Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

Supporting Information for:

Control of Cerium Oxidation State through Metal Complex Secondary Structures

Jessica R. Levin, Walter L. Dorfner, Patrick J. Carroll, and Eric J. Schelter*

P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th St. Philadelphia, Pennsylvania 19104, U.S.A.

Calculating t	2
Table S1 Shape parameters	2
Table S2 Average Ce–N bond lengths and τ_4 values for experimental and calculated complexes	2
Figures S1–S4 Determining reaction stoichiometry by ¹ H NMR	3–4
Table S3 Evans's Method Complexes 1–3	5
Figures S5–S7 Magnetic data (SQUID) Complexes 1–3	5–6
Figure S8 Cerium L_{III} -edge XAS spectroscopy of Complexes 1–3	7
Figures S9–S10 Complex 1 ¹ H, ⁷ Li, and ¹³ C NMR Spectra	8–9
Figures S11–S12 Complex 2 ¹ H and ¹³ C NMR Spectra	10
Figures S13–S14 Complex 3 ¹ H and ¹³ C NMR Spectra	11
Figure S15–S21 Metathesis reactions ¹ H and ⁷ Li NMR spectra; GC/MS results	12-15
Figure S22 ¹ H NMR spectrum of the reaction of 1,2-diphenylhydrazine with a Ce(IV) starting material	16
Figure S23 Complex 1 FTIR experimental and calculated spectra	17
Figure S24 Complex 2 FTIR experimental and calculated spectra	18
Figure S25 Complex 3 FTIR experimental and calculated spectra	19
Figure S26 Complex 1 UV-Vis absorption spectra in toluene and fluorobenzene	20
Figure S27 Complex 2 UV-Vis absorption spectra in toluene and fluorobenzene	20
Figure S28 Complex 1 UV-Vis absorption spectra in pyridine and fluorobenzene	20-21
Figure S29 Complex 2 UV-Vis absorption spectra in pyridine and fluorobenzene	21
Figure S30 UV-Vis absorption spectra of deprotonated 1,2-diphenylhydrazine in pyridine	21
Figure S31 Complex 3 UV-Vis absorption spectrum in pyridine	22
Figure S32 1,2-diphenyl hydrazine vs. complex 1 cyclic voltammogram measured in fluorobenzene	22–23
Figure S33 Complex 1 isolation scans and i_p vs. $v^{1/2}$ plot	23
Figure S34 1,2-diphenyl hydrazine vs. complex 2 cyclic voltammogram measured in fluorobenzene	23
Figure S35 Complex 2 isolation scans and i_p vs. $v^{1/2}$ plot	24
Figure S36 1,2-diphenyl hydrazine vs. complex 3 cyclic voltammogram measured in THF	24
Figure S37 Complex 3 isolation scans and i_p vs. $v^{1/2}$ plot	25
Figure S38 Molecular orbitals of Ce and N–N bonding	25
Tables S4–S6 Coordinates of optimized geometries for Ce(IV) analogues of 1, 2, and 3	25-36
Tables S7–S9 Coordinates of optimized geometries for Ce(III) analogues of 1, 2, and 3	36–47

Calculating τ₄:

The centroids between the four N-N bonds were calculated using Mercury software.¹

$$\tau = \frac{360^\circ - (\alpha + \beta)}{141^\circ}$$

 α and β represent the two largest angles θ between one N–N centroid, Ce, and another N–N centroid calculated using Mercury. 0 indicates a square planar structure while 1 implicates a tetrahedral structure. Similar results are obtained when τ is calculated using the largest angles from M–Ce–M, where M = Li, Na, or K.

Shape Parameters:

	Φ ₁	Φ2	δ_1	δ2	δ_3	δ_4	θ _A	θ_{B}
1	4.0	4.0	15.0	15.0	40.9	40.9	72.1	79.8
2	2.0	3.8	30.0	32.4	34.1	35.2	48.8	48.7
3	12.6	25.3	20.2	32.7	35.3	36.8	45.7	45.8
$\boldsymbol{D}_{2d}^{\mathrm{a}}$	0.0	0.0	29.5	29.5	29.5	29.5	35.2	73.5
$\boldsymbol{D}_{4d}^{\mathrm{a}}$	24.5	24.5	0.0	0.0	52.4	52.4	57.3	57.3
<i>Cube</i> ^a	0.0	0.0	0.0	0.0	90.0	90.0	54.7	54.7

Table S1. Shape parameters for complexes 1, 2, and 3. ^aIndicates the idealized shape parameters for a rigorous dodecahedron (D_{2d}), square antiprism (D_{4d}), and cube.²

Complex	Ce(1)-N (avg., Å) (exp, sol = py)	Ce(1)–N (avg., Å) (calc, sol = OMe ₂)	τ ₄ (exp)	τ ₄ (calc)
$Li_4(sol)[Ce(PhNNPh)_4]$ (1)	2.430(11)	2.464	0.110	0.000
$Na_4(sol)[Ce(PhNNPh)_4]$ (2)	2.386(10)	2.441	0.663	0.498
$K_4(OMe_2)_4[Ce(PhNNPh)_4]$ (3+-OMe ₂)		2.421		0.837
$\operatorname{Li}_{4}(\operatorname{OMe}_{2})_{4}[\operatorname{Ce}(\operatorname{PhNNPh})_{4}]^{-}(1^{-}-\operatorname{OMe}_{2})$		2.578		0.116
$\operatorname{Na}_{4}(\operatorname{OMe}_{2})_{4}[\operatorname{Ce}(\operatorname{PhNNPh})_{4}]^{-}(2^{-}-\operatorname{OMe}_{2})$		2.559		0.514
$K_4(OMe_2)_4[Ce(PhNNPh)_4]^-$ (3-OMe ₂)		2.535		0.709
$K_{5}(py)_{7}[Ce(PhNNPh)_{4}]$ (3)	2.502(69)		0.773	

Table S2. Ce–N average bond lengths and τ_4 values for both the experimental and calculated complexes.

Determining the stoichiometry of the reactions:

Figure S1. ¹H NMR spectra of (top) the filtrate from the reaction to synthesize $Li_4(py)_4[Ce(PhNNPh)_4]$ collected in C_6D_6 (middle) the filtrate spiked with aniline, and (bottom) the filtrate spiked with both aniline and 1,2-diphenylhydrazine.

Figure S2. ¹H NMR spectrum of the filtrate from the reaction to synthesize $K_5(py)_7[Ce(PhNNPh)_4]$ collected in C_6D_6 .

Figure S3. ¹H NMR spectrum in C₆D₆ of hexamethyldisilazane.

Figure S4. ¹H NMR spectrum in C₆D₆ of a mixture of aniline and 1,2-diphenylhydrazine.

Complex	Solvent	Concentration (M)	Δδ (ppm)	μ _{eff} (μ _B)
1	Toluene- <i>d</i> ₈	0.014	0.011	1.46
1	Toluene- <i>d</i> ₈	0.020	0.013	1.48
2	Toluene- <i>d</i> ₈	0.012	0.010	1.54
2	Toluene- <i>d</i> ₈	0.026	0.015	1.55
3	Pyridine- <i>d</i> ₅	0.028	0.126	2.14
3	Pyridine- <i>d</i> ₅	0.036	0.148	2.10

 Table S3. Table of Evans' method results for complexes 1, 2, and 3, with

hexamethylcyclotrisiloxane as the internal standard. The μ_{eff} found for complexes 1 and 2 are not within the range of Ce(III) complex magnetic moments whereas complex 3 is well within the range.³

Magnetism of complexes 1–3:

Figure S5. Field dependence of complex Li₄(py)₄[Ce(PhNNPh)₄] at 2 K.

Figure S6. Field dependence of complex Na₄(py)₈[Ce(PhNNPh)₄] at 2 K.

Figure S7. Field dependence of complex $K_5(py)_7[Ce(PhNNPh)_4]$ at 2 K.

Ce L_{III}-edge XAS Spectroscopy

Figure S8. Normalized absorption (A) as a function of the incident X-ray energy (E) in the Ce L_{III} near-edge region at T = 30 K. The red and black traces represent two different measurements.

