si5	113.7(2)
P2	C20	Si6	112.9(2)	P2	C20	C21	104.4(2)
Si5	C20	Si6	109.26(18)	Si5	C20	C21	109.6(3)
Si6	C20	C21	106.7(2)	C20	C21	C22	109.7(3)
C21	C22	C23	109.5(3)	P2	C23	Si7	114.3(2)
P2	C23	Si8	113.6(2)	P2	C23	C22	103.3(2)
Si7	C23	Si8	109.68(17)	Si7	C23	C22	107.4(3)
Si8	C23	C22	107.9(3)	Fe2	C36	O4	174.5(4)
Fe2	C37	O5	176.9(5)	Fe2	C38	O6	173.9(3)

Table S7-6. Torsion Angles(°)(Those having bond angles > 160 or < 20 degrees are excluded.)</td>

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Fe2 P1	Fel Fel	Fe2	P2	-103.17(7) 103.37(6)	Fe2 P1	Fel Fel	Fe2	C4 C36	93.84(8) -164.20(6)
P1	Fe1	Fe2	C37	-80.58(6)	P1	Fe1	Fe2	C38	5.74(6)
C17 C17	Fel	Fe2 Fe2	P2 C37	-16/./1(14) 8 34(14)	C17 C17	Fel	Fe2 Fe2	C36 C38	-75.28(14) 94.66(14)
C18	Fel	Fe2	P2	-76.90(14)	C18	Fel	Fe2	C36	15.54(14)
C18 C19	Fel Fel	Fe2 Fe2	C3/ P2	99.15(14) 13.53(13)	C18 C19	Fel Fel	Fe2 Fe2	C38 C36	-1/4.53(14) 105 96(13)
Č19	Fel	Fe2	C37	-170.42(13)	C19	Fel	Fe2	C38	-84.10(13)
C17 C18	Fel Fel	PI P1	CI C1	176.58(14)	C17 C18	Fel Fel	PI P1	C4 C4	13.59(15)
Č19	Fel	P1	Č1	-20.91(14)	Č19	Fel	P1	Č4	176.10(14)
Fel C36	Fe2 Fe2	P2 P2	C20 C20	-98.96(7)	Fel C36	Fe2 Fe2	P2 P2	C23 C23	97.01(7) 13 99(16)
C37	Fe2	P2	C20	84.93(18)	C37	Fe2	P2	C23	-79.09(18)
C38 Fe1	Fe2 P1	P2 C1	C20 Si1	-12.14(15) -60.1(3)	C38 Fe1	Fe2 P1	P2 C1	C23 Si2	-176.16(14) 66 3(2)
Fel	P1	Čĺ	C2	-176.46(8)	Fel	P1	Č4	Si3	37.6(3)
Fel C1	P1 P1	C4 C4	S14 Si3	-88.40(18)	Fel C1	P1 P1	C4 C4	C3 Si4	154.28(10)
Čĺ	P1	Č4	C3	-12.7(2)	C4	P1	Č1	Sil	107.0(2)
C4 Fe2	P1 P2	C1 C20	S12 Si5	-126.5(2) -43.3(3)	C4 Fe2	P1 P2	C1 C20	C2 Si6	-9.3(2) 81.9(2)
Fe2	P2	C20	C21	-162.67(9)	Fe2	P2	C23	Si7	69.4(2)
Fe2 C20	P2 P2	C23 C23	S18 Si7	-57.5(2) -98 7(2)	Fe2 C20	P2 P2	C23 C23	C22 Si8	-174.21(9) 134 35(19)
C20	P2	C23	C22	17.7(2)	C23	P2	C20	Si5	124.2(2)
C23 C5	P2 Si1	C20 C1	S16 P1	-110.6(2) -67 7(4)	C23 C5	P2 Si1	C20 C1	C21 Si2	4.9(2)
Č5	Sil	Čĺ	C2	47.1(3)	Č6	Sil	Čĺ	P1	178.1(3)
C6 C7	Sil Sil	CI C1	S12 P1	49.4(3)	C6 C7	Sil Sil	CI C1	C2 Si2	-67.0(3) -73.8(3)
Č7	Sil	Čĺ	C2	169.8(2)	Č8	Si2	Čĺ	P1	140.2(2)
C8 C9	S12 Si2	CI C1	S11 P1	-90.6(2) -101 4(3)	C8 C9	S12 Si2	CI C1	C2 Si1	25.1(3) 27.8(3)
Č9	Si2	Čĺ	C2	143.5(2)	Č10	Si2	Čĺ	P1	22.6(3)
C10 C11	S12 Si3	CI C4	S11 P1	151.8(2) 29.2(3)	C10 C11	S12 Si3	C1 C4	C2 Si4	-92.5(3) 155 9(2)
C11	Si3	Č4	C3	-86.1(3)	C12	Si3	Č4	P1	-96.5(3)
C12 C13	S13 Si3	C4 C4	S14 P1	30.2(3) 145 9(2)	C12 C13	S13 Si3	C4 C4	C3 Si4	148.3(3) -87 4(3)
C13	Si3	C4	C3	30.7(3)	C14	Si4	C4	P1	173.5(2)
C14 C15	S14 Si4	C4 C4	813 P1	43.9(3)	C14 C15	S14 Si4	C4 C4	C3 Si3	-72.4(3) 156.5(3)
C15	Si4	C4	C3	40.2(4)	C16	Si4	C4	P1	48.7(3)
C16 C24	S14 Si5	C4 C20	515 P2	-80.8(3) -139.8(2)	C16 C24	S14 Si5	C4 C20	C3 Si6	162.8(2) 93.1(3)
C24	Si5	C20	C21	-23.4(3)	C25	Si5	C20	P2	101.2(3)
C25 C26	S15 Si5	C20 C20	P2	-20.6(4)	C25 C26	Si5 Si5	C20 C20	Si6	-142.4(2) -147.7(3)
C26	Si5	C20	C21	95.8(3)	C27	Si6	C20	P2	176.3(2)
C28	Si6	C20 C20	P2	-61.6(3)	C28	Si6	C20 C20	Si5	65.9(3)
C28	Si6	C20	C21	-175.7(2)	C29	Si6	C20	P2	60.0(3)

C29	Si6	C20	Si5	-172.5(2)	C29	Si6	C20	C21	-54.1(3)
C30	Si7	C23	P2	69.0(3)	C30	Si7	C23	Si8	-162.1(3)
C30	Si7	C23	C22	-45.0(3)	C31	Si7	C23	P2	-178.3(2)
C31	Si7	C23	Si8	-49.4(3)	C31	Si7	C23	C22	67.7(3)
C32	Si7	C23	P2	-54.0(3)	C32	Si7	C23	Si8	75.0(3)
C32	Si7	C23	C22	-168.0(2)	C33	Si8	C23	P2	-20.8(3)
C33	Si8	C23	Si7	-150.1(2)	C33	Si8	C23	C22	93.2(3)
C34	Si8	C23	P2	104.0(3)	C34	Si8	C23	Si7	-25.3(3)
C34	Si8	C23	C22	-142.1(2)	C35	Si8	C23	P2	-137.6(2)
C35	Si8	C23	Si7	93.1(2)	C35	Si8	C23	C22	-23.7(3)
P1	C1	C2	C3	30.0(4)	Si1	C1	C2	C3	-91.5(3)
Si2	C1	C2	C3	151.2(2)	C1	C2	C3	C4	-42.4(5)
C2	C3	C4	P1	32.5(4)	C2	C3	C4	Si3	155.8(3)
C2	C3	C4	Si4	-86.0(4)	P2	C20	C21	C22	-27.2(3)
Si5	C20	C21	C22	-149.30(19)	Si6	C20	C21	C22	92.5(2)
C20	C21	C22	C23	43.2(4)	C21	C22	C23	P2	-36.6(4)
C21	C22	C23	Si7	84.6(3)	C21	C22	C23	Si8	-157.2(3)

Figure S26. ORTEP drawing of 4 (50% probability of the thermal ellipsoids)

Table S8-1. Crystal data and structure refinement for 4

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} $\mu(MoK\alpha)$ Diffractometer Radiation

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =0.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

Structure Solution Refinement Function Minimized Least Squares Weights

 $2\theta_{max}$ cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00 σ (I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map C26H52FeNO3PSi4 625.86 palegreen, platelet 0.100 X 0.080 X 0.050 mm triclinic Primitive a = 9.4542(8) Åb = 11.3877(10) Åc = 16.3807(15) Å $\alpha = 75.408(5)^{\circ}$ $\beta = 87.846(7)^{\circ}$ $\gamma = 79.154(6)^{\circ}$ $V = 1676.1(3) Å^3$ P-1 (#2) 2 1.240 g/cm^3 672.00 6.662 cm⁻¹ Saturn724 MoKα (λ = 0.71075 Å) multi-layer mirror monochromated 50kV, 40mA 123 K 72.8 x 72.8 mm 1080 exposures -105.0 - 75.00 32.0 sec./0 -14.70° 40.10 mm 0.070 mm 55.00 Total: 24288 Unique: 7658 ($R_{int} = 0.0235$) Lorentz-polarization Absorption (trans. factors: 0.851 - 0.967) Direct Methods (SIR2008) Full-matrix least-squares on F^2 $\Sigma w (Fo^2 - Fc^2)^2$ $\omega = 1 / [\sigma^2 (Fo^2) + (0.0455 \cdot P)^2 + 0.9471 \cdot P]$ where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ 55.00 All non-hydrogen atoms 7658 325 23.56 0.0318 0.0328 0.0855 1.069 0.001 $0.46 \text{ e}^{-}/\text{Å}^{3}$ $-0.45 \text{ e}^{-}/\text{Å}^{3}$

Tab	ole	S8-2.	Atomic	coordinates	and	B _{iso} /B _{eq}
-----	-----	--------------	--------	-------------	-----	-----------------------------------

Table So-2. Atomic coordinates and B_{1SO}/Beq							
atom	Х	y	Z	Beg			
Fe1	0.29167(2)	-0.001720(17)	0.292965(12)	1.258(5)			
P1	0.20257(4)	0.18630(3)	0.23918(2)	1.163(6)			
Si1	0.36415(4)	0.27691(4)	0.07178(3)	1.547(7)			
Si2	0.07636(4)	0.17867(4)	0.06396(2)	1.431(7)			
Si3	0.20217(5)	0.40374(4)	0.32197(3)	1.683(7)			
Si4	-0.05414(4)	0.25412(4)	0.36025(2)	1.517(7)			
Õ1	0.40689(11)	-0.03521(10)	0.19880(6)	1.561(17)			
Ö2	0.30749(16)	-0.01942(13)	0.47266(8)	3.08(2)			
03	0.07799(13)	-0.16114(12)	0.31119(9)	2.87(2)			
N1	0.47381(12)	-0.10214(11)	0.27445(7)	1.282(17)			
C1	0.29260(17)	-0.00579(14)	0.40099(10)	1.94(2)			
C2	0.16602(17)	-0.10172(14)	0.30349(10)	1.92(2)			
Č3	0.18013(14)	0.26033(12)	0.12445(8)	1.23(2)			
C4	0.09146(16)	0.39269(13)	0.11973(9)	1.49(2)			
C5 ·	-0.00158(15)	0.39199(13)	0.19848(9)	1.49(2)			
C6	0.08590(15)	0.31063(12)	0.27849(9)	1.29(2)			
C7	0.50149(17)	0.28705(17)	0.14797(11)	2.30(3)			
C8	0.33835(18)	0.42468(15)	-0.01431(10)	2.27(3)			
C9	0.44820(19)	0.14934(16)	0.02336(10)	2.28(3)			
C10	0.07256(19)	0.25885(15)	-0.05165(10)	2.12(3)			
C11 ·	-0.11714(17)	0.19451(18)	0.09453(12)	2.49(3)			
C12	0.14916(19)	0.01096(14)	0.07665(10)	2.10(3)			
C13	0.0996(2)	0.49375(18)	0.39356(13)	2.97(3)			
C14	0.2624(3)	0.52835(18)	0.23730(13)	3.24(4)			
C15	0.36279(19)	0.30283(17)	0.38228(12)	2.57(3)			
C16 ·	-0.20532(18)	0.38722(16)	0.36026(12)	2.51(3)			
C17 ·	-0.14235(18)	0.13730(16)	0.33055(11)	2.30(3)			
C18	0.01604(19)	0.18980(17)	0.47072(10)	2.46(3)			
C19	0.48657(16)	-0.23851(13)	0.28429(9)	1.59(2)			
C20	0.60589(17)	-0.28277(15)	0.22754(10)	2.01(3)			
C21	0.73649(17)	-0.25202(15)	0.26566(10)	2.02(3)			
C22	0.72857(17)	-0.11198(15)	0.23060(10)	2.09(3)			
C23	0.61294(15)	-0.06291(13)	0.28/48(9)	1.59(2)			
C24	0.55011(18)	-0.305/4(14)	0.37134(10)	1.97(2)			
025	0.6/368(17)	-0.13552(15)	0.3/431(10)	1.95(2)			
C26	0.69900(17)	-0.267/4(15)	0.36295(10)	1.97(2)			
$B_{eq} = 8/3 \pi^2 (U)$	$U_{11}(aa^*)^2 + U_{22}(bl)$	$(cc^*)^2 + U_{33}(cc^*)^2 - U_{33}(cc^*)^2$	+ 2U ₁₂ (aa*bb*)cos	$\gamma + 2U_{13}(aa*cc*)\cos\beta +$			

