Electronic Supporting information for:

Redox-Induced Umpolung of Transition Metal Carbenes

Peng Cui and Vlad M. Iluc*

DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556

*Corresponding author: viluc@nd.edu

1	X-ray data for compounds 4-6, 8-12	S4
2	EPR Spectra	S6
	Figure S1. EPR spectrum of $[{PC^{\bullet}(sp^2)P}^{IBu}PdI]$ (4)	S 6
3	DFT Results	S7
	Figure S2. Computed molecules	S 7
	3.1 $[{PC}^{\bullet}(sp^2)P]^{tBu}PdI](4)$	S 7
	Table S1. Optimized coordinates for $[{PC}^{\bullet}(sp^2)P]^{tBu}PdI]$ (4)	S 7
	Figure S3. Overlaid structures for $[{PC}^{\bullet}(sp^2)P]^{tBu}PdI]$ (4) (red: X-ray, blue; optimized)	<u>S9</u>
	Table S2. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of	
	$[{PC}^{\bullet}(sp^2)P]^{tBu}PdI](4)$	S10
	Figure S4. Optimized geometry for $[{PC^{\bullet}(sp^2)P}^{tBu}PdI]$ (4)	S10
	3.2 [$\{PC(sp^2)P\}^{tBu}PdI\}[BAr^F]$ (5)	S11
	Table S3. Optimized coordinates for the complex cation of $[{PC(sp^2)P}^{tBu}Pd][BAr^F](5)$	S11
	Figure S5. Overlaid structures for the complex cation of $[{PC(sp^2)P}^{tBu}PdI][BAr^F]$ (5) (red: X-ray.	
	blue: optimized)	S13
	Table S4. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of	
	the complex cation of $[{PC(sn^2)P}^{tBu}Pd][BArF](5)$	S14
	Figure S6. Optimized geometry for the complex cation of $[{PC(sp^2)P}^{tBu}PdI][BAr^{F}](5)$	S14
	$3.3 [{PC(sp^2)P}^{Me}PdI]^+ (5') \dots \dots$	S15
	Table S5. Optimized coordinates for $[{PC(sp^2)P}^{Me}PdI]^+$ (5')	S15
	Figure S7. Optimized geometry for $[{PC(sp^2)P}^{Me}PdI]^+$ (5')	S16
1	NMB Spectro	S17
-	4.1 NMR Spectra for $[{PC(sn^2)P}^{Bu}Pd\Pi[BAr^F](5)$	S17
	Figure S8 ¹ H NMR spectrum for $[{PC(sn^2)P}^{tBu}Pd\Pi[BAr^F](5)$	S17
	Figure S0 $^{31}P(^{1}H)$ NMR spectrum for [{PC(sn ²)P} ^{(Bu} Pd]][BAr ^F] (5)	S18
	Figure S10 $^{13}C{}^{1}H$ NMR spectrum for [{PC(sn ²)P} ^{tBu} PdII[BAr ^F] (5)	S19
	Figure S10. ¹⁹ F NMR spectrum for [{ $PC(sp^2)P$ } ^{tBu} PdI][BAr ^F] (5)	S20
	Figure S12. ¹¹ B NMR spectrum for [$\{PC(sp^2)P\}^{Bu}$ Pd]][BArF] (5)	S21
	4.2 NMR Spectra for [{PC(sp ³)HP} ^{$tBuPd]] (6)$}	S22
	Figure S13. ¹ H NMR spectrum for $[{PC(sp^3)HP}^{tBu}PdI]$ (6)	S22
	Figure S14. ${}^{31}P{}^{1}H$ NMR spectrum for [{PC(sp^3)HP}'^{Bu}PdI] (6)	S23
	Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum for [{PC(sp ³)HP} ^{tBu} PdI] (6)	S24
	4.3 NMR Spectra for $[{PC(sp^3)(SPh)P}^{tBu}PdI]$ (7)	S25
	Figure S16. ¹ H NMR spectrum for [{PC(sp ³)(SPh)P} ^{tBu} PdI] (7)	S25
	Figure S17. ³¹ P{ ¹ H} NMR spectrum for [{PC(sp ³)(SPh)P} ^{tBu} PdI] (7)	S26
	Figure S18. ¹³ C{ ¹ H} NMR spectrum for [{PC(sp ³)(SPh)P} ^{$tBuPdI$] (7)}	S27
	4.4 NMR Spectra for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf]$ (8)	S28
	Figure S19. ¹ H NMR spectrum for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf]$ (8)	S28
	Figure S20. ³¹ P{ ¹ H} NMR spectrum for [{PC(sp ³)(SPh)P} ^{tBu} PdOTf] (8)	S29
	Figure S21. ¹³ C{ ¹ H} NMR spectrum for [{ $PC(sp^3)(SPh)P$ } ^{tBu} PdOTf] (8)	S30

		Figure S22. ¹⁹ F NMR spectrum for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf](8)$	S31
	4.5	NMR Spectra for [$\{PC(sp^3)(SPh)P\}^{tBu}PdSPh$] (9)	S32
		Figure S23. ¹ H NMR spectrum for $[{PC(sp^3)(SPh)P}^{Bu}PdSPh] (9)$	S32
		Figure S24. ³¹ P{ ¹ H} NMR spectrum for [{ $PC(sp^3)(SPh)P$ } ^{<i>t</i>Bu} PdSPh] (9)	S33
		Figure S25. ¹³ C{ ¹ H} NMR spectrum for [{ $PC(sp^3)(SPh)P$ } ^{/Bu} PdSPh] (9)	S34
	4.6	NMR Spectra for $[{PC(sp^3)(NH^pTol)P}^{tBu}PdI]$ (10)	S35
		Figure S26. ¹ H NMR spectrum for [$\{PC(sp^3)(NH^pTol)P\}^{Bu}PdI$] (10)	S35
		Figure S27. ³¹ P{ ¹ H} NMR spectrum for $[{PC(sp^3)(NH^pTol)P}^{tBu}PdI]$ (10)	S36
		Figure S28. ¹³ C $\{^{1}H\}$ NMR spectrum for [$\{PC(sp^{3})(NH^{p}Tol)P\}^{tBu}PdI\}$ (10)	S37
		Figure S29. $^{1}H^{-13}C$ HSQC NMR spectrum for [{PC(sp ³)(NH ^p Tol)P} ^{tBu} PdI] (10)	S38
		Figure S30. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra for $[{PC(sp^3)(NH^pTol)P}^{tBu}PdI]$ (10)	S39
	4.7	NMR Spectra for $[{PC(sp^3)(OPh)P}^{rBu}PdI]$ (11)	S40
		Figure S31. ¹ H NMR spectrum for $[{PC(sp^3)(OPh)P}^{tBu}PdI]$ (11)	S40
		Figure S32. ${}^{31}P{}^{1}H{}$ NMR spectrum for [{PC(sp ³)(OPh)P}'^{Bu}PdI] (11)	S41
		Figure S33. ${}^{13}C{}^{1}H$ NMR spectrum for $[{PC(sp^3)(OPh)P}^{tBu}PdI]$ (11)	S42
		Figure S34. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra for $[{PC(sp^3)(OPh)P}^{tBu}PdI](11)$	S43
	4.8	NMR Spectra for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_{F}^{F}]$ (12)	S44
		Figure S35. ¹ H NMR spectrum for [{ $PC(sp^3)(PMe_3)P$ } ^{tBu} PdI][BAr ^F ₄] (12)	S44
		Figure S36. ³¹ P{ ¹ H} NMR spectrum for $[{PC(sp^3)(PMe_3)P}^{Bu}PdI][BAr_4^F]$ (12)	S45
		Figure S37. ¹³ C{ ¹ H} NMR spectrum for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_4^F]$ (12)	S46
		Figure S38. ¹⁹ F NMR spectrum for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_F^F]$ (12)	S47
		Figure S39. ¹¹ B NMR spectrum for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_{F}^{F}]$ (12)	S48
		Figure S40. ¹ H- ¹³ C HSQC NMR spectrum for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_4^F]$ (12)	S49
	4.9	NMR Spectra for the comproportionation reaction between 3 and 5	S50
		Figure S41. comproportionation reaction between 3 and 5	S50
		Figure S42. ¹ H NMR spectrum for the reaction mixture	S51
		Figure S43. ³¹ P{ ¹ H} NMR spectrum for the reaction mixture	\$52
			052
_	C		552
5	Cry	ystallographic tables	S53
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp ²)P} ^{tBu} PdI] (4)	S53 S53
5	Cry 5.1	<pre>ystallographic tables Crystal data for [{PC*(sp²)P}^{tBu}PdI] (4)</pre>	S53 S53 S53
5	Cry 5.1	<pre>ystallographic tables Crystal data for [{PC*(sp²)P}^{tBu}PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement property (^k₂) for 4</pre>	S53 S53 S53 S54
5	Cry 5.1	ystallographic tables Crystal data for [{PC [•] (sp ²)P} ^{tBu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4	\$53 \$53 \$53 \$54 \$55
5	Cry 5.1	ystallographic tables Crystal data for [{PC [•] (sp ²)P} ^{tBu} PdI] (4)	853
5	Cry 5.1	ystallographic tables Crystal data for [{PC [•] (sp ²)P} ^{tBu} PdI] (4)	\$53 \$53 \$53 \$53 \$53 \$53 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$55 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$56 \$
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp ²)P} ^{/Bu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Table S10. Angles [°] for 4	S53 S53 S53 S53 S54 S55 S58 S58 S59 S61
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp ²)P} ^{tBu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Crystal data for [{PC(sp ²)P} ^{tBu} PdI][BAr ^F ₄] (5) Figure S45. Thermal ellipsoid representation of 5	S53 S53 S53 S53 S54 S55 S58 S58 S59 S61 S64 S64
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp ²)P} ^{tBu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Crystal data for [{PC(sp ²)P} ^{tBu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure rafinament for 5	S53 S53 S53 S53 S54 S55 S58 S59 S61 S64 S64 S65
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp ²)P} ^{tBu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Crystal data for [{PC(sp ²)P} ^{tBu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 5	S53 S53 S53 S53 S54 S55 S58 S58 S58 S59 S61 S64 S64 S64 S65 S65 S66
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp²)P} ^{tBu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 4 Table S8. Anisotropic displacement parameters (Ų) for 4 Table S9. Distances [Å] for 4 Table S10. Angles [°] for 4 Crystal data for [{PC(sp²)P} ^{tBu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 5	S53 S53 S53 S53 S54 S55 S58 S59 S61 S64 S64 S64 S64 S64 S65 S66 S70
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp²)P} ^{tBu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 4 Table S8. Anisotropic displacement parameters (Ų) for 4 Table S9. Distances [Å] for 4 Table S10. Angles [°] for 4 Crystal data for [{PC(sp²)P} ^{tBu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 5 Table S13. Anisotropic displacement parameters (Ų) for 5	S53 S53 S53 S53 S54 S55 S58 S59 S61 S64 S64 S64 S64 S65 S66 S66 S70 S73
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp ²)P} ^{/Bu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Crystal data for [{PC(sp ²)P} ^{/Bu} PdI][BAr ^F ₄] (5) Table S10. Angles [°] for 4 Crystal data for [{PC(sp ²)P} ^{/Bu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 5 Table S13. Anisotropic displacement parameters (Å ²) for 5 Table S14. Distances [Å] for 5	S53 S53 S53 S53 S54 S55 S58 S59 S61 S64 S64 S64 S64 S64 S64 S65 S66 S66 S70 S73 S75
5	Cry 5.1 5.2	ystallographic tables Crystal data for [{PC•(sp ²)P} ^{tBu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Table S10. Angles [°] for 4 Crystal data for [{PC(sp ²)P} ^{tBu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 5 Table S13. Anisotropic displacement parameters (Å ²) for 5 Table S14. Distances [Å] for 5 Crystal data for [{PC(sp ²)P} ^{tBu} PdI][BAr ^F ₄] (5)	S53 S53 S53 S53 S54 S55 S58 S57 S61 S64 S64 S64 S64 S64 S64 S65 S66 S66 S70 S73 S75 S80
5	Cry 5.1 5.2 5.3	ystallographic tables Crystal data for [{PC*(sp ²)P} ^{/Bu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Table S10. Angles [°] for 4 Crystal data for [{PC(sp ²)P}] ^{/Bu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 5 Table S13. Anisotropic displacement parameters (Å ²) for 5 Table S14. Distances [Å] for 5 Table S15. Angles [°] for 5 Crystal data for [{PC(sp ³)HP] ^{/Bu} PdI] (6) Crystal data for [{PC(sp ³)HP] ^{/Bu} PdI] (6)	S53 S53 S53 S53 S54 S55 S58 S55 S58 S59 S61 S64 S64 S65 S64 S65 S66 S66 S70 S73 S75 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S80 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S70 S
5	Cry 5.1 5.2 5.3	ystallographic tables Crystal data for [{PC*(sp ²)P} ^{tBu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Table S10. Angles [°] for 4 Crystal data for [{PC(sp ²)P} ^{tBu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 5 Table S14. Distances [Å] for 5 Table S15. Angles [°] for 5 Table S16. Crystal data of the parameters (Å ²) for 5 Table S14. Distances [Å] for 5 Table S15. Angles [°] for 4 Table S16. Crystal data for [{PC(sp ³)HP} ^{tBu} PdI] (6) Tigure S46. Thermal-ellipsoid representation of 6 Table S16. Crystal data for [{PC(sp ³)HP} ^{tBu} PdI] (6) Table S16. Crystal data and structure refinement for 6	S53 S53 S53 S53 S54 S55 S55 S58 S58 S59 S61 S64 S64 S64 S64 S64 S65 S66 S66 S66 S70 S73 S75 S75 S80 S80 S81
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp ²)P}/ ^{Bu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Table S10. Angles [°] for 4 Crystal data for [{PC(sp ²)P}/ ^{Bu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 5 Table S14. Distances [Å] for 5 Table S15. Angles [°] for 5 Table S16. Crystal data and structure refinement for 6 Table S16. Crystal data and structure refinement for 6 Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 5	S53 S53 S53 S53 S54 S55 S58 S59 S59 S61 S64 S64 S64 S64 S64 S64 S65 S66 S70 S70 S73 S73 S75 S80 S80 S81 S82
5	Cry 5.1	ystallographic tables Crystal data for [{PC•(sp ²)P}/ ^{Bu} PdI] (4) Figure S44. Thermal-ellipsoid representation of 4 Table S6. Crystal data and structure refinement for 4 Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 4 Table S8. Anisotropic displacement parameters (Å ²) for 4 Table S9. Distances [Å] for 4 Table S10. Angles [°] for 4 Crystal data for [{PC(sp ²)P}/ ^{Bu} PdI][BAr ^F ₄] (5) Figure S45. Thermal-ellipsoid representation of 5 Table S11. Crystal data and structure refinement for 5 Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 5 Table S14. Distances [Å] for 5 Table S15. Angles [°] for 5 Table S16. Crystal data and structure refinement for 5 Table S13. Anisotropic displacement parameters (Å ²) for 5 Table S14. Distances [Å] for 5 Table S15. Angles [°] for 5 Crystal data for [{PC(sp ³)HP}/ ^{Bu} PdI] (6) Figure S46. Thermal-ellipsoid representation of 6 Table S16. Crystal data and structure refinement for 6 Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Å ²) for 6 Table S16. Crystal data and structure refinement for 6 Table S17. Atomic coordinates and equivalent isotropic displacement par	S53 S53 S53 S53 S54 S55 S58 S59 S59 S61 S64 S64 S64 S65 S66 S66 S70 S73 S73 S75 S80 S80 S81 S82 S84
5	Cry 5.1	ystallographic tables Crystal data for [{PC*(sp²)P} rBu PdI] (4)Figure S44. Thermal-ellipsoid representation of 4Table S6. Crystal data and structure refinement for 4Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 4Table S8. Anisotropic displacement parameters (Ų) for 4Table S9. Distances [Å] for 4Table S10. Angles [°] for 4Crystal data for [{PC(sp²)P} rBu PdI][BAr ^F ₄] (5)Figure S45. Thermal-ellipsoid representation of 5Table S11. Crystal data and structure refinement for 5Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 5Table S13. Anisotropic displacement parameters (Ų) for 5Table S14. Distances [Å] for 5Table S15. Angles [°] for 5Crystal data for [{PC(sp³)P} rBu PdI] (6)Figure S46. Thermal-ellipsoid representation of 6Table S15. Angles [°] for 5Table S14. Distances [Å] for 5Table S15. Angles [°] for 6Table S16. Crystal data and structure refinement for 6Table S16. Thermal-ellipsoid representation of 6Table S16. Thermal-ellipsoid representation of 6Table S15. Angles [°] for 5Table S16. Thermal-ellipsoid representation of 6Table S16. Thermal-ellipsoid representation of 6Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 6Table S18. Anisotropic displacement parameters (Ų) for 6Table S19. Distances [Å] for 6	S53 S53 S53 S53 S54 S55 S58 S55 S58 S59 S61 S64 S64 S64 S64 S64 S64 S65 S66 S70 S73 S75 S80 S80 S81 S82 S84 S84 S84 S85 S84 S85 S84 S85 S84 S85 S85 S84 S85 S85 S85 S84 S85 S85 S85 S85 S85 S85 S85 S86 S86 S87 S87 S87 S87 S80 S81 S82 S84 S84 S84 S84 S84 S84 S85 S84 S85 S84 S85 S85 S84 S85 S85 S85 S86 S86 S86 S86 S86 S86 S86 S86 S86 S86 S86 S86 S86 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S87 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7 S7
5	Cry 5.1 5.2 5.3	ystallographic tablesCrystal data for [{PC*(sp²)P}/ ^{Bu} PdI] (4)Figure S44. Thermal-ellipsoid representation of 4Table S6. Crystal data and structure refinement for 4Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 4Table S8. Anisotropic displacement parameters (Ų) for 4Table S9. Distances [Å] for 4Table S10. Angles [°] for 4Crystal data for [{PC(sp²)P}/ ^{Bu} PdI][BAr ^F ₄] (5)Figure S45. Thermal-ellipsoid representation of 5Table S11. Crystal data and structure refinement for 5Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 5Table S13. Anisotropic displacement parameters (Ų) for 5Table S14. Distances [Å] for 5Crystal data for [{PC(sp³)HP}/ ^{Bu} PdI] (6)Figure S46. Thermal-ellipsoid representation of 6Table S15. Angles [°] for 5Table S16. Crystal data and structure refinement for 6Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 6Table S19. Distances [Å] for 6Table S19. Distances [Å] for 6	S53 S53 S53 S54 S55 S58 S59 S61 S64 S65 S64 S65 S66 S70 S73 S75 S80 S81 S82 S84 S84 S85 S84 S85 S86
5	Cry 5.1 5.2 5.3	ystallographic tablesCrystal data for [{PC*(sp²)P}/ ^{fBu} PdI] (4)Figure S44. Thermal-ellipsoid representation of 4Table S6. Crystal data and structure refinement for 4Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 4Table S8. Anisotropic displacement parameters (Ų) for 4Table S9. Distances [Å] for 4Table S10. Angles [°] for 4Crystal data for [{PC(sp²)P}/ ^{fBu} PdI][BAr4F] (5)Figure S45. Thermal-ellipsoid representation of 5Table S11. Crystal data and structure refinement for 5Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 5Table S13. Anisotropic displacement parameters (Ų) for 5Table S14. Distances [Å] for 5Table S15. Angles [°] for 5Crystal data for [{PC(sp³)HP}/ ^{fBu} PdI] (6)Figure S46. Thermal-ellipsoid representation of 6Table S16. Crystal data and structure refinement for 6Crystal data for [{PC(sp³)HP}/ ^{fBu} PdI] (6)Figure S46. Thermal-ellipsoid representation of 6Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 6Table S16. Crystal data and structure refinement for 6Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 6Table S18. Anisotropic displacement parameters (Ų) for 6Table S19. Distances [Å] for 6Table S19. Distances [Å] for 6Table S19. Distances [Å] for 6Table S10. Angles [°] for 6Table S10. Angles [°] for 6	S53 S53 S53 S54 S55 S58 S59 S61 S64 S65 S64 S65 S66 S70 S73 S75 S80 S81 S82 S84 S82 S84 S85 S86 S85 S86 S85 S86 S88
5	Cry 5.1 5.2 5.3	ystallographic tables Crystal data for [{PC*(sp ²)P} ^{rBu} PdI] (4)	S53 S53 S53 S54 S55 S58 S59 S59 S61 S64 S65 S64 S65 S66 S70 S73 S75 S80 S81 S82 S84 S85 S84 S88 S88 S88
5	Cry 5.1 5.2 5.3	ystallographic tablesCrystal data for [{PC*(sp²)P}]' ^{Bu} PdI] (4)Figure S44. Thermal-ellipsoid representation of 4Table S6. Crystal data and structure refinement for 4Table S7. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 4Table S8. Anisotropic displacement parameters (Ų) for 4Table S9. Distances [Å] for 4Table S10. Angles [°] for 4Crystal data for [{PC(sp²)P}]' ^{Bu} PdI][BAr ⁴ ₁] (5)Figure S45. Thermal-ellipsoid representation of 5Table S11. Crystal data and structure refinement for 5Table S12. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 5Table S13. Anisotropic displacement parameters (Ų) for 5Table S14. Distances [Å] for 5Table S15. Angles [°] for 5Crystal data for [{PC(sp²)P}]' ^{Bu} PdI] (6)Figure S46. Thermal-ellipsoid representation of 6Table S16. Crystal data and structure refinement for 6Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 6Table S18. Anisotropic displacement parameters (Ų) for 6Table S19. Distances [Å] for 6Table S19. Distances [Å] for 6Table S10. Angles [°] for 6Table S18. Anisotropic displacement parameters (Ų) for 6Table S19. Distances [Å] for 6Table S10. Angles [°] for 6Table S10. Angles [°] for 6Table S17. Atomic coordinates and equivalent isotropic displacement parameters (Ų) for 6Table S19. Distances [Å] for 6Table S10. Angles [°] for 6Table S20. Angles [°] for 6Table S20. Angles [°] for 6Table S20	S53 \$54 \$55 \$56 \$564 \$564 \$564 \$564 \$565 \$566 \$570 \$570 \$570 \$570 \$570 \$570 \$570 \$570 \$570 \$570 \$570 \$580 \$580 \$580 \$581 \$582 \$584 \$586 \$588 \$589 \$589