NMR Spectra of Complexes 1-3:

Figure S9. ¹H NMR spectrum of $Li_4(py)_4[Ce(PhNNPh)_4]$ collected in C_6D_6 .

Figure S10. ⁷Li NMR (top) and ¹³C NMR (bottom) spectra of $Li_4(py)_4[Ce(PhNNPh)_4]$ collected in C_6D_6 .

Figure S11. ¹H NMR spectrum of Na₄(py)₈[Ce(PhNNPh)₄] collected in C₆D₆.

Figure S12. ¹³C NMR spectrum of $Na_4(py)_4[Ce(PhNNPh)_4]$ collected in C_6D_6 .

Figure S13. ¹H NMR spectrum of $K_5(py)_7[Ce(PhNNPh)_4]$ collected in pyridine- d_5 .

Figure S14. ¹³C NMR spectrum of $K_5(py)_7[Ce(PhNNPh)_4]$ collected in pyridine- d_5 .

Figure S15. ¹H NMR spectrum of the metathesis reaction of complex **3** with 4 equiv. of LiI in C_6D_6 , where 2.0 µL of TMS₂O was used as an internal standard to determine percent conversion (top). To compare the products, the ¹H NMR spectrum of crystals of complex **1** in C_6D_6 was included (bottom).

Figure S16. Gas chromatogram of the metathesis reaction of complex **3** with 4 equiv. of LiI. Complex **3** was reacted with LiI first in diethyl ether. The reaction was then acidified with HNEt₃Cl, filtered over celite, and run on the GC/MS. At 2.233 min, m/Z = 86, corresponds to pyridine with Li⁺; the next trace at 9.352 min, m/Z = 182, corresponds to azobenzene; the final trace that can be integrated at 10.54 min, m/Z = 184, corresponds to 1,2-diphenylhydrazine.

Figure S17. ¹H (left) and ⁷Li (right) NMR spectra of the metathesis reaction of complex 1 with 5 equiv. of KI in pyridine- d_5 .

Figure S18. ¹H (left) and ⁷Li (right) NMR spectra of the metathesis reaction of complex 1 with 5 equiv. of KI and 0.5 equiv. of PhNHNHPh in pyridine- d_5 .

Figure S19. ⁷Li NMR spectrum of LiI in pyridine- d_5 .

Figure S20. ¹H NMR spectrum of the metathesis reaction of complex **2** with 5 equiv. of KI and in pyridine- d_5 (top). To compare products, the ¹H NMR spectrum of pure complex **3** in pyridine- d_5 was provided at bottom.

Figure S21. ¹H NMR spectrum of the metathesis reaction of complex 2 with 5 equiv. of KI and 0.5 equiv. of PhNHNHPh in pyridine- d_5 .

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 ppm

Figure S22. ¹H NMR spectrum in pyridine- d_5 of the following crude reaction mix: Ce {N(SiHMe₂)₂}₄ was prepared in situ by reacting K[Ce {N(SiHMe₂)₂}₄] with FcOTf.⁴ In a diethyl ether solution, KH and 1,2-diphenylhydrazine were added to Ce {N(SiHMe₂)₂}₄. The reaction resulted in complex **3** and ferrocene.

FTIR Spectra of Complexes 1-3:

Figure S23. Experimental (black) FTIR spectrum of $Li_4(py)_4[Ce(PhNNPh)_4]$ collected in C_6D_6 and its calculated spectrum (red) of $Li_4(OMe_2)_4[Ce(PhNNPh)_4]$, where the calculated energies are scaled by 0.9594.⁵

Figure S24. Experimental (black) FTIR spectrum of $Na_4(py)_8[Ce(PhNNPh)_4]$ collected in C_6D_6 and its calculated spectrum (red) of $Na_4(OMe_2)_4[Ce(PhNNPh)_4]$, where the calculated energies are scaled by 0.9594.⁵

Figure S25. Experimental (black) FTIR spectrum of $K_5(py)_7[Ce(PhNNPh)_4]$ collected in nujol and its calculated spectrum (red) of $K_4(OMe_2)_4[Ce(PhNNPh)_4]^-$, where the calculated energies are scaled by 0.9594.⁵

UV-Vis Absorption Spectra of 1-3:

UV-Vis absorption spectra of 1 and 2 show broad ligand-to-metal charge transfer bands centered at 18,315 cm⁻¹ for complex 1 and 19,666 cm⁻¹ for complex 2 measured in fluorobenzene, which are characteristic of Ce(IV) complexes.⁶ Because 3 is insoluble in non-coordinating solvents and 1 and 2 are unstable in coordinating solvents, 3 was experimentally inaccessible for comparison in the same solvent.

Figure S26. UV-Vis spectra of 1 in fluorobenzene (red) and toluene (blue).

Figure S27. UV-Vis spectra of 2 in fluorobenzene (red) and toluene (blue).

Figure S28. UV-Vis Spectra of Li₄(py)₄[Ce(PhNNPh)₄] collected in pyridine and fluorobenzene.

Figure S29. UV-Vis Spectra of Na₄(py)₈[Ce(PhNNPh)₄] collected in pyridine and fluorobenzene.

Figure S30. UV-Vis spectra of 1,2-diphenylhydrazine deprotonated with KN(SiMe₃)₂ (red), NaN(SiMe₃)₂ (blue) or LiN(SiMe₃)₂ (green) collected in pyridine.

Figure S31. UV-Vis spectrum of K₅(py)₇[Ce(PhNNPh)₄] in pyridine.

Electrochemistry of 1-2 in fluorobenzene:

To quantify how much the 1,2-diphenylhydrazide stabilized the Ce(IV) oxidation state, cyclic voltammetry was measured. The metal redox of both complexes 1 and 2 centers on ~ -1.9 V vs Fc/Fc⁺ (Figures S26–S29). For the CVs of complexes 1 and 2, the scans begin at the open circuit potential and then the scans sweep to more reducing potentials. The electrochemistry of complex 3 in fluorobenzene was unreliable as complex 3 is extremely sensitive to solvent conditions and it is effectively insoluble in fluorobenzene.

Figure S32. Cyclic voltammogram of 1,2-diphenylhydrazine (top, red) and $Li_4(py)_4[Ce(PhNNPh)_4]$ (bottom, black) in a solution of $[NBu_4][BAr^F_4]$ in fluorobenzene, v = 100 mV/s.

Figure S33. Isolation scans of $Li_4(py)_4[Ce(PhNNPh)_4]$ in a solution of $[NBu_4][BAr^F_4]$ in fluorobenzene at varying scan rates (left). At right, i_p vs. $v^{1/2}$ plot.

Figure S34. Cyclic voltammogram of 1,2-diphenylhydrazine (top, red) and $Na_4(py)_8[Ce(PhNNPh)_4]$ (bottom, black) in a solution of $[NBu_4][BArF_4]$ in fluorobenzene, v = 100 mV/s.

Figure S35. Isolation scans of Na₄(py)₈[Ce(PhNNPh)₄] in a solution of [NBu₄][BAr^F₄] in fluorobenzene at varying scan rates(left). At right, i_p vs. $v^{1/2}$ plot.

Electrochemistry of 3 in THF:

Because the complex 3 was insoluble and unstable in fluorobenzene, the complex was measured instead in THF. For the CV of complex 3, the scan begins at the open circuit potential and then the scans sweep to more oxidizing potentials.

Figure S36. Cyclic voltammogram of 1,2-diphenylhydrazine (top, red) and $K_5(py)_7[Ce(PhNNPh)_4]$ (bottom, black) in a solution of [NPr₄][BAr^F₄] in THF, v = 100 mV/s.

Figure S37. Isolation scans of $K_5(py)_7[Ce(PhNNPh)_4]$ in a solution of $[NPr_4][BAr^F_4]$ in THF at varying scan rates (left). At right, i_p vs. $v^{1/2}$ plot.

Figure S38. Atomic orbitals 87 and 101 of the calculated $Li_4(OMe)_4[Ce(PhNNPh)_4]$ complex. Ce⁴⁺ p orbitals interact with N–N σ bonds.