$2U_{23}(bb*cc*)\cos\alpha)$

Table	S8-3. Anisotropic	displacement	parameters
	T L	Lies	Liaa

atom	U11	U22	U33	U12	U13	U23
Fe1	0.01673(11)	0.01323(10)	0.01645(11)	-0.00078(7)	-0.00029(7)	-0.00254(8)
P1	0.01487(16)	0.01270(16)	0.01569(16)	-0.00112(12)	-0.00006(12)	-0.00285(12)
Si1	0.01815(19)	0.01960(19)	0.01925(19)	-0.00364(15)	0.00332(14)	-0.00196(15)
Si2	0.01924(19)	0.01772(19)	0.01783(18)	-0.00287(14)	-0.00168(14)	-0.00534(15)
Si3	0.0245(2)	0.01868(19)	0.0231(2)	-0.00532(16)	-0.00122(16)	-0.00817(16)
Si4	0.01850(19)	0.01891(19)	0.01882(19)	-0.00132(15)	0.00288(14)	-0.00411(15)
01	0.0195(5)	0.0210(5)	0.0151(5)	0.0030(4)	-0.0037(4)	-0.0021(4)
02	0.0513(8)	0.0422(7)	0.0205(6)	-0.0005(6)	0.0011(5)	-0.0081(5)
03	0.0280(6)	0.0309(6)	0.0518(8)	-0.0131(5)	0.0024(6)	-0.0078(6)
N1	0.0167(5)	0.0147(5)	0.0160(5)	-0.0005(4)	-0.0032(4)	-0.0029(4)
C1	0.0270(8)	0.0205(7)	0.0240(7)	-0.0002(6)	0.0024(6)	-0.0048(6)
C2	0.0226(7)	0.0199(7)	0.0272(8)	0.0003(6)	-0.0005(6)	-0.0033(6)
C3	0.0165(6)	0.0139(6)	0.0153(6)	-0.0015(5)	0.0002(5)	-0.0029(5)
C4	0.0222(7)	0.0146(6)	0.0178(6)	-0.0010(5)	-0.0003(5)	-0.0022(5)
C5	0.0194(7)	0.0155(6)	0.0194(7)	0.0007(5)	-0.0006(5)	-0.0030(5)
C6	0.0175(6)	0.0139(6)	0.0175(6)	-0.0012(5)	0.0004(5)	-0.0047(5)
C7	0.0207(7)	0.0369(9)	0.0296(8)	-0.0106(6)	0.0014(6)	-0.0040(7)
C8	0.0292(8)	0.0261(8)	0.0273(8)	-0.0082(6)	0.0045(6)	0.0017(6)
C9	0.0305(8)	0.0277(8)	0.0245(8)	0.0001(6)	0.0091(6)	-0.0044(6)
C10	0.0351(9)	0.0251(8)	0.0193(7)	-0.0037(6)	-0.0047(6)	-0.0042(6)
C11	0.0213(7)	0.0440(10)	0.0362(9)	-0.0101(7)	0.0014(6)	-0.0197(8)
C12	0.0338(8)	0.0192(7)	0.0283(8)	-0.0038(6)	-0.0093(6)	-0.0078(6)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 0) & -0.0276(9) & -0.0012(9) \\ -0.0037(7) & -0.0102(7) \\ 0.0026(7) & 0.0078(7) \\ -0.0112(6) & 0.0089(7) \\ -0.0033(7) & 0.0023(6) \\ -0.0014(5) & -0.0016(6) \\ 0.0043(6) & 0.0015(6) \end{array}$	-0.0075(8) -0.0150(7) -0.0089(7) -0.0103(7) -0.0024(7) -0.0067(5) 0.0101(6)
---	---	---

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S8-4. Bond lengths (A	Å)
-----------------------------	----

atom	atom	distance	atom	atom	distance
Fe1	P1	2.1205(4)	Fe1	01	1.9300(11)
Fe1	N1	1.9389(11)	Fe1	C1	1.7587(17)
Fe1	C2	1.7699(18)	P1	C3	1.8580(13)
P1	C6	1.8585(15)	Si1	C3	1.9327(14)
Si1	C7	1.8729(19)	Si1	C8	1.8856(15)
Si1	C9	1.8627(19)	Si2	C3	1.9209(16)
Si2	C10	1.8822(15)	Si2	C11	1.8661(17)
Si2	C12	1.8656(16)	Si3	C6	1.9282(17)
Si3	C13	1.874(2)	Si3	C14	1.875(2)
Si3	C15	1.8672(17)	Si4	C6	1.9271(15)
Si4	C16	1.8775(17)	Si4	C17	1.864(2)
Si4	C18	1.8684(16)	O1	N1	1.3851(14)
O2	C1	1.155(2)	O3	C2	1.152(2)
N1	C19	1.502(2)	N1	C23	1.505(2)
C3	C4	1.5656(19)	C4	C5	1.533(2)
C5	C6	1.5625(18)	C19	C20	1.528(2)
C19	C24	1.524(2)	C20	C21	1.539(3)
C21	C22	1.541(2)	C21	C26	1.592(2)
C22	C23	1.527(2)	C23	C25	1.525(2)
C24	C26	1.540(2)	C25	C26	1.537(3)

Table S8	Table S8-5. Bond angles (⁰)							
atom	atom	atom	angle	atom	atom	atom	angle	
P1	Fe1	01	98.58(3)	P1	Fe1	N1	131.31(4)	
P1	Fe1	C1	101.54(5)	P1	Fe1	C2	113.69(5)	
O1	Fe1	N1	41.95(4)	O1	Fe1	C1	145.35(6)	
01	Fe1	C2	103.06(7)	N1	Fe1	C1	104.91(6)	
N1	Fe1	C2	104.29(6)	C1	Fe1	C2	94.29(8)	
Fe1	P1	C3	125.47(5)	Fe1	P1	C6	134.73(4)	
C3	P1	C6	97.90(6)	C3	Sil	C7	112.10(7)	
<u>C3</u>	Sil	C8	108.15(6)	<u>C3</u>	Sil	C9	115.42(8)	
C7	Sil	<u>C8</u>	107.62(8)	C7	Sil	<u>C9</u>	105.71(8)	
C8	Sil	<u>C9</u>	107.51(7)	C3	S12	C10	109.17(7)	
C3	S12	CII	111.35(8)	C3	S12	C12	115.13(7)	
C10	S12	CII	104.42(8)	CIO	S12	C12	108.62(8)	
	S12 S12	C12	107.58(9)	C_{6}	S13	C13	112.68(8)	
C_0	S13	C14	112.05(9)	C_0	S13	C15 C15	112.1/(8) 107.25(0)	
C13	S13 Si2	C14 C15	102.11(9) 100.20(0)		S13 Si4		107.35(9) 108.57(7)	
C_{14}	515 Si4	C13	109.29(9) 112.12(7)	C_{0}	514 Si4	C10	108.37(7) 115.00(7)	
C0 C16	S14 Si4	C17	112.13(7) 104.20(8)	C0 C16	S14 Si4	C18	113.00(7) 107.00(8)	
C10	514 Si/	C17	104.29(8)	Ee1	O1	N1	69.37(6)	
Ee1	N1	01	68.68(6)	Fe1	N1	C19	120 69(9)	
Fe1	N1	C^{23}	119 89(10)	01	N1	C19	111116(12)	
01	NI	C_{23}	112 14(10)	C19	NI	C^{23}	11432(10)	
01	111	010	112.1 (10)	017	111	010	11	

Fe1	C1	O2	171.85(14)	Fe1	C2	O3	175.90(14)
P1	C3	Si1	111.08(7)	P1	C3	Si2	114.41(7)
P1	C3	C4	104.54(9)	Si1	C3	Si2	109.59(7)
Si1	C3	C4	108.35(9)	Si2	C3	C4	108.58(9)
C3	C4	C5	110.21(10)	C4	C5	C6	109.91(11)
P1	C6	Si3	110.30(7)	P1	C6	Si4	114.38(7)
P1	C6	C5	103.64(10)	Si3	C6	Si4	110.79(8)
Si3	C6	C5	111.29(10)	Si4	C6	C5	106.17(9)
N1	C19	C20	109.70(12)	N1	C19	C24	108.32(13)
C20	C19	C24	100.99(11)	C19	C20	C21	100.17(14)
C20	C21	C22	105.77(12)	C20	C21	C26	104.37(13)
C22	C21	C26	104.36(14)	C21	C22	C23	100.19(12)
N1	C23	C22	109.60(13)	N1	C23	C25	108.37(11)
C22	C23	C25	100.73(11)	C19	C24	C26	100.28(12)
C23	C25	C26	100.47(14)	C21	C26	C24	104.30(14)
C21	C26	C25	104.17(12)	C24	C26	C25	105.88(13)

Table S8-6. Torsion Angles(0)

(Those having bond angles > 160 or < 20 degrees are excluded.)

atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle $24.26(4)$
01	Fe1	P1	C6	-175.10(4)	P1	Fel	N1	01	-47.12(8)
P1	Fe1	N1	C19	-149.77(5)	P1	Fe1	N1	C23	56.90(9)
N1	Fel	P1 D1	C_{2}^{3}	53.95(6)	N1	Fel	P1 D1	C6	-145.41(6)
C_{1}	Fel Fel	PI D1	C_3	1/5.89(6)	C_{1}	Fel Fel	PI D1	C6 C6	-23.4/(6)
01	Fe1	N1	01	-0.00(5)	01	Fe1	N1	C19	-102.65(11)
Ŏĺ	Fel	NI	Č23	104.02(10)	Ňĺ	Fel	01	NI	-0.00(6)
C1	Fe1	01	N1	21.13(13)	C2	Fe1	01	N1	-96.95(6)
Cl	Fel	NI	01	-167.75(7)	Cl	Fel	NI	C19	89.60(9)
C_{2}^{1}	Fel Fel	NI N1	C23 C19	-63.74(9)	C_2	Fel Fel	NI N1	C^{23}	93.75(7) -162.23(8)
Fe1	P1	C3	Sil	-70.83(9)	Fe1	P1	C3	Si2	53.89(8)
Fe1	P1	Č3	Č4	172.52(4)	Fe1	P1	Č6	Ši3	91.75(8)
Fel	P1	C6	Si4	-33.92(12)	Fe1	P1	C6	C5	-149.04(4)
C_3	PI D1	C6 C6	S13	-104.0/(/)	C3 C6	PI D1	C_{0}	S14 Si1	130.26(8) 122.03(8)
C5 C6	P1	C_{3}	C3 Si2	-112 36(8)	C6	P1	C_3	C4	627(9)
Č7	Si1	C3	P1	-26.85(10)	Č7	Si1	Č3	Si2	-154.24(7)
C7	Si1	C3	C4	87.44(9)	C8	Sil	C3	P1	-145.32(8)
C8	Sil	C_{2}^{C3}	Si2	87.29(8)	C8	Sil	C_{2}^{C3}	C4	-31.03(10)
C9 C9	511 Si1	C_3	P_1	94.26(9)	C9 C10	S11 Si2	C_3	512 D1	-33.13(8) 176.65(7)
C10	Si2	C3	Sil	-51.15(8)	C10 C10	Si2	C3	C4	67.03(9)
Č11	Si2	Č3	P1	68.58(9)	Č11	Si2	Č3	Si1	-165.92(7)
C11	Si2	C3	C4	-47.74(9)	C12	Si2	C3	P1	-54.20(9)
C12 C12	S12 Si2	C3 C6	S11 D1	71.29(8)	C12 C12	S12	C3 C6	C4	-170.53(7)
C13	Si3	C6	C5	-101.09(7) 84 46(10)	C13	Si3	C6	D14 P1	-55.42(9) 84 02(9)
Č14	Si3	Č6	Ši4	-148.30(8)	Č14	Si3	Č6	C5	-30.43(11)
C15	Si3	C6	P1	-39.81(10)	C15	Si3	C6	Si4	87.87(9)
C15	S13	C6	C5	-154.25(9)	Cl6	S14	C6	P1 C5	-157.32(9)
C10 C17	514 Si4	C6	515 P1	-42 63(10)	C10 C17	514 Si4	C6	CS Si3	-43.09(11) -168.05(6)
C17	Si4	C6	C5	71.00(9)	C18	Si4	C6	P1	81.72(11)
C18	Si4	C6	Si3	-43.69(10)	C18	Si4	C6	C5	-164.65(9)
Fel	01	N1	Fel	0.000(11)	Fel	01	N1	C19	115.88(8)
Fel Fel	OI N1	NI C10	C23	-114./6(9) 98.57(10)	Fel Fel	NI N1	C19 C23	C20	152.05(7) 151.82(7)
Fe1	N1	C19 C23	C24 C25	99 12(9)	01	N1	C19	C_{20}^{22}	7497(12)
01	NI	Č19	Č24	-175.65(9)	ŎĨ	N1	Č23	Č22	-74.46(12)
01	N1	C23	C25	176.48(9)	C19	N1	C23	C22	53.24(13)
C19 C23	NI N1	C23	C25	-55.82(14)	C23	NI C2	C19	C20	-53.23(14)
Si1	C3	C19 C4	C24 C5	-14571(9)	Si2	C_3	C4 C4	C5	9533(10)
Č3	Č4	Č5	Č6	41.11(16)	Č4	ČŠ	Č6	P1	-33.54(14)
C4	C5	C6	Si3	84.99(13)	C4	C5	C6	Si4	-154.38(11)
NI C20	C19	C20	C21	62.04(12)	NI C24	C19	C24	C26	-63.15(13)
C20	C19	C24	C26	52.07(14)	C24	U19	C20	C21	-52.14(13)

C19	C20	C21	C22	-78.51(12)	C19	C20	C21	C26	31.27(12)
C20	C21	C22	C23	78.60(14)	C20	C21	C26	C24	-0.14(14)
C20	C21	C26	C25	-110.96(12)	C22	C21	C26	C24	110.67(12)
C22	C21	C26	C25	-0.15(14)	C26	C21	C22	C23	-31.18(14)
C21	C22	C23	N1	-62.01(13)	C21	C22	C23	C25	52.07(14)
N1	C23	C25	C26	62.65(13)	C22	C23	C25	C26	-52.35(13)
C19	C24	C26	C21	-31.15(13)	C19	C24	C26	C25	78.43(13)
C23	C25	C26	C21	31.50(13)	C23	C25	C26	C24	-78.17(12)

Figure S27. ORTEP drawing of 5 (50% probability of the thermal ellipsoids)

Table S9-1. Crystal data and structure refinement for 5

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} μ (MoK α) Diffractometer Radiation

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =0.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

Structure Solution Refinement Function Minimized Least Squares Weights

 $2\theta_{max}$ cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00 σ (I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map C22H49FeO3PSi5 588.88 palegreen, platelet 0.050 X 0.020 X 0.015 mm triclinic Primitive a = 11.1846(9) Åb = 11.2283(10) Åc = 14.972(2) Å $\alpha = 83.758(15)^{\circ}$ $\beta = 76.946(13)^{\circ}$ $\gamma = 60.902(8)^{\circ}$ $V = 1600.5(3) Å^3$ P-1 (#2) 2 1.222 g/cm^3 632.00 7.279 cm⁻¹ Saturn724 MoKα (λ = 0.71075 Å) multi-layer mirror monochromated 50kV, 40mA 123 K 72.8 x 72.8 mm 720 exposures -105.0 - 75.00 48.0 sec./0 -14.830 40.15 mm 0.070 mm 55.00 Total: 15690 Unique: 7170 ($R_{int} = 0.0405$) Lorentz-polarization Absorption (trans. factors: 0.888 - 0.989) Direct Methods (SIR2008) Full-matrix least-squares on F^2 $\Sigma w (Fo^2 - Fc^2)^2$ $\omega = 1 / [\sigma^2 (Fo^2) + (0.0434 \cdot P)^2 + 1.0913 \cdot P]$ where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ 54.90 All non-hydrogen atoms 7170 289 24.81 0.0444 0.0561 0.1048 1.072 0.001 $0.47 \text{ e}^{-}/\text{Å}^{3}$ $-0.42 \text{ e}^{-}/\text{Å}^{3}$

Table S9-	2. Atomic coo	ordinates and Biso/Be	q
atom	v	N/	-

atom	Х	у	Z	Bea
Fe1	0.32634(3)	0.06317(3)	0.82748(2)	1.669(7)
P1	0.18346(6)	0.21841(6)	0.75550(4)	1.401(10)
Si1	0.52825(8)	-0.16076(7)	0.79686(5)	2.437(13)
Si2	0.04508(7)	0.14433(7)	0.62541(4)	1.769(11)
Si3	-0.10598(7)	0.21646(7)	0.83390(5)	1.919(12)
Si4	0.34403(7)	0.34095(7)	0.60729(5)	1.895(12)
Ši5	0.15623(7)	0.50191(7)	0.79220(5)	1.944(12)
01	0.2205(2)	-0.1325(2)	0.85931(15)	3.38(4)
Õ2	0.5546(2)	01310(2)	0 78977(16)	3 62(4)
Ŏ3	0.2874(3)	$0.0995(\overline{3})$	1 02420(14)	4 26(5)
ČĨ	0.2586(3)	-0.0527(3)	0.84385(17)	2 30(4)
Č2	0.4639(3)	0.1054(3)	0.80123(18)	2,37(4)
Č3	0.3038(3)	0.0839(3)	0.94691(19)	$\overline{2}, \overline{50(4)}$
Č4	0.0168(2)	0.2467(2)	0 73049(15)	1 49(3)
Č5	-0.0598(2)	0.4029(2)	0 70883(16)	1 69(4)
Čć	0.0474(2)	0.4466(2)	0.65889(16)	1 72(4)
Č7	0.1813(2)	0.3760(2)	0.70272(15)	1.52(3)
Č8	0.1854(3)	-0.0355(3)	0.62773(18)	2,53(5)
Č9	-0.1220(3)	0.1500(3)	0.6162(2)	3.04(5)
Č10	0.0933(3)	0.2176(3)	0.51323(17)	2.68(5)
Č11	-0.0844(3)	0.2569(3)	0.94472(19)	3.34(5)
Č12	-0.0905(3)	0.0422(3)	0.8431(2)	3.08(5)
Č13	-0.2908(3)	0.3388(3)	0.8241(2)	2.81(5)
Č14	0.2840(3)	0.4562(3)	0.50836(18)	2.74(5)
Č15	0.4777(3)	0.3763(3)	0.6367(2)	3.09(5)
C16	0.4421(3)	0.1608(3)	0.56517(18)	2.53(5)
C17	0.1471(3)	0.6595(3)	0.7299(2)	2.97(5)
Č18	0.2928(3)	0.4353(3)	0.8634(2)	3.05(5)
Č19	-0.0134(3)	0.5604(3)	0.87518(18)	2.67(5)
C20	0.5496(3)	-0.2597(3)	0.9066(2)	3.05(5)
C21	0.5145(4)	-0.2633(3)	0.7126(2)	4.47(8)
Č22	0.7003(3)	-0.1652(3)	0.7461(2)	3.91(6)
$B_{eq} = 8/3 \pi^2 (U_{eq})^2$	U ₁₁ (aa*) ² + U ₂₂ (bt	$(0^*)^2 + U_{33}(cc^*)^2 - 0$	+ 2U12(aa*bb*)cos	$\gamma + 2U_{13}(aa*cc*)cos \beta +$
2U23(bb*cc*)	$\cos \alpha$)			

Table S9-3. Anisotropic displacement parameters

atom	U11	U22	U33	U12	U13	U23
Fe1	0.02140(17)	0.01956(17)	0.02341(18)	-0.00974(14)	-0.00766(13)	$0.0\overline{0}287(13)$
P1	0.0170(3)	0.0162(3)	0.0210(3)	-0.0086(2)	-0.0047(2)	0.0014(2)
Si1	0.0309(4)	0.0240(4)	0.0286(4)	-0.0041(3)	-0.0113(3)	0.0011(3)
Si2	0.0223(3)	0.0231(3)	0.0242(3)	-0.0112(3)	-0.0075(3)	-0.0014(3)
Si3	0.0218(3)	0.0267(3)	0.0269(3)	-0.0149(3)	-0.0020(3)	0.0011(3)
Si4	0.0199(3)	0.0230(3)	0.0282(4)	-0.0113(3)	-0.0021(3)	0.0035(3)
Si5	0.0250(3)	0.0189(3)	0.0318(4)	-0.0106(3)	-0.0079(3)	-0.0021(3)
01	0.0549(13)	0.0372(11)	0.0523(13)	-0.0325(11)	-0.0206(10)	0.0127(9)
Ŏ2	0.0278(10)	0.0418(12)	0.0727(16)	-0.0198(9)	-0.0149(10)	0.0078(11)
<u>0</u> 3	0.0758(17)	0.0801(17)	0.0274(11)	-0.0532(15)	-0.0109(11)	-0.0018(11)
C1	0.0337(13)	0.0279(13)	0.0292(13)	-0.0161(11)	-0.0123(11)	0.0057(10)
Č2	0.0236(12)	0.0255(13)	0.0356(14)	-0.0072(10)	-0.0093(11)	0.0050(11)
C3	0.0338(14)	0.0359(14)	0.0326(14)	-0.0212(12)	-0.0099(11)	0.0014(11)
C4	0.0164(10)	0.0193(11)	0.0228(11)	-0.0100(9)	-0.0043(9)	0.0004(9)
Č5	0.0191(11)	0.0211(11)	0.0249(12)	-0.0101(9)	-0.0052(9)	0.0009(9)
C6	0.0215(11)	0.0188(11)	0.0256(12)	-0.0094(9)	-0.0085(9)	0.0047(9)
C7	0.0179(10)	0.0175(10)	0.0218(11)	-0.0088(9)	-0.0029(9)	0.0012(9)
C8	0.0381(14)	0.0266(13)	0.0322(14)	-0.0133(12)	-0.0118(12)	-0.0038(11)
C9	0.0315(14)	0.0495(17)	0.0420(16)	-0.0217(13)	-0.0100(12)	-0.0113(13)
C10	0.0443(16)	0.0369(15)	0.0234(13)	-0.0198(13)	-0.0105(11)	0.0003(11)
Č11	0.0443(17)	0.061(2)	0.0279(14)	-0.0335(16)	0.0013(12)	-0.0019(13)
Č12	0.0366(15)	0.0325(14)	0.0511(18)	-0.0225(13)	-0.0028(13)	0.0064(13)
Č13	0.0236(12)	0.0380(15)	0.0433(16)	-0.0165(12)	0.0021(11)	-0.0025(12)
Č14	0.0333(14)	0.0336(14)	0.0334(14)	-0.0168(12)	-0.0015(11)	0.0090(11)
C15	0.0277(14)	0.0432(16)	0.0514(18)	-0.0234(13)	-0.0025(13)	0.0023(14)
C16	0.0265(13)	0.0297(13)	0.0312(14)	-0.0096(11)	0.0012(11)	0.0001(11)