	Table S23. Anisotropic displacement parameters ($Å^2$) for 8·Et ₂ O	S93
	Table S24. Distances [Å] for $8 \cdot Et_2O$	S95
	Table S25. Angles [°] for $8 \cdot Et_2O$	S97
5.5	Crystal data for $[{PC(sp^3)(SPh)P}^{tBu}PdSPh] \cdot C_5H_{12} (9 \cdot C_5H_{12}) \dots \dots$	S100
	Figure S48. Thermal-ellipsoid representation of $9 \cdot C_5 H_{12}$	S100
	Table S26. Crystal data and structure refinement for $9 \cdot C_5 H_{12}$	S101
	Table S27. Atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for $9 \cdot C_5 H_{12}$	S102
	Table S28. Anisotropic displacement parameters ($Å^2$) for 9 C_5H_{12}	S105
	Table S29. Distances [Å] for $9 \cdot C_5 H_{12}$	S107
	Table S30. Angles [°] for $9 \cdot C_5 H_{12}$	S109
5.6	Crystal data for [$\{PC(sp^3)(NH^pTol)P\}^{tBu}PdI$] (10)	S112
	Figure S49. Thermal-ellipsoid representation of 10	S112
	Table S31. Crystal data and structure refinement for 10 10	S113
	Table S32. Atomic coordinates and equivalent isotropic displacement parameters (A^2) for 10	S114
	Table S33. Anisotropic displacement parameters (A^2) for 10 \cdots A A A	S117
	Table S34. Distances [A] for 10	S118
	Table S35. Angles [°] for 10 Public S15.	S120
5.7	$Crystal data for [{PC(sp3)(OPhP)}^{Ibu}PdI] (11) \dots $	S123
	Figure S50. Thermal-ellipsoid representation of 11	S123
	Table S36. Crystal data and structure refinement for 11 S25. Crystal data and structure refinement for 11	S124
	Table S37. Atomic coordinates and equivalent isotropic displacement parameters (A^2) for Π	\$125
	Table S38. Anisotropic displacement parameters (A ²) for 11 Table S38. Anisotropic displacement parameters (A ²) for 11	\$130
	Table S39. Distances [A] for 11	S132
7 0	Table S40. Angles [$^{\circ}$] for 11	\$135
5.8	Crystal data for $[{PC(sp^3)(PMe_3)P}^{IDd}PdI][BAr_4](12)$.	S140
	Figure S51. Thermal-ellipsoid representation of 12	S140
	Table S41. Crystal data and structure refinement for 12 Table S42. And the structure refinement for 12	S141
	Table S42. Atomic coordinates and equivalent isotropic displacement parameters (A ²) for 12 Table S42. Atomic coordinates and equivalent isotropic displacement parameters (A ²) for 12	S142
	Iable 543. Anisotropic displacement parameters (A ²) for 12 Table 544. Di tanua tà l fac 12	5149
	1able 544. Distances [A] for 12 Table 545. Apple 10 for 12	5153
	1able 545. Angles [*] for 12	5157

1 X-ray data for compounds 4-6, 8-12

X-Ray crystal structure of [{**PC**•(**sp**²)**P**}^{*i*Bu}**PdI**] (4). Single crystals were obtained as dark green blocks from a concentrated *n*-pentane solution at -35 °C in the glovebox. Crystal and refinement data for 4: C₃₃H₅₂IP₂Pd; M_r =743.99; Orthorhombic; space group *Pbca*; *a* = 14.978(2) Å; *b* = 16.438(3) Å; *c* = 29.361(5) Å; α = 90°; β = 90°; γ = 90°; V = 7228.9(19) Å³; Z = 8; T = 120(2) K; λ = 0.71073 Å; μ = 1.474 mm⁻¹; d_{calc} = 1.367 g·cm⁻³; 141424 reflections collected; 6340 unique (R_{int} = 0.0644); giving R₁ = 0.0290, wR₂ = 0.0590 for 5847 data with [I>2\sigma(I)] and R₁ = 0.0343, wR₂ = 0.0613 for all 6340 data. Residual electron density (e⁻·Å⁻³) max/min: 0.850/-0.569.

X-Ray crystal structure of [{PC(sp²)P}^{*Bu***}PdI][BAr₄^F] (5). Single crystals were obtained as dark red blocks from a concentrated solution of diethyl ether layered with** *n***-pentane at -35 °C in the glovebox. Crystal and refinement data for 5**: C₆₅H₆₄BF₂₄IP₂Pd; M_r =1607.21; Monoclinic; space group *P*2₁/*n*; *a* = 14.0602(6) Å; *b* = 28.6171(12) Å; *c* = 16.9031(7) Å; $\alpha = 90^{\circ}$; $\beta = 92.0331(16)^{\circ}$; $\gamma = 90^{\circ}$; V = 6796.9(5) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.879 \text{ mm}^{-1}$; d_{calc} = 1.571 g·cm⁻³; 119559 reflections collected; 11970 unique (R_{int} = 0.0438); giving R₁ = 0.0320, wR₂ = 0.0725 for 10118 data with [I>2\sigma(I)] and R₁ = 0.0412, wR₂ = 0.0763 for all 11970 data. Residual electron density (e⁻Å⁻³) max/min: 1.082/-0.735.

X–**Ray crystal structure of** [{**P**C(**sp**³)**H**P)^{*t*^{Bu}}**P**dI] (6). Single crystals were obtained as pale yellow blocks by slow evaporation from a concentrated solution of *n*-pentane at room temperature in the glovebox. Crystal and refinement data for **6**: C₃₃H₅₃IP₂Pd; M_r =744.99; Monoclinic; space group $P2_1/c$; a = 12.8203(13) Å; b = 14.8340(15) Å; c = 19.1740(19) Å; $\alpha = 90^{\circ}$; $\beta = 106.6410(15)^{\circ}$; $\gamma = 90^{\circ}$; V = 3493.7(6) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 1.525$ mm⁻¹; d_{calc} = 1.416 g·cm⁻³; 63141 reflections collected; 6140 unique (R_{int} = 0.0317); giving R₁ = 0.0245, wR₂ = 0.0495 for 5688 data with [I>2\sigma(I)] and R₁ = 0.0278, wR₂ = 0.0505 for all 6140 data. Residual electron density (e⁻Å⁻³) max/min: 1.086/-1.021.

X–**Ray crystal structure of [{PC(sp³)(SPh)P}**/^{*Bu*}**PdOTf]**·**Et**₂**O** (8·Et₂**O**) Single crystals were obtained as yellow blocks from a concentrated solution of diethyl ether at -35 °C in the glovebox. Crystal and refinement data for 8·Et₂**O**: C₄₄H₆₇F₃O₄P₂PdS₂; M_r =949.44; Orthorhombic; space group *P*2₁2₁2₁; *a* = 14.0266(6) Å; *b* = 15.2323(6) Å; *c* = 21.3735(9) Å; $\alpha = 90^{\circ}$; $\beta = 90^{\circ}$; $\gamma = 90^{\circ}$; V = 4566.6(3) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.620$ mm⁻¹; d_{calc} = 1.381 g·cm⁻³; 77120 reflections collected; 9882 unique (R_{int} = 0.0493); giving R₁ = 0.0260, wR₂ = 0.0561 for 8958 data with [I>2\sigma(I)] and R₁ = 0.0331, wR₂ = 0.0590 for all 9882 data. Residual electron density (e⁻·Å⁻³) max/min: 0.885/-0.528.

X-Ray crystal structure of [{**PC**(**sp**³)(**SPh**)**P**/^{**Bu**}**PdSPh**]·**C**₅**H**₁₂ (9·**C**₅**H**₁₂). Single crystals were obtained as yellow blocks from a concentrated solution of *n*-pentane at -35 °C in the glovebox. Crystal and refinement data for **9**·**C**₅**H**₁₂: C₅₀H₇₄P₂PdS₂; M_r =907.55; Monoclinic; space group $P2_1/n$; a = 11.297(3) Å; b = 11.590(3) Å; c = 36.768(10) Å; $\alpha = 90^{\circ}$; $\beta = 92.926(4)^{\circ}$; $\gamma = 90^{\circ}$; V = 4808(2) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.571$ mm⁻¹; d_{calc} = 1.254 g·cm⁻³; 111329 reflections collected; 12309 unique (R_{int} = 0.0632); giving R₁ = 0.0392, wR₂ = 0.0754 for 10029 data with [I>2\sigma(I)] and R₁ = 0.0557, wR₂ = 0.0807 for all 12309 data. Residual electron density (e⁻Å⁻³) max/min: 1.121/-0.773.

X-Ray crystal structure of [{PC(sp³)(NH^{*p***}Tol)P}^{***Bu***}PdI] (10). Single crystals were obtained as yellow blocks from a concentrated solution of** *n***-pentane at -35 \,^{\circ}C in the glovebox. Crystal and refinement data for 10**: C₄₀H₆₀INP₂Pd; M_r =850.13; Monoclinic; space group *P*2₁/*n*; *a* = 17.0891(17) Å; *b* = 14.0140(14) Å; *c* = 18.4206(18) Å; α = 90°; β = 100.081(3)°; γ = 90°; V = 4343.4(7) Å³; Z = 4; T = 120(2) K; λ = 0.71073 Å; μ = 1.237 mm⁻¹; d_{calc} = 1.300 g·cm⁻³; 67692 reflections collected; 7652 unique (R_{int} = 0.0271); giving R₁ = 0.0300, wR₂ = 0.0772 for 6972 data with [I>2\sigma(I)] and R₁ = 0.0334, wR₂ = 0.0792 for all 7652 data. Residual electron density (e⁻·Å⁻³) max/min: 1.637/-1.126.

X–Ray crystal structure of [{PC(sp³)(OPhP)}^{*/Bu*}**PdI]** (11). Single crystals were obtained as yellow blocks by slow evaporation from a concentrated *n*-pentane solution at room temperature in the glovebox. Crystal and refinement data for **11**: $C_{39}H_{57}IOP_2Pd$; $M_r = 837.09$; Triclinic; space group $P\overline{1}$; a = 11.8764(6) Å; b = 14.4330(8) Å; c = 25.1741(14) Å; $\alpha = 101.2966(16)^{\circ}$; $\beta = 93.5784(16)^{\circ}$; $\gamma = 111.2000(15)^{\circ}$; V = 3903.0(4) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 1.376$ mm⁻¹; d_{calc} = 1.425 g·cm⁻³; 95643 reflections collected; 13721 unique (R_{int} = 0.0511); giving R₁ = 0.0389, wR₂ = 0.0886 for 11059 data with [I>2\sigma(I)] and R₁ = 0.0556, wR₂ = 0.0934 for all 13721 data. Residual electron density (e⁻·Å⁻³) max/min: 3.446/-2.064.

X-Ray crystal structure of [{**PC**(**sp**³)(**PMe**₃)**P**)^{*t*Bu}**PdI**][**BAr**^F₄] (12). Single crystals were obtained as yellow blocks from a concentrated solution of *n*-pentane layered with fluorobenzene at -35 °C in the glovebox. Crystal

and refinement data for **12**: $C_{68}H_{72}BF_{24}IP_3Pd$; $M_r = 1682.28$; Monoclinic; space group $P2_1$; a = 10.0901(7) Å; b = 23.7955(17) Å; c = 31.205(2) Å; $\alpha = 90^{\circ}$; $\beta = 90.532(2)^{\circ}$; $\gamma = 90^{\circ}$; V = 7492.0(9) Å³; Z = 4; T = 120(2) K; $\lambda = 0.71073$ Å; $\mu = 0.822$ mm⁻¹; $d_{calc} = 1.491$ g·cm⁻³; 134462 reflections collected; 25436 unique ($R_{int} = 0.0348$); giving $R_1 = 0.0632$, $wR_2 = 0.1651$ for 24104 data with [I>2 σ (I)] and $R_1 = 0.0658$, $wR_2 = 0.1675$ for all 25436 data. Residual electron density (e^- ·Å⁻³) max/min: 2.325/-1.408.

2 EPR Spectra

Figure S1. EPR spectrum of $[{PC^{\bullet}(sp^2)P}^{\prime Bu}PdI]$ (4) (0.1 mM solution in toluene, 298 K), $\Delta H_{pp} = 10.0$ G; g = 2.000.

3 DFT Results

Gaussian 03 (revision D.02)¹ was used for all reported calculations. The B3LYP (DFT) method was used to carry out the geometry optimizations on model compounds specified in text using the LANL2DZ basis set. The validity of the true minima was checked by the absence of negative frequencies in the energy Hessian. Molecular orbitals as well as Mayer² and Wiberg³ bond orders were obtained from single point computations performed on the optimized molecules using the same level of theory.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, *Gaussian, Inc.*, Wallingford CT, 2004.
- 2. I. Mayer, Chem. Phys. Lett., 1983, 97, 270-274.
- 3. K. B. Wiberg, Tetrahedron, 1968, 24, 1083-1096.

Figure S2. Computed molecules.

3.1 [{ $PC^{\bullet}(sp^2)P$ }^{tBu}PdI] (4)

Table S1.	Optimized	coordinates f	for [{PC•	$(sp^2)P$	} ^{tBu} PdI] ((4))
-----------	-----------	---------------	-----------	-----------	-------------------------	-----	---

1		(1), (1)	
atom	X	У	Z
С	1.429743	2.912961	-0.666313
С	1.297677	1.578004	-0.162495
С	2.524473	0.893967	0.113058
С	3.770022	1.527973	-0.024852
С	3.886672	2.860039	-0.481347
С	2.677555	3.522182	-0.818607
С	0.017692	0.888742	0.003533
Pd	0.006986	-1.161439	-0.025823
Р	2.312060	-0.910798	0.570582
С	2.742706	-1.093763	2.434191
С	1.691938	-0.347617	3.284924
			Continued on next page

atom	X	у	X
С	5.240627	3.583112	-0.651288
С	5.436779	3.973184	-2.147090
С	5.249243	4.874601	0.219717
C	6.440721	2.702604	-0.221453
C	4,177738	-0.647591	2.789701
C	-1.251270	1.595871	0.168582
Č	-2.489693	0.935274	-0.116163
Ċ	-3.716955	1.616889	-0.067542
C	-3.808825	2.965522	0.343857
C	-2.595595	3.594451	0.729358
Ċ	-1 362457	2.944956	0.641547
P	-2 311428	-0.886358	-0 505205
r C	-3 462908	-1 871774	0.674266
C	-4 978061	-1 674281	0.447680
C C	-5 143042	3 739062	0.423056
C C	-5 055964	5.015256	-0.466254
C C	-5 409455	4 160711	1 800203
C C	-6 3/7087	2 80//00	-0.063530
C C	-3 00/390	-1 116000	-2 278551
C C	-3 108728	-2.609414	-2.658333
C C	-2 124268	-2.009414 -0.336801	-2.058555
C	-2.124200	-0.550891	-5.260576
L I	-5.005751	-1.300411	0.017221
I C	3 702608	-3.948270 -1.821718	-0.389449
C	3.02098	-1.821718	-0.389449
C C	3 376005	-1.80/1905	_1 800630
с u	4 620600	-1.804903	-1.899039
н ц	-2 61/35/	1.000007	1 108/03
н ц	-0.470348	3.465606	0.073000
н ц	-4 605018	J.405090 4 704320	2 201717
П Ц	5 480474	3 270070	2.291717
н ц	-6 348507	J.279079 A 726301	2.546525
н ц	-7.265255	3 402465	-0.001516
П Ц	6 404122	1 000550	0.555350
П Ц	6 226515	2 577753	1 107822
П Ц	-0.220515	2.377733	-1.107882
	-4.864126	4.740302	-1.517102
п	-4.239034	5 5 5 5 5 6 1 2	-0.130105
п	-5.992745	5.565012	-0.404723
п	4.070550	0.908843	1.220072
п	2.711421	4.551045	-1.222920
н	0.542522	5.450524	-0.983230
н	4.430/81	5.550528	-0.038463
н	0.198530	5.412495	0.092461
H	5.132050	4.629735	1.283456
H	7.374049	3.266363	-0.346437
H	6.519524	1.794204	-0.833007
H	6.3/128/	2.405/07	0.833395
H	4.633335	4.628157	-2.504931
H	5.450801	3.0/9/48	-2./84646
H	6.388639	4.505493	-2.2/9389
Н	-4.009635	-0.00/8/6	-2.200/38
			Continued on next page

 Table S1. – continued from previous page

atom	X	У	X
Н	-3.195453	-2.912215	0.445231
Н	-2.549171	-0.422610	-4.289808
Н	-1.106522	-0.745799	-3.302300
Н	-2.059272	0.727937	-3.026379
Н	-3.788134	-3.163793	-1.999829
Н	-2.128647	-3.097694	-2.611134
Н	-3.489164	-2.698762	-3.685274
Н	-3.245922	-0.540078	2.409565
Н	-2.004693	-1.814103	2.307245
Н	-3.657478	-2.222587	2.811174
Н	-5.304657	-0.673449	0.753815
Н	-5.528607	-2.399795	1.062640
Н	-5.276905	-1.835390	-0.595310
Н	4.619432	-1.238319	-0.217191
Н	2.640545	-2.172154	2.617737
Н	2.459962	-2.372819	-2.101066
Н	4.198053	-2.270806	-2.460241
Н	3.241227	-0.784284	-2.278766
Н	4.223351	-3.287177	1.180937
Н	4.707868	-3.743425	-0.461396
Н	3.001460	-3.855749	0.021685
Н	4.304961	0.430832	2.634972
Н	4.940224	-1.175654	2.204048
Н	4.372374	-0.855298	3.850987
Н	1.728489	0.733857	3.099623
Н	1.890346	-0.516751	4.352193
Н	0.676773	-0.695395	3.062554

 Table S1. – continued from previous page

 $\label{eq:Figure S3.} \ensuremath{\text{ Figure S3. Overlaid structures for } [\{PC^{\bullet}(sp^2)P\}^{\prime Bu}PdI]\ (4)\ (\text{red: X-ray, blue: optimized}).$

Distance	Calcd.	X-Ray	Angle	Calcd.	X-Ray
Pd-I	2.789	2.675(5)	P(1) - Pd - P(2)	167.05	163.13(3)
Pd - P(1)	2.383	2.2880(7)	I - Pd - C	177.92	175.42(13)
Pd - P(2)	2.394	2.2931(8)	P(1) - Pd - C	83.83	83.32(8)
Pd - C	2.050	2.022(3)	C(21) - C - Pd	118.29	118.8(2)
C - C(11)	1.462	1.441(4)	C(11) - C - Pd	118.73	118.5(2)
C - C(21)	1.463	1.462(4)	C(11) - C - C(21)	122.97	122.5(2)

Table S2. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of $[{PC^{\bullet}(sp^2)P}^{tBu}PdI]$ (4).