Optimized Coordinates for Ce(IV) Calculations:

Table S4. Li₄(OMe₂)₄[Ce(PhNNPh)₄] (1-OMe₂)

Ce	0.000000000	0.000000000	0.000000000
0	-5.235507867	0.00000001	0.000000000

0	0.00000001	5.235496008	0.000000000
Ν	-1.964886567	1.368167716	0.583874073
Ν	-1.368126731	1.964875015	-0.583971161
С	-2.228480291	2.200709936	1.668705336
С	-2.399592432	3.601175266	1.571997585
Η	-2.336271347	4.075837702	0.598868766
С	-2.702787622	4.365647544	2.702379372
Η	-2.842173999	5.439563282	2.591771151
С	-2.855189833	3.772061994	3.955568101
Н	-3.093964847	4.371832562	4.829137581
С	-2.707949063	2.382265517	4.061015532
Н	-2.827361063	1.895417913	5.026407854
С	-2.401902163	1.607547824	2.946900045
Η	-2.284607211	0.530323833	3.045601465
С	-2.200604805	2.228350404	-1.668881467
С	-1.607355827	2.401721619	-2.947042160
Н	-0.530115512	2.284497481	-3.045651213
С	-2.382008496	2.707632848	-4.061239924
Η	-1.895094739	2.827009023	-5.026603321
С	-3.771823181	2.854785468	-3.955910452
Η	-4.371542864	3.093454609	-4.829543778
С	-4.365494553	2.702436576	-2.702756157
Η	-5.439428289	2.841757552	-2.592240991
С	-3.601088328	2.399376628	-1.572293495
Η	-4.075823102	2.336095734	-0.599197416
С	-6.015086933	0.557059699	1.053352937
Η	-5.320434370	0.963090348	1.791348376
Н	-6.637862566	-0.215542854	1.523516852
С	0.556943052	6.015073915	1.053414253
Н	-0.215714812	6.637835419	1.523505570
Н	1.361426612	6.659215821	0.672690960
Li	-3.282905430	0.000000000	0.000000000
Li	0.000000000	3.282898297	0.000000000
С	-6.015086933	-0.557059694	-1.053352937
Η	-5.320434370	-0.963090343	-1.791348376
Η	-6.637862566	0.215542856	-1.523516852
С	-0.556943047	6.015073915	-1.053414253
Η	0.215714813	6.637835419	-1.523505570
Η	-1.361426607	6.659215821	-0.672690960
0	-0.000000001	-5.235496008	0.000000000

Ν	-1.964886567	-1.368167716	-0.583874073
Ν	-1.368126731	-1.964875015	0.583971161
С	-2.228480296	-2.200709936	-1.668705336
С	-2.399592432	-3.601175266	-1.571997585
Н	-2.336271347	-4.075837702	-0.598868766
С	-2.702787622	-4.365647544	-2.702379372
Н	-2.842174004	-5.439563229	-2.591771151
С	-2.855189833	-3.772061994	-3.955568101
Η	-3.093964847	-4.371832562	-4.829137581
С	-2.707949063	-2.382265517	-4.061015532
Н	-2.827361063	-1.895417913	-5.026407854
С	-2.401902163	-1.607547824	-2.946900045
Н	-2.284607211	-0.530323833	-3.045601465
С	-2.200604805	-2.228350404	1.668881467
С	-1.607355827	-2.401721619	2.947042160
Н	-0.530115512	-2.284497481	3.045651213
С	-2.382008496	-2.707632848	4.061239924
Н	-1.895094739	-2.827009023	5.026603321
С	-3.771823181	-2.854785468	3.955910452
Н	-4.371542864	-3.093454609	4.829543778
С	-4.365494553	-2.702436576	2.702756157
Η	-5.439428289	-2.841757552	2.592240991
С	-3.601088333	-2.399376628	1.572293495
Н	-4.075823102	-2.336095734	0.599197416
С	0.556943047	-6.015073915	-1.053414253
Н	-0.215714813	-6.637835419	-1.523505570
Η	1.361426607	-6.659215821	-0.672690960
Li	0.000000000	-3.282898297	0.000000000
С	-0.556943052	-6.015073915	1.053414253
Η	0.215714812	-6.637835419	1.523505570
Η	-1.361426612	-6.659215821	0.672690960
0	5.235507867	-0.000000001	0.000000000
Ν	1.964886567	-1.368167716	0.583874073
Ν	1.368126731	-1.964875015	-0.583971161
С	2.228480291	-2.200709936	1.668705336
С	2.399592432	-3.601175266	1.571997585
Η	2.336271347	-4.075837702	0.598868766
С	2.702787622	-4.365647544	2.702379372
Η	2.842173999	-5.439563282	2.591771151
С	2.855189833	-3.772061994	3.955568101

Н	3.093964847	-4.371832562	4.829137581
С	2.707949063	-2.382265517	4.061015532
Н	2.827361063	-1.895417913	5.026407854
С	2.401902163	-1.607547824	2.946900045
Н	2.284607211	-0.530323833	3.045601465
С	2.200604805	-2.228350404	-1.668881467
С	1.607355827	-2.401721619	-2.947042160
Н	0.530115512	-2.284497481	-3.045651213
С	2.382008496	-2.707632848	-4.061239924
Н	1.895094739	-2.827009023	-5.026603321
С	3.771823181	-2.854785468	-3.955910452
Н	4.371542864	-3.093454609	-4.829543778
С	4.365494553	-2.702436576	-2.702756157
Н	5.439428289	-2.841757552	-2.592240991
С	3.601088328	-2.399376628	-1.572293495
Н	4.075823102	-2.336095734	-0.599197416
С	6.015086933	-0.557059699	1.053352937
Н	5.320434370	-0.963090348	1.791348376
Н	6.637862566	0.215542854	1.523516852
Li	3.282905430	0.000000000	0.000000000
С	6.015086933	0.557059694	-1.053352937
Н	5.320434370	0.963090343	-1.791348376
Н	6.637862566	-0.215542856	-1.523516852
Ν	1.964886567	1.368167716	-0.583874073
Ν	1.368126731	1.964875015	0.583971161
С	2.228480296	2.200709936	-1.668705336
С	2.399592432	3.601175266	-1.571997585
Η	2.336271347	4.075837702	-0.598868766
С	2.702787622	4.365647544	-2.702379372
Η	2.842174004	5.439563229	-2.591771151
С	2.855189833	3.772061994	-3.955568101
Η	3.093964847	4.371832562	-4.829137581
С	2.707949063	2.382265517	-4.061015532
Η	2.827361063	1.895417913	-5.026407854
С	2.401902163	1.607547824	-2.946900045
Η	2.284607211	0.530323833	-3.045601465
С	2.200604805	2.228350404	1.668881467
С	1.607355827	2.401721619	2.947042160
Η	0.530115512	2.284497481	3.045651213
С	2.382008496	2.707632848	4.061239924

Η	1.895094739	2.827009023	5.026603321
С	3.771823181	2.854785468	3.955910452
Н	4.371542864	3.093454609	4.829543778
С	4.365494553	2.702436576	2.702756157
Н	5.439428289	2.841757552	2.592240991
С	3.601088333	2.399376628	1.572293495
Н	4.075823102	2.336095734	0.599197416
Н	-0.962906914	-5.320420717	1.791445951
Н	0.962906914	-5.320420717	-1.791445951
Н	-6.659216773	-1.361511614	-0.672542484
Н	-6.659216773	1.361511614	0.672542484
Н	-0.962906914	5.320420717	-1.791445951
Н	0.962906914	5.320420717	1.791445951
Н	6.659216773	-1.361511614	0.672542484
Н	6.659216773	1.361511614	-0.672542484

Lowest Energy Frequencies (cm⁻¹) -16.32, -12.12, -12.08, -11.37, 9.20, 20.57

Sum of Electronic and Thermal Free Energies (Hartrees) –3415.92

Table S5. Na₄(OMe₂)₄[Ce(PhNNPh)₄] (2-OMe₂)