C17 C18	$\begin{array}{c} 0.0430(16) \\ 0.0378(15) \end{array}$	$\begin{array}{c} 0.0226(13) \\ 0.0363(15) \end{array}$	0.0515(18) 0.0462(17)	-0.0185(12) -0.0156(13)	-0.0101(13) -0.0177(13)	-0.0002(12) -0.0086(13)
C19 C20	$0.0358(14) \\ 0.0429(16)$	$0.0320(14) \\ 0.0294(14)$	0.0325(14) 0.0425(16)	-0.0138(12) -0.0129(13)	-0.0061(11) -0.0208(13)	-0.0097(11) 0.0092(12)
C21 C22	0.055(2) 0.0308(15)	0.0368(17) 0.0418(17)	0.053(2) 0.0472(18)	0.0084(15) 0.0011(13)	-0.0282(17) -0.0004(13)	-0.0169(15) 0.0032(14)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S9-4.	Bond lengths ((Å)			
atom	atom	distance	atom	atom	distance
Fe1	P1	2.1009(7)	Fe1	Sil	2.4274(7)
Fe1	C1	1.769(4)	Fe1	C2	1.773(3)
Fe1	C3	1.773(3)	P1	C4	1.852(3)
P1	C7	1.849(3)	Si1	C20	1.874(3)
Si1	C21	1.875(4)	Si1	C22	1.881(4)
Si2	C4	1.927(3)	Si2	C8	1.862(2)
Si2	C9	1.874(4)	Si2	C10	1.874(3)
Si3	C4	1.943(2)	Si3	C11	1.862(4)
Si3	C12	1.870(4)	Si3	C13	1.874(3)
Si4	C7	1.939(2)	Si4	C14	1.872(3)
Si4	C15	1.871(4)	Si4	C16	1.870(3)
Si5	C7	1.931(3)	Si5	C17	1.876(3)
Si5	C18	1.865(3)	Si5	C19	1.864(3)
01	C1	1.150(4)	O2	C2	1.155(4)
03	C3	1.149(4)	C4	C5	1.566(3)
C5	C6	1.525(4)	C6	C7	1.574(3)

Table S9-5. Bond angles (°)

1 4010 57	e. Dona an						
atom P1 P1 Si1 Si1 C1 Fe1 C4 Fe1 C20 C21 C4 C8 C9 C4 C12 C7 C14 C15 C7 C17 C18 Fe1 P1 P1 Si1 Si1 Si1 Si1 Si1 Si1 Si1 Si	atom Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Si1 Si1 Si2 Si2 Si2 Si3 Si3 Si3 Si4 Si4 Si5 Si5 Si5 C2 C4	atom Si1 C2 C1 C3 C3 C4 C7 C21 C21 C22 C9 C9 C9 C10 C12 C12 C12 C13 C15 C15 C15 C16 C18 C19 O2 Si2	angle 138.27(3) 99.83(8) 74.51(7) 103.05(8) 93.04(15) 131.74(8) 97.88(11) 113.63(10) 107.54(16) 102.65(17) 110.55(12) 110.38(15) 102.95(15) 116.15(12) 108.10(16) 106.62(16) 116.51(13) 104.89(16) 105.36(13) 115.37(11) 109.85(17) 105.68(13) 175.7(3) 112.28(10)	atom P1 P1 Si1 C1 C2 Fe1 Fe1 Fe1 C20 C4 C4 C4 C4 C4 C4 C4 C4 C7 C7 C7 C14 C7 C7 C17 Fe1 Fe1 Fe1 Fe1 P1 Si1 C2 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1	$\begin{array}{c} \text{atom} \\ \text{Fe1} \\ \text{Fe1} \\ \text{Fe1} \\ \text{Fe1} \\ \text{Fe1} \\ \text{Fe1} \\ \text{Si1} \\ \text{Si1} \\ \text{Si2} \\ \text{Si2} \\ \text{Si2} \\ \text{Si2} \\ \text{Si3} \\ \text{Si3} \\ \text{Si3} \\ \text{Si3} \\ \text{Si3} \\ \text{Si4} \\ \text{Si4} \\ \text{Si5} \\ \text{Si5} \\ \text{Si5} \\ \text{Si5} \\ \text{Si5} \\ \text{C1} \\ \text{C3} \\ \text{C4} \end{array}$	atom C1 C3 C2 C2 C2 C3 C7 C20 C22 C22 C22 C22 C22 C22 C22 C3 C10 C10 C10 C10 C11 C13 C13 C14 C16 C16 C17 C19 C19 O1 O3 Si3	angle 100.19(9) 118.64(8) 78.93(8) 153.44(10) 92.51(15) 130.30(9) 109.07(8) 116.47(11) 106.88(15) 112.29(12) 113.68(14) 106.55(11) 111.47(16) 108.04(11) 105.89(13) 108.12(11) 113.08(13) 108.35(13) 107.86(13) 112.28(14) 105.33(12) 175.0(3) 178.8(2) 114.62(12)
C15 C7 C17 C18 Fe1 P1 P1 Si2 C4 P1 P1 Si4	Si4 Si5 Si5 C2 C4 C4 C4 C4 C5 C7 C7 C7	C16 C18 C19 O2 Si2 C5 C5 C5 C6 Si4 C6 C6	$\begin{array}{c} 105.36(13) \\ 115.37(11) \\ 109.85(17) \\ 105.68(13) \\ 175.7(3) \\ 112.28(10) \\ 103.6(2) \\ 109.48(16) \\ 109.33(17) \\ 113.02(10) \\ 104.64(19) \\ 108.99(15) \end{array}$	C7 C7 C17 Fe1 Fe1 P1 Si2 Si3 C5 P1 Si4 Si5	S15 Si5 C1 C3 C4 C4 C4 C4 C6 C7 C7 C7	C17 C19 C19 O1 O3 Si3 Si3 C5 C7 Si5 Si5 C6	$\begin{array}{c} 107.86(13)\\ 112.28(14)\\ 105.33(12)\\ 175.0(3)\\ 178.8(2)\\ 114.62(12)\\ 110.33(15)\\ 106.08(13)\\ 110.38(19)\\ 112.58(12)\\ 110.51(15)\\ 106.69(13) \end{array}$

Table S9-6. Torsion Angles(0)(Those having bond angles > 160 or < 20 degrees are excluded.)</td>

atom1 P1 P1 Si1 C1 C2 C3 C1 C2 C2 C3 Fe1 Fe1 Fe1 C4 C4 C7 C8 C9 C10 C10 C10 C10 C11 C12 C12 C13 C14 C14 C15 C16 C16 C17 C18 C19 P1 Si1 Si1 Si1 C1 C2 C2 C3 Si1 C1 C2 C2 C3 Si1 C1 C2 C2 C3 Si1 C1 C2 C3 C1 C2 C3 C1 C2 C3 Si1 C1 C2 C3 C1 C2 C3 C1 C2 C3 Si1 C1 C2 C3 C1 C2 C3 Si1 C1 C2 C3 Si1 C1 C2 C3 Si1 C1 C2 C3 Si Si1 C1 C2 C3 Si Si1 C1 C2 C3 Si Si1 C1 C2 C3 Si Si1 C1 C2 C3 Si Si1 C1 C2 C3 Si Si1 C1 C2 C3 C1 C2 C3 Si Si1 C1 C2 C3 Si Si Si Si Si Si Si Si Si Si Si Si Si	$\begin{array}{c} \text{atom2} \\ \text{Fe1} \\ \text{F1} \\ \text{P1} \\ \text{S12} \\ \text{S12} \\ \text{S12} \\ \text{S12} \\ \text{S13} \\ \text{S13} \\ \text{S13} \\ \text{S13} \\ \text{S14} \\ \text{S14} \\ \text{S14} \\ \text{S15} \\ \text{S16} \\$	atom3 Si1 Si1 P1 P1 P1 Si1 Si1 Si1 Si1 Si1 Si1 Si1 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	$\begin{array}{c} \text{atom4} \\ \text{C20} \\ \text{C22} \\ \text{C7} \\ \text{C7} \\ \text{C7} \\ \text{C7} \\ \text{C21} \\ \text{C20} \\ \text{C22} \\ \text{C21} \\ \text{Si2} \\ \text{C5} \\ \text{Si5} \\ \text{Si5} \\ \text{Si4} \\ \text{C6} \\ \text{Si3} \\ \text{P1} \\ \text{C5} \\ \text{Si2} \\ \text{P1} \\ \text{C5} \\ \text{Si2} \\ \text{P1} \\ \text{C6} \\ \text{Si5} \\ \text{P1} \\ \text{C6} \\ \text{Si4} \\ \text{P1} \\ \text{C6} \\ \text{Si4} \\ \text{P1} \\ \text{C6} \\ \text{Si4} \\ \text{C6} \\ \text{C6} \\ \end{array}$	angle -156.52(4) 82.45(7) -96.92(6) -175.03(8) -12.57(10) 85.79(14) 51.44(10) 111.07(10) -9.96(10) 141.00(13) -82.86(13) 159.14(6) -65.12(12) -122.06(14) -3.62(12) -132.85(12) 45.54(18) 159.98(15) 40.11(15) -75.51(15) 38.92(18) 158.69(12) -93.63(18) 152.76(16) -85.38(15) 136.40(16) 20.5(2) 21.32(15) 16.43(19) -99.45(16) 55.39(15) 59.61(18) 173.84(14) 171.01(11) 35.4(2) 156.47(15)	atom1 P1 Si1 C1 C2 C3 C1 C1 C2 C3 C3 Fe1 Fe1 Fe1 Fe1 C4 C7 C7 C8 C9 C9 C10 C11 C11 C12 C13 C13 C14 C15 C15 C16 C17 C17 C18 C19 C19 C19 C19 C19 C19 C19 C19 C19 C19	atom2 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1	$\begin{array}{c} \text{atom3} \\ \text{Si1} \\ \text{P1} \\ \text{P1} \\ \text{P1} \\ \text{P1} \\ \text{Si1} \\ \text{C4} \\ \text{C7} \\ \text{C7} \\ \text{C7} \\ \text{C7} \\ \text{C4} \\ \text{C7} \\ $	atom4 C21 C4 C4 C4 C20 C22 C21 C20 C22 Si3 Si4 C6 Si5 Si2 C5 Si3 P1 C5 Si3 P1 C5 Si3 P1 C5 Si5 P1 C5 Si5 P1 C5 Si5 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 Si7 P1 C6 Si5 Si7 P1 C6 Si5 Si7 P1 C6 Si5 Si7 P1 C6 Si5 Si7 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 C5 C5 Si5 P1 C6 Si5 C5 C5 Si5 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 P1 C6 Si5 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6	angle -36.56(7) 87.10(6) 8.99(9) 171.45(9) -90.19(14) -68.52(10) 170.45(10) -128.97(10) 21.04(13) -99.99(13) 44.06(16) 60.96(17) 179.41(5) 111.85(12) 100.23(13) -17.77(12) -83.65(15) 169.29(13) -76.27(18) 155.30(12) 30.77(16) -82.84(17) 34.29(17) 146.71(15) 33.1(2) -96.42(16) -105.86(17) 138.26(15) 143.61(13) -177.18(13) -62.95(17) -67.81(16) -61.56(14) 52.67(16) -84.5(2) 41.0(3)
C19 P1 Si3 C5 C5	Si5 C4 C4 C6 C6	C7 C5 C5 C7 C7	Si4 C6 C6 P1 Si5	171.01(11) 35.4(2) 156.47(15) 25.5(2) -94.0(2)	C19 Si2 C4 C5	Si5 C4 C5 C6	C7 C5 C6 C7	C6 C6 C7 Si4	52.67(16) -84.5(2) -41.0(3) 146.64(17)

Figure S28. ORTEP drawing of **8** (50% probability of the thermal ellipsoids). (Three CO ligands on the iron were found to be disordered. The site occupancy factor for C1, C2, C3, O1, O2 and O3 was defined as 0.6, and the site occupancy factor for C4, C5, C6, O4, O5 and O6 was defined as 0.4. Only three CO ligands {C(1)-O(1), C(2)-O(2) and C(3)-O(3)} were shown in this figure for clarity.)