Figure S4. Optimized geometry for $[{PC^{\bullet}(sp^2)P}^{Bu}PdI]$ (4).

3.2 $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F](5)$

atom	v	v	7
C	X	<u>y</u> 1.540241	L 0.019669
C C	-3./1/499	0.994627	0.018008
C C	-2.469342	1 555702	-0.127340
C C	-1.202457	1.353/95	0.174401
C	-1.555254	2.876650	0.714801
C	-2.588444	3.500665	0.889437
C	-3.803677	2.863896	0.521926
C	0.000010	0.845052	-0.000/39
Pd	0.000779	-1.163/92	-0.001310
P	-2.306889	-0.920385	-0.638243
C	-3.731784	-1.821408	0.284174
С	-3.992609	-3.230433	-0.292756
С	-5.143704	3.601365	0.706946
С	-5.332090	3.938213	2.218806
С	-2.671483	-1.038965	-2.521108
С	-4.082473	-0.540407	-2.903302
С	-5.112122	4.924828	-0.117451
С	-6.357217	2.761533	0.237887
С	-1.569718	-0.312812	-3.321726
С	-3.427325	-1.866569	1.798033
С	1.262464	1.555977	-0.176018
С	2.489292	0.885490	0.127612
С	3.717356	1.541390	-0.018218
С	3.803537	2.864305	-0.523411
С	2.588363	3.500316	-0.892462
С	1.353185	2.876218	-0.717847
Р	2.306520	-0.918939	0.640049
С	3.734547	-1.820788	-0.276731
С	3.994956	-3.228494	0.303481
С	5.143508	3.601917	-0.708456
С	6.356516	2.764999	-0.232928
C	2.664445	-1.035087	2.524333
Ċ	4.073926	-0.535208	2.910685
Ċ	5.334952	3.932265	-2.221464
Ċ	5.109270	4.928908	0.109925
Ċ	1.559897	-0.308462	3.320598
C	3 434132	-1 868989	-1 791334
I	0.001790	-3 883536	-0.002652
Н	4 631846	1 021272	0.240567
Н	2 612689	4 493176	-1 331281
н	0.453906	3 381666	-1 053191
Н	6 279494	4 471483	-2 363081
н	4 529296	4 565434	-2 611273
н	5 371701	3 017009	-2 825707
н	6 051151	5 472670	-0.031679
H	4 080338	A 730070	1 182602
н	4 20/116	5 580680	_0.207306
н Н	4.294110 6 200100	2.202000	0.833/37
н	7 275056	2.511707	_0.372051
11	1.213030	5.540255	Continued on next page

Table S3. Optimized coordinates for the complex cation of $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5).

atom	v	V	x
Ц	<u> </u>	J 1 836070	
П Ц	0.453005	3 382766	1 048064
II U	-0.453905	<i>J.382700</i> <i>4.403080</i>	1.048904
п	-2.012717	4.495960	0.228447
п	-4.032030	1.019450	-0.238447
H	2.591058	-2.112407	2.725000
H	-4.993608	4.722235	-1.189497
H	-4.29/188	5.587844	0.195709
H	-6.054396	5.468155	0.023208
H	-6.293197	2.503836	-0.827532
H	-7.275862	3.342686	0.377702
Н	-6.467099	1.835943	0.817979
Н	-6.275969	4.478747	2.359884
Н	-4.525283	4.572320	2.604676
Н	-5.368471	3.025481	2.826904
Н	4.623639	-1.196077	-0.107164
Н	1.579250	0.774071	3.136766
Н	1.720374	-0.466634	4.394534
Н	0.562652	-0.687148	3.068052
Н	4.176539	0.543330	2.739094
Н	4.872962	-1.054718	2.368648
Н	4.236188	-0.713407	3.981536
Н	4.287705	-2.316618	-2.316109
Н	3.266479	-0.870803	-2.215404
Н	2.552063	-2.487509	-1.992684
Н	4.269304	-3.204017	1.364683
Н	4.830562	-3.686223	-0.241685
Н	3.120386	-3.876252	0.185977
Н	-2.598305	-2.116541	-2.720850
Н	-4.621870	-1.197796	0.115619
Н	-0.571659	-0.691399	-3.072240
Н	-1.588376	0.769824	-3.138490
Н	-1.733841	-0.471662	-4.395010
Н	-4.184788	0.538521	-2.734115
Н	-4 879200	-1.058802	-2.356826
н	-4 248766	-0.721417	-3 973054
Н	-3 259867	-0.867441	2 219965
Н	-2 543886	-2 483551	1 998191
н	-4 278805	-2 314400	2 325861
н	-3 116053	_3 877050	_0 177125
и	-4 270660	-3.077039	-1.353040
н	-4.270009	-3 682003	0.256063
H H H H H H H H H H H H H H H H H H H	$\begin{array}{c} 2.552063\\ 4.269304\\ 4.830562\\ 3.120386\\ -2.598305\\ -4.621870\\ -0.571659\\ -1.588376\\ -1.733841\\ -4.184788\\ -4.879200\\ -4.248766\\ -3.259867\\ -2.543886\\ -4.278895\\ -3.116953\\ -4.270669\\ -4.825853\end{array}$	$\begin{array}{r} -2.487509 \\ -3.204017 \\ -3.686223 \\ -3.876252 \\ -2.116541 \\ -1.197796 \\ -0.691399 \\ 0.769824 \\ -0.471662 \\ 0.538521 \\ -1.058802 \\ -0.721417 \\ -0.867441 \\ -2.483551 \\ -2.314400 \\ -3.877059 \\ -3.208017 \\ -3.688093 \end{array}$	$\begin{array}{c} -2.213464\\ -1.992684\\ 1.364683\\ -0.241685\\ 0.185977\\ -2.720850\\ 0.115619\\ -3.072240\\ -3.138490\\ -4.395010\\ -2.734115\\ -2.356826\\ -3.973054\\ 2.219965\\ 1.998191\\ 2.325861\\ -0.177125\\ -1.353049\\ 0.256063\end{array}$

Table S3. – continued from previous page

 $\label{eq:Figure S5. Overlaid structures for the complex cation of [{PC(sp^2)P}^{tBu}PdI][BAr_4^F] (5) (red: X-ray, blue: optimized).$

Distance	Calcd.	X-Ray	Angle	Calcd.	X-Ray
Pd-I	2.720	2.6255(3)	P(1) - Pd - P(2)	168.35	164.98(3)
Pd - P(1)	2.406	2.3161(7)	I - Pd - C	179.99	168.44(7)
Pd - P(2)	2.406	2.2884(7)	P(1) - Pd - C	84.18	83.03(8)
Pd-C	2.009	1.968(3)	C(21) - C - Pd	119.13	121.2(2)
C - C(11)	1.459	1.442(4)	C(11) - C - Pd	119.17	117.59(19)
C – C(21)	1.459	1.440(4)	C(11) - C - C(21)	121.70	120.9(2)

Table S4. Selected distances (Å) and angles (°) for the optimized geometry and the crystal structure of the complex
cation of $[{PC(sp^2)P}^{'Bu}PdI][BAr_4^F]$ (5).

Figure S6. Optimized geometry for $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5).

3.3 $[{PC(sp^2)P}^{Me}PdI]^+$ (5')

atom	v	v	7
C	0.021726	J 0.062306	0.072618
C	-0.021720	-0.002300	-0.072018
C	1 225820	-0.008409	2.045266
C C	1.253829	-0.039374	2.043200
C	2.445829	0.040025	1.292.332
C	2.418001	0.084314	-0.108009
C	1.190679	0.006589	-0.795208
C	1.201547	-0.06/629	3.509989
Pa	-0.464898	0.548975	4.443722
P	-1.550644	0.002085	2.397363
C	-2.704000	1.233275	1.580711
Н	-3.561853	1.388231	2.241365
C	-2.412649	-1.661146	2.260078
Н	-2.718657	-1.853842	1.226331
Н	-1.738443	-2.452677	2.597599
Н	-2.186734	2.187818	1.451987
С	2.341653	-0.510340	4.316763
С	2.431735	-0.075107	5.681650
С	3.502717	-0.472038	6.488720
С	4.484471	-1.353053	5.981986
С	4.379313	-1.846242	4.666330
С	3.327227	-1.428552	3.839588
Р	0.983731	0.961970	6.286712
С	0.550222	0.318876	7.993001
Н	-0.363011	0.820654	8.325579
С	1.612099	2.711807	6.554108
Н	2.392538	2.729197	7.322238
Н	2.011024	3.105673	5.615638
Н	0.357243	-0.755920	7.939608
Ι	-2.703953	1.376844	5.698260
Н	3.579837	-0.128528	7.516932
Н	5.108482	-2.560359	4.295070
Н	3.232638	-1.854867	2.846796
Н	3.394276	0.156351	1.806738
Н	3.345628	0.185426	-0.665280
Н	-0.961902	-0.086435	-0.617276
Н	0.772142	3.337110	6.871575
Н	1 358084	0 516985	8 705504
н	_3 205253	-1 648618	2 906743
н	_3 050625	0 863037	0.609634
н	5.050025	-1 670261	6 617006
н	1 177/77	0.026224	-1 881/62
11	1.1/24//	0.020224	-1.001402

Table S5. Optimized coordinates for $[{PC(sp^2)P}^{Me}PdI]^+$ (5').

Figure S7. Optimized geometry for $[{PC(sp^2)P}^{Me}PdI]^+$ (5').

4 NMR Spectra

4.1 NMR Spectra for $[{PC(sp^2)P}^{\prime Bu}PdI][BAr_4^F](5)$

Figure S8. ¹H NMR spectrum for $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5).

Figure S9. ${}^{31}P{}^{1}H$ NMR spectrum for [{PC(sp²)P}'^{Bu}PdI][BAr_4^F] (5).

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum for [{PC(sp²)P} $'^{Bu}PdI$][BAr^F₄] (5).

Figure S11. ¹⁹F NMR spectrum for $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5).

Figure S12. ¹¹B NMR spectrum for $[{PC(sp^2)P}^{\prime Bu}PdI][BAr_4^F]$ (5).

Figure S13. ¹H NMR spectrum for $[{PC(sp^3)HP}^{tBu}PdI]$ (6).

Figure S14. ${}^{31}P{}^{1}H$ NMR spectrum for [{PC(sp³)HP}'^{Bu}PdI] (6).

Figure S15. ¹³C $\{^{1}H\}$ NMR spectrum for [$\{PC(sp^{3})HP\}^{tBu}PdI$] (6).

Figure S16. ¹H NMR spectrum for $[{PC(sp^3)(SPh)P}^{tBu}PdI]$ (7).

Figure S17. ${}^{31}P{}^{1}H$ NMR spectrum for [{PC(sp³)(SPh)P}'^{Bu}PdI] (7).

Figure S18. ${}^{13}C{}^{1}H$ NMR spectrum for [{PC(sp³)(SPh)P}^{tBu}PdI] (7).

4.4 NMR Spectra for [{PC(sp³)(SPh)P}^{tBu}PdOTf] (8)

Figure S19. ¹H NMR spectrum for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf]$ (8).

-49.44

Figure S21. ${}^{13}C{}^{1}H$ NMR spectrum for [{PC(sp³)(SPh)P}^{tBu}PdOTf] (8).

Figure S22. ¹⁹F NMR spectrum for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf]$ (8).

4.5 NMR Spectra for $[{PC(sp^3)(SPh)P}^{tBu}PdSPh]$ (9)

Figure S23. ¹H NMR spectrum for $[{PC(sp^3)(SPh)P}^{tBu}PdSPh]$ (9).

Figure S24. ${}^{31}P{}^{1}H$ NMR spectrum for [{PC(sp³)(SPh)P}^{*t*Bu}PdSPh] (9).

Figure S25. ${}^{13}C{}^{1}H$ NMR spectrum for [{PC(sp³)(SPh)P}^{*t*Bu}PdSPh] (9).

4.6 NMR Spectra for [{PC(sp³)(NH^{*p*}Tol)P}^{*t*Bu}PdI] (10)

Figure S26. ¹H NMR spectrum for $[{PC(sp^3)(NH^pTol)P}^{tBu}PdI]$ (10).

Figure S27. ${}^{31}P{}^{1}H$ NMR spectrum for [{PC(sp³)(NH^pTol)P}^{tBu}PdI] (10).

Figure S28. ${}^{13}C{}^{1}H$ NMR spectrum for [{PC(sp³)(NH^pTol)P}^{tBu}PdI] (10).

Figure S29. ${}^{1}H{}^{-13}C$ HSQC NMR spectrum for [{PC(sp³)(NH^pTol)P} ${}^{tBu}PdI$] (10).

Figure S30. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra for [{PC(sp³)(NH^{*p*}Tol)P}^{*t*Bu}PdI] (10). (*) designates the small amount of impurity of 6).

4.7 NMR Spectra for [{PC(sp³)(OPh)P}^{/Bu}PdI] (11)

Figure S31. ¹H NMR spectrum for $[{PC(sp^3)(OPh)P}^{tBu}PdI]$ (11).

Figure S33. ${}^{13}C{}^{1}H$ NMR spectrum for [{PC(sp³)(OPh)P}'^{Bu}PdI] (11).

Figure S34. Variable temperature ${}^{31}P{}^{1}H$ NMR spectra for [{PC(sp^3)(OPh)P}^{tBu}PdI] (11). (*) designates the small amount of impurity of 6).

7.65 7.63 7.51 3.03 3.02 3.00 2.69 2.67 2.66 1.63 1.62 1.60 0.91 7.26 7.80 7.66 0.93 1.21 0.94 € Θ F₃(F₂C Me₃ յեր Ч Ψ Η. ۳ 13.00 80 1.73 2.01 6.75 2.09 20.1 6.53 P.4 8.0 7.5 7.0 6.5 5.5 4.5 3.0 6.0 5.0 4.0 3.5 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

4.8 NMR Spectra for $[{PC(sp^3)(PMe_3)P}^{Bu}PdI][BAr_4^F]$ (12)

 $\label{eq:Figure S35. } ^{1}H \ NMR \ spectrum \ for \ [\{PC(sp^{3})(PMe_{3})P\}'^{Bu}PdI][BAr_{4}^{F}] \ (12).$

Figure S36. ${}^{31}P{}^{1}H$ NMR spectrum for [{PC(sp³)(PMe₃)P}'^{Bu}PdI][BAr_4^F] (12).

Figure S37. ${}^{13}C{}^{1}H$ NMR spectrum for $[{PC(sp^3)(PMe_3)P}]^{Bu}PdI][BAr_4^F]$ (12).

 $\label{eq:Figure S38. } \ensuremath{^{19}\text{F}}\xspace \text{NMR spectrum for } [\{\ensuremath{PC(sp^3)(PMe_3)P}\}^{\prime Bu}\ensuremath{PdI}][\ensuremath{BAr_4^F}]\ (\textbf{12}).$

 $\label{eq:Figure S39.} \ ^{11}B\ NMR\ spectrum\ for\ [\{PC(sp^3)(PMe_3)P\}^{\prime Bu}PdI][BAr_4^F]\ (12).$

Figure S40. $^{1}H^{-13}C$ HSQC NMR spectrum for [{PC(sp³)(PMe₃)P}^{*t*Bu}PdI][BAr₄^F] (12).

4.9 NMR Spectra for the comproportionation reaction between 3 and 5

Figure S41. Comproportionation reaction between $[{PC(sp^2)P}^{tBu}Pd(PMe_3)]$ (3) and $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5).

Figure S42. ¹H NMR spectrum for the reaction mixture.

Figure S43. ³¹P{¹H} NMR spectrum for the reaction mixture.

5 Crystallographic tables

5.1 Crystal data for [{PC•(sp²)P}^{tBu}PdI] (4)

Figure S44. Thermal-ellipsoid representation of $[{PC^{\bullet}(sp^2)P}^{tBu}PdI]$ (4) at 50% probability. Hydrogen atoms were omitted for clarity.

Identification code:	pc27	
Empirical formula:	$_{C33}H_{52}IP_2Pd$	
Formula weight:	743.99	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Orthorhombic	
Space group:	Pbca	
Unit cell dimensions:	a = 14.978(2) Å	$\alpha = 90^{\circ}$
	b = 16.438(3) Å	$\beta = 90^{\circ}$
	c = 29.361(5) Å	$\gamma = 90^{\circ}$
Volume:	7228.9(19)Å ³	•
Z:	8	
Density (calculated):	$1.367 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	1.474 mm^{-1}	
F(000):	3032	
Crystal size:	$0.09 \times 0.08 \times 0.07 \text{ mm}^3$	
θ range for data collection:	1.94 to 25.00°	
Index ranges:	$-17 \le h \le 17, -19 \le k \le 19, -34 \le 1 \le 34$	
Reflections collected:	141424	
Independent reflections:	$6340 [R_{int} = 0.0644]$	
Completeness to $\theta = 25.00^{\circ}$:	99.6 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.8265 and 0.5642	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	6340 / 0 / 365	
Goodness-of-fit on F ² :	1.079	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0290, wR_2 = 0.0590$	
R indices (all data):	$R_1 = 0.0343, wR_2 = 0.0613$	
Largest diff. peak and hole:	0.850 and $-0.569 \text{ e}^{-1} \text{Å}^{-3}$	

Table S6. Crystal data and structure refinement for $[{PC^{\bullet}(sp^2)P}^{tBu}PdI]$ (4).