84767 8760 52949 51417
8760 52949 51417
52949 51417
51417
0233
3650
9906
3783
4899
7024
4804
8073
8496
9454
5502
0692

С	0.541120626	2.538931273	-2.383815546
С	1.385548067	3.664569679	-2.231058590
Н	1.431247428	4.165115629	-1.268668434
С	2.120358499	4.163083716	-3.308093098
Н	2.756827446	5.032293654	-3.154392905
С	2.041513237	3.576281885	-4.572016473
Н	2.612397146	3.973857001	-5.406316663
С	1.195061905	2.472610362	-4.744262282
Н	1.107452637	2.003645128	-5.722643159
С	0.457724998	1.964829204	-3.680213148
Н	-0.198582205	1.109704493	-3.824003360
С	-0.736937777	3.524771422	0.420495993
С	-0.840842767	3.752857331	1.821188633
Н	-0.408748041	3.022124125	2.500941839
С	-1.541340812	4.839885658	2.325485894
Н	-1.624331913	4.959512187	3.403231193
С	-2.177984086	5.753107946	1.469564485
Н	-2.726318779	6.599890553	1.871839770
С	-2.095507568	5.543880681	0.094517532
Н	-2.565823638	6.246336279	-0.591019474
С	-1.389994960	4.455049505	-0.433811984
Н	-1.275337231	4.358716041	-1.509509880
С	-3.517509348	2.685346236	-4.102830462
Н	-3.939144111	3.524862784	-4.672948593
Η	-3.744788272	1.745157806	-4.624759231
С	-5.450503281	2.484701633	-2.747582888
Н	-5.729234961	1.514039806	-3.178221677
Н	-5.956974222	3.290746985	-3.296701759
С	2.539061948	-0.541310156	2.383658555
С	3.664756278	-1.385650886	2.230826112
Η	4.165288787	-1.431262409	1.268424515
С	4.163352575	-2.120477426	3.307812946
Η	5.032601831	-2.756879236	3.154057740
С	3.576586368	-2.041727908	4.571757737
Η	3.974227991	-2.612621645	5.406019265
С	2.472862885	-1.195358287	4.744078419
Н	2.003925893	-1.107823469	5.722479484
С	1.964995826	-0.458010823	3.680079431
Н	1.109832268	0.198235029	3.823926883
С	3.524824313	0.736891104	-0.420553604

С	3.752897131	0.840930532	-1.821238460
Η	3.022142943	0.408925510	-2.501024179
С	4.839952070	1.541434270	-2.325469542
Η	4.959578620	1.624525502	-3.403207083
С	5.753200499	2.177962432	-1.469488882
Η	6.600001204	2.726305650	-1.871714942
С	5.543976038	2.095364558	-0.094448752
Η	6.246449417	2.565593837	0.591129411
С	4.455131580	1.389823168	0.433815094
Η	4.358754639	1.275111542	1.509502773
С	2.685230753	3.517354336	4.102955083
Η	3.524705979	3.939022020	4.673108743
Η	1.745012732	3.744573956	4.624856531
С	2.484641720	5.450379188	2.747744123
Η	1.513953783	5.729121188	3.178316759
Η	3.290658390	5.956810547	3.296940518
С	-0.541125791	-2.538935686	-2.383807323
С	-1.385561497	-3.664567621	-2.231047271
Η	-1.431261059	-4.165113729	-1.268657226
С	-2.120381184	-4.163074894	-3.308078736
Η	-2.756856683	-5.032279620	-3.154376109
С	-2.041536500	-3.576273280	-4.572002175
Η	-2.612427548	-3.973843116	-5.406299994
С	-1.195077389	-2.472608187	-4.744251052
Η	-1.107469047	-2.003642948	-5.722631993
С	-0.457732105	-1.964833173	-3.680204877
Η	0.198580615	-1.109713103	-3.823997333
С	0.736934714	-3.524779180	0.420502460
С	0.840839756	-3.752866073	1.821195094
Η	0.408747499	-3.022131782	2.500948676
С	1.541335055	-4.839896506	2.325491535
Η	1.624326346	-4.959523723	3.403236765
С	2.177975254	-5.753120487	1.469569544
Η	2.726307682	-6.599904735	1.871844358
С	2.095498783	-5.543892428	0.094522736
Η	2.565812763	-6.246348926	-0.591014770
С	1.389989028	-4.455059051	-0.433806129
Η	1.275331802	-4.358724460	-1.509503916
С	3.517533436	-2.685324561	-4.102803130
Η	3.939181942	-3.524826419	-4.672932729

Н	3.744802735	-1.745124722	-4.624715495
С	5.450517092	-2.484672571	-2.747541824
Н	5.729234537	-1.513996996	-3.178158609
Н	5.957003856	-3.290698439	-3.296674744
С	-2.539058223	0.541301933	2.383664260
С	-3.664753912	1.385642033	2.230838855
Н	-4.165286411	1.431260308	1.268437686
С	-4.163349971	2.120460508	3.307831187
Η	-5.032600434	2.756861953	3.154081362
С	-3.576581378	2.041704423	4.571774523
Η	-3.974222784	2.612592153	5.406040273
С	-2.472855858	1.195336077	4.744087997
Н	-2.003916807	1.107796264	5.722487633
С	-1.964989608	0.457995749	3.680083590
Η	-1.109824547	-0.198249399	3.823925428
С	-3.524825594	-0.736889305	-0.420551261
С	-3.752899088	-0.840928537	-1.821235894
Η	-3.022145044	-0.408924784	-2.501022915
С	-4.839955377	-1.541430958	-2.325466426
Η	-4.959581991	-1.624522210	-3.403203977
С	-5.753204256	-2.177957442	-1.469485315
Η	-6.600005755	-2.726299184	-1.871711503
С	-5.543979002	-2.095359985	-0.094445120
Н	-6.246452645	-2.565588180	0.591133496
С	-4.455133152	-1.389820660	0.433817977
Η	-4.358754587	-1.275110235	1.509505477
С	-2.685220768	-3.517350388	4.102964629
Н	-3.524693400	-3.939016754	4.673123074
Н	-1.745000270	-3.744570183	4.624861563
С	-2.484640291	-5.450377389	2.747755591
Η	-1.513948201	-5.729118965	3.178319093
Η	-3.290651887	-5.956806843	3.296961151
Η	5.761203881	-2.512840639	-1.700488018
Η	2.434049528	-2.804806793	-4.028731332
Η	-2.434024323	2.804813323	-4.028751071
Η	-5.761194991	2.512852741	-1.700530129
Η	2.804759569	2.433877005	4.028857557
Η	2.512883073	5.761101962	1.700703096
Η	-2.512892540	-5.761102597	1.700715553
Η	-2.804749123	-2.433873079	4.028866347

Lowest Energy Frequencies (cm⁻¹) 5.32, 11.99, 14.77, 14.78, 20.94, 22.52

Sum of Electronic and Thermal Free Energies (Hartrees) –4034.95

Table S6. K₄(OMe₂)₄[Ce(PhNNPh)₄] (3⁺-OMe₂)

Ce	0.000004542	-0.000002717	-0.000005910
Κ	2.396475588	-2.205177769	1.725300144
0	4.197298814	-4.231754275	1.592422541
Ν	1.480418943	0.669690245	1.727596604
Ν	2.306249343	0.690601599	0.550414349
С	1.414352174	1.822119742	2.491599993
С	2.294587420	2.926731020	2.364772606
Н	3.082789920	2.890652509	1.621461015
С	2.167074885	4.045915829	3.187537985
Н	2.864970976	4.871819150	3.062104191
С	1.170726446	4.125709525	4.163647226
Н	1.086830838	4.997743264	4.805984823
С	0.300812061	3.036357093	4.314617256
Н	-0.466316249	3.057808262	5.087810359
С	0.415531085	1.909530716	3.503727831
Н	-0.249230131	1.061275996	3.643984668
С	3.636757615	0.388654414	0.731359874
С	4.467038460	0.143764131	-0.403331039
Н	4.017789323	0.106682475	-1.391476408
С	5.823782107	-0.125494919	-0.266837436
Н	6.409869036	-0.319903431	-1.162833783
С	6.434973310	-0.174977870	0.995941296
Н	7.499059644	-0.370973714	1.093167328
С	5.637712644	0.042944985	2.122180578
Н	6.084896101	0.021173883	3.114827295
С	4.270956789	0.314567827	2.007984895
Н	3.689593985	0.530197529	2.897765630
С	5.602899766	-4.029545757	1.656971862
Н	6.084663898	-4.334038167	0.716439456
Н	6.046015491	-4.603797642	2.484807283
С	3.856757230	-5.579407154	1.291943332
Н	4.187027510	-6.257528695	2.093234804