Table S10-1. Crystal data and structure refinement for 8

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} $\mu(MoK\alpha)$ Diffractometer Radiation

Voltage, Current Temperature Detector Aperture Data Images ω oscillation Range (χ =45.0, ϕ =270.0) Exposure Rate Detector Swing Angle Detector Position Pixel Size $2\theta_{max}$ No. of Reflections Measured

Corrections

Structure Solution Refinement Function Minimized Least Squares Weights

 $2\theta_{max}$ cutoff Anomalous Dispersion No. Observations (All reflections) No. Variables Reflection/Parameter Ratio Residuals: R1 (I>2.00 σ (I)) Residuals: R (All reflections) Residuals: wR2 (All reflections) Goodness of Fit Indicator Flack Parameter (Friedel pairs = 4309) Max Shift/Error in Final Cycle Maximum peak in Final Diff. Map Minimum peak in Final Diff. Map C37H56FeO3PSi4Sn 866.70 colorless, block 0.120 X 0.120 X 0.100 mm orthorhombic Primitive a = 11.387(3) Åb = 14.883(4) Åc = 24.983(6) Å $V = 4234.0(17) Å^3$ P212121 (#19) 4 1.360 g/cm^3 1796.00 11.149 cm⁻¹ Saturn70 MoK α ($\lambda = 0.71075$ Å) multi-layer mirror monochromated 50kV, 16mA -149.8°C 70.0 x 70.0 mm 720 exposures -110.0 - 70.00 2.0 sec./0-19.550 45.06 mm 0.137 mm 55.00 Total: 34784 Unique: 9661 ($R_{int} = 0.0733$) Friedel pairs: 4309 Lorentz-polarization Absorption (trans. factors: 0.715 - 0.894) Direct Methods (SHELXS97) Full-matrix least-squares on F^2 $\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$ $w = 1/[\sigma^2(Fo^2) + (0.0618 \cdot P)^2]$ $+0.0000 \cdot P$] where $P = (Max(Fo^2, 0) + 2Fc^2)/3$ 55.00 All non-hydrogen atoms 9661 422 22.89 0.0592 0.0741 0.1351 1.089 0.02(2)0.002 $1.28 \text{ e}^{-}/\text{Å}^{3}$ -0.88 e⁻/Å³

Table S10-2.	. Atomic	coordinates an	d Biso/Bea	and occupancy
--------------	----------	----------------	------------	---------------

atom	Х	y	Z	Bea	occ
Sn1	0.14482(3)	0.00222(3)	0.858978(13)	1.966(9)	1
Fe1	0.19779(7)	0.02449(5)	0.95825(3)	1.937(14)	1
P1	0.25188(12)	0.03918(10)	1.04406(5)	1.89(2)	1
Si1	0.20130(15)	0 20091(11)	1 11643(6)	228(3)	1
Si2	-0.00983(16)	0.06955(14)	1 09559(9)	$\frac{1}{3} \frac{1}{68(4)}$	1
Si2	0.51013(15)	-0.02436(13)	1.06563(8)	3.00(1) 3.41(4)	1
SiJ	0.31013(15) 0.31121(16)	-0.02+50(15) 0.16066(11)	1.00305(0)	230(3)	1
01	0.31121(10) 0.1400(0)	-0.10900(11)	1.07520(0)	2.39(3)	1 0 600000
01	0.1490(9) 0.007(7)	0.2000(7) 0.1575(6)	0.9303(4) 0.0501(2)	3.9(2)	0.000000
02	0.0997(7)	-0.1373(0)	0.9391(3)	2.03(10) 2.21(14)	0.000000
03	0.44/3(0)	0.0180(5)	0.9193(3)	3.31(14)	0.000000
04	0.0230(9)	0.1/29(7)	0.9515(4)	2.86(19)	0.400000
05	0.059/(11)	-0.13/8(8)	0.9629(5)	3.0(3)	0.400000
06	0.4006(12)	0.1154(9)	0.9176(5)	4.6(3)	0.400000
Cl	0.1733(11)	0.1342(9)	0.9429(5)	4.1(2)	0.600000
C2	0.1434(9)	-0.0866(6)	0.9601(4)	1.75(15)	0.600000
C3	0.3510(7)	0.0137(6)	0.9321(3)	1.94(14)	0.600000
C4	0.0876(12)	0.1138(9)	0.9572(5)	1.6(2)	0.400000
C5	0.1009(16)	-0.0657(12)	0.9631(7)	2.9(3)	0.400000
C6	0.3100(15)	0.0840(11)	0.9339(6)	3.1(3)	0.400000
Č7	0.1587(5)	0.0771(4)	1 1011(2)	1 95(9)	1
Č8	0.1981(5)	0.0155(4)	1 1475(2)	2.76(11)	1
ČŶ	0.3231(5)	-0.0139(4)	1 14020(19)	$\frac{2}{2} \frac{61}{11}$	1
C_{10}	0.3251(5) 0.3458(5)	-0.0431(3)	1.0800(2)	1.78(0)	1
C10 C11	0.3495(7)	0.0431(3)	1.0000(2) 1.1/68(3)	3.96(14)	1
C12	0.3493(7) 0.1080(7)	0.2120(3) 0.2720(4)	1.0550(2)	3.70(17)	1
C12	0.1969(7) 0.1014(7)	0.2729(4) 0.2510(5)	1.0339(3) 1.1679(2)	3.37(13) 4.15(15)	1
C15 C14	0.1014(7)	0.2319(3) 0.1646(7)	1.10/0(5)	4.13(13)	1
C14 C15	-0.0/98(7)	0.1040(7)	1.0598(0)	9.5(4)	1
	-0.0081(0)	-0.0330(0)	1.002/(3)	5.1(2)	1
C16	-0.0/00(8)	0.0615(6)	1.1653(4)	6.6(3)	1
CI7	0.5497(6)	0.0906(5)	1.0448(3)	4.45(16)	l
C18	0.5782(9)	-0.0980(7)	1.0163(6)	11.7(5)	l
C19	0.5909(7)	-0.0339(8)	1.1326(4)	7.5(3)	1
C20	0.3407(7)	-0.2193(4)	1.0053(3)	3.67(14)	1
C21	0.1556(6)	-0.1994(5)	1.0916(3)	3.77(14)	1
C22	0.4072(7)	-0.2315(5)	1.1227(3)	4.04(16)	1
C23	0.2140(6)	0.1053(4)	0.8077(2)	2.43(11)	1
C24	0.1540(7)	0.1860(4)	0.8006(3)	3.12(12)	1
C25	0.2014(7)	0.2553(5)	0.7690(3)	3.82(15)	1
C26	0.3097(7)	0.2423(5)	0.7446(3)	3.80(14)	1
Č27	0.3683(7)	0.1638(5)	0.7509(2)	3.77(14)	1
Č28	0.3230(6)	0.0935(5)	0.7824(2)	2.83(12)	1
$\tilde{C}29$	-0.0418(5)	0.0014(4)	0.8437(2)	235(9)	1
C_{30}	-0.0820(5)	0.0011(1)	0.0137(2) 0.7910(2)	$\frac{2.55(5)}{3.16(11)}$	1
C31	-0.20020(5)	-0.0018(6)	0.7794(3)	$\frac{3.10(11)}{4.09(14)}$	1
C32	-0.2820(6)	-0.0010(0)	0.7794(3) 0.8100(1)	4.67(16)	1
C32	-0.2820(0) 0.2448(5)	-0.0081(5)	0.8177(4)	$\frac{1}{4}24(15)$	1
C34	-0.2446(3)	-0.0083(0)	0.8722(3)	$\frac{4.24(13)}{2.10(11)}$	1
C34 C25	-0.1200(5)	-0.0043(3)	0.0045(5)	3.10(11)	1
C_{26}	0.2109(3) 0.1420(6)	-0.1243(4)	0.8300(2)	2.29(10) 2.24(10)	1
C30 C27	0.1430(0)	-0.1020(4)	0.8014(2)	2.34(10)	1
C3/	0.1825(6)	-0.20/0(4)	0.7870(2)	3.02(12)	1
C38	0.2905(7)	-0.2966(5)	0.8013(3)	5.60(15)	1
039	0.3618(7)	-0.2392(5)	0.8315(3)	4.58(16)	
C40	0.3249(6)	-0.1546(5)	0.8456(3)	3./1(14)	1

 $B_{eq} = \frac{8}{3} \pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos\gamma + 2U_{13}(aa^*cc^*)\cos\beta + 2U_{23}(bb^*cc^*)\cos\alpha)$

Table S10-3. Anisotro	pic displacement	parameters
-----------------------	------------------	------------

atom	U11	Ū22	U33	U12	U13	U23
Sn1	0.02882(19)	$0.0\overline{2}\overline{6}94(19)$	0.01892(16)	0.00196(19)	-0.00182(14)	-0.00054(17)
Fe1	0.0290(4)	0.0245(4)	0.0200(4)	-0.0029(3)	-0.0022(3)	-0.0003(3)
P1	0.0255(7)	0.0284(7)	0.0178(6)	0.0040(6)	-0.0007(6)	-0.0007(6)
Si1	0.0371(9)	0.0264(8)	0.0233(8)	0.0003(8)	0.0010(7)	-0.0027(7)
Si2	0.0234(9)	0.0451(11)	0.0712(14)	0.0024(8)	0.0123(9)	0.0039(11)