Ξ

atom	X	у	<u> </u>	U(eq)
C(1)	0.11287(19)	-0.05689(18)	0.19631(11)	0.031(1)
P(1)	0.13354(4)	0.12092(4)	0.35082(2)	0.019(1)
C(2)	-0.42605(17)	0.24625(17)	0.34417(9)	0.022(1)
C(11)	-0.01718(17)	0.08251(16)	0.30507(9)	0.019(1)
C(12)	0.07690(17)	0.07758(16)	0.30183(9)	0.018(1)
C(13)	0.11786(17)	0.03660(16)	0.26608(9)	0.019(1)
C(14)	0.06934(17)	-0.00712(16)	0.23405(9)	0.021(1)
C(15)	-0.02377(17)	-0.00616(16)	0.23897(9)	0.022(1)
C(16)	-0.06564(17)	0.03778(16)	0.27243(9)	0.021(1)
C(17)	0.0853(4)	-0.1431(3)	0.1999(2)	0.053(1)
C(18)	0.2116(3)	-0.0496(3)	0.19480(18)	0.053(1)
C(19)	0.0781(3)	-0.0234(3)	0.14889(17)	0.053(1)
C(69)	0.0576(10)	-0.1287(8)	0.1797(5)	0.033(2)
C(68)	0.1572(9)	-0.0105(8)	0.1623(4)	0.033(2)
C(67)	0.1978(9)	-0.1081(8)	0.2238(4)	0.033(2)
C(21)	-0.15060(17)	0.15460(17)	0.34044(9)	0.020(1)
C(22)	-0.19448(17)	0.16857(16)	0.38192(9)	0.019(1)
C(23)	-0.28267(17)	0.19512(16)	0.38337(9)	0.020(1)
C(24)	-0.33077(17)	0.21149(16)	0.34389(9)	0.019(1)
C(25)	-0.28633(17)	0.19924(16)	0.30290(9)	0.020(1)
C(26)	-0.19960(17)	0.17122(16)	0.30086(9)	0.021(1)
C(27)	-0.48712(19)	0.1942(2)	0.31416(11)	0.032(1)
I(1)	0.1193(2)	0.1891(7)	0.46881(15)	0.049(1)
C(28)	-0.46523(19)	0.2508(2)	0.39153(10)	0.037(1)
C(29)	-0.4241(2)	0.33273(19)	0.32400(12)	0.037(1)
C(31)	0.20662(18)	0.20190(17)	0.32910(9)	0.024(1)
C(32)	0.20704(19)	0.04128(18)	0.37421(10)	0.028(1)
C(33)	0.1493(2)	0.27262(18)	0.31354(11)	0.032(1)
C(34)	0.2744(2)	0.2305(2)	0.36467(11)	0.034(1)
C(35)	0.1512(2)	-0.0309(2)	0.38978(12)	0.042(1)
C(36)	0.2841(2)	0.0139(2)	0.34324(11)	0.039(1)
C(41)	-0.15972(19)	0.23486(18)	0.47083(9)	0.025(1)
C(42)	-0.1499(2)	0.05715(19)	0.45769(11)	0.032(1)
C(43)	-0.1418(2)	0.31815(19)	0.45010(12)	0.039(1)
C(44)	-0.1186(2)	0.2265(2)	0.51805(10)	0.034(1)
C(45)	-0.2437(3)	0.0512(3)	0.47499(15)	0.063(1)
C(46)	-0.1331(3)	-0.0119(2)	0.42341(14)	0.064(1)
C	-0.05/0/(19)	0.1291(2)	0.34130(10)	0.032(1)
Pd	0.01629(1)	0.15179(1)	0.39769(1)	0.020(1)
l D(2)	0.1176(3)	0.1694(3)	0.47206(16)	0.031(1)
P(2)	-0.12201(4)	0.15570(4)	0.43112(2)	0.019(1)
H(13)	0.1810	0.0386	0.2635	0.023
H(15)	-0.0591	-0.03/0	0.2184	0.026
H(10)	-0.1290	0.0381	0.2/36	0.025
H(1/A)	0.0205	-0.14/2	0.1957	0.079
H(I/B)	0.1014	-0.1041	0.2300	0.079
H(1/C)	0.2250	-0.1/51	0.1703	0.079
$H(1\delta A)$	0.2350	-0.0820	0.1097	0.079
п(18В)	0.2309	-0.0089	0.2230	U.U/9
				Commuted on next page

Table S7. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[{PC}^{\bullet}(sp^2)P]^{tBu}PdI]$ (4). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

atom	X	У	X	U(eq)
H(18C)	0.2282	0.0075	0.1901	0.079
H(19A)	0.0932	0.0344	0.1462	0.079
H(19B)	0.0132	-0.0301	0.1471	0.079
H(19C)	0.1065	-0.0538	0.1241	0.079
H(69A)	0.0115	-0.1093	0.1587	0.049
H(69B)	0.0292	-0.1553	0.2058	0.049
H(69C)	0.0964	-0.1676	0.1641	0.049
H(68A)	0.1976	0.0285	0.1768	0.039
H(68B)	0.1129	0.0189	0.1440	0.039
H(68C)	0.1916	-0.0469	0.1425	0.039
H(67A)	0.2291	-0.1431	0.2020	0.049
H(67B)	0.1726	-0.1416	0.2483	0.049
H(67C)	0.2398	-0.0688	0.2368	0.049
H(23)	-0.3108	0.2022	0.4121	0.024
H(25)	-0.3168	0.2106	0.2752	0.024
H(26)	-0.1725	0.1630	0.2720	0.025
H(27A)	-0.4618	0.1903	0.2835	0.047
H(27B)	-0.5464	0.2193	0.3125	0.047
H(27C)	-0.4923	0.1396	0 3273	0.047
H(28A)	-0.5253	0.2743	0.3900	0.055
H(28B)	-0.4272	0.2851	0.4108	0.055
H(28C)	-0.4686	0.1960	0 4046	0.055
H(29A)	-0.4002	0.3307	0 2930	0.056
H(29B)	-0.3860	0.3676	0.3429	0.056
H(29C)	-0.4848	0 3549	0 3234	0.056
H(31)	0 2400	0 1804	0 3022	0.028
H(32)	0.2351	0.0647	0.4022	0.033
H(33A)	0.1869	0.3132	0.2984	0.049
H(33B)	0.1200	0 2974	0.3400	0.049
H(33C)	0.1039	0.2530	0.2922	0.049
H(34A)	0.3154	0.1859	0.3719	0.051
H(34B)	0.2428	0 2474	0 3923	0.051
H(34C)	0.3083	0.2767	0.3525	0.051
H(35A)	0.1210	-0.0550	0.3635	0.063
H(35R)	0.1210	-0.0125	0.5055	0.063
H(35C)	0.1901	-0.0716	0.4040	0.063
H(36A)	0.2603	-0.0186	0.4040	0.058
H(36R)	0.3263	-0.0190	0.3609	0.058
H(36C)	0.3205	0.0618	0.3310	0.058
H(41)	-0.2258	0.2201	0.3310	0.030
H(42)	-0.2258	0.0489	0.4742	0.030
H(42)	-0.1037 -0.0774	0.3251	0.4641	0.059
H(43R)	-0.0774	0.3251	0.4407	0.059
H(43C)	-0.1039	0.3005	0.4707	0.059
$\mathbf{H}(43\mathbf{C})$	-0.1725	0.1730	0.4207	0.059
$H(\Delta AR)$	-0.1330	0.1750	0.5307	0.052
H(44C)	_0.0536	0.2092	0.5500	0.052
$H(45\Delta)$	-0.2855	0.2510	0.2120	0.094
H(45R)	-0.2547	0.0504	0.4970	0.094
H(45C)	-0.2574	-0.0016	0.4900	0.094
H(46A)	-0 1757	-0.0075	0.3082	0.094
	0.1101	0.0010	0.0702	Continued on next page

Table S7. – continued from previous page

Table S7. – continued from previous page

atom	X	У	X	U(eq)
H(46B)	-0.1407	-0.0645	0.4386	0.096
H(46C)	-0.0721	-0.0077	0.4115	0.096

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(1)	0.0233(15)	0.0333(17)	0.0352(17)	-0.0179(14)	0.0056(13)	-0.0040(13)
P(1)	0.0125(3)	0.0275(4)	0.0177(3)	-0.0040(3)	-0.0018(3)	0.0037(3)
C(2)	0.0135(13)	0.0279(15)	0.0234(15)	-0.0051(12)	0.0007(11)	0.0041(11)
C(11)	0.0153(13)	0.0242(14)	0.0159(13)	-0.0001(11)	-0.0003(11)	0.0022(11)
C(12)	0.0145(13)	0.0218(14)	0.0175(13)	-0.0008(11)	-0.0019(11)	0.0027(11)
C(13)	0.0132(13)	0.0217(14)	0.0224(14)	-0.0012(11)	0.0012(11)	0.0000(11)
C(14)	0.0185(14)	0.0189(14)	0.0240(14)	-0.0008(11)	0.0021(11)	-0.0012(11)
C(15)	0.0165(14)	0.0228(14)	0.0261(15)	-0.0043(12)	-0.0024(11)	-0.0032(11)
C(16)	0.0137(13)	0.0270(15)	0.0209(14)	0.0008(12)	0.0009(11)	0.0016(11)
C(17)	0.0452(18)	0.061(2)	0.053(2)	-0.0274(16)	0.0105(15)	0.0088(15)
C(18)	0.0452(18)	0.061(2)	0.053(2)	-0.0274(16)	0.0105(15)	0.0088(15)
C(19)	0.0452(18)	0.061(2)	0.053(2)	-0.0274(16)	0.0105(15)	0.0088(15)
C(69)	0.035(5)	0.031(4)	0.032(5)	-0.021(3)	0.004(3)	0.000(3)
C(68)	0.035(5)	0.031(4)	0.032(5)	-0.021(3)	0.004(3)	0.000(3)
C(67)	0.035(5)	0.031(4)	0.032(5)	-0.021(3)	0.004(3)	0.000(3)
C(21)	0.0124(13)	0.0261(14)	0.0208(14)	-0.0036(12)	-0.0004(11)	-0.0012(11)
C(22)	0.0159(13)	0.0241(15)	0.0170(13)	0.0003(11)	-0.0005(11)	0.0000(11)
C(23)	0.0154(13)	0.0277(15)	0.0169(13)	-0.0018(11)	0.0028(11)	0.0003(11)
C(24)	0.0128(13)	0.0222(14)	0.0218(14)	-0.0021(11)	0.0007(11)	-0.0003(11)
C(25)	0.0163(13)	0.0262(15)	0.0183(14)	-0.0013(11)	-0.0013(11)	0.0005(11)
C(26)	0.0165(13)	0.0290(16)	0.0163(13)	-0.0047(11)	0.0033(11)	-0.0006(11)
C(27)	0.0179(15)	0.0438(19)	0.0329(17)	-0.0095(14)	-0.0009(13)	0.0031(13)
I(1)	0.0179(3)	0.102(2)	0.0263(8)	-0.0262(10)	-0.0040(4)	-0.0008(9)
C(28)	0.0161(15)	0.067(2)	0.0268(17)	-0.0076(16)	0.0005(12)	0.0112(15)
C(29)	0.0252(16)	0.0384(19)	0.048(2)	-0.0011(15)	0.0018(15)	0.0098(14)
C(31)	0.0193(14)	0.0314(16)	0.0201(14)	-0.0046(12)	0.0011(11)	0.0003(12)
C(32)	0.0208(15)	0.0348(17)	0.0272(16)	0.0005(13)	-0.0047(12)	0.0097(13)
C(33)	0.0360(18)	0.0293(17)	0.0319(17)	-0.0049(13)	0.0019(14)	0.0025(14)
C(34)	0.0258(16)	0.044(2)	0.0331(17)	-0.0067(15)	-0.0013(13)	-0.0090(14)
C(35)	0.0387(19)	0.0377(19)	0.050(2)	0.0102(16)	-0.0009(16)	0.0071(15)
C(36)	0.0296(17)	0.049(2)	0.0379(19)	-0.0041(16)	-0.0012(14)	0.0204(15)
C(41)	0.0197(14)	0.0366(17)	0.0198(15)	-0.0067(13)	0.0031(11)	0.0033(12)
C(42)	0.0322(17)	0.0370(18)	0.0279(16)	0.0078(14)	-0.0095(14)	-0.0024(14)
C(43)	0.045(2)	0.0345(18)	0.0387(19)	-0.0090(15)	0.0024(16)	0.0042(15)
C(44)	0.0271(16)	0.058(2)	0.0184(15)	-0.0086(14)	0.0000(13)	0.0020(15)
C(45)	0.058(3)	0.065(3)	0.064(3)	0.016(2)	0.003(2)	-0.015(2)
C(46)	0.100(4)	0.033(2)	0.058(3)	0.0022(19)	-0.009(2)	-0.007(2)
С	0.0184(15)	0.055(2)	0.0218(15)	-0.0105(14)	-0.0038(12)	0.0079(14)
Pd	0.0121(1)	0.0323(1)	0.0142(1)	-0.0038(1)	-0.0013(1)	0.0036(1)
Ι	0.0210(7)	0.0543(15)	0.0162(6)	-0.0027(9)	-0.0066(4)	0.0070(7)
P(2)	0.0142(3)	0.0283(4)	0.0155(3)	-0.0008(3)	-0.0008(3)	0.0019(3)

Table S8. Anisotropic displacement parameters (Å²) for [{PC[•](sp²)P}^{*t*Bu}PdI] (**4**). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom – atom	distance	atom – atom	distance
C(1) - C(68)	1.421(14)	C(1) - C(17)	1.480(6)
C(1) - C(18)	1.485(6)	C(1) - C(69)	1.522(14)
C(1) - C(14)	1.524(4)	C(1) - C(19)	1.585(6)
C(1) - C(67)	1.726(14)	P(1) - C(12)	1.816(3)
P(1) - C(31)	1.838(3)	P(1) - C(32)	1.843(3)
P(1) - Pd	2.2880(7)	C(2) - C(28)	1.511(4)
C(2) - C(27)	1.532(4)	C(2) - C(24)	1.537(4)
C(2) - C(29)	1.540(4)	C(11) - C(16)	1.409(4)
C(11) - C(12)	1.415(4)	C(11) - C	1.441(4)
C(12) - C(13)	1.390(4)	C(13) - C(14)	1.389(4)
C(13) - H(13)	0.9500	C(14) - C(15)	1.402(4)
C(15) - C(16)	1.371(4)	C(15) - H(15)	0.9500
C(16) - H(16)	0.9500	C(17) - H(17A)	0.9800
C(17) - H(17B)	0.9800	C(17) - H(17C)	0.9800
C(18) - H(18A)	0.9800	C(18) - H(18B)	0.9800
C(18) - H(18C)	0.9800	C(19) - H(19A)	0.9800
C(19) - H(19B)	0.9800	C(19) - H(19C)	0.9800
C(69) - H(69A)	0.9800	C(69) - H(69B)	0.9800
C(69) - H(69C)	0.9800	C(68) - H(68A)	0.9800
C(68) - H(68B)	0.9800	C(68) - H(68C)	0.9800
C(67) - H(67A)	0.9800	C(67) - H(67B)	0.9800
C(67) - H(67C)	0.9800	C(21) - C(26)	1.401(4)
C(21) - C(22)	1.403(4)	C(21) – C	1.462(4)
C(22) - C(23)	1.392(4)	C(22) - P(2)	1.819(3)
C(23) - C(24)	1.391(4)	C(23) - H(23)	0.9500
C(24) - C(25)	1.390(4)	C(25) - C(26)	1.380(4)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(27) - H(27A)	0.9800	C(27) - H(27B)	0.9800
C(27) - H(27C)	0.9800	I(1) - Pd	2.668(3)
C(28) - H(28A)	0.9800	C(28) - H(28B)	0.9800
C(28) - H(28C)	0.9800	C(29) - H(29A)	0.9800
C(29) - H(29B)	0.9800	C(29) - H(29C)	0.9800
C(31) - C(33)	1.516(4)	C(31) - C(34)	1.530(4)
C(31) - H(31)	1.0000	C(32) - C(35)	1.521(4)
C(32) - C(36)	1.537(4)	C(32) - H(32)	1.0000
C(33) - H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(34) - H(34A)	0.9800
C(34) - H(34B)	0.9800	C(34) - H(34C)	0.9800
C(35) - H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(41) - C(43)	1.522(4)	C(41) - C(44)	1.523(4)
C(41) - P(2)	1.836(3)	C(41) - H(41)	1.0000
C(42) - C(45)	1.497(5)	C(42) - C(46)	1.538(5)
C(42) - P(2)	1.846(3)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
			Continued on next page

Table S9. Distances [Å] for $[{PC}^{\bullet}(sp^2)P]^{tBu}PdI]$ (4).

Table S9. – continued from previous page

atom – atom	distance	atom – atom	distance
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C – Pd	2.022(3)	Pd - P(2)	2.2931(8)
Pd – I	2.675(5)		

Table S10. Angles [°] for $[{PC}^{\bullet}(sp^2)P]^{tBu}PdI]$ (4).

atom – atom – atom	angle	atom – atom – atom	angle
C(68) - C(1) - C(17)	134.0(5)	C(68) - C(1) - C(18)	58.0(6)
C(17) - C(1) - C(18)	110.9(4)	C(68) - C(1) - C(69)	116.5(8)
C(18) - C(1) - C(69)	126.5(6)	C(68) - C(1) - C(14)	115.0(5)
C(17) - C(1) - C(14)	110.1(3)	C(18) - C(1) - C(14)	113.9(3)
C(69) - C(1) - C(14)	114.6(6)	C(68) - C(1) - C(19)	49.4(6)
C(17) - C(1) - C(19)	107.7(4)	C(18) - C(1) - C(19)	105.8(4)
C(69) - C(1) - C(19)	79.0(7)	C(14) - C(1) - C(19)	108.2(3)
C(68) - C(1) - C(67)	104.3(7)	C(17) - C(1) - C(67)	72.8(5)
C(18) - C(1) - C(67)	47.1(5)	C(69) - C(1) - C(67)	99.9(7)
C(14) - C(1) - C(67)	103.7(4)	C(19) - C(1) - C(67)	145.3(5)
C(12) - P(1) - C(31)	106.72(12)	C(12) - P(1) - C(32)	107.19(13)
C(31) - P(1) - C(32)	106.73(13)	C(12) - P(1) - Pd	101.83(9)
C(31) - P(1) - Pd	120.35(9)	C(32) - P(1) - Pd	113.07(10)
C(28) - C(2) - C(27)	109.0(2)	C(28) - C(2) - C(24)	112.6(2)
C(27) - C(2) - C(24)	110.1(2)	C(28) - C(2) - C(29)	108.4(3)
C(27) - C(2) - C(29)	107.8(2)	C(24) - C(2) - C(29)	108.8(2)
C(16) - C(11) - C(12)	115.9(2)	C(16) - C(11) - C	124.5(2)
C(12) - C(11) - C	119.6(2)	C(13) - C(12) - C(11)	121.2(2)
C(13) - C(12) - P(1)	125.6(2)	C(11) - C(12) - P(1)	112.93(19)
C(14) - C(13) - C(12)	122.1(2)	C(14) - C(13) - H(13)	119.0
C(12) - C(13) - H(13)	119.0	C(13) - C(14) - C(15)	116.4(2)
C(13) - C(14) - C(1)	123.1(2)	C(15) - C(14) - C(1)	120.4(2)
C(16) - C(15) - C(14)	122.3(3)	C(16) - C(15) - H(15)	118.8
C(14) - C(15) - H(15)	118.8	C(15) - C(16) - C(11)	121.8(2)
C(15) - C(16) - H(16)	119.1	C(11) - C(16) - H(16)	119.1
C(1) - C(17) - H(17A)	109.5	C(1) - C(17) - H(17B)	109.5
C(1) - C(17) - H(17C)	109.5	C(1) - C(18) - H(18A)	109.5
C(1) - C(18) - H(18B)	109.5	C(1) - C(18) - H(18C)	109.5
C(1) - C(19) - H(19A)	109.5	C(1) - C(19) - H(19B)	109.5
C(1) - C(19) - H(19C)	109.5	C(1) - C(69) - H(69A)	109.5
C(1) - C(69) - H(69B)	109.5	H(69A) - C(69) - H(69B)	109.5
C(1) - C(69) - H(69C)	109.5	H(69A) - C(69) - H(69C)	109.5
H(69B) - C(69) - H(69C)	109.5	C(1) - C(68) - H(68A)	109.5
C(1) - C(68) - H(68B)	109.5	H(68A) - C(68) - H(68B)	109.5
C(1) - C(68) - H(68C)	109.5	H(68A) - C(68) - H(68C)	109.5
H(68B) - C(68) - H(68C)	109.5	C(1) - C(67) - H(67A)	109.5
C(1) - C(67) - H(67B)	109.5	H(67A) - C(67) - H(67B)	109.5
C(1) - C(67) - H(67C)	109.5	H(67A) - C(67) - H(67C)	109.5
H(67B) - C(67) - H(67C)	109.5	C(26) - C(21) - C(22)	116.3(2)
C(26) - C(21) - C	124.9(2)	C(22) - C(21) - C	118.7(2)
C(23) - C(22) - C(21)	121.5(2)	C(23) - C(22) - P(2)	125.3(2)
C(21) - C(22) - P(2)	113.01(19)	C(24) - C(23) - C(22)	121.8(2)
C(24) - C(23) - H(23)	119.1	C(22) - C(23) - H(23)	119.1
C(25) - C(24) - C(23)	116.5(2)	C(25) - C(24) - C(2)	120.2(2)
C(23) - C(24) - C(2)	123.3(2)	C(26) - C(25) - C(24)	122.5(3)
C(26) - C(25) - H(25)	118.8	C(24) - C(25) - H(25)	118.8
C(25) - C(26) - C(21)	121.5(2)	C(25) - C(26) - H(26)	119.3
C(21) - C(26) - H(26)	119.3	C(2) - C(27) - H(27A)	109.5
C(2) - C(27) - H(27B)	109.5	H(27A) - C(27) - H(27B)	109.5
C(2) - C(27) - H(27C)	109.5	H(27A) - C(27) - H(27C)	109.5
			Continued on next page