Η	4.317208934	-5.896833069	0.345183821
Κ	2.205174970	2.396463549	-1.725320237
0	4.231753010	4.197285838	-1.592448036
N	-0.669693203	1.480408820	-1.727607182
N	-0.690601081	2.306240929	-0.550426409
С	-1.822127298	1.414338765	-2.491603962
С	-2.926740947	2.294570444	-2.364769357
Н	-2.890656060	3.082779289	-1.621464825
С	-4.045937271	2.167044675	-3.187517014
Н	-4.871841445	2.864938924	-3.062078664
С	-4.125741048	1.170685953	-4.163614904
Н	-4.997783788	1.086780116	-4.805938874
С	-3.036388897	0.300772204	-4.314589300
Н	-3.057849876	-0.466367007	-5.087771258
С	-1.909551089	0.415504094	-3.503717491
Н	-1.061299274	-0.249260582	-3.643975101
С	-0.388653890	3.636748789	-0.731374378
С	-0.143761718	4.467030946	0.403314897
Н	-0.106679465	4.017783094	1.391460596
С	0.125497582	5.823774275	0.266819105
Н	0.319907300	6.409862156	1.162814516
С	0.174979355	6.434963838	-0.995960426
Н	0.370975257	7.499050066	-1.093188114
С	-0.042945275	5.637701796	-2.122198369
Η	-0.021175569	6.084884036	-3.114845705
С	-0.314568738	4.270946205	-2.008000399
Н	-0.530200217	3.689582374	-2.897780140
С	4.029544916	5.602886960	-1.656994633
Η	4.334042078	6.084649716	-0.716463031
Н	4.603793191	6.046003425	-2.484832171
С	5.579407419	3.856743144	-1.291976829
Η	6.257524515	4.187013767	-2.093271910
Н	5.896839101	4.317193820	-0.345218755
Κ	-2.396460687	2.205170694	1.725307579
0	-4.197280896	4.231750914	1.592438559
N	-1.480411407	-0.669696277	1.727602419
N	-2.306239622	-0.690606351	0.550419069
С	-1.414357672	-1.822124139	2.491608724
С	-2.294618821	-2.926715907	2.364793588
Η	-3.082816094	-2.890629252	1.621476499

С	-2.167145493	-4.045886306	3.187584600
Н	-2.865061280	-4.871774276	3.062159866
С	-1.170810241	-4.125685325	4.163706764
Н	-1.086944511	-4.997707804	4.806063538
С	-0.300874720	-3.036348441	4.314669423
Н	0.466238647	-3.057799752	5.087877506
С	-0.415556654	-1.909535145	3.503756375
Н	0.249215028	-1.061288643	3.644012292
С	-3.636747228	-0.388659770	0.731367774
С	-4.467030776	-0.143768146	-0.403320736
Н	-4.017784232	-0.106686438	-1.391467274
С	-5.823773905	0.125491336	-0.266822880
Н	-6.409863321	0.319900655	-1.162817357
С	-6.434961615	0.174973037	0.995957647
Н	-7.499047685	0.370968795	1.093186797
С	-5.637698092	-0.042951700	2.122194543
Н	-6.084878903	-0.021181886	3.114842488
С	-4.270942702	-0.314574875	2.007994600
Н	-3.689576839	-0.530206562	2.897773176
С	-5.602882145	4.029544805	1.656989436
Н	-6.084647017	4.334040247	0.716458401
Н	-6.045995594	4.603795684	2.484826762
С	-3.856737370	5.579403979	1.291962192
Н	-4.187005300	6.257524039	2.093255850
Н	-4.317189941	5.896833069	0.345204176
Κ	-2.205167927	-2.396469286	-1.725317681
0	-4.231745919	-4.197291702	-1.592445846
N	0.669698892	-1.480410820	-1.727610437
N	0.690610738	-2.306245851	-0.550431854
С	1.822131119	-1.414338283	-2.491609682
С	2.926746049	-2.294568867	-2.364778924
Н	2.890663378	-3.082779459	-1.621476081
С	4.045940865	-2.167039658	-3.187528079
Η	4.871846154	-2.864933135	-3.062092724
С	4.125741767	-1.170678455	-4.163623699
Н	4.997783370	-1.086769903	-4.805948854
С	3.036388474	-0.300765421	-4.314593914
Η	3.057847373	0.466375937	-5.087773787
С	1.909552111	-0.415500752	-3.503720608
Н	1.061299401	0.249263486	-3.643974990

С	0.388665687	-3.636753673	-0.731383597
С	0.143778567	-4.467040021	0.403303041
Н	0.106697757	-4.017795662	1.391449875
С	-0.125478428	-5.823783271	0.266803225
Н	-0.319884377	-6.409874380	1.162797301
С	-0.174963451	-6.434968653	-0.995978243
Н	-0.370957665	-7.499054882	-1.093209070
С	0.042956536	-5.637702378	-2.122213911
Н	0.021185222	-6.084881178	-3.114862766
С	0.314578269	-4.270946766	-2.008011660
Η	0.530206853	-3.689579617	-2.897789993
С	-4.029537619	-5.602892728	-1.656995246
Η	-4.334032611	-6.084657072	-0.716463762
Η	-4.603787656	-6.046007923	-2.484832218
С	-5.579399693	-3.856749870	-1.291970600
Η	-6.257518694	-4.187019292	-2.093264544
Η	-5.896828835	-4.317202356	-0.345212546
Н	2.962545980	5.777334738	-1.814361612
Η	5.629562733	2.770168560	-1.191443312
Η	-5.629555112	-2.770175503	-1.191434993
Н	-2.962538994	-5.777339977	-1.814364866
Н	-5.777330823	2.962546514	1.814359532
Н	-2.770162993	5.629557600	1.191425881
Η	5.777346645	-2.962547467	1.814344053
Н	2.770182758	-5.629562309	1.191408672

Lowest Energy Frequencies (cm⁻¹) 13.02, 13.06, 13.06, 13.79, 16.74, 23.47

Sum of Electronic and Thermal Free Energies (Hartrees) –5785.36

Optimized Coordinates for Ce(III) Calculations:

Table S7. Li₄(OMe₂)₄[Ce(PhNNPh)₄]⁻ (1⁻⁻OMe₂)

Ce	-0.000108261	-0.000247107	-0.000935697
0	-5.237741101	0.019168931	0.155101624
0	-0.017817705	5.237653411	-0.151399635
Ν	-2.042548969	1.441937353	0.589953251
Ν	-1.442537064	2.043098694	-0.589481352
С	-2.353443508	2.282594406	1.639253986