Si3	0.0254(8)	0.0463(12)	0.0576(12)	0.0012(8)	0.0062(8)	0.0234(9)
Si4	0.0407(9)	0.0246(8)	0.0254(8)	0.0004(8)	-0.0008(7)	0.0016(7)
C7	$0.030(3)^{-1}$	$0.023(3)^{2}$	$0.021(3)^{2}$	$0.002(2)^{2}$	$0.002(2)^{2}$	0.002(2)
C8	0.044(3)	0.037(4)	0.023(3)	0.008(3)	0.003(2)	-0.001(3)
C9	0.049(3)	0.036(3)	0.014(2)	0.003(3)	-0.007(2)	0.006(3)
C10	0.023(3)	0.023(3)	0.022(2)	-0.003(2)	0.003(2)	0.004(2)
Č11	0.062(5)	0.043(4)	0.046(4)	-0.001(4)	-0.006(4)	-0.011(3)
Č12	0.063(4)	0.029(3)	0.036(4)	-0.004(3)	-0.008(3)	0.003(3)
C13	0.067(5)	0.038(4)	0.052(4)	0.001(4)	0.011(4)	-0.016(3)
C14	0.042(5)	0.070(7)	0.250(16)	0.006(5)	-0.023(7)	0.051(9)
Č15	0.024(3)	0.100(7)	0.068(5)	-0.020(4)	0.002(3)	-0.000(5)
C16	0.076(6)	0.074(6)	0.099(7)	-0.021(5)	0.062(6)	-0.035(5)
Č17	0.045(4)	0.053(4)	0.071(5)	-0.014(4)	0.027(4)	-0.005(4)
Č18	0.078(7)	0.069(7)	0.295(19)	-0.030(6)	0.114(10)	-0.069(9)
C19	0.039(4)	0.149(11)	0.097(7)	-0.014(5)	-0.011(5)	0.047(7)
C20	0.071(5)	$0.034(3)^{\prime}$	0.034(3)	0.015(4)	-0.010(4)	-0.004(3)
Č21	0.059(5)	0.043(4)	0.041(4)	-0.023(4)	0.006(4)	0.006(3)
Č22	0.082(6)	0.030(4)	0.042(4)	0.009(4)	-0.020(4)	0.008(3)
$\overline{C}\overline{2}\overline{3}$	0.040(3)	0.040(3)	0.012(3)	-0.003(3)	-0.003(3)	0.003(2)
Č24	0.044(4)	0.035(3)	0.040(4)	0.005(3)	0.004(4)	$0.005(\overline{3})$
Č25	0.057(5)	0.038(4)	0.051(4)	-0.005(4)	-0.009(4)	0.012(3)
C26	0.072(5)	0.041(4)	0.032(4)	-0.016(4)	-0.002(4)	0.007(3)
C27	0.057(4)	0.062(5)	0.025(3)	-0.011(4)	0.001(3)	-0.005(3)
C28	0.040(4)	0.047(4)	0.021(3)	-0.006(3)	0.006(3)	-0.001(3)
C29	0.030(3)	0.024(3)	0.036(3)	0.001(3)	-0.012(2)	-0.003(3)
C30	0.041(3)	0.037(3)	0.043(3)	0.006(4)	-0.015(3)	-0.002(4)
C31	0.055(4)	0.038(3)	0.063(4)	0.006(4)	-0.036(4)	-0.004(4)
C32	0.036(4)	0.041(4)	0.101(6)	0.002(4)	-0.021(4)	-0.009(5)
C33	0.033(3)	0.044(4)	0.084(5)	0.008(3)	0.001(3)	-0.008(5)
C34	0.034(3)	0.034(3)	0.050(3)	0.002(3)	0.006(3)	-0.006(3)
C35	0.035(3)	0.031(3)	0.021(3)	0.005(3)	-0.001(3)	-0.000(2)
C36	0.040(3)	0.022(3)	0.026(3)	0.003(3)	-0.002(3)	0.003(2)
C37	0.052(4)	0.034(3)	0.029(3)	-0.002(3)	$0.008(3)^{2}$	-0.001(3)
C38	0.061(5)	0.036(4)	0.039(4)	0.011(À)	0.013(4)	0.001(3)
C39	0.052(4)	0.059(5)	0.055(5)	0.022(4)	0.004(4)	-0.007(4)
C40	0.043(4)	0.054(4)	0.044(4)	0.018(3)	-0.003(3)	-0.016(3)

The general temperature factor expression: $exp(-2\pi^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S10	0-4. Bond le	ngths (Å)			
atom	atom	distance	atom	atom	distance
Sn1	Fe1	2.5739(10)	Sn1	C23	2.147(6)
Sn1	C29	2.160(5)	Sn1	C35	2.148(6)
Fe1	P1	2.2412(16)	Fe1	C1	1.700(13)
Fe1	C2	1.766(10)	Fe1	C3	1.870(8)
Fe1	C4	1.828(13)	Fe1	C5	1.741(18)
Fe1	C6	1.670(17)	P1	C7	1.864(5)
P1	C10	$1.856(5)^{\prime}$	Si1	C7	1.944(5)
Si1	C11	1.858(8)	Si1	C12	1.853(6)
Si1	C13	1.876(8)	Si2	C7	1.927(6)
Si2	C14	1.854(11)	Si2	C15	1.864(8)
Si2	C16	$1.875(9)^{-1}$	Si3	C10	1.925(5)
Si3	C17	1.844(8)	Si3	C18	1.822(12)
Si3	Č19	1.915(9)	Si4	C10	1.932(5)
Si4	C20	1.881(6)	Si4	C21	1.883(7)
Si4	C22	1.888(7)	01	Ō4	1.618(14)
Õ1	Č1	1.184(17)	ŎĨ	Č4	1.711(16)
Õ2	Ō5	0.550(15)	02	Č2	1.167(13)
Õ2	C5	1.37(2)	03	Ō6	1.545(15)
Õ3	Č3	1.143(11)	Ō3	Č6	1.882(18)
Õ4	Č1	1.819(16)	04	Č4	1.155(16)
Õ5	Č2	1 222(16)	05	Č5	1.17(2)
Ŏ6	Č3	1.655(16)	ŎĞ	Č6	$120(\bar{2})$
ČĨ	Č4	1.082(18)	Čĺ	Č6	1.74(2)
Č2	Č5	0.58(2)	Č3	Č6	1.147(19)

C7 C9 C23 C25 C27 C29 C31 C33 C35 C37 C39	$\begin{array}{c} C8\\ C10\\ C28\\ C26\\ C28\\ C34\\ C32\\ C34\\ C40\\ C38\\ C40\\ C38\\ C40\\ \end{array}$	1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	546(8) 588(7) 404(9) 390(11) 406(10) 403(8) 373(11) 381(8) 425(9) 354(10) 374(11)	C8 C22 C24 C26 C29 C30 C32 C32 C33 C33 C34 C35 C36 C38 P1	$\begin{array}{cccc} C8 & C9 \\ C23 & C24 \\ C24 & C25 \\ C26 & C27 \\ C29 & C30 \\ C30 & C31 \\ C32 & C33 \\ C35 & C36 \\ C36 & C37 \\ C38 & C39 \\ P1 & H1 \end{array}$		$\begin{array}{c} 1.500(8)\\ 1.393(9)\\ 1.406(10)\\ 1.354(11)\\ 1.393(8)\\ 1.385(9)\\ 1.374(12)\\ 1.375(8)\\ 1.379(8)\\ 1.398(10)\\ 1.52(6)\end{array}$
Table 3 atom Fe1 Fe1 C23 Sn1 Sn1	S10-5. Bond atom Sn1 Sn1 Sn1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe	tangles (0) atom C23 C35 C35 P1 C2 C4 C6 C2 C4 C6 C3 C5 C3 C5 C4 C6 C7 C10 C12 C12 C12 C12 C13 C15 C15 C16 C18 C18 C19 C21 C21 C22 C4 C2 C4 C2 C2 C4 C2 C2 C4 C5 C3 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5 C5	angle 113.37(15) 110.41(15) 107.5(2) 177.04(5) 79.8(3) 85.4(4) 84.0(6) 99.4(3) 97.5(4) 95.0(6) 99.0(5) 130.7(7) 104.8(4) 19.0(7) 134.2(5) 37.3(6) 97.7(7) 127.18(18) 99.1(2) 112.5(3) 107.2(3) 108.4(3) 115.7(3) 105.3(4) 103.1(4) 116.9(4) 105.2(4) 110.0(5) 113.6(3) 107.2(3) 105.7(3) 40.5(6) 82.4(17) 24.4	atom Fe1 C23 C29 Sn1 Sn1 P1 P1 P1 C1 C1 C1 C2 C2 C3 C4 C5 Fe1 C7 C7 C11 C7 C7 C11 C7 C7 C14 C10 C10 C10 C10 C10 C10 C10 C20 O4 C1 O5 O5	atom Sn1 Sn1 Sn1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe1 Fe	$\begin{array}{c} \text{atom} \\ \text{C29} \\ \text{C29} \\ \text{C35} \\ \text{C1} \\ \text{C3} \\ \text{C5} \\ \text{C1} \\ \text{C3} \\ \text{C5} \\ \text{C2} \\ \text{C4} \\ \text{C6} \\ \text{C4} \\ \text{C6} \\ \text{C5} \\ \text{C5} \\ \text{C5} \\ \text{C6} \\ \text{C10} \\ \text{C11} \\ \text{C13} \\ \text{C13} \\ \text{C13} \\ \text{C14} \\ \text{C16} \\ \text{C16} \\ \text{C17} \\ \text{C19} \\ \text{C19} \\ \text{C20} \\ \text{C22} \\ \text{C23} \\ \text{C3} \\ \text{C4} \\ \text{C5} \\ \text{C5} \\ \text{C5} \\ \text{C6} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C20} \\ \text{C22} \\ \text{C23} \\ \text{C3} \\ \text{C4} \\ \text{C5} \\ \text{C5} \\ \text{C5} \\ \text{C5} \\ \text{C6} \\ \text{C1} \\ \text{C20} \\ \text{C22} \\ \text{C23} \\ \text{C3} \\ \text{C5} \\ \text{C6} \\ \text{C1} \\ \text{C2} \\ \text{C2} \\ \text{C1}	angle 113.72(14) 105.0(2) 106.3(2) 82.4(4) 82.6(2) 79.6(6) 99.6(4) 95.0(3) 100.5(6) 147.9(5) 35.5(6) 62.2(7) 116.1(5) 140.8(7) 123.3(7) 97.3(7) 156.8(8) 123.78(17) 113.0(3) 111.5(3) 103.6(3) 114.7(3) 107.5(3) 109.9(5) 115.1(3) 107.1(3) 107.5(3) 107.2(3) 79.3(9) 38.8(8) 57.6(17) 76.102 105.002
$\begin{array}{c} C2 \\ O6 \\ O1 \\ C1 \\ O2 \\ O3 \\ C3 \\ Fe1 \\ Fe1 \\ O1 \\ O4 \\ C4 \\ Fe1 \\ O2 \\ O5 \\ Fe1 \\ O3 \\ O6 \\ Fe1 \\ O1 \\ O4 \\ Fe1 \\ O2 \\ O2 \\ \end{array}$	$\begin{array}{c} 02\\ 03\\ 04\\ 04\\ 05\\ 06\\ 06\\ 01\\ 01\\ 01\\ 01\\ 01\\ 02\\ 02\\ 02\\ 02\\ 03\\ 03\\ 04\\ 04\\ 04\\ 04\\ 04\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05$	$\begin{array}{c} C5\\ C6\\ C1\\ C4\\ C5\\ C3\\ C6\\ O4\\ C6\\ C4\\ C6\\ O5\\ C5\\ O6\\ C6\\ O6\\ C6\\ O4\\ C1\\ O5\\ O5\\ O5\\ O5\\ O5\\ O5\\ O5\\ O5\\ O5\\ O5$	$\begin{array}{c} 24.8(9)\\ 39.6(7)\\ 39.8(6)\\ 34.3(8)\\ 99(2)\\ 41.7(5)\\ 43.9(9)\\ 115.6(8)\\ 58.1(7)\\ 97.9(13)\\ 37.0(9)\\ 136.8(14)\\ 149.2(10)\\ 26.5(8)\\ 71(2)\\ 108.4(6)\\ 64.0(7)\\ 46.6(10)\\ 172.9(12)\\ 65.4(9)\\ 108.7(14)\\ 163.7(16)\\ 23.4(8)\\ \end{array}$	$ \begin{array}{c} 06 \\ C3 \\ 01 \\ 02 \\ C2 \\ 03 \\ Fe1 \\ Fe1 \\ 01 \\ 04 \\ Fe1 \\ Fe1 \\ O2 \\ Fe1 \\ Fe1 \\ O3 \\ Fe1 \\ Fe1 \\ O1 \\ Fe1 \\ O2 \\ Fe1 \\ Fe1 \\ Fe1 \\ O2 \\ Fe1 \\ Fe1 \\ O2 \\ Fe1 \\ $	$\begin{array}{c} 03\\ 03\\ 04\\ 05\\ 05\\ 06\\ C1\\ C1\\ C1\\ C1\\ C1\\ C2\\ C2\\ C2\\ C3\\ C3\\ C4\\ C4\\ C4\\ C5\\ C5\\ C5\\ C5\end{array}$	$\begin{array}{c} C3\\ C6\\ C4\\ C2\\ C5\\ C6\\ 01\\ C4\\ 04\\ C6\\ C6\\ 02\\ C5\\ C5\\ C5\\ C5\\ C5\\ C5\\ C5\\ C6\\ C6\\ 01\\ C1\\ C1\\ C1\\ C1\\ C2\\ C2\\ C2\\ C2\\ C2\\ C2\\ \end{array}$	$\begin{array}{c} 74.3(8)\\ 34.8(7)\\ 74.1(9)\\ 71.1(16)\\ 27.9(11)\\ 85.5(11)\\ 175.3(11)\\ 78.7(10)\\ 60.9(8)\\ 125.2(12)\\ 173.0(10)\\ 174.6(9)\\ 78(2)\\ 98(2)\\ 170.8(8)\\ 61.8(9)\\ 110.6(11)\\ 109.0(8)\\ 65.8(9)\\ 43.3(9)\\ 140.4(13)\\ 83(2)\\ 57.6(18)\end{array}$