Table S10. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(27B) - C(27) - H(27C)	109.5	C(2) - C(28) - H(28A)	109.5
C(2) - C(28) - H(28B)	109.5	H(28A) - C(28) - H(28B)	109.5
C(2) - C(28) - H(28C)	109.5	H(28A) - C(28) - H(28C)	109.5
H(28B) - C(28) - H(28C)	109.5	C(2) - C(29) - H(29A)	109.5
C(2) - C(29) - H(29B)	109.5	H(29A) - C(29) - H(29B)	109.5
C(2) - C(29) - H(29C)	109.5	H(29A) - C(29) - H(29C)	109.5
H(29B) - C(29) - H(29C)	109.5	C(33) - C(31) - C(34)	110.2(2)
C(33) - C(31) - P(1)	108.8(2)	C(34) - C(31) - P(1)	112.4(2)
C(33) - C(31) - H(31)	108.4	C(34) - C(31) - H(31)	108.4
P(1) - C(31) - H(31)	108.4	C(35) - C(32) - C(36)	111.2(3)
C(35) - C(32) - P(1)	109.7(2)	C(36) - C(32) - P(1)	115.9(2)
C(35) - C(32) - H(32)	106.5	C(36) - C(32) - H(32)	106.5
P(1) - C(32) - H(32)	106.5	C(31) - C(33) - H(33A)	109.5
C(31) - C(33) - H(33B)	109.5	H(33A) = C(33) = H(33B)	109.5
C(31) = C(33) = H(33C)	109.5	H(33A) - C(33) - H(33C)	109.5
H(33B) = C(33) = H(33C)	109.5	C(31) - C(34) - H(34A)	109.5
C(31) - C(34) - H(34B)	109.5	H(34A) - C(34) - H(34B)	109.5
C(31) = C(34) = H(34C)	109.5	H(34A) - C(34) - H(34C)	109.5
H(34B) = C(34) = H(34C)	109.5	$\Gamma(3+A) = C(3+A) = \Pi(3+C)$ $\Gamma(3+A) = C(3+A) = \Pi(3+C)$	109.5
C(32) = C(35) = H(35R)	109.5	H(35A) = C(35) = H(35A) H(35A) = C(35) = H(35B)	109.5
C(32) = C(35) = H(35D) C(32) = C(35) = H(35C)	109.5	H(35A) = C(35) = H(35B) H(35A) = C(35) = H(35C)	109.5
U(35R) = U(35) - H(35C) U(25R) = U(25C)	109.5	$\Gamma(33A) = C(35) = \Pi(35C)$ $C(32) = C(36) = \Pi(35C)$	109.5
$\Gamma(35B) = C(35) = \Pi(35C)$ $C(32) = C(36) = \Pi(35C)$	109.5	U(36A) = C(36) = H(36A) U(36A) = C(36) = H(36A)	109.5
C(32) - C(30) - H(30B) C(32) - C(36) - H(36C)	109.5	H(30A) - C(30) - H(30B) H(36A) - C(36) - H(36C)	109.5
U(32) - U(30) - H(30C) U(26P) = U(26C)	109.5	H(30A) - C(30) - H(30C) C(42) - C(41) - C(44)	109.5
R(30B) = C(30) = R(30C) C(42) = C(41) = R(2)	109.3	C(43) - C(41) - C(44)	112.0(3)
C(43) - C(41) - P(2) C(42) - C(41) - H(41)	109.2(2)	C(44) - C(41) - P(2) C(44) - C(41) - H(41)	112.9(2)
C(43) - C(41) - H(41)	107.5	C(44) - C(41) - H(41) C(45) - C(42) - C(46)	107.5
P(2) = C(41) = H(41) C(45) = C(42) = P(2)	107.3 114.4(2)	C(43) - C(42) - C(40)	109.1(3)
C(45) - C(42) - P(2) C(45) - C(42) - H(42)	114.4(5)	C(46) - C(42) - P(2)	109.5(2)
C(43) - C(42) - H(42)	107.9	C(40) - C(42) - H(42)	107.9
P(2) = C(42) = H(42) C(41) = C(42) = H(42P)	107.9	U(41) - U(43) - H(43A)	109.5
C(41) - C(43) - H(43B)	109.5	H(43A) - C(43) - H(43B) H(42A) - C(42) - H(43B)	109.5
U(41) - U(43) - H(43U)	109.5	H(43A) - C(43) - H(43C)	109.5
H(43B) = C(43) = H(43C)	109.5	C(41) - C(44) - H(44A)	109.5
C(41) - C(44) - H(44B)	109.5	H(44A) - C(44) - H(44B)	109.5
U(41) = U(44) = H(44U)	109.5	H(44A) - C(44) - H(44C)	109.5
H(44B) = C(44) = H(44C)	109.5	C(42) - C(45) - H(45A)	109.5
C(42) - C(45) - H(45B)	109.5	H(45A) - C(45) - H(45B)	109.5
C(42) - C(45) - H(45C)	109.5	H(45A) - C(45) - H(45C)	109.5
H(45B) = C(45) = H(45C)	109.5	C(42) - C(46) - H(46A)	109.5
C(42) - C(46) - H(46B)	109.5	H(46A) - C(46) - H(46B)	109.5
C(42) - C(46) - H(46C)	109.5	H(46A) - C(46) - H(46C)	109.5
H(46B) - C(46) - H(46C)	109.5	C(11) - C - C(21)	122.5(2)
C(11) - C - Pd	118.5(2)	C(21) - C - Pd	118.8(2)
C - Pd - P(1)	83.32(8)	C - Pd - P(2)	82.22(9)
P(1) - Pd - P(2)	163.13(3)	C - Pd - I(1)	176.1(2)
$\mathbf{P}(1) - \mathbf{P}\mathbf{d} - \mathbf{I}(1)$	94.47(7)	P(2) - Pd - I(1)	100.43(8)
C - Pd - I	175.42(13)	P(1) - Pd - I	94.58(11)
P(2) - Pd - I	99.20(11)	I(1) - Pd - I	7.3(2)
C(22) - P(2) - C(41)	103.78(13)	C(22) - P(2) - C(42)	107.62(13)
C(41) - P(2) - C(42)	106.49(14)	C(22) - P(2) - Pd	101.68(9)
			Continued on next page

Table S10. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle		
C(41) - P(2) - Pd	124.71(10)	C(42) - P(2) - Pd	111.14(11)		

5.2 Crystal data for $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5)

Figure S45. Thermal-ellipsoid representation of $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5) at 50% probability. Hydrogen atoms were omitted for clarity.

Identification code:	pc28c	
Empirical formula:	$C_{65}H_{64}BF_{24}IP_2Pd$	
Formula weight:	1607.21	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/n$	
Unit cell dimensions:	a = 14.0602(6) Å	$\alpha = 90^{\circ}$
	b = 28.6171(12) Å	$\beta = 92.0331(16)^{\circ}$
	c = 16.9031(7) Å	$\gamma = 90^{\circ}$
Volume:	6796.9(5) Å ³	
Z:	4	
Density (calculated):	$1.571 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.879 mm^{-1}	
F(000):	3216	
Crystal size:	$0.09 \times 0.08 \times 0.05 \text{ mm}^3$	
θ range for data collection:	$1.40 \text{ to } 25.00^{\circ}$	
Index ranges:	$-16 \le h \le 16, -34 \le k \le 34, -14 \le l \le 20$	
Reflections collected:	119559	
Independent reflections:	11970 [$R_{int} = 0.0438$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.8657 and 0.8133	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	11970 / 3 / 863	
Goodness-of-fit on F ² :	1.059	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0320, wR_2 = 0.0725$	
R indices (all data):	$R_1 = 0.0412, wR_2 = 0.0763$	
Largest diff. peak and hole:	1.082 and $-0.735 \text{ e}^{-} \cdot \text{\AA}^{-3}$	

Table S11. Crystal data and structure refinement for $[{PC(sp^2)P}^{'Bu}PdI][BAr_4^F]$ (5).

atom	X	У	Z	U(eq)
F(86)	-0.1048(4)	0.75394(17)	-0.0477(3)	0.036(1)
F(84)	-0.2358(3)	0.7229(2)	-0.0143(3)	0.036(1)
F(85)	-0.1295(4)	0.68176(19)	-0.0689(3)	0.036(1)
F(89)	-0.1743(6)	0.6766(2)	-0.0497(4)	0.036(1)
F(88)	-0.2045(6)	0.7481(3)	-0.0172(4)	0.036(1)
F(87)	-0.0687(5)	0.7294(3)	-0.0644(3)	0.036(1)
F(93)	-0.0849(7)	0.7019(4)	-0.0704(4)	0.036(1)
F(92)	-0.1598(8)	0.7610(3)	-0.0246(5)	0.036(1)
F(91)	-0.2208(6)	0.6905(3)	-0.0225(4)	0.036(1)
F(72)	-0.1004(3)	0.42844(15)	0.3578(3)	0.039(1)
F(71)	-0.0194(4)	0.47866(13)	0.4270(2)	0.039(1)
F(73)	0.0446(4)	0.44413(16)	0.3310(3)	0.039(1)
F(78)	0.0246(4)	0.4345(2)	0.3190(3)	0.039(1)
F(77)	-0.0980(4)	0.44032(17)	0.3894(3)	0.039(1)
F(79)	0.0272(4)	0.48333(16)	0.4161(3)	0.039(1)
P(1)	0.43254(5)	0.43582(2)	0.34704(4)	0.015(1)
Ι	0.45934(1)	0.38181(1)	0.55267(1)	0.026(1)
P(2)	0.24496(5)	0.33009(2)	0.47026(4)	0.016(1)
C(11)	0.33757(19)	0.37541(9)	0.24844(16)	0.016(1)
C(10)	0.5072(2)	0.40040(11)	0.04230(17)	0.025(1)
C(12)	0.41046(19)	0.40948(9)	0.25057(16)	0.016(1)
C(14)	0.4471(2)	0.39268(10)	0.11472(16)	0.020(1)
C(13)	0.46169(19)	0.41830(10)	0.18383(16)	0.020(1)
C(15)	0.3787(2)	0.35739(10)	0.11456(16)	0.022(1)
C(16)	0.32412(19)	0.34902(10)	0.17886(16)	0.020(1)
C(21)	0.19279(19)	0.34753(9)	0.31685(16)	0.018(1)
C(20)	-0.0881(2)	0.28365(11)	0.31899(19)	0.026(1)
C(19)	0.5756(3)	0.35883(13)	0.0377(2)	0.041(1)
C(18)	0.4434(3)	0.40311(15)	-0.03279(19)	0.044(1)
C(17)	0.5663(2)	0.44526(12)	0.0482(2)	0.036(1)
C(22)	0.16059(19)	0.32597(9)	0.38607(16)	0.017(1)
C(26)	0.12975(19)	0.34916(10)	0.25022(16)	0.020(1)
C(25)	0.0422(2)	0.32839(10)	0.25225(17)	0.023(1)
C(24)	0.01145(19)	0.30509(10)	0.31908(17)	0.021(1)
C(23)	0.07221(19)	0.30471(10)	0.38631(17)	0.021(1)
C(66)	0.22058(19)	0.63185(9)	0.20521(16)	0.018(1)
C(65)	0.2936(2)	0.64826(10)	0.25474(17)	0.021(1)
C(31)	0.3746(2)	0.49363(10)	0.34450(17)	0.022(1)
C(29)	-0.1116(2)	0.25768(12)	0.2414(2)	0.038(1)
C(28)	-0.1000(2)	0.25007(13)	0.3878(2)	0.043(1)
C(27)	-0.1589(2)	0.32423(11)	0.32646(19)	0.029(1)
C(67)	0.1925(2)	0.62772(13)	0.45347(19)	0.036(1)
F(67)	0.3690(4)	0.6842(3)	0.1474(4)	0.037(1)
F(69)	0.4540(4)	0.6424(2)	0.2272(4)	0.037(1)
F(68)	0.4058(4)	0.7100(2)	0.2634(4)	0.037(1)
F(65)	0.3808(3)	0.71636(17)	0.2286(4)	0.037(1)
F(66)	0.3871(3)	0.6620(2)	0.1424(3)	0.037(1)
F(64)	0.4621(4)	0.6533(2)	0.2560(3)	0.037(1)
F(2)	0.4187(6)	0.6324(4)	0.1679(5)	0.037(1)
				Continued on next page

Table S12. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[{PC(sp^2)P}^{Bu}PdI][BAr_4^F]$ (5). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

T 11 010	1	C	•	
Table STZ	- confinued	from	previous	nage
10010 0120	••••••••		P10.10000	P