С	-2.479379772	3.693620113	1.543395988
Η	-2.337609403	4.170406613	0.579978731
С	-2.825262452	4.463822745	2.656178896
Η	-2.921539146	5.542684105	2.537753372
С	-3.069053633	3.879608152	3.900423746
Н	-3.338141460	4.487105031	4.760581182
С	-2.960059021	2.485289322	4.010242599
Н	-3.138469681	2.000801409	4.968852170
С	-2.610841720	1.702747615	2.916025600
Н	-2.508864999	0.624152225	3.024803540
С	-2.284158215	2.354906509	-1.637724701
С	-1.705407636	2.613634236	-2.914730608
Н	-0.626909053	2.511758503	-3.024534173
С	-2.488912725	2.963861366	-4.007927851
Η	-2.005251885	3.143254914	-4.966770006
С	-3.883157233	3.072596792	-3.896824674
Η	-4.491408321	3.342471797	-4.756202425
С	-4.466297559	2.827474445	-2.652343276
Н	-5.545071171	2.923506251	-2.532913099
С	-3.695119214	2.480578729	-1.540541860
Η	-4.171103693	2.337816470	-0.576875365
С	-5.902935064	0.372503687	1.362562486
Н	-5.193806546	0.942245781	1.966460478
Η	-6.210788268	-0.527016636	1.912260699
С	0.722688098	6.049815618	0.749808935
Η	0.124760182	6.916328970	1.066285748
Η	1.652515888	6.403748042	0.282163204
Li	-3.270917454	0.011776630	0.020278433
Li	-0.011565971	3.270624867	-0.020648180
С	-6.051074213	-0.719873240	-0.746209968
Η	-5.436474845	-0.960870254	-1.615912893
Η	-6.918281052	-0.121647240	-1.060220811
С	-0.374876784	5.904974090	-1.356544867
Η	0.522911408	6.215395180	-1.907667837
Η	-0.995127014	6.785874977	-1.136813148
0	0.017794198	-5.238115039	-0.152416692
Ν	-2.072156278	-1.437237328	-0.573520895
Ν	-1.438605431	-2.071997540	0.569573026
С	-2.446726635	-2.246291894	-1.626029360
С	-2.608295451	-3.656015069	-1.555110544

Η	-2.437813290	-4.154090798	-0.607585828
С	-3.036820303	-4.390414335	-2.663570767
Η	-3.167266729	-5.467839021	-2.561958209
С	-3.323895278	-3.771977447	-3.881714706
Н	-3.656889428	-4.351596311	-4.738755171
С	-3.175823054	-2.379232210	-3.967606539
Н	-3.386928644	-1.867989730	-4.905374571
С	-2.749123075	-1.631715169	-2.876826462
Н	-2.621773474	-0.554553648	-2.968985855
С	-2.249093983	-2.449213700	1.619973551
С	-1.636599623	-2.751878231	2.871741873
Н	-0.559907059	-2.622367772	2.966387986
С	-2.385601911	-3.181407234	3.960410078
Н	-1.875959992	-3.392573859	4.899036202
С	-3.777854982	-3.332166482	3.871344134
Н	-4.358645819	-3.667365810	4.726729052
С	-4.394254453	-3.044887510	2.652186513
Н	-5.471176436	-3.177498863	2.548070741
С	-3.658361822	-2.613557637	1.545818165
Н	-4.154660510	-2.443132876	0.597343380
С	0.374283057	-5.905057383	-1.357955468
Н	-0.523774553	-6.214813032	-1.909006180
Н	0.994189502	-6.786329435	-1.138747217
Li	0.011325911	-3.271181027	-0.020914158
С	-0.722696094	-6.050438089	0.748660165
Н	-0.124847087	-6.917133266	1.064787304
Н	-1.652649944	-6.404092166	0.281059104
0	5.237404999	-0.020011490	0.156403940
Ν	2.042250328	-1.442504054	0.590198905
Ν	1.442366971	-2.043556650	-0.589349539
С	2.352900414	-2.283228043	1.639501800
С	2.478717284	-3.694264418	1.543608749
Η	2.337052957	-4.171003361	0.580151618
С	2.824345150	-4.464544395	2.656416301
Η	2.920541297	-5.543409819	2.537959677
С	3.067985298	-3.880410506	3.900729897
Η	3.336872493	-4.487971431	4.760904446
С	2.959097813	-2.486086829	4.010591242
Η	3.137387963	-2.001656427	4.969252858
С	2.610136184	-1.703467360	2.916348525

Н	2.508234357	-0.624866884	3.025156734
С	2.284104445	-2.355318907	-1.637511676
С	1.705499046	-2.613940873	-2.914604198
Н	0.627016222	-2.512016694	-3.024528087
С	2.489119993	-2.964130971	-4.007732309
Н	2.005569163	-3.143443095	-4.966645507
С	3.883345921	-3.072918902	-3.896468739
Н	4.491690468	-3.342762119	-4.755790297
С	4.466347942	-2.827881165	-2.651903255
Н	5.545105726	-2.923942245	-2.532355262
С	3.695052781	-2.481029894	-1.540170574
Н	4.170930128	-2.338292714	-0.576447594
С	5.901957198	-0.372659743	1.364429476
Н	5.192719711	-0.942633086	1.967978475
Н	6.208922654	0.527180255	1.914095214
Li	3.270614712	-0.012251544	0.020724643
С	6.051004150	0.719188315	-0.744537001
Н	5.436883528	0.959683029	-1.614717133
Н	6.918693704	0.121279137	-1.057818531
Ν	2.072091347	1.436615963	-0.573558017
Ν	1.438533876	2.071441317	0.569488580
С	2.446250117	2.245520623	-1.626339844
С	2.607278865	3.655321735	-1.555864600
Н	2.436673792	4.153632684	-0.608489086
С	3.035407099	4.389553539	-2.664590068
Н	3.165434929	5.467061290	-2.563322455
С	3.322599397	3.770859856	-3.882572084
Н	3.655283180	4.350349214	-4.739821008
С	3.175053318	2.378032544	-3.968027643
Н	3.386265844	1.866584855	-4.905659586
С	2.748755979	1.630682590	-2.876977907
Н	2.621824053	0.553443571	-2.968794727
С	2.249081648	2.449155723	1.619649816
С	1.636743787	2.751833415	2.871494414
Н	0.560120672	2.621924046	2.966403269
С	2.385823033	3.181856855	3.959916694
Η	1.876308280	3.393013172	4.898614326
С	3.778001458	3.333111762	3.870520432
Н	4.358851839	3.668693939	4.725714344
С	4.394247425	3.045817592	2.651283938

Η	5.471097113	3.178812662	2.546909086
С	3.658279064	2.613998537	1.545158858
Н	4.154419227	2.443581841	0.596595568
Η	-0.965353327	-5.434750309	1.617127503
Η	0.944578061	-5.196445379	-1.961943960
Н	-6.403968656	-1.650729491	-0.279845375
Η	-6.785164451	0.992030745	1.146142601
Η	-0.944985464	5.196386216	-1.960739939
Η	0.965575745	5.433896640	1.618047340
Н	6.784671152	-0.991763092	1.148773062
Н	6.403160867	1.650323808	-0.278177839

Lowest Energy Frequencies (cm⁻¹) 6.79, 14.95, 18.41, 19.81, 20.11, 23.06

Sum of Electronic and Thermal Free Energies (Hartrees) -3416.00

Table S8. Na₄(OMe₂)₄[Ce(PhNNPh)₄]⁻ (2⁻-OMe₂)

Ce	-0.000014617	-0.000013032	-0.000018678
Na	-2.580653968	2.159335361	-0.906684583
Na	2.159330551	2.580626080	0.906666353
Na	2.580613771	-2.159373991	-0.906690531
Na	-2.159362265	-2.580643516	0.906680725
0	-4.116090130	2.703950584	-2.571805288
0	2.703966046	4.116045774	2.571795773
0	4.116034312	-2.704027145	-2.571816099
0	-2.703992807	-4.116063491	2.571811024
Ν	-0.272541848	2.091614326	-1.436148948
Ν	0.003664597	2.564367061	-0.090681911
Ν	2.091610622	0.272510949	1.436112837
Ν	2.564362024	-0.003690754	0.090644291
Ν	0.272505086	-2.091633858	-1.436146932
Ν	-0.003692374	-2.564379545	-0.090670484
Ν	-2.091629085	-0.272532100	1.436127056
Ν	-2.564382122	0.003664853	0.090654673
С	0.490148392	2.609646462	-2.455723310
С	1.368099923	3.722061332	-2.344188172
Н	1.447745825	4.235514873	-1.390528006
С	2.089005138	4.187296988	-3.444994210