05	C5	C2	81(2)	Fe1	C6	O3	115.4(9)
Fe1	C6	06	170.1(15)	Fe1	C6	C1	59.8(7)
Fe1	C6	C3	80.9(10)	O3	C6	06	54.9(9)
03	C6	C1	172.6(11)	O3	C6	C3	34.7(7)
06	C6	C1	130.1(14)	O6	C6	C3	89.5(14)
C1	C6	C3	139.5(14)	P1	C7	Si1	107.2(3)
P1	C7	Si2	119.6(3)	P1	C7	C8	103.2(4)
Si1	C7	Si2	108.5(3)	Si1	C7	C8	110.0(4)
Si2	C7	C8	108.0(4)	C7	C8	C9	110.9(4)
C8	C9	C10	110.5(4)	P1	C10	Si3	112.0(3)
P1	C10	Si4	118.9(3)	P1	C10	C9	100.6(3)
Si3	C10	Si4	108.8(3)	Si3	C10	C9	107.1(3)
Si4	C10	C9	108.4(3)	Sn1	C23	C24	120.8(5)
Sn1	C23	C28	120.3(4)	C24	C23	C28	118.8(6)
C23	C24	C25	121.1(7)	C24	C25	C26	119.0(7)
C25	C26	C27	120.4(7)	C26	C27	C28	121.7(7)
C23	C28	C27	118.9(6)	Sn1	C29	C30	119.4(4)
Sn1	C29	C34	123.3(4)	C30	C29	C34	117.2(5)
C29	C30	C31	121.3(6)	C30	C31	C32	120.3(7)
C31	C32	C33	119.6(6)	C32	C33	C34	120.5(7)
C29	C34	C33	121.0(6)	Sn1	C35	C36	122.2(5)
Snl	C35	C40	120.7(4)	C36	C35	C40	116.8(6)
C35	C36	C37	122.1(6)	C36	C37	C38	121.5(6)
C37	C38	C39	118.1(6)	C38	C39	C40	121.4(7)
C35	C40	C39	120.1(6)	Fe1	P1	H1	107(2)
C7	P1	H1	96(2)	C10	P1	H1	97(2)

Table S10-6. Torsion Angles(°)(Those having bond angles > 160 or < 20 degrees are excluded.)</td>

	(
atom1	atom2	atom3	atom4	angle	atom1	atom2	atom3	atom4	angle
Fe1	Sn1	C23	C24	-84.4(4)	Fe1	Sn1	C23	C28	93.2(4)
C23	Sn1	Fe1	Č1	38 93(19)	C23	Sn1	Fe1	$\overline{C2}$	-16786(18)
C^{23}	Sn1	Fel	\tilde{C}^{1}	-6123(19)	C^{23}	Sn1	Fel	$C_{4}^{C_{4}}$	7452(19)
C_{23}	Sn1	Fol	C_{5}	17282(19)	C_{23}	Sn1	Fol	C4 C6	2272(10)
C_{23}	SIII Sm1	C^{20}	C_{20}	172.02(10) 171.4(2)	C_{23}	SIII Sml	C^{20}	C_{24}	-23.73(19)
COO	5111 S = 1	C29	C_{30}	1/1.4(3)	COO	511	C29	C34 C2	-11.9(3)
C29	Sni	Fei		-80.95(19)	C29	Sni	Fei	C2	/2.26(19)
C29	Snl	Fel	<u>C3</u>	1/8.89(19)	C29	Snl	Fel	C4	-45.36(19)
C29	Snl	Fel	C5	52.94(19)	C29	Snl	Fel	C6	-143.61(19)
Fel	Sn1	C35	C36	132.8(3)	Fe1	Sn1	C35	C40	-41.4(4)
C35	Sn1	Fe1	C1	159.61(17)	C35	Sn1	Fe1	C2	-47.18(17)
C35	Sn1	Fe1	C3	59.45(17)	C35	Sn1	Fe1	C4	-164.80(17)
C35	Sn1	Fe1	C5	-66.50(17)	C35	Sn1	Fe1	C6	96.95(17)
C23	Sn1	C29	C30	46 9(5)	C23	Sn1	C29	C34	$-136\dot{4}(4)$
Č29	Sn1	$\tilde{C}23$	Č24	40 3(4)	Č29	Sn1	$\tilde{C}23$	Č28	-142 1(4)
$\tilde{C}23$	Sn1	$C\overline{35}$	C36	-103(1(4))	$\tilde{C}23$	Sn1	$C\overline{35}$	$\tilde{C40}$	827(4)
C_{35}	Sn1	C^{23}	C_{24}	1533(4)	C_{35}	Sn1	C^{23}	C^{10}	$_{-29}^{-29}$
C_{20}	Sn1	C_{25}	C_{24}	0.0(4)	C_{20}	Sn1	C_{25}	C_{10}	1652(3)
C_{25}	Sn1	C_{20}	C_{20}	9.0(4)	C_{25}	Sn1	C_{20}	C_{40}	-103.2(3)
C33 Sm1		C29	C30	-00.9(4)	C55 Sm1		C29	C34	109.0(4)
Sni	Fel E-1		04	89.3(7)	Sn1	Fel E-1	C_{1}	C4	92.7(0)
Sni	Fel		C6	-8/.2(2)	Sni	Fel	C_2	05	-83.6(14)
Snl	Fel	C2	<u>C5</u>	-87.7(9)	Snl	Fel	C3	06	91.7(4)
Snl	Fel	<u>C</u> 3	C6	89.9(3)	Snl	Fel	C4	OI	-81.0(6)
Snl	Fel	C4	Cl	-83.4(6)	Snl	Fel	C5	O2	84.4(19)
Snl	Fe1	C5	C2	88.8(17)	Sn1	Fe1	C6	O3	-89.1(8)
Sn1	Fe1	C6	C1	84.5(3)	Sn1	Fe1	C6	C3	-85.5(7)
P1	Fe1	C1	O4	-92.7(7)	P1	Fe1	C1	C4	-89.5(6)
P1	Fe1	C1	C6	90.6(Ž)	C1	Fe1	P1	C7	66.6(À)
C1	Fe1	P1	C10	-155.2(4)	P1	Fe1	C2	05	99.3(14)
P1	Fe1	C2	Č5	95 1(9)	C2	Fe1	ΡĪ	Č7	-87 5(4)
C2	Fe1	P1	Č10	50 8(4)	Ρ1	Fe1	C3	Õ6	-89 9(4)
P1	Fel	C3	C6	-917(3)	C_3	Fel	PÍ	$\tilde{C7}$	166 6(3)
C3	Fel	P1	C_{10}	-55.2(3)	P1	Fel	CA	\widetilde{O}_1	98 5(6)
D1	Fol	Γ	C10	-55.2(5)	Γ	Fol		C7	30.7(4)
ΓI		D1		160.0(0)	D1	Fel		\tilde{O}	30.7(4)
U4 D1	rei Est		C_{10}	109.0(4)	r 1 C5	rei Fel		C^2	-92.0(19)
	rei E-1		C_{10}	-66.2(17)		rei E-1		C'	-08.2(0)
US D1	rei	ri C		/0.1(6)		Fel	06	03	88.1(8)
PI C	Fel	C6	CI	-98.3(3)	P1	Fel	C6	C3	91.6(7)
C6	Fel	P1	C7	129.2(6)	C6	Fel	P1	C10	-92.6(6)