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom	X	y	X	U(eq)
F(1) $0.3724(6)$ $0.0737(4)$ 0.182477 $0.037(1)$ C(32) 0.5671219 $0.44602(10)$ $0.35246(16)$ $0.019(1)$ C(34) $0.4602(2)$ $0.25450(11)$ $0.35246(16)$ $0.033(1)$ C(35) $0.0152(2)$ $0.39965(11)$ $0.35036(19)$ $0.027(1)$ C(35) $0.052(2)$ $0.39965(11)$ $0.35036(19)$ $0.027(1)$ C(36) $0.5911(2)$ $0.4483(11)$ $0.4238(17)$ $0.022(1)$ C(41) $0.2913(2)$ $0.27148(10)$ $0.4913(18)$ $0.016(1)$ C(42) $0.1713(2)$ $0.34836(11)$ $0.4207(2)$ $0.038(1)$ C(44) $0.2157(2)$ $0.22622(11)$ $0.5144(17)$ $0.038(1)$ C(44) $0.2157(2)$ $0.23622(11)$ $0.5144(17)$ $0.038(1)$ C(45) $0.1413(3)$ $0.3991(12)$ $0.5394(1)$ $0.037(1)$ C(51) $0.24050(17)$ $0.447747(7)$ $0.0532(14)$ $0.037(1)$ C(51) $0.04802(18)$ $0.57470(9)$ $0.0920(16)$ $0.016(1)$ C(52) $0.16607(19)$ $0.52708(10)$ $0.0322(16)$ $0.019(1)$ F(53) $0.19843(15)$ $0.43099(6)$ $-0.0352(12)$ $0.043(1)$ C(53) $0.1484(19)$ $0.52748(10)$ $-0.03256(17)$ $0.021(1)$ F(55) $0.07832(14)$ $0.5833(7)$ $-0.1554(11)$ $0.047(1)$ F(55) $0.07832(14)$ $0.5833(7)$ $-0.1565(11)$ $0.049(1)$ C(54) $0.1618(19)$ $0.52748(10)$ $0.02366(17)$ $0.021(1)$ F(55) $0.07832(14)$	F(3)	0.4548(7)	0.6718(4)	0.2728(6)	0.037(1)
$\begin{array}{ccccc} C(2) & 0.56173(19) & 0.44602(10) & 0.35246(16) & 0.019(1) \\ C(33) & 0.2667(2) & 0.48824(11) & 0.3424(2) & 0.036(1) \\ C(34) & 0.4062(2) & 0.52450(11) & 0.2767(2) & 0.033(1) \\ C(35) & 0.6152(2) & 0.39965(11) & 0.2757(2) & 0.032(1) \\ C(36) & 0.5911(2) & 0.47483(11) & 0.42338(17) & 0.025(1) \\ B & 0.0454(2) & 0.60198(11) & 0.17378(18) & 0.016(1) \\ C(41) & 0.2913(2) & 0.27148(10) & 0.49131(18) & 0.024(1) \\ C(42) & 0.1713(2) & 0.24836(11) & 0.55244(17) & 0.024(1) \\ C(43) & 0.3465(2) & 0.23425(11) & 0.5141(2) & 0.033(1) \\ C(45) & 0.1413(3) & 0.39911(12) & 0.5404(2) & 0.038(1) \\ C(46) & 0.189(2) & 0.3405(12) & 0.63398(18) & 0.034(1) \\ F(51) & 0.24050(17) & 0.44774(7) & 0.16332(14) & 0.057(1) \\ C(52) & 0.08602(18) & 0.57470(9) & 0.09620(16) & 0.016(1) \\ C(52) & 0.09831(15) & 0.42709(6) & 0.07767(13) & 0.047(1) \\ F(52) & 0.09831(15) & 0.42709(6) & 0.07767(13) & 0.047(1) \\ F(53) & 0.18484(5) & 0.52419(10) & -0.0155(12) & 0.043(1) \\ C(53) & 0.14469(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ F(54) & 0.16394(17) & 0.61114(7) & -0.11065(11) & 0.049(1) \\ C(54) & 0.16184(19) & 0.52449(10) & 0.03226(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.049(1) \\ C(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.049(1) \\ C(55) & 0.07832(14) & 0.5923(8) & -0.16645(11) & 0.049(1) \\ C(56) & 0.12747(18) & 0.5902(11) & -0.11065(11) & 0.049(1) \\ C(56) & 0.12747(18) & 0.5902(11) & -0.16554(11) & 0.045(1) \\ C(56) & 0.12747(18) & 0.5902(11) & -0.16554(11) & 0.045(1) \\ C(56) & 0.10747(18) & 0.5902(11) & -0.16545(11) & 0.045(1) \\ C(56) & 0.12747(18) & 0.5902(11) & -0.16545(11) & 0.045(1) \\ C(56) & 0.12747(18) & 0.5902(11) & -0.16545(11) & 0.045(1) \\ C(56) & 0.12747(18) & 0.5902(11) & -0.16545(11) & 0.035(1) \\ C(56) & 0.10747(18) & 0.5902(11) & -0.1670(17) & 0.022(1) \\ F(56) & 0.2331(15) & 0.6434(9) & 0.23421(16) & 0.015(1) \\ C(56) & 0.13737(18) & 0.6491(19) & 0.33060(17) & 0.022(1) \\ C(71) & -0.0341(3) & 0.6484(12) & 0.3597(1) & 0.026(1) \\ C(73) & -0.0698(2) & 0.5932(8) & 0.23065(1) & 0.037(1) \\ C(74) & -0.32043($	F(1)	0.3724(6)	0.7037(4)	0.1824(7)	0.037(1)
$\begin{array}{ccccc} C(34) & 0.2667(2) & 0.4824(11) & 0.3424(2) & 0.036(1) \\ C(34) & 0.4052(2) & 0.52450(11) & 0.2767(2) & 0.033(1) \\ C(35) & 0.6152(2) & 0.39965(11) & 0.35036(19) & 0.027(1) \\ C(36) & 0.5911(2) & 0.47483(11) & 0.4238(17) & 0.025(1) \\ C(41) & 0.2913(2) & 0.27148(10) & 0.49131(18) & 0.016(1) \\ C(41) & 0.2913(2) & 0.23435(11) & 0.55244(17) & 0.024(1) \\ C(42) & 0.1713(2) & 0.34835(11) & 0.55244(17) & 0.024(1) \\ C(44) & 0.2157(2) & 0.23622(11) & 0.5141(2) & 0.038(1) \\ C(44) & 0.2157(2) & 0.23622(11) & 0.5141(2) & 0.038(1) \\ C(46) & 0.2189(2) & 0.3095(12) & 0.63398(18) & 0.037(1) \\ C(51) & 0.24050(17) & 0.44774(7) & 0.10532(14) & 0.037(1) \\ C(51) & 0.24050(17) & 0.44774(7) & 0.10532(14) & 0.037(1) \\ C(52) & 0.10607(19) & 0.52708(10) & 0.1002(1(6) & 0.016(1) \\ C(52) & 0.106802(18) & 0.57470(9) & 0.09620(16) & 0.016(1) \\ C(53) & 0.14469(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ F(53) & 0.19843(15) & 0.43709(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.14469(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ C(54) & 0.16188(19) & 0.5249(10) & -0.0256(17) & 0.021(1) \\ C(55) & 0.1732(2) & 0.45249(10) & -0.03570(16) & 0.019(1) \\ C(55) & 0.1732(2) & 0.45249(10) & 0.05134(18) & 0.026(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02467(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.57923(8) & -0.15654(11) & 0.049(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02667(17) & 0.025(1) \\ C(61) & 0.13374(18) & 0.61439(9) & 0.23421(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.5923(8) & -0.15654(11) & 0.037(1) \\ C(56) & 0.10747(18) & 0.56434(9) & 0.31837(17) & 0.025(1) \\ C(61) & 0.13373(15) & 0.6343(19) & 0.31637(17) & 0.025(1) \\ C(56) & 0.10747(18) & 0.64343(9) & 0.23421(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.59523(8) & -0.15654(11) & 0.057(1) \\ F(61) & 0.13337(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(72) & -0.044(2) & 0.53138(9) & 0.26666(16) & 0.019(1) \\ C(74) & -0.2864(2) & 0.6453(13) & 0.2214(2) & 0.037(1) \\ C(76) & -0.19318(19) & 0.56843(7) & 0.2214(2) & 0.037(1) \\ C(76) & -0.19318(19) & 0.56843(7) & 0.22854(1) & 0.031(1) \\ C(76) & -0.1939($	C(32)	0.56173(19)	0.44602(10)	0.35246(16)	0.019(1)
$\begin{array}{cccc} (24) & 0.4082(2) & 0.52450(11) & 0.2767(2) & 0.033(1) \\ C(35) & 0.6152(2) & 0.39965(11) & 0.35036(19) & 0.027(1) \\ B & 0.0454(2) & 0.60198(11) & 0.17378(18) & 0.025(1) \\ C(41) & 0.2913(2) & 0.27148(10) & 0.49131(18) & 0.024(1) \\ C(42) & 0.1713(2) & 0.23435(11) & 0.55244(17) & 0.025(1) \\ C(43) & 0.3465(2) & 0.23450(11) & 0.4207(2) & 0.038(1) \\ C(44) & 0.2157(2) & 0.23622(11) & 0.5144(2) & 0.033(1) \\ C(45) & 0.1413(3) & 0.39911(12) & 0.5404(2) & 0.038(1) \\ C(46) & 0.2189(2) & 0.34095(12) & 0.63398(18) & 0.034(1) \\ F(51) & 0.24050(17) & 0.44774(7) & 0.10532(14) & 0.057(1) \\ C(52) & 0.10607(19) & 0.52708(10) & 0.10021(16) & 0.019(1) \\ F(52) & 0.09831(15) & 0.42709(6) & 0.07167(13) & 0.047(1) \\ C(53) & 0.14469(19) & 0.5025(10) & 0.03324(16) & 0.019(1) \\ F(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.14469(19) & 0.52245(10) & 0.03824(16) & 0.019(1) \\ C(54) & 0.16188(19) & 0.52419(10) & -0.03526(17) & 0.021(1) \\ F(54) & 0.16188(19) & 0.52419(10) & -0.03870(16) & 0.019(1) \\ C(55) & 0.07322(14) & 0.58397(7) & -0.1655(11) & 0.049(1) \\ C(55) & 0.07322(14) & 0.57923(8) & -0.16545(11) & 0.049(1) \\ C(56) & 0.12747(18) & 0.5923(8) & -0.15645(11) & 0.049(1) \\ C(56) & 0.12747(18) & 0.5923(8) & -0.15645(11) & 0.049(1) \\ C(56) & 0.12747(18) & 0.5923(8) & -0.15645(11) & 0.045(1) \\ C(56) & 0.1356(2) & 0.5932(11) & -0.170(17) & 0.022(1) \\ F(62) & 0.1301(2) & 0.61431(9) & 0.31637(17) & 0.020(1) \\ C(56) & 0.1357(18) & 0.6545(19) & 0.31687(17) & 0.022(1) \\ F(63) & 0.25338(15) & 0.6545(19) & 0.31687(17) & 0.022(1) \\ C(64) & 0.2854(2) & 0.64751(10) & 0.316645(17) & 0.021(1) \\ C(73) & -0.0698(2) & 0.5336(11) & 0.21645(11) & 0.049(1) \\ C(73) & -0.0698(2) & 0.5335(9) & 0.3066(17) & 0.022(1) \\ C(64) & 0.2854(2) & 0.6454(9) & 0.49435(11) & 0.057(1) \\ C(73) & -0.0698(2) & 0.5355(9) & 0.3066(17) & 0.022(1) \\ C(74) & -0.3358(15) & 0.6545(19) & 0.31687(17) & 0.022(1) \\ C(75) & -0.3358(15) & 0.6545(19) & 0.33180(16) & 0.017(1) \\ C(73) & -0.0698(2) & 0.5335(01) & 0.2256(18) & 0.016(1) \\ C(74) & -0.3390(14) & 0.5118$	C(33)	0.2667(2)	0.48824(11)	0.3424(2)	0.036(1)
$\begin{array}{ccccc} C(35) & 0.6152(2) & 0.39965(11) & 0.35036(19) & 0.027(1) \\ C(36) & 0.5911(2) & 0.47483(11) & 0.42538(17) & 0.025(1) \\ B & 0.0454(2) & 0.60198(11) & 0.17378(18) & 0.016(1) \\ C(41) & 0.2913(2) & 0.27148(10) & 0.49131(18) & 0.024(1) \\ C(43) & 0.3465(2) & 0.23450(11) & 0.45234(17) & 0.024(1) \\ C(43) & 0.3465(2) & 0.23450(11) & 0.4507(2) & 0.038(1) \\ C(44) & 0.2157(2) & 0.23622(11) & 0.5141(2) & 0.038(1) \\ C(45) & 0.1413(3) & 0.3991(12) & 0.5404(2) & 0.038(1) \\ C(46) & 0.2189(2) & 0.34095(12) & 0.53398(18) & 0.034(1) \\ C(51) & 0.08602(18) & 0.57470(9) & 0.09620(16) & 0.016(1) \\ C(52) & 0.10607(19) & 0.52708(10) & 0.10021(16) & 0.019(1) \\ F(53) & 0.19843(15) & 0.4379(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(54) & 0.16394(17) & 0.64114(7) & -0.11065(11) & 0.049(1) \\ C(54) & 0.16394(17) & 0.64114(7) & -0.13570(16) & 0.019(1) \\ F(55) & 0.07832(14) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ F(55) & 0.1735(2) & 0.45249(10) & 0.05134(18) & 0.0266(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.05134(18) & 0.026(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02467(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.57923(8) & -0.16554(11) & 0.041(1) \\ C(57) & 0.1730(2) & 0.45349(10) & 0.03870(16) & 0.019(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02467(16) & 0.018(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02467(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.57923(8) & -0.16545(11) & 0.045(1) \\ C(62) & 0.1301(2) & 0.61431(9) & 0.31637(17) & 0.022(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.36643(17) & 0.022(1) \\ C(71) & -0.03182(19) & 0.55434(9) & 0.2165(2) & 0.037(1) \\ C(73) & -0.0698(2) & 0.5325(9) & 0.31680(1) & 0.077(1) \\ F(61) & 0.10588(15) & 0.6543(19) & 0.2250(1) \\ C(71) & -0.03182(19) & 0.56843(19) & 0.2250(1) \\ C(72) & -0.0044(2) & 0.53158(9) & 0.22666(16) & 0.019(1) \\ C(75) & -0.13954(13) & 0.5498(7) & 0.2398(1) & 0.027(1) \\ C(76) & -0.12993(19) & 0.57447(9) & 0.23$	C(34)	0.4062(2)	0.52450(11)	0.2767(2)	0.033(1)
$\begin{array}{ccccc} C(36) & 0.5911(2) & 0.47483(11) & 0.42338(17) & 0.023(1) \\ B & 0.0454(2) & 0.60198(11) & 0.17378(18) & 0.024(1) \\ C(41) & 0.213(2) & 0.27148(10) & 0.49131(18) & 0.024(1) \\ C(42) & 0.1713(2) & 0.34836(11) & 0.55244(17) & 0.024(1) \\ C(43) & 0.3465(2) & 0.25450(11) & 0.4207(2) & 0.038(1) \\ C(44) & 0.2157(2) & 0.23622(11) & 0.5141(2) & 0.038(1) \\ C(45) & 0.1413(3) & 0.39911(12) & 0.5404(2) & 0.038(1) \\ C(46) & 0.2189(2) & 0.34095(12) & 0.63398(18) & 0.034(1) \\ F(51) & 0.24050(17) & 0.44774(7) & 0.10532(14) & 0.057(1) \\ C(51) & 0.08602(18) & 0.57470(9) & 0.09620(16) & 0.016(1) \\ C(52) & 0.09831(15) & 0.42709(6) & 0.07767(13) & 0.0437(1) \\ F(53) & 0.19843(15) & 0.42709(6) & 0.07767(13) & 0.047(1) \\ F(53) & 0.14459(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ F(54) & 0.16394(17) & 0.64114(7) & -0.11055(11) & 0.043(1) \\ C(55) & 0.14254(19) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.049(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02477(16) & 0.018(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02437(16) & 0.019(1) \\ C(58) & 0.1336(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(61) & 0.13574(18) & 0.61449(9) & 0.23421(16) & 0.018(1) \\ C(58) & 0.1336(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(61) & 0.13574(18) & 0.61443(9) & 0.31637(17) & 0.020(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36637(17) & 0.022(1) \\ F(61) & 0.1058(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(61) & 0.1058(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(61) & 0.1058(15) & 0.65454(9) & 0.49435(11) & 0.025(1) \\ C(73) & -0.0048(2) & 0.53158(9) & 0.22666(16) & 0.019(1) \\ C(74) & -0.0368(2) & 0.53036(11) & 0.225(1) \\ C(75) & -0.1954(2) & 0.53158(9) & 0.22666(16) & 0.019(1) \\ C(75) & -0.1954(2) & 0.53158(9) & 0.2208(2) & 0.039(1) \\ C(76) & -0.2993(19) & 0.57447(9) & 0.22824(17) & 0.023(1) \\ F(76) & -0.3910(14) & 0.52138(8) & 0.17673(13) & 0.049(1) \\ C(75) & -0.1954(2) & 0.55336(11) & 0.2285(4) & 0.026(1) \\ C(74) & -0.0660(2) & 0.59480($	C(35)	0.6152(2)	0.39965(11)	0.35036(19)	0.027(1)
B $0.0454(2)$ $0.60198(11)$ $0.17378(18)$ $0.016(1)$ C(41) $0.2913(2)$ $0.7148(10)$ $0.4913(18)$ $0.024(1)$ C(42) $0.1713(2)$ $0.3485(11)$ $0.55244(17)$ $0.024(1)$ C(44) $0.2157(2)$ $0.23622(11)$ $0.5141(2)$ $0.038(1)$ C(44) $0.2157(2)$ $0.23622(11)$ $0.5141(2)$ $0.038(1)$ C(45) $0.1413(3)$ $0.3991(12)$ $0.5398(18)$ $0.034(1)$ C(45) $0.1413(3)$ $0.3995(12)$ $0.63398(18)$ $0.034(1)$ C(45) $0.10607(19)$ $0.52708(10)$ $0.10322(14)$ $0.057(1)$ C(51) $0.08602(18)$ $0.57470(9)$ $0.00767(13)$ $0.047(1)$ F(52) $0.09831(15)$ $0.43079(6)$ $-0.01352(12)$ $0.043(1)$ C(53) $0.14469(19)$ $0.5265(10)$ $0.03824(16)$ $0.019(1)$ F(54) $0.1618(19)$ $0.52419(10)$ $-0.01365(11)$ $0.041(1)$ C(55) $0.0782(14)$ $0.57824(10)$ $0.0246(7)$ <	C(36)	0.5911(2)	0.47483(11)	0.42538(17)	0.025(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B	0.0454(2)	0.60198(11)	0.17378(18)	0.016(1)
$\begin{array}{ccccc} C(42) & 0.1713(2) & 0.34836(11) & 0.55244(17) & 0.024(1) \\ C(43) & 0.3465(2) & 0.25450(11) & 0.4207(2) & 0.038(1) \\ C(44) & 0.2157(2) & 0.33622(11) & 0.5141(2) & 0.033(1) \\ C(45) & 0.1413(3) & 0.39911(12) & 0.5404(2) & 0.038(1) \\ C(46) & 0.2189(2) & 0.34095(12) & 0.63398(18) & 0.034(1) \\ C(51) & 0.08602(18) & 0.57470(9) & 0.09620(16) & 0.016(1) \\ C(52) & 0.10607(19) & 0.52708(10) & 0.10021(16) & 0.019(1) \\ F(53) & 0.19843(15) & 0.42709(6) & 0.07767(13) & 0.047(1) \\ F(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.14869(19) & 0.52245(10) & 0.03824(16) & 0.019(1) \\ F(54) & 0.16394(17) & 0.64114(7) & -0.11065(11) & 0.049(1) \\ C(55) & 0.07832(14) & 0.5839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.1732(2) & 0.45249(10) & -0.03870(16) & 0.019(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(56) & 0.22710(14) & 0.57923(8) & -0.165645(11) & 0.045(1) \\ C(58) & 0.1536(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(63) & 0.2356(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(63) & 0.2356(2) & 0.59502(11) & -0.1670(17) & 0.022(1) \\ C(64) & 0.265(2) & 0.63020(0) & 0.36643(17) & 0.022(1) \\ F(62) & 0.2077(2) & 0.58477(10) & 0.48182(13) & 0.078(1) \\ F(63) & 0.2338(15) & 0.65434(9) & 0.49435(11) & 0.057(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C(72) & -0.0044(2) & 0.53158(9) & 0.26666(16) & 0.019(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.015(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.015(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.015(1) \\ C(75) & -0.3182(19) & 0.57447(9) & 0.2452(16) & 0.015(1) \\ C(76) & -0.23930(14) & 0.53158(9) & 0.26666(16) & 0.019(1) \\ C(75) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(75) & -0.0342(1) & 0.57447(9) & 0.2452(16) & 0.018(1) \\ C(75) & -0.0342(1) & 0.57447(9) & 0.2452(16) & 0.018(1) \\ F(75) & -0.3721(13) & 0.550607() & 0.29218(11) & 0.049(1) \\ C(75) & -0.1954(2$	C(41)	0.2913(2)	0.27148(10)	0.49131(18)	0.024(1)
$\begin{array}{ccccc} C(43) & 0.3465(2) & 0.25450(11) & 0.4207(2) & 0.038(1) \\ C(44) & 0.2157(2) & 0.23622(11) & 0.5141(2) & 0.038(1) \\ C(45) & 0.1413(3) & 0.3991(12) & 0.5404(2) & 0.038(1) \\ C(46) & 0.2189(2) & 0.34095(12) & 0.63398(18) & 0.034(1) \\ F(51) & 0.24050(17) & 0.44774(7) & 0.10532(14) & 0.057(1) \\ C(51) & 0.0802(18) & 0.57470(9) & 0.09620(16) & 0.016(1) \\ C(52) & 0.10607(19) & 0.52708(10) & 0.10021(16) & 0.019(1) \\ F(52) & 0.09831(15) & 0.42709(6) & 0.07767(13) & 0.047(1) \\ F(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.14459(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ F(54) & 0.16394(17) & 0.64114(7) & -0.11065(11) & 0.049(1) \\ C(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.049(1) \\ C(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(56) & 0.12710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(56) & 0.12710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(56) & 0.22710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(56) & 0.22710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(62) & 0.1301(2) & 0.613419) & 0.31637(17) & 0.020(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ F(61) & 0.15574(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(62) & 0.1301(2) & 0.61341(9) & 0.31637(17) & 0.022(1) \\ F(61) & 0.15374(18) & 0.64475(10) & 0.33606(17) & 0.022(1) \\ F(62) & 0.2077(2) & 0.58477(10) & 0.48182(13) & 0.078(1) \\ F(61) & 0.10588(15) & 0.63912(11) & 0.47494(12) & 0.069(1) \\ C(64) & 0.2364(2) & 0.6435(13) & 0.22442(1) & 0.015(1) \\ C(73) & -0.0998(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(73) & -0.0998(2) & 0.50235(9) & 0.30162(16) & 0.021(1) \\ C(74) & -0.0382(19) & 0.56843(13) & 0.2214(2) & 0.037(1) \\ C(75) & -0.1954(2) & 0.5535(6) & 0.218(1) \\ C(75) & -0.1954(2) & 0.5535(6) & 0.2218(1) & 0.049(1) \\ C(75) & -0.3472(13) & 0.5506(7) & 0.29218(11) & 0.049(1) \\ C(75) & -0.039(7) & 0.8556(3) & 0.238(3) & 0.026(1) \\ F(81) & -0.0122(0) & 0.7534(3) & 0.328$	C(42)	0.1713(2)	0.34836(11)	0.55244(17)	0.024(1)
$\begin{array}{ccccc} C(44) & 0.2157(2) & 0.23622(11) & 0.5141(2) & 0.033(1) \\ C(45) & 0.1413(3) & 0.39911(12) & 0.5404(2) & 0.038(1) \\ C(46) & 0.2189(2) & 0.40095(12) & 0.63398(18) & 0.034(1) \\ F(51) & 0.24050(17) & 0.44774(7) & 0.10532(14) & 0.057(1) \\ C(51) & 0.08602(18) & 0.57470(9) & 0.09620(16) & 0.019(1) \\ F(52) & 0.10607(19) & 0.52708(10) & 0.10021(16) & 0.019(1) \\ F(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(54) & 0.16394(17) & 0.64114(7) & -0.11065(11) & 0.049(1) \\ C(54) & 0.16168(19) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.1703(2) & 0.45249(10) & 0.03134(18) & 0.026(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.03870(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(58) & 0.15356(2) & 0.5592(21) & -0.11670(17) & 0.022(1) \\ C(61) & 0.13574(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(62) & 0.101(2) & 0.61431(9) & 0.31637(17) & 0.022(1) \\ F(62) & 0.2077(2) & 0.58477(10) & 0.48182(13) & 0.078(1) \\ F(63) & 0.2538(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(63) & 0.2538(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(63) & 0.2538(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(64) & 0.36807(9) & 0.31980(16) & 0.017(1) \\ C(73) & -0.098(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ C(73) & -0.098(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ C(73) & -0.098(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ C(74) & -0.3806(2) & 0.66843(13) & 0.2214(2) & 0.037(1) \\ C(75) & -0.1931(2) & 0.5643(19) & 0.225(1)8 & 0.022(1) \\ C(76) & -0.12993(19) & 0.57447(9) & 0.20452(16) & 0.015(1) \\ C(77) & -0.0341(3) & 0.4686(12) & 0.3556(2) & 0.039(1) \\ C(76) & -0.3390(14) & 0.5546(7) & 0.23972(16) & 0.023(1) \\ C(75) & -0.1954(2) & 0.55455(10) & 0.23972(16) & 0.023(1) \\ C(75) & -0.1954(2) & 0.55455(10) & 0.23872(16) & 0.023(1) \\ F(75) & -0.3472(13) & 0.5960(7) & 0.29218(11) & 0.040(1) \\ C(75) & -0.1954(2) & 0.5546(7$	C(43)	0.3465(2)	0.25450(11)	0.4207(2)	0.038(1)
$\begin{array}{cccc} C(45) & 0.1413(3) & 0.39911(12) & 0.5404(2) & 0.038(1) \\ C(46) & 0.2189(2) & 0.34095(12) & 0.63398(18) & 0.034(1) \\ F(51) & 0.24050(17) & 0.44774(7) & 0.10532(14) & 0.057(1) \\ C(51) & 0.08602(18) & 0.57470(9) & 0.09620(16) & 0.016(1) \\ C(52) & 0.09831(15) & 0.42709(6) & 0.07767(13) & 0.047(1) \\ F(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.14469(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ C(54) & 0.16168(19) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03370(16) & 0.019(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03370(16) & 0.019(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.05134(18) & 0.026(1) \\ C(58) & 0.1536(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(62) & 0.1301(2) & 0.643249(10) & 0.31637(17) & 0.025(1) \\ C(62) & 0.1301(2) & 0.613449(9) & 0.23421(16) & 0.015(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ C(64) & 0.2864(2) & 0.63717(1) & 0.48182(13) & 0.078(1) \\ F(61) & 0.10588(15) & 0.63912(11) & 0.47494(12) & 0.069(1) \\ C(73) & -0.0698(15) & 0.63912(11) & 0.47494(12) & 0.069(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ C(73) & -0.0698(2) & 0.56843(9) & 0.221675(15) & 0.016(1) \\ C(71) & -0.03182(19) & 0.56843(9) & 0.21675(15) & 0.016(1) \\ C(73) & -0.0698(2) & 0.56843(9) & 0.21675(15) & 0.016(1) \\ C(74) & -0.286(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ C(75) & -0.1954(2) & 0.5535(11) & 0.225(118) & 0.026(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(75) & -0.1954(2) & 0.55453(0) & 0.22972(16) & 0.029(1) \\ C(75) & -0.1954(2) & 0.54550(0) & 0.23825(4) & 0.026(1) \\ F(75) & -0.34721(13) & 0.55060(7) & 0.29218(11) & 0.040(1) \\ C(74) & $	C(44)	0.2157(2)	0.23622(11)	0.5141(2)	0.033(1)