Η	2.747992339	5.045154217	-3.315719061
С	1.972203109	3.587923012	-4.700672607
Η	2.535303467	3.959910360	-5.552771335
С	1.101571462	2.495082821	-4.833192725
Н	0.988205354	2.006926133	-5.800627004
С	0.379152121	2.016199128	-3.748151157
Н	-0.281082138	1.158588654	-3.860111505
С	-0.688823109	3.675328938	0.325398228
С	-0.779250145	3.950226655	1.725485425
Н	-0.352031081	3.228332185	2.418093680
С	-1.457976446	5.058942644	2.208083090
Н	-1.527014952	5.206190511	3.284529957
С	-2.095501694	5.961003430	1.337340612
Н	-2.628804832	6.825442513	1.723625478
С	-2.036868209	5.705114903	-0.031831512
Н	-2.513073635	6.390904805	-0.731786274
С	-1.355964555	4.592958896	-0.541784008
Н	-1.273965154	4.456777978	-1.615564234
С	-3.650724386	2.505388362	-3.902553277
Н	-4.115454842	3.231663144	-4.585761900
Н	-3.877649175	1.487589427	-4.249616303
С	-5.517183583	2.500427622	-2.445627185
Η	-5.786124637	1.461705859	-2.677126827
Η	-6.069389567	3.184909673	-3.106948264
С	2.609646875	-0.490183184	2.455681897
С	3.722058199	-1.368138204	2.344136847
Η	4.235507956	-1.447780057	1.390474299
С	4.187293839	-2.089054167	3.444935927
Н	5.045147835	-2.748044072	3.315653088
С	3.587923620	-1.972259752	4.700616827
Н	3.959910757	-2.535368640	5.552709950
С	2.495086377	-1.101625708	4.833146501
Н	2.006931731	-0.988266580	5.800582606
С	2.016202171	-0.379196285	3.748111834
Н	1.158592824	0.281038066	3.860079019
С	3.675312999	0.688812763	-0.325438136
С	3.950182601	0.779283372	-1.725527902
Н	3.228289925	0.352057456	-2.418133950
С	5.058863226	1.458065173	-2.208128615
Η	5.206089338	1.527135774	-3.284576530

С	5.960918338	2.095599343	-1.337386740
Н	6.825331439	2.628942831	-1.723674056
С	5.705053518	2.036927398	0.031788063
Н	6.390835694	2.513144947	0.731742135
С	4.592928955	1.355974546	0.541743129
Н	4.456762589	1.273955967	1.615523684
С	2.505432369	3.650659594	3.902541196
Н	3.231713649	4.115389743	4.585743035
Н	1.487637026	3.877568041	4.249625188
С	2.500429612	5.517139396	2.445640631
Н	1.461709601	5.786068491	2.677162086
Н	3.184918230	6.069341518	3.106958012
С	-0.490196042	-2.609640159	-2.455730338
С	-1.368204679	-3.722013642	-2.344209640
Н	-1.447892619	-4.235463146	-1.390552252
С	-2.089124224	-4.187207943	-3.445024569
Н	-2.748154913	-5.045033326	-3.315759405
С	-1.972281713	-3.587834956	-4.700699363
Н	-2.535392511	-3.959791126	-5.552804832
С	-1.101601847	-2.495031708	-4.833204494
Н	-0.988208154	-2.006872453	-5.800634307
С	-0.379172486	-2.016185163	-3.748152982
Н	0.281098501	-1.158601778	-3.860103033
С	0.688821272	-3.675312792	0.325453852
С	0.779212144	-3.950170107	1.725551969
Н	0.351913122	-3.228289205	2.418125579
С	1.457987056	-5.058832756	2.208205859
Н	1.526983720	-5.206053883	3.284659283
С	2.095616017	-5.960867114	1.337512727
Н	2.628963268	-6.825259576	1.723841488
С	2.037040197	-5.705003723	-0.031667129
Н	2.513342833	-6.390764943	-0.731583774
С	1.356084282	-4.592905708	-0.541676278
Н	1.274163892	-4.456733363	-1.615461421
С	3.650714919	-2.505315696	-3.902558384
Н	4.115378932	-3.231590594	-4.585812050
Н	3.877759953	-1.487516130	-4.249540991
С	5.517148975	-2.500672192	-2.445593831
Η	5.786215391	-1.461963770	-2.677002460
Н	6.069288494	-3.185165371	-3.106959250

С	-2.609638905	0.490164926	2.455710827
С	-3.722027047	1.368154873	2.344193881
Н	-4.235484001	1.447830588	1.390539219
С	-4.187228645	2.089067311	3.445010128
Н	-5.045065516	2.748083622	3.315748060
С	-3.587847937	1.972236124	4.700682392
Н	-3.959809642	2.535341599	5.552788956
С	-2.495031935	1.101571711	4.833184390
Н	-2.006868415	0.988184605	5.800612875
С	-2.016179617	0.379147737	3.748131926
Н	-1.158587315	-0.281112193	3.860079305
С	-3.675323688	-0.688843969	-0.325451259
С	-3.950203858	-0.779238672	-1.725544428
Н	-3.228325671	-0.351957334	-2.418131590
С	-5.058886885	-1.457995554	-2.208176336
Н	-5.206125808	-1.526997378	-3.284626955
С	-5.960921566	-2.095599073	-1.337464577
Н	-6.825330909	-2.628931194	-1.723776203
С	-5.705039336	-2.037013802	0.031711217
Н	-6.390803256	-2.513291471	0.731642248
С	-4.592920488	-1.356075333	0.541698324
Н	-4.456737342	-1.274136756	1.615481386
С	-2.505359787	-3.650711125	3.902553214
Н	-3.231629758	-4.115411233	4.585787602
Н	-1.487557946	-3.877683799	4.249576657
С	-2.500541030	-5.517166490	2.445620062
Н	-1.461823151	-5.786159087	2.677075402
Н	-3.185022917	-6.069341200	3.106967500
Н	5.782487602	-2.715039938	-1.407280916
Н	2.568178101	-2.653006621	-3.896980522
Н	-2.568204369	2.653201533	-3.896941961
Н	-5.782566238	2.714681341	-1.407301914
Н	2.653258266	2.568141386	3.896913587
Н	2.714663454	5.782538879	1.407315492
Н	-2.714850217	-5.782535916	1.407302914
Н	-2.653122897	-2.568184234	3.896951687

Lowest Energy Frequencies (cm⁻¹) 8.48, 10.33, 10.33, 10.39, 18.23, 23.19 Sum of Electronic and Thermal Free Energies (Hartrees) –4035.01

Table S9. K₄(OMe₂)₄[Ce(PhNNPh)₄]⁻ (3-OMe₂)

Ce	0.001222862	0.003654966	0.000014809
Κ	2.317243334	-2.179369477	1.686015787
0	4.163405376	-4.162599005	1.269282507
Ν	1.633940348	0.608737127	1.776976932
Ν	2.445131616	0.602238730	0.577172567
С	1.576730874	1.783769584	2.484634967
С	2.440077682	2.902077811	2.300502600
Н	3.213742276	2.847446012	1.542966969
С	2.313083218	4.051058210	3.079292403
Н	2.998822736	4.879937550	2.904708880
С	1.334376256	4.165513877	4.071332943
Н	1.251781896	5.063374663	4.678343815
С	0.476982591	3.073087191	4.275688427
Н	-0.284532721	3.119760677	5.054776146
С	0.588767671	1.915671733	3.511093201
Н	-0.074292998	1.073627437	3.691968863
С	3.773463800	0.342902478	0.742065912
С	4.596736936	0.106922694	-0.408305513
Н	4.126986699	0.045229637	-1.386533606
С	5.961664320	-0.118340278	-0.295907220
Η	6.534834878	-0.301980485	-1.203726050
С	6.603004497	-0.141846303	0.955718459
Η	7.674833805	-0.305283173	1.033598142
С	5.815777878	0.050651078	2.095124861
Н	6.281119417	0.039195921	3.080836172
С	4.440147900	0.279213119	2.009311838
Η	3.867824105	0.476061688	2.909356030
С	5.516079296	-3.821094272	1.001713757
Η	5.724806012	-3.868145696	-0.076906889
Η	6.203472393	-4.503038314	1.527843866
С	3.828683859	-5.458941170	0.794300454
Η	4.402904993	-6.232693560	1.328528440
Η	4.030785244	-5.546516618	-0.283163174
Κ	2.184042097	2.319418903	-1.686770357
0	4.167421249	4.165668440	-1.271396766
Ν	-0.604215213	1.636039531	-1.777110560
Ν	-0.597478506	2.447459562	-0.577468166