C2 C2 C1 C3 C4 C5 C1 C6 C2 C3 C4 C5 C6 C3 C4 C5 C4 C5 C6 C4 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C5 C6 C6 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7 C7	C1 C1 C2 C4 C1 C5 C2 C4 C2 C6 C2 C4 C3 C5 C4 C6 C4 C6 C5 C7 C10	04 04 06 04 06 04 05 05 05 05 05 05 05 05 05 05	32.8(14) -143.9(8) 8.9(6) 173.9(6) 2.5(7) -3.2(7) -179.9(11) 159.2(14) 23.5(12) -173.7(12) -170.1(11) 179.9(10) 169.0(4) -163.0(13) -157.2(6) -4.0(16) -23.3(15) -19.8(15) -154.9(11) -8.5(10) 13.8(8) 15(2) 162.2(7) 170.1(11) 1.8(9) 168.3(18) -159.8(8) -173.6(8) -170.0(8) -0.1(8) 129.8(19) 38(3) -103.0(2) 140.87(18) -46.3(4) -130.3(3) -16.8(3) -124.9(3) -70.5(4) 41.1(4) -79.4(4) 173.2(3) -75.2(4) 40.6(5) 40.2(5) -77.3(4) -81.9(4) 24.1(4) -85.3(4) 33.4(5) 136.0(4) 26.6(5) -60.5(4) -54.7(4) 59.2(4)	$ \begin{array}{c} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Fel	$ \begin{array}{c} \hline 1 \\ \hline 1 \hline 1$	C4 O4 O4 C1 C2 O4 C6 C1 C1 S1 O5 O6 O2 O3 C2 C1 O1 O3 C2 Si3 Si3 Si4 Si2 Si2 Si2 Si2 Si2 Si2 Si2 Si2 Si2 Si2	36.0(14) 10.6(6) 170.6(6) -6.1(4) 0.0(7) 0.0(7) 154.8(15) 20.2(13) -156.5(8) 0.0(5) 176.7(11) 0.0(6) 167.2(4) -167.1(9) -159.6(5) -8.1(11) 150.3(7) -150.8(14) -6.0(11) 15.6(8) 11(2) 164.0(7) -3.6(4) 0.0(4) 0.0(4) 0.0(9) 172.7(17) -162.3(8) 0.1(6) 2.4(9) -44(2) -40(2) 43(3) 21.0(4) 82.2(3) -164.30(14) 101.3(3) 111.1(3) -5.1(3) 159.0(3) 51.1(4) 162.7(3) 42.7(4) -82.7(5) 159.8(5) 163.5(3) 154.7(4) 37.3(4) 157.7(3) -100.1(5) 150.4(5) -90.4(4) 69.4(4) -176.7(3) 175.4(3) -171.3(3) -57.4(4) -1.0(8) 0.0(6) 175.2(12) 178.5(13) 0.0(7) -178.5(15) 1.0(10) 177.1(19) -2.3(19) 1.1(12) 5.2(13) 0.0(11)
		C21C13C14C15C16661322422662243536635466646557700000777777777700000000000000	$\begin{array}{cccccc} C2 & O5 \\ C1 & O4 \\ C1 & C6 \\ C3 & C6 \\ C1 & C4 \\ C4 & O1 \\ C1 & C6 \\ C5 & C2 \\ C1 & C4 \\ C6 & O3 \\ C6 & C3 \\ C1 & C4 \\ C2 & O5 \\ C4 & O1 \\ C2 & O5 \\ C4 & O1 \\ C2 & O5 \\ C4 & O1 \\ C2 & O5 \\ C6 & C3 \\ C6 & C3 \\ C6 & C3 \\ C6 & C1 \\ C3 & C6 \\ C5 & C2 \\ C4 & O1 \\ C6 & C3 \\ C6 & C3 \\ C6 & C3 \\ C6 & C1 \\ C3 & C6 \\ C5 & O2 \\ C4 & O1 \\ C6 & C3 \\ C6 & C3 \\ C6 & C3 \\ C6 & C1 \\ C5 & O2 \\ C7 & Si1 \\ C7 & C8 \\ C10 & Si3 \\ C10 & C9 \\ C7 & Si1 \\ C7 & C8 \\ C7 & Si1 \\ C10 & P1 \\ C10 & C9 \\ C10 & Si3 \\ C10 & P1 \\ C10 & C9 \\ C10 & Si3 \\ C10 & P1 \\ C10 & C9 \\ C10 & Si3 \\ C1 & C6 \\ C4 & C1 \\ C1 & C4 \\ C4 & C1 \\ C1 & C4 \\ C4 & C1 \\ C1 & C4 \\ C4 & C1 \\ C4 $	C2 O5 $-26(2)$ C1 O4 $32.8(14)$ C1 C6 $-143.9(8)$ C3 C6 $8.9(6)$ C1 C4 173.9(6) C4 O1 2.5(7) C1 O4 $-3.2(7)$ C1 C4 23.5(12) C6 C3 $-179.9(11)$ C5 C2 159.2(14) C1 C4 23.5(12) C6 C3 $-173.7(12)$ C6 C3 $-170.1(11)$ C1 C4 179.9(10) C3 O6 169.0(4) C2 O5 $-163.0(13)$ C4 O1 $-157.2(6)$ C2 O5 $-4.0(16)$ C6 C3 $-19.8(15)$ C2 C5 $-154.9(11)$ C4 C1 $-8.5(10)$ C3 C6 13.8(8) C5 C2 15(2) C3 C6 162.2(7) C6 C3 $-173.6(8)$ C5 C2 15(2) C3 C6 168.3(18) C4 O1 $-159.8(8)$ C5 O2 168.3(18) C4 O1 $-159.8(8)$ C6 C3 $-173.6(8)$ C6 C3 $-173.6(8)$ C6 C3 $-173.6(8)$ C6 C1 129.8(19) C5 O2 168.3(18) C4 O1 $-159.8(8)$ C6 C1 129.8(19) C5 O2 38(3) C7 Si1 $-103.0(2)$ C7 C8 140.87(18) C10 Si3 $-130.3(3)$ C7 Si2 $-124.9(3)$ C7 C8 41.1(4) C7 C8 41.1(4) C7 C7 C8 41.1(4) C7 C1 Si2 $-79.4(4)$ C7 C8 41.1(4) C7 C1 Si2 $-79.4(4)$ C7 C8 41.1(4) C7 C1 Si2 $-79.4(4)$ C7 C8 41.1(4) C7 Si2 $-79.4(4)$ C7 C1 Si1 $-81.9(4)$ C7 C1 C6 C1 120.8(3) C7 Si1 $-81.9(4)$ C7 C1 C4 C1 $-0.1(8)$ C4 C1 $-0.1(8)$ C4 C1 $-10.8(3)$ C7 Si2 $-79.4(4)$ C7 C1 C3 C6 C1 (120.2) C7 C8 $-77.3(4)$ C7 C1 C7 C8 $-77.3(4)$ C7 C1 C1 $-70.5(4)$ C7 C1 C1 $-70.5(4)$ C7 C1 C2 C5 $-79.4(4)$ C7 C1 C1 $-70.5(4)$ C7 C1 C1 $-70.5(4)$ C7 C1 C2 C5 $-77.3(4)$ C7 C1 C1 $-70.5(4)$ C7 C1 C2 C5 $-77.3(4)$ C7 C1 C1 $-70.5(4)$ C7 C1 C2 C5 $-77.3(4)$ C7 C1 C1 $-77.3(4)$ C1 C1 C4 $-0.0(10)$ C1 C4 C1 $-0.0(10)$ C1 C4 C1 $-0.0(10)$ C1 C4 C1 $-1.0(8)$ C4 C4 C1 $-1.0(8)$ C5 C5 C2 $-1.77(3)$ C5 C5 C2 $-1.77(3)$ C5 C5 C2 $-1.77(3)$ C5 C5 C2 $-1.77(3)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

0.0(18) -2.7(8) 2.4(7) 0.0(8) -2.4(9) 6.2(8) -0.0(7) -0.0(9) 0.0(5) 0.0(4) 1.1(11) 5.2(13) -0.0(12) -0.0(9) 2(2) -4(2) 0.0(19) 0.0(4) 0.0(3) -2.3(9) -171(2) -2.1(13) -0.0(11) -176.6(10) 0.00(3) 15.2(17) 0.0(5) -175.9(14) -160.7(17) -1.4(15) -0.1(18) 15(3) -177.8(10) 0.0(4) -177.8(12) 0.0(6) 174.3(7) -13.2(14) 0.0(4) 172.4(15) -3.4(14) 169(3) -86.2(4) -44.2(6) 153.3(4) 177.1(4) 0.4(8) 0.1(10) -0.6(10) 177.5(4) -0.7(9) 0.5(9) -1.1(10)
$\begin{array}{c} C5 \\ C6 \\ C6 \\ O6 \\ C3 \\ Fe1 \\ C3 \\ C6 \\ O1 \\ O1 \\ Fe1 \\ C4 \\ O2 \\ O2 \\ Fe1 \\ C5 \\ O3 \\ C1 \\ Fe1 \\ C3 \\ O1 \\ Fe1 \\ O5 \\ O2 \\ Fe1 \\ O5 \\ O2 \\ Fe1 \\ O3 \\ C1 \\ O3 \\ C2 \\ C3 \\ C3 \\ C3 \\ C3 \\ C3 \\ C3 \\ C$
$\begin{array}{c} C_2\\ C_3\\ O_6\\ C_6\\ C_6\\ C_6\\ C_1\\ C_1\\ C_2\\ C_5\\ C_2\\ C_3\\ C_6\\ C_6\\ C_6\\ C_6\\ C_6\\ C_6\\ C_6\\ C_6$
$\begin{array}{c} 02\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06$
C5 O6 C3 O6 C6 C3 C6 C1 C1 C1 C4 C4 C4 C2 C2 C5 C5 O3 O3 C3 C6 C6 Fe1 Fe1 O1 O1 O1 C1 C4 C4 C4 C2 C2 C5 C5 O3 O3 C3 C6 C6 Fe1 Fe1 O1 O1 C1 C1 C4 C4 C2 C2 C5 C5 O3 O3 C3 C6 C6 Fe1 Fe1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1
2(2) 0.0(5) 0.0(4) -177.9(16) 175.9(15) 2.7(10) -176.4(13) 178.4(14) -1.1(9) -0.0(7) -178.4(17) 173.3(18) 177.6(19) -2(2) -0.0(10) -178(3) 174.3(8) 176.5(10) -173.1(14) 2.3(9) -0.0(4) -175.2(11) -175.2(11) -175.2(11) -175.2(12) -0.0(5) -175.2(12) -0.0(5) -175.1(14) 176.7(7) -176.7(8) 1.1(10) -1.1(11) -0.00(3) 177.7(12) -174.3(8) 3.4(13) -177.7(13) -0.0(6) 28.0(5) 155.6(3) 36.1(5) -89.4(5) -177.3(4) 0.5(9) 0.4(10) 0.2(9) -177.3(4) 0.6(10) 1.7(12) 1.0(11) 173.8(4) -0.2(8) 0.1(9) 1.4(10)
$ \begin{array}{c} 05\\ 06\\ C3\\ Fe1\\ C3\\ C6\\ 06\\ Fe1\\ C1\\ 01\\ Fe1\\ C5\\ C2\\ C2\\ 02\\ Fe1\\ C1\\ 03\\ C3\\ 03\\ Fe1\\ 06\\ F$
$\begin{array}{c} C2\\ C3\\ O6\\ C6\\ C6\\ C6\\ C6\\ C6\\ C3\\ C1\\ C1\\ C4\\ C4\\ C1\\ C2\\ C2\\ C5\\ C5\\ C5\\ C2\\ C3\\ C3\\ C6\\ C6\\ C6\\ C6\\ C6\\ C6\\ C6\\ C6\\ C6\\ C6$
$\begin{array}{c} 02\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 03\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04\\ 04\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 05\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06\\ 06$
$ \begin{array}{c} C5 \\ C6 \\ C3 \\ C6 \\ C3 \\ C6 \\ C3 \\ C6 \\ C3 \\ C6 \\ C1 \\ C1 \\ C1 \\ C2 \\ C2 \\ C2 \\ C3 \\ C3 \\ C3 \\ C3 \\ C6 \\ Fe1 \\ C1 \\ C1 \\ C4 \\ C2 \\ C2 \\ C2 \\ C3 \\ C3 \\ C3 \\ C6 \\ Fe1 \\ C1 \\ C1 \\ C4 \\ C2 \\ C2 \\ C3 \\ C3 \\ C3 \\ C3 \\ C3 \\ C3$
Reference

(1) E. H. Braye, W. Hübel, *Inorg. Synth.*, 1966, **8**, 178-181.

- (2) S. Ishida, F. Hirakawa, T. Iwamoto, J. Am. Chem. Soc., 2011, 133, 12968-12971.
- (3) (a) E. M. Schubert, J. Chem. Edu., 1992, 69, 62; (b) C. Piguet, J. Chem. Edu., 1997, 74, 815-816;

(c) G. A. Bain, J. F. Berry, J. Chem. Edu., 2008, 85, 532-536.

(4) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

(5) (a) C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158-6170; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377; (c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785-789; (d) T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett., 2004, 393, 51-57.

(6) A. J. H. Wachters, J. Chem. Phys., 1970, 52, 1033-1036.

(7) P. J. Hay, J. Chem. Phys., 1977, 66, 4377-4384

(8) T. H. Dunning, Jr. P. J. Hay, in *Modern Theoretical Chemistry*, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1977), pp 1-28.

(9) I. Mayer, Int. J. Quantum Chem., 1983, 23, 341-363.

(10) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys., 1998, 108, 4439-4449.

(11) SIR2008: M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, *J. Appl. Crystallogr.* 2007, **40**, 609-613.

(12) DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, The DIRDIF-99 program system; *Technical Report of the Crystallography Laboratory*; University of Nijmegen, Nijmegen, The Netherlands, 1999.

(13) D. T. Cromer, J. T. Waber, *International Tables for X-ray Crystallography*; Kynoch Press: Birmingham, U.K., 1974, *Vol. 4*.

(14) SHELX97: G.M. Sheldrick, Acta Cryst., 2008, A64, 112-122.