$\begin{array}{cccc} C(46) & 0.2189(2) & 0.34095(12) & 0.63398(18) & 0.034(1) \\ F(51) & 0.24050(17) & 0.44774(7) & 0.10532(14) & 0.057(1) \\ C(51) & 0.08602(18) & 0.5770(9) & 0.09620(16) & 0.016(1) \\ C(52) & 0.10607(19) & 0.52708(10) & 0.10021(16) & 0.019(1) \\ F(52) & 0.09831(15) & 0.42709(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(54) & 0.16394(17) & 0.64114(7) & -0.11065(11) & 0.049(1) \\ F(54) & 0.16394(17) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.1732(14) & 0.58839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.1732(14) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(56) & 0.10747(18) & 0.5924(10) & 0.0247(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(58) & 0.1536(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(61) & 0.13574(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(62) & 0.1301(2) & 0.61431(9) & 0.31637(17) & 0.020(1) \\ F(62) & 0.207(2) & 0.58477(10) & 0.48182(13) & 0.078(1) \\ F(63) & 0.25338(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(61) & 0.10588(15) & 0.63912(11) & 0.47494(12) & 0.069(1) \\ C(74) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C(73) & -0.0698(2) & 0.5032(10) & 0.36807(17) & 0.022(1) \\ C(73) & -0.0698(2) & 0.5032(10) & 0.31637(17) & 0.022(1) \\ C(74) & -0.38373(1) & 0.38105(1) & 0.4142(1) & 0.015(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(75) & -0.1954(2) & 0.54550(0) & 0.22972(16) & 0.016(1) \\ C(75) & -0.1954(2) & 0.54550(1) & 0.2218(11) & 0.046(1) \\ C(74) & -0.32043(12) & 0.59480(7) & 0.19411(12) & 0.040(1) \\ C(74) & -0.32043(12) & 0.59480(7) & 0.19411(12) & 0.040(1) \\ C(74) & -0.02043(12) & 0.59480(7) & 0.19411(12) & 0.040(1) \\ F(81) & -0.012(8) & 0.7534(3) & 0.3285(4) & 0.026(1) \\ F(81) & -0.012(8) & 0.7536(3) & 0.228(3) & 0.026(1) \\ \end{array}$	C(45)	0.1413(3)	0.39911(12)	0.5404(2)	0.038(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(46)	0.2189(2)	0.34095(12)	0.63398(18)	0.034(1)
$\begin{array}{ccccc} (C(51) & 0.08602(18) & 0.57470(9) & 0.09620(16) & 0.016(1) \\ C(52) & 0.00831(15) & 0.42709(6) & 0.07767(13) & 0.047(1) \\ F(53) & 0.09831(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.14469(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ F(54) & 0.16394(17) & 0.64114(7) & -0.11065(11) & 0.049(1) \\ C(54) & 0.16168(19) & 0.52419(10) & -0.033266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02467(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(58) & 0.1356(2) & 0.59502(11) & -0.01670(17) & 0.0226(1) \\ C(56) & 0.10747(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(56) & 0.22710(14) & 0.57923(8) & -0.15643(17) & 0.022(1) \\ C(61) & 0.13574(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(62) & 0.1301(2) & 0.61431(9) & 0.31637(17) & 0.022(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ F(62) & 0.2077(2) & 0.58477(10) & 0.48182(13) & 0.078(1) \\ F(63) & 0.25338(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(61) & 0.10588(15) & 0.63912(11) & 0.47494(12) & 0.069(1) \\ C(74) & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(72) & -0.0044(2) & 0.53158(9) & 0.2666(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(73) & -0.0698(2) & 0.56843(9) & 0.21675(15) & 0.016(1) \\ C(74) & -0.380(21) & 0.57336(11) & 0.2256(18) & 0.022(1) \\ C(75) & -0.3910(14) & 0.52138(8) & 0.17673(13) & 0.049(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(77) & -0.341(13) & 0.46486(12) & 0.3556(1) & 0.012(1) \\ C(75) & -0.3472(1(3) & 0.55006(7) & 0.22918(11) & 0.040(1) \\ C(75) & -0.3472(1(3) & 0.55006(7) & 0.29218(11) & 0.040(1) \\ C(75) & -0.3472(1(3) & 0.55006(7) & 0.29218(11) & 0.040(1) \\ C(75) & -0.3472(1(3) & 0.55006(7) & 0.29218(11) & 0.040(1) \\ C(75) & -0.3472(1(3) & 0.55040(7) & 0.9218(1) & 0.023(1) \\ F(74) & -0.32043(12) & 0.59480(7) & 0.19411(12) & 0.040(1) \\ F(81) & -0.0122(8) & 0.7534(3) & 0.328(5) & 0.026(1) \\ $	F(51)	0.24050(17)	0.44774(7)	0.10532(14)	0.057(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(51)	0.08602(18)	0.57470(9)	0.09620(16)	0.016(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(52)	0.10607(19)	0.52708(10)	0.10021(16)	0.019(1)
$\begin{array}{ccccc} & 0.19843(15) & 0.43079(6) & -0.01352(12) & 0.043(1) \\ C(53) & 0.14469(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ F(54) & 0.16394(17) & 0.64114(7) & -0.11065(11) & 0.049(1) \\ C(54) & 0.16168(19) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.05134(18) & 0.026(1) \\ C(56) & 0.22710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(58) & 0.1536(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(61) & 0.13574(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(62) & 0.1301(2) & 0.61431(9) & 0.31637(17) & 0.020(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ F(63) & 0.25338(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(64) & 0.10588(15) & 0.63912(11) & 0.47494(12) & 0.069(1) \\ C(73) & -0.0698(2) & 0.5023(9) & 0.31980(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.3807(9) & 0.31980(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.3807(9) & 0.31980(16) & 0.017(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.022(1) \\ C(74) & -0.03842(2) & 0.50235(9) & 0.20666(16) & 0.019(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(76) & -0.1293(19) & 0.55843(13) & 0.2214(2) & 0.037(1) \\ C(76) & -0.1293(19) & 0.55843(9) & 0.21675(15) & 0.016(1) \\ C(76) & -0.1293(19) & 0.57447(9) & 0.20452(16) & 0.019(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.33556(2) & 0.039(1) \\ C(76) & -0.1293(19) & 0.5743(9) & 0.21675(15) & 0.016(1) \\ C(76) & -0.1293(19) & 0.5743(9) & 0.21675(15) & 0.016(1) \\ C(76) & -0.1293(19) & 0.57447(9) & 0.20452(16) & 0.019(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.33556(2) & 0.039(1) \\ C(76) & -0.1293(19) & 0.57447(9) & 0.20452(16) & 0.018(1) \\ F(76) & -0.33910(14) & 0.52138(8) & 0.17673(13) & 0.049(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.33556(2) & 0.039(1) \\ C(76) & -0.1293(19) & 0.57447(9) & 0.20452(16) & 0.018(1) \\ F(76) & -0.1293(19) & 0.57447(9) & 0.20452(16) & 0.019(1) \\ C(77) & -0.0341(2) & 0.59480(7) & 0.19411(12) & 0.040(1) \\ C(74) & -0.160$	F(52)	0.09831(15)	0.42709(6)	0.07767(13)	0.047(1)
$\begin{array}{ccccc} (C(3) & 0.14469(19) & 0.50265(10) & 0.03824(16) & 0.019(1) \\ F(54) & 0.16394(17) & 0.64114(7) & -0.11065(11) & 0.049(1) \\ C(54) & 0.1618(19) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.5839(7) & -0.16554(11) & 0.041(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(57) & 0.1703(2) & 0.45249(10) & 0.05134(18) & 0.026(1) \\ C(56) & 0.122710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(58) & 0.1536(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(61) & 0.13574(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(62) & 0.1301(2) & 0.61314(9) & 0.36643(17) & 0.022(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ F(62) & 0.2077(2) & 0.58477(10) & 0.48182(13) & 0.078(1) \\ F(63) & 0.25338(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(61) & 0.10588(15) & 0.63912(11) & 0.47494(12) & 0.069(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C (64) & 0.2864(2) & 0.64751(10) & 0.331080(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.301980(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(71) & -0.03182(19) & 0.56843(9) & 0.21675(15) & 0.016(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(76) & -0.12993(19) & 0.57447(9) & 0.20452(16) & 0.018(1) \\ F(76) & -0.3391(014) & 0.52138(8) & 0.17673(13) & 0.049(1) \\ C(74) & -0.1660(2) & 0.50912(10) & 0.28824(17) & 0.023(1) \\ F(74) & -0.32043(12) & 0.59480(7) & 0.19218(11) & 0.040(1) \\ C(74) & -0.1660(2) & 0.50912(10) & 0.28824(17) & 0.023(1) \\ F(83) & -0.0039(7) & 0.8056(3) & 0.2308(3) & 0.026(1) \\ \end{array}$	F(53)	0.09031(15) 0.19843(15)	0.43079(6)	-0.01352(12)	0.043(1)
$\begin{array}{cccc} C(5) & 0.16394(17) & 0.64114(7) & -0.11055(11) & 0.049(1) \\ C(54) & 0.16168(19) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.58839(7) & -0.16554(11) & 0.049(1) \\ C(55) & 0.14254(19) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(57) & 0.1703(2) & 0.45249(10) & 0.05134(18) & 0.026(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.0247(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(58) & 0.1356(2) & 0.59502(11) & -0.11670(17) & 0.025(1) \\ C(61) & 0.13574(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(62) & 0.1301(2) & 0.61431(9) & 0.31637(17) & 0.020(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ F(62) & 0.2077(2) & 0.58477(10) & 0.48182(13) & 0.078(1) \\ F(63) & 0.25338(15) & 0.65454(9) & 0.49435(11) & 0.057(1) \\ F(61) & 0.10588(15) & 0.63912(11) & 0.4794(12) & 0.069(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C & 0.28632(19) & 0.36807(9) & 0.31980(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.21675(15) & 0.016(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.21675(15) & 0.016(1) \\ C(73) & -0.0698(2) & 0.50336(13) & 0.2214(2) & 0.037(1) \\ C(73) & -0.0698(2) & 0.55336(11) & 0.225(1)8) & 0.026(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(76) & -0.1293(19) & 0.57447(9) & 0.20452(16) & 0.018(1) \\ F(76) & -0.3910(14) & 0.52138(8) & 0.17673(13) & 0.049(1) \\ C(75) & -0.1954(2) & 0.5535(0(7) & 0.23972(16) & 0.020(1) \\ F(75) & -0.1472(11) & 0.5506(07) & 0.22972(16) & 0.020(1) \\ F(75) & -0.3472(1(13) & 0.5506(07) & 0.22972(16) & 0.023(1) \\ F(74) & -0.32043(12) & 0.5548(07) & 0.22918(11) & 0.040(1) \\ C(74) & -0.1660(2) & 0.5912(10) & 0.28824(17) & 0.023(1) \\ F(74) & -0.32043(12) & 0.5948(7) & 0.1248(2) & 0.026(1) \\ F(83) & -0.0029(7) & 0.8056(3) & 0.2308(3) & 0.026(1) \\ \end{array}$	C(53)	0.14469(19)	0.50265(10)	0.03824(16)	0.019(1)
$\begin{array}{ccccc} 10 & 0.1658(17) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.07832(14) & 0.52419(10) & -0.03266(17) & 0.021(1) \\ F(55) & 0.14254(19) & 0.57147(10) & -0.03870(16) & 0.019(1) \\ C(57) & 0.1703(2) & 0.45249(10) & 0.05134(18) & 0.026(1) \\ C(56) & 0.10747(18) & 0.59624(10) & 0.02467(16) & 0.018(1) \\ F(56) & 0.22710(14) & 0.57923(8) & -0.15645(11) & 0.045(1) \\ C(61) & 0.13574(18) & 0.61449(9) & 0.23421(16) & 0.015(1) \\ C(62) & 0.1301(2) & 0.6131(9) & 0.31637(17) & 0.022(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ C(63) & 0.2036(2) & 0.63020(10) & 0.36643(17) & 0.022(1) \\ F(61) & 0.10588(15) & 0.65454(9) & 0.44982(13) & 0.078(1) \\ F(63) & 0.25338(15) & 0.65454(9) & 0.44983(11) & 0.057(1) \\ F(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C(64) & 0.2864(2) & 0.64751(10) & 0.33606(17) & 0.022(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(72) & -0.0044(2) & 0.53158(9) & 0.26666(16) & 0.019(1) \\ C(71) & -0.03182(19) & 0.56843(9) & 0.21675(15) & 0.016(1) \\ C(78) & 0.3806(2) & 0.66843(13) & 0.2214(2) & 0.037(1) \\ C(78) & -0.2994(2) & 0.55336(11) & 0.2256(18) & 0.026(1) \\ C(76) & -0.12993(19) & 0.57447(9) & 0.20452(16) & 0.018(1) \\ F(76) & -0.3310(14) & 0.52138(8) & 0.1767(13) & 0.049(1) \\ C(75) & -0.044(1) & 0.52138(8) & 0.1767(13) & 0.049(1) \\ C(76) & -0.12993(19) & 0.57447(9) & 0.29218(11) & 0.049(1) \\ C(76) & -0.1293(12) & 0.5948(7) & 0.29218(11) & 0.040(1) \\ C(76) & -0.33910(14) & 0.5213(8) & 0.1767(13) & 0.049(1) \\ C(76) & -0.33910(14) & 0.52138(8) & 0.17673(13) & 0.049(1) \\ C(74) & -0.1660(2) & 0.59012(10) & 0.28824(17) & 0.023(1) \\ F(74) & -0.3203(12) & 0.5948(7) & 0.128(11) & 0.026(1) \\ F(83) & -0.0122(8) & 0.7534(3) & 0.3285(4) & 0.026(1) \\ F(83) & -0.0122(8) & 0.7534(3) & 0.228(4) & 0.026(1) \\ F(83) & -0.0039(7) & 0.8056(3) & 0.2308(3) & 0.026(1) \\ F(83) & -0.0039(7) & 0.8056(3) & 0.2308(3) & 0.026(1) \\ F(83) & -0.0029(1) & 0.8056(3) & 0.2308(3) & 0.026(1) \\ F(83) & -0.0029(1) & 0.8056(3) & 0.2$	E(55) F(54)	0.16394(17)	0.64114(7)	-0.11065(11)	0.049(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(54)	0.1639 (17) 0.16168(19)	0.57419(10)	-0.03266(17)	0.021(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	E(55)	0.07832(14)	0.52419(10) 0 58839(7)	-0.16554(11)	0.021(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(55)	0.07052(14) 0.14254(19)	0.50057(7) 0.57147(10)	-0.03870(16)	0.041(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(57)	0.14234(17) 0.1703(2)	0.37147(10) 0.45240(10)	0.05134(18)	0.019(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(57)	0.1703(2) 0.10747(18)	0.45247(10) 0.50624(10)	0.03154(10) 0.02467(16)	0.020(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(56)	0.10747(10) 0.22710(14)	0.57024(10) 0.57023(8)	-0.15645(11)	0.010(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(58)	0.22710(14) 0.1536(2)	0.57525(0) 0.59502(11)	-0.11670(17)	0.045(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(50)	0.1350(2) 0.13574(18)	0.57502(11) 0.61449(9)	0.23421(16)	0.025(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(61)	0.1301(2)	0.01449(9) 0.61/31(0)	0.23421(10) 0.31637(17)	0.013(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(02)	0.1301(2) 0.2036(2)	0.01431(9) 0.63020(10)	0.31037(17) 0.36643(17)	0.020(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(62)	0.2030(2) 0.2077(2)	0.03020(10) 0.58477(10)	0.30043(17) 0.48182(13)	0.022(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(02)	0.2077(2) 0.25338(15)	0.56477(10) 0.65454(0)	0.46162(13) 0.40435(11)	0.078(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(03)	0.23338(13) 0.10588(15)	0.03434(9) 0.63012(11)	0.49433(11) 0.47404(12)	0.057(1)
$\begin{array}{ccccc} C(04) & 0.2804(2) & 0.04731(10) & 0.33000(17) & 0.022(1) \\ C & 0.28632(19) & 0.36807(9) & 0.31980(16) & 0.017(1) \\ Pd & 0.35373(1) & 0.38105(1) & 0.42142(1) & 0.015(1) \\ C(73) & -0.0698(2) & 0.50235(9) & 0.30162(16) & 0.021(1) \\ C(72) & -0.0044(2) & 0.53158(9) & 0.26666(16) & 0.019(1) \\ C(71) & -0.03182(19) & 0.56843(9) & 0.21675(15) & 0.016(1) \\ C(68) & 0.3806(2) & 0.66843(13) & 0.2214(2) & 0.037(1) \\ C(78) & -0.2994(2) & 0.55336(11) & 0.22561(18) & 0.026(1) \\ C(77) & -0.0341(3) & 0.46486(12) & 0.3556(2) & 0.039(1) \\ C(76) & -0.12993(19) & 0.57447(9) & 0.20452(16) & 0.018(1) \\ F(76) & -0.3910(14) & 0.52138(8) & 0.17673(13) & 0.049(1) \\ C(75) & -0.1954(2) & 0.54550(10) & 0.23972(16) & 0.020(1) \\ F(75) & -0.34721(13) & 0.55060(7) & 0.29218(11) & 0.040(1) \\ C(74) & -0.1660(2) & 0.50912(10) & 0.28824(17) & 0.023(1) \\ F(74) & -0.32043(12) & 0.59480(7) & 0.19411(12) & 0.040(1) \\ F(81) & -0.0122(8) & 0.7534(3) & 0.3285(4) & 0.026(1) \\ F(83) & -0.0039(7) & 0.8056(3) & 0.2308(3) & 0.026(1) \\ \end{array}$	$\Gamma(01)$	0.10388(13)	0.03912(11) 0.64751(10)	0.47494(12) 0.22606(17)	0.009(1)
C $0.28052(19)$ $0.30807(9)$ $0.31980(10)$ $0.017(1)$ Pd $0.35373(1)$ $0.38105(1)$ $0.42142(1)$ $0.015(1)$ C(73) $-0.0698(2)$ $0.50235(9)$ $0.30162(16)$ $0.021(1)$ C(72) $-0.0044(2)$ $0.53158(9)$ $0.26666(16)$ $0.019(1)$ C(71) $-0.03182(19)$ $0.56843(9)$ $0.21675(15)$ $0.016(1)$ C(68) $0.3806(2)$ $0.66843(13)$ $0.2214(2)$ $0.037(1)$ C(78) $-0.2994(2)$ $0.55336(11)$ $0.22561(18)$ $0.026(1)$ C(77) $-0.0341(3)$ $0.46486(12)$ $0.3556(2)$ $0.039(1)$ C(76) $-0.12993(19)$ $0.57447(9)$ $0.20452(16)$ $0.018(1)$ F(76) $-0.33910(14)$ $0.52138(8)$ $0.17673(13)$ $0.049(1)$ C(75) $-0.1954(2)$ $0.55060(7)$ $0.29218(11)$ $0.040(1)$ F(75) $-0.34721(13)$ $0.55060(7)$ $0.29218(11)$ $0.023(1)$ F(74) $-0.32043(12)$ $0.59480(7)$ $0.19411(12)$ $0.040(1)$ F(81) $-0.0122(8)$ $0.7534(3)$ $0.3285(4)$ $0.026(1)$ F(83) $-0.0039(7)$ $0.8056(3)$ $0.2308(3)$ $0.026(1)$	C(04)	0.2004(2) 0.28632(10)	0.04731(10) 0.26807(0)	0.33000(17) 0.21080(16)	0.022(1)
Pd $0.33373(1)$ $0.38105(1)$ $0.42142(1)$ $0.013(1)$ $C(73)$ $-0.0698(2)$ $0.50235(9)$ $0.30162(16)$ $0.021(1)$ $C(72)$ $-0.0044(2)$ $0.53158(9)$ $0.26666(16)$ $0.019(1)$ $C(71)$ $-0.03182(19)$ $0.56843(9)$ $0.21675(15)$ $0.016(1)$ $C(68)$ $0.3806(2)$ $0.66843(13)$ $0.2214(2)$ $0.037(1)$ $C(78)$ $-0.2994(2)$ $0.55336(11)$ $0.22561(18)$ $0.026(1)$ $C(77)$ $-0.0341(3)$ $0.46486(12)$ $0.3556(2)$ $0.039(1)$ $C(76)$ $-0.12993(19)$ $0.57447(9)$ $0.20452(16)$ $0.018(1)$ $F(76)$ $-0.33910(14)$ $0.52138(8)$ $0.17673(13)$ $0.049(1)$ $C(75)$ $-0.1954(2)$ $0.54550(10)$ $0.23972(16)$ $0.020(1)$ $F(75)$ $-0.34721(13)$ $0.55060(7)$ $0.29218(11)$ $0.040(1)$ $C(74)$ $-0.1660(2)$ $0.59480(7)$ $0.19411(12)$ $0.040(1)$ $F(74)$ $-0.32043(12)$ $0.59480(7)$ $0.19411(12)$ $0.040(1)$ $F(81)$ $-0.0039(7)$ $0.8056(3)$ $0.2308(3)$ $0.026(1)$	C D4	0.26032(19) 0.25272(1)	0.30807(9) 0.28105(1)	0.31960(10) 0.42142(1)	0.017(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Γu C(72)	0.55575(1)	0.58105(1) 0.50225(0)	0.42142(1) 0.20162(16)	0.013(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(73)	-0.0098(2)	0.50255(9) 0.52158(0)	0.30102(10)	0.021(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(72)	-0.0044(2)	0.55150(9) 0.56842(0)	0.20000(10) 0.21675(15)	0.019(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(71)	-0.03182(19)	0.30843(9) 0.66842(12)	0.21073(15) 0.2214(2)	0.010(1)
C(78) $-0.2994(2)$ $0.53530(11)$ $0.22301(18)$ $0.020(1)$ $C(77)$ $-0.0341(3)$ $0.46486(12)$ $0.3556(2)$ $0.039(1)$ $C(76)$ $-0.12993(19)$ $0.57447(9)$ $0.20452(16)$ $0.018(1)$ $F(76)$ $-0.33910(14)$ $0.52138(8)$ $0.17673(13)$ $0.049(1)$ $C(75)$ $-0.1954(2)$ $0.54550(10)$ $0.23972(16)$ $0.020(1)$ $F(75)$ $-0.34721(13)$ $0.55060(7)$ $0.29218(11)$ $0.040(1)$ $C(74)$ $-0.1660(2)$ $0.50912(10)$ $0.28824(17)$ $0.023(1)$ $F(74)$ $-0.32043(12)$ $0.59480(7)$ $0.19411(12)$ $0.040(1)$ $F(81)$ $-0.0122(8)$ $0.7534(3)$ $0.3285(4)$ $0.026(1)$ $F(83)$ $-0.0039(7)$ $0.8056(3)$ $0.2308(3)$ $0.026(1)$	C(08)	0.3800(2)	0.00645(15) 0.55226(11)	0.2214(2) 0.22561(18)	0.037(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(78)	-0.2994(2)	0.33330(11)	0.22501(18) 0.2556(2)	0.020(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(77)	-0.0341(3)	0.40480(12) 0.57447(0)	0.3530(2)	0.039(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(76)	-0.12993(19)	0.57447(9)	0.20452(16)	0.018(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(76)	-0.33910(14)	0.52138(8)	0.1/6/3(13)	0.049(1)
F(75) $-0.34/21(15)$ $0.55060(7)$ $0.29218(11)$ $0.040(1)$ $C(74)$ $-0.1660(2)$ $0.50912(10)$ $0.28824(17)$ $0.023(1)$ $F(74)$ $-0.32043(12)$ $0.59480(7)$ $0.19411(12)$ $0.040(1)$ $F(81)$ $-0.0122(8)$ $0.7534(3)$ $0.3285(4)$ $0.026(1)$ $F(83)$ $-0.0039(7)$ $0.8056(3)$ $0.2308(3)$ $0.026(1)$	U(75)	-0.1954(2)	0.54550(10)	0.239/2(16)	0.020(1)
C(74) $-0.1660(2)$ $0.50912(10)$ $0.28824(17)$ $0.023(1)$ $F(74)$ $-0.32043(12)$ $0.59480(7)$ $0.19411(12)$ $0.040(1)$ $F(81)$ $-0.0122(8)$ $0.7534(3)$ $0.3285(4)$ $0.026(1)$ $F(83)$ $-0.0039(7)$ $0.8056(3)$ $0.2308(3)$ $0.026(1)$	$\Gamma(73)$	-0.34/21(13)	0.55060(7)	0.29218(11)	0.040(1)
F(74) $-0.52045(12)$ $0.59480(7)$ $0.19411(12)$ $0.040(1)$ $F(81)$ $-0.0122(8)$ $0.7534(3)$ $0.3285(4)$ $0.026(1)$ $F(83)$ $-0.0039(7)$ $0.8056(3)$ $0.2308(3)$ $0.026(1)$	C(74)	-0.1660(2)	0.50912(10)	0.28824(17)	0.023(1)
F(81) $-0.0122(8)$ $0.7534(3)$ $0.3285(4)$ $0.026(1)$ $F(83)$ $-0.0039(7)$ $0.8056(3)$ $0.2308(3)$ $0.026(1)$	F(/4)	-0.32043(12)	0.59480(7)	0.19411(12)	0.040(1)
F(85) = -0.0039(7) = 0.8056(3) = 0.2308(3) = 0.026(1)	$F(\delta 1)$	-0.0122(8)	0.7534(3)	0.3285(4)	0.026(1)
	F(83)	-0.0039(7)	0.8056(3)	0.2308(3)	0.026(1)