С	-1.779343328	1.578781267	-2.484600576
С	-2.897563294	2.442243716	-2.300479427
Н	-2.842781087	3.216024422	-1.543072174
С	-4.046633891	2.315222448	-3.079130586
Н	-4.875442686	3.001051837	-2.904564706
С	-4.161267616	1.336377404	-4.071014785
Н	-5.059199417	1.253760542	-4.677917488
С	-3.068921497	0.478881457	-4.275370318
Н	-3.115726833	-0.282731681	-5.054354747
С	-1.911415942	0.590692951	-3.510914646
Н	-1.069422452	-0.072429683	-3.691810221
С	-0.338069234	3.775736770	-0.742672492
С	-0.101749795	4.599213353	0.407482142
Η	-0.039899019	4.129653202	1.385790985
С	0.123645769	5.964092132	0.294764008
Η	0.307550848	6.537423507	1.202427915
С	0.146944824	6.605182749	-0.956994051
Η	0.310479230	7.676979460	-1.035121521
С	-0.045894470	5.817752291	-2.096202706
Η	-0.034610926	6.282898670	-3.082008431
С	-0.274593078	4.442165679	-2.010065683
Н	-0.471682829	3.869676802	-2.909951931
С	3.826313774	5.518640143	-1.004858525
Н	3.874352178	5.728421880	0.073516698
Н	4.507870708	6.205445483	-1.532257109
С	5.464025664	3.831156805	-0.796986557
Н	6.237530293	4.404675969	-1.332326832
Н	5.552387417	4.034338040	0.280210010
Κ	-2.314078626	2.186773461	1.687091488
0	-4.160214188	4.170373481	1.271778874
N	-1.630853202	-0.601594161	1.777471724
N	-2.442511284	-0.594975265	0.577996570
С	-1.573529399	-1.776632702	2.485097405
С	-2.437106976	-2.894813948	2.301268669
Η	-3.211019749	-2.840057565	1.543993440
С	-2.310021493	-4.043803205	3.080028562
Η	-2.995953977	-4.872579361	2.905702908
С	-1.331000333	-4.158393110	4.071744055
Η	-1.248338238	-5.056258795	4.678738184
С	-0.473381281	-3.066088859	4.275803301

Η	0.288385858	-3.112864355	5.054638809
С	-0.585246505	-1.908667019	3.511230051
Н	0.077990415	-1.066714091	3.691889032
С	-3.770724181	-0.335401316	0.743438016
С	-4.594434433	-0.099221973	-0.406576801
Н	-4.125090980	-0.037644280	-1.385006253
С	-5.959259791	0.126350063	-0.293594793
Н	-6.532776590	0.310133269	-1.201166055
С	-6.600070368	0.149966103	0.958302008
Н	-7.671829931	0.313645991	1.036635106
С	-5.812411940	-0.042763808	2.097369520
Η	-6.277338287	-0.031258594	3.083276970
С	-4.436871161	-0.271650061	2.010966089
Η	-3.864217709	-0.468687474	2.910759519
С	-5.513158608	3.829132527	1.005259017
Н	-5.722817681	3.876614596	-0.073163303
Н	-6.200020040	4.510961881	1.532232497
С	-3.825681598	5.466774264	0.796830381
Н	-4.399223999	6.240505328	1.331818362
Н	-4.028812916	5.554681982	-0.280412914
Κ	-2.182109271	-2.311910884	-1.686265352
0	-4.165566965	-4.157949516	-1.269627795
Ν	0.606108360	-1.628758634	-1.777285384
Ν	0.599731716	-2.440184899	-0.577642122
С	1.781032298	-1.571476599	-2.485109428
С	2.899316929	-2.434933291	-2.301330392
Η	2.844770344	-3.208711711	-1.543905232
С	4.048153339	-2.307898064	-3.080325050
Η	4.877015782	-2.993732506	-2.906024447
С	4.162482692	-1.329050902	-4.072242000
Н	5.060227365	-1.246432109	-4.679420907
С	3.070074437	-0.471552334	-4.276253128
Н	3.116646591	0.290076268	-5.055236382
С	1.912805133	-0.583365560	-3.511441892
Н	1.070763615	0.079770874	-3.692064147
С	0.340220056	-3.768451624	-0.742763564
С	0.104373073	-4.591947421	0.407475272
Н	0.042952075	-4.122403971	1.385820217
С	-0.121076460	-5.956820919	0.294824195
Η	-0.304600301	-6.530169069	1.202554351

С	-0.144901076	-6.597891057	-0.956934958
Н	-0.308490856	-7.669682794	-1.035011431
С	0.047493939	-5.810447264	-2.096206807
Н	0.035814016	-6.275576973	-3.082015909
С	0.276251459	-4.434863822	-2.010138884
Н	0.473048197	-3.862382543	-2.910094555
С	-3.823943595	-5.510609614	-1.002127341
Н	-3.870474637	-5.719262033	0.076529003
Н	-4.506145722	-6.198032186	-1.527884237
С	-5.461713107	-3.823216357	-0.794122248
Н	-6.235685211	-4.397426400	-1.328043666
Н	-5.548861509	-4.025319769	0.283375787
Н	2.802674807	5.682487019	-1.348400856
Н	5.612461206	2.762137051	-0.963031371
Н	-5.610543467	-2.754393717	-0.961061832
Н	-2.800762710	-5.674720708	-1.346903617
Н	-5.677053798	2.805672204	1.349308739
Н	-2.756669354	5.615279551	0.962851477
Н	5.680152289	-2.797744738	1.346008355
Н	2.759863531	-5.607717608	0.961311614

Lowest Energy Frequencies (cm⁻¹) 15.11, 16.31, 17.61, 17.61, 20.16, 26.73

Sum of Electronic and Thermal Free Energies (Hartrees) -5785.43

References

- 1 L. Yang, D. R. Powell and R. P. Houser, *Dalton Trans.*, 2007, 955.
- E. L. Muetterties and L. J. Guggenberger, J. Am. Chem. Soc., 1974, 96, 1748; J. L. Hoard and J. V. Silverton, Inorg. Chem., 1963, 2, 235; S. R. Sofen, S. R. Cooper and K. N. Raymond, Inorg. Chem., 1979, 18, 1611; W. L. Smith and K. N. Raymond, J. Am. Chem. Soc., 1981, 103, 3341; D. G. Blight and D. L. Kepert, Inorg. Chem., 1972, 11, 1556; E. L. Muetterties and C. M. Wright, Q. Rev. Chem. Soc., 1967, 21, 109; S. J. Lippard and B. J. Russ, Inorg. Chem., 1968, 7, 1686.
- 3 M. D. Walter, R. Fandos and R. A. Andersen, *New J. Chem.*, 2006, **30**, 1065.
- 4 U. J. Williams, D. Schneider, W. L. Dorfner, C. Maichle-Mossmer, P. J. Carroll, R. Anwander and E. J. Schelter, *Dalton Trans.*, 2014, **43**, 16197.
- 5 M. P. Andersson and P. Uvdal, *J. Phys. Chem. A*, 2005, **109**, 2937; K. K. Irikura, R. D. Johnson III and R. N. Kacker, *J. Phys. Chem. A*, 2005, **109**, 8430.
- C. A. Smith, E. W. Ainscough, H. M. Baker, A. M. Brodie and E. N. Baker, *J. Am. Chem. Soc.*, 1994, 116, 7889; J. Robinson, P. J. Carroll, P. J. Walsh and E. J. Schelter, *Angew. Chem. Int. Ed.*, 2012, 51, 10159.