 Table S12. – continued from previous page

atom	x	У	Х	U(eq)
F(82)	-0.1422(5)	0.7813(4)	0.2761(5)	0.026(1)
F(6)	-0.0311(10)	0.8093(4)	0.2405(7)	0.026(1)
F(5)	-0.1389(8)	0.7703(4)	0.2908(7)	0.026(1)
F(4)	0.0136(9)	0.7589(4)	0.3159(7)	0.026(1)
F(9)	-0.0391(7)	0.7469(3)	0.3328(5)	0.026(1)
F(8)	-0.1346(7)	0.7912(3)	0.2604(6)	0.026(1)
F(7)	0.0094(7)	0.7979(3)	0.2525(7)	0.026(1)
C(81)	-0.00646(18)	0.65221(9)	0.15258(15)	0.014(1)
C(82)	-0.00884(18)	0.68761(9)	0.20958(16)	0.016(1)
C(83)	-0.05384(19)	0.73001(9)	0.19617(16)	0.018(1)
C(87)	-0.0532(2)	0.76645(10)	0.25890(18)	0.026(1)
C(86)	-0.05441(18)	0.66243(10)	0.08085(16)	0.017(1)
C(85)	-0.09696(19)	0.70548(10)	0.06564(17)	0.019(1)
C(84)	-0.09759(19)	0 73977(9)	0.12317(17)	0.019(1)
C(88)	-0.1400(3)	0.71531(12)	-0.0142(2)	0.036(1)
H(13)	0 5080	0.4425	0.1853	0.024
H(15)	0.3695	0.3386	0.0686	0.027
H(16)	0.3075	0.3252	0.0000	0.024
H(10A)	0.2770	0.3232	-0.0060	0.062
H(10R)	0.5301	0.3000	0.0000	0.062
H(19C)	0.5391	0.3563	0.0233	0.062
H(19C)	0.0151	0.3303	0.0875	0.002
H(10A) H(19D)	0.4827	0.4084	-0.0780	0.000
H(10D)	0.3982	0.4269	-0.0281	0.000
H(10C)	0.4084	0.5757	-0.0398	0.000
H(1/A)	0.5242	0.4720	0.0300	0.054
H(1/D)	0.0001	0.4498	-0.0009	0.054
H(1/C)	0.6126	0.4428	0.0928	0.054
H(26)	0.1481	0.3648	0.2036	0.024
H(25)	0.0010	0.3299	0.2065	0.027
H(23)	0.0525	0.2896	0.4330	0.025
H(66)	0.2284	0.6324	0.1496	0.022
H(31)	0.3932	0.5099	0.3950	0.026
H(29A)	-0.0655	0.2324	0.2347	0.056
H(29B)	-0.1083	0.2795	0.1969	0.056
H(29C)	-0.1758	0.2445	0.2430	0.056
H(28A)	-0.0508	0.2258	0.3865	0.064
H(28B)	-0.1630	0.2355	0.3834	0.064
H(28C)	-0.0938	0.2673	0.4378	0.064
H(27A)	-0.2235	0.3117	0.3302	0.044
H(27B)	-0.1559	0.3444	0.2798	0.044
H(27C)	-0.1424	0.3424	0.3741	0.044
H(32)	0.5786	0.4643	0.3046	0.023
H(33A)	0.2458	0.4726	0.2932	0.055
H(33B)	0.2369	0.5192	0.3450	0.055
H(33C)	0.2479	0.4695	0.3878	0.055
H(34A)	0.3893	0.5094	0.2260	0.049
H(34B)	0.4753	0.5290	0.2811	0.049
H(34C)	0.3743	0.5549	0.2794	0.049
H(35A)	0.6838	0.4056	0.3540	0.040
H(35B)	0.5991	0.3834	0.3006	0.040
H(35C)	0.5969	0.3802	0.3951	0.040
				Continued on next page

atom	X	y	X	U(eq)
H(36A)	0.5586	0.5051	0.4231	0.038
H(36B)	0.6601	0.4798	0.4266	0.038
H(36C)	0.5733	0.4581	0.4732	0.038
H(41)	0.3377	0.2742	0.5373	0.028
H(42)	0.1122	0.3289	0.5499	0.029
H(43A)	0.3968	0.2770	0.4094	0.056
H(43B)	0.3031	0.2516	0.3744	0.056
H(43C)	0.3751	0.2240	0.4331	0.056
H(44A)	0.1720	0.2306	0.4686	0.050
H(44B)	0.1800	0.2486	0.5583	0.050
H(44C)	0.2464	0.2068	0.5301	0.050
H(45A)	0.1101	0.4027	0.4879	0.057
H(45B)	0.1976	0.4193	0.5443	0.057
H(45C)	0.0968	0.4080	0.5811	0.057
H(46A)	0.2765	0.3602	0.6389	0.051
H(46B)	0.2359	0.3079	0.6405	0.051
H(46C)	0.1748	0.3500	0.6749	0.051
H(52)	0.0927	0.5107	0.1474	0.022
H(54)	0.1857	0.5072	-0.0759	0.025
H(56)	0.0977	0.6289	0.0192	0.021
H(62)	0.0738	0.6029	0.3390	0.024
H(64)	0.3368	0.6586	0.3700	0.027
H(72)	0.0616	0.5263	0.2771	0.023
H(76)	-0.1524	0.5991	0.1712	0.021
H(74)	-0.2111	0.4892	0.3118	0.027
H(82)	0.0218	0.6823	0.2598	0.019
H(86)	-0.0581	0.6390	0.0410	0.021
H(84)	-0.1271	0.7691	0.1131	0.023

 Table S12. – continued from previous page

atom	U ₁₁	Ua	<u> </u>	I an	Un	Uia
F(86)	$\frac{0}{0.0433(12)}$	$\frac{0.22}{0.0386(11)}$	$\frac{0.33}{0.0260(8)}$	$\frac{0.23}{0.000(8)}$	-0.0117(8)	0.0086(0)
F(84)	0.0+33(12) 0.0433(12)	0.0300(11) 0.0386(11)	0.0200(8)	0.0000(8)	-0.0117(8)	0.0086(0)
F(84)	0.0433(12) 0.0433(12)	0.0380(11) 0.0386(11)	0.0200(8)	0.0000(8)	-0.0117(8)	0.0080(9)
F(80)	0.0433(12)	0.0386(11)	0.0200(8)	0.0000(8)	-0.0117(8)	0.0080(9)
F(88)	0.0433(12) 0.0433(12)	0.0380(11) 0.0386(11)	0.0200(8)	0.0000(8)	-0.0117(8)	0.0080(9) 0.0086(9)
F(87)	0.0433(12)	0.0386(11)	0.0200(8)	0.0000(8)	-0.0117(8)	0.0080(9)
F(03)	0.0433(12)	0.0386(11)	0.0200(8)	0.0000(8)	-0.0117(8)	0.0080(9)
F(02)	0.0433(12)	0.0386(11)	0.0200(8)	0.0000(8)	-0.0117(8)	0.0086(9)
F(92) F(01)	0.0433(12)	0.0386(11)	0.0200(8)	0.0000(8)	-0.0117(8)	0.0080(9)
F(72)	0.0433(12) 0.0524(11)	0.0380(11)	0.0200(8) 0.0340(0)	0.0000(3)	-0.0117(8)	0.0000(9)
F(72) F(71)	0.0524(11)	0.0292(9)	0.0349(9)	0.0080(7)	-0.0012(8)	0.0000(7)
F(71) F(73)	0.0524(11)	0.0292(9)	0.0349(9)	0.0080(7)	-0.0012(8)	0.0000(7)
F(73)	0.0324(11) 0.0524(11)	0.0292(9)	0.0349(9)	0.0080(7)	-0.0012(8)	0.0000(7)
F(78) F(77)	0.0324(11) 0.0524(11)	0.0292(9)	0.0349(9) 0.0340(0)	0.0080(7)	-0.0012(8)	0.0000(7)
F(77)	0.0524(11)	0.0292(9)	0.0349(9)	0.0080(7)	-0.0012(8)	0.0000(7)
F(79) P(1)	0.0324(11) 0.0164(3)	0.0292(9) 0.0148(3)	0.0349(9) 0.0148(3)	0.0080(7)	-0.0012(8)	0.0000(7)
F(1) T	0.0104(3) 0.0257(1)	0.0148(3) 0.0332(1)	0.0148(3) 0.0174(1)	-0.0000(3)	-0.0009(3)	-0.0003(3)
$\mathbf{P}(2)$	0.0237(1) 0.0167(3)	0.0332(1) 0.0161(3)	0.0174(1) 0.0152(2)	0.0036(1)	-0.0078(1)	-0.0002(1)
$\Gamma(2)$	0.0107(3)	0.0101(3) 0.0138(13)	0.0153(3)	0.0000(3)	-0.0010(3)	-0.0002(3)
C(11)	0.0109(13)	0.0138(13) 0.0320(17)	0.0108(14) 0.0164(15)	0.0004(11) 0.0004(13)	-0.0048(11)	0.0037(11) 0.0077(13)
C(10)	0.0209(10) 0.0187(13)	0.0329(17) 0.0148(13)	0.0104(13) 0.0150(14)	0.0004(13)	0.0020(12)	0.0077(13) 0.0042(11)
C(12)	0.0187(13) 0.0208(14)	0.0148(13) 0.0235(15)	0.0150(14) 0.0168(14)	0.0002(11) 0.0027(12)	-0.0031(11) -0.0015(11)	0.0042(11) 0.0090(12)
C(14)	0.0208(14) 0.0187(14)	0.0233(13)	0.0100(14) 0.0205(15)	0.0027(12) 0.0013(12)	-0.0013(11)	0.0099(12) 0.0033(11)
C(15)	0.0187(14) 0.0255(15)	0.0202(14) 0.0242(15)	0.0203(13) 0.0163(14)	-0.0015(12)	-0.0012(11) -0.0042(12)	0.0055(11) 0.0061(12)
C(15)	0.0233(13)	0.0242(13) 0.0102(14)	0.0105(14)	-0.0045(12)	-0.0042(12)	0.0001(12) 0.0023(11)
C(10)	0.0194(14) 0.0186(14)	0.0192(14) 0.0156(14)	0.0203(13)	-0.0020(12)	-0.0035(11)	0.0023(11) 0.0011(11)
C(21)	0.0100(14) 0.0171(14)	0.0150(14) 0.0258(16)	0.0151(14) 0.0357(18)	-0.0015(11)	-0.0043(13)	-0.0020(12)
C(20)	0.0171(1+) 0.038(2)	0.0250(10)	0.0337(10) 0.042(2)	0.0020(14)	0.0045(15)	0.0020(12) 0.0148(17)
C(18)	0.030(2)	0.040(2) 0.072(3)	0.042(2) 0.0100(17)	0.0000(17) 0.0073(17)	0.0131(10) 0.0003(15)	0.0140(17)
C(10)	0.037(2)	0.072(3) 0.043(2)	0.0177(17) 0.0278(18)	0.0079(17)	0.0003(15) 0.0112(15)	-0.0038(16)
C(22)	0.0370(12) 0.0162(13)	0.045(2)	0.0270(10) 0.0184(14)	-0.0027(11)	-0.0023(11)	0.0030(10)
C(22)	0.0102(13) 0.0215(14)	0.0100(14) 0.0209(14)	0.0104(14) 0.0171(14)	-0.0027(11)	-0.0029(11)	0.0023(11) 0.0011(12)
C(25)	0.0213(14) 0.0203(14)	0.0209(14) 0.0248(15)	0.0171(14) 0.0228(15)	-0.0019(12)	-0.0029(11)	0.0011(12) 0.0030(12)
C(23)	0.0203(14) 0.0183(14)	0.0240(13) 0.0185(14)	0.0220(15) 0.0262(16)	-0.0019(12)	-0.0035(12)	0.0030(12) 0.0031(11)
C(23)	0.0105(14)	0.0103(14) 0.0202(15)	0.0202(10) 0.0227(15)	-0.0001(12)	0.0033(12)	0.0031(11) 0.0008(12)
C(25)	0.0193(14) 0.0228(14)	0.0202(13) 0.0162(14)	0.0227(13) 0.0159(14)	0.0001(12)	0.0022(12)	0.0000(12) 0.0017(11)
C(65)	0.0220(14) 0.0201(14)	0.0102(14) 0.0201(15)	0.0135(14) 0.0226(15)	0.0023(11) 0.0021(12)	-0.0021(12)	-0.0011(12)
C(31)	0.0201(14) 0.0241(15)	0.0201(13) 0.0164(14)	0.0220(15) 0.0252(16)	-0.0021(12)	-0.0021(12)	0.0021(12) 0.0027(12)
C(29)	0.0211(15) 0.0226(16)	0.0101(11) 0.0366(19)	0.0232(10) 0.053(2)	-0.0185(17)	-0.0051(15)	-0.0022(14)
C(28)	0.0220(10) 0.0229(17)	0.0300(17) 0.043(2)	0.055(2) 0.062(3)	0.0105(17)	-0.0070(16)	-0.0132(15)
C(20)	0.0229(17) 0.0224(16)	0.015(2) 0.0356(18)	0.002(3)	-0.0044(14)	-0.0005(13)	0.0132(13) 0.0012(13)
C(67)	0.0221(10) 0.0295(18)	0.0550(10)	0.0291(17) 0.0188(16)	-0.0017(16)	-0.0016(14)	-0.0012(15)
F(67)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
F(69)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
F(68)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
F(65)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
F(66)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
F(64)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
F(2)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
- (-)					Cont	tinued on next page

Table S13. Anisotropic displacement parameters (Å²) for [{PC(sp²)P}^{*Bu*}PdI][BAr^F₄] (5). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

T 11 C11	. 1	c	•	
Table NLA -	confinited	trom	nrevious	nage
1abic 515. –	commucu	nom	previous	page
			1	10

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F(3)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
F(1)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
C(32)	0.0173(14)	0.0222(15)	0.0185(14)	-0.0008(12)	0.0006(11)	-0.0024(11)
C(33)	0.0259(17)	0.0258(17)	0.058(2)	0.0061(16)	0.0082(16)	0.0110(14)
C(34)	0.0331(18)	0.0206(16)	0.046(2)	0.0107(15)	0.0071(15)	0.0044(13)
C(35)	0.0195(15)	0.0283(16)	0.0321(17)	-0.0023(14)	-0.0042(13)	0.0036(13)
C(36)	0.0230(15)	0.0292(16)	0.0232(16)	-0.0015(13)	-0.0022(12)	-0.0065(13)
В	0.0186(15)	0.0152(15)	0.0138(15)	-0.0001(12)	0.0004(12)	-0.0008(12)
C(41)	0.0214(15)	0.0187(15)	0.0305(17)	0.0043(13)	-0.0038(12)	0.0028(12)
C(42)	0.0239(15)	0.0286(16)	0.0198(15)	-0.0056(13)	0.0045(12)	-0.0023(13)
C(43)	0.0330(18)	0.0224(17)	0.058(2)	0.0003(16)	0.0114(17)	0.0085(14)
C(44)	0.0385(19)	0.0217(16)	0.040(2)	0.0065(14)	-0.0029(15)	-0.0033(14)
C(45)	0.040(2)	0.0335(19)	0.041(2)	-0.0073(16)	0.0094(16)	0.0099(15)
C(46)	0.0391(19)	0.044(2)	0.0191(16)	-0.0026(14)	0.0028(14)	-0.0074(16)
F(51)	0.0675(15)	0.0327(11)	0.0690(15)	-0.0113(11)	-0.0406(12)	0.0251(11)
C(51)	0.0129(13)	0.0178(14)	0.0174(14)	-0.0012(11)	-0.0022(11)	-0.0003(11)
C(52)	0.0182(14)	0.0204(15)	0.0171(14)	0.0001(11)	-0.0021(11)	-0.0006(11)
F(52)	0.0532(13)	0.0200(10)	0.0696(15)	0.0054(10)	0.0240(11)	0.0030(9)
F(53)	0.0666(14)	0.0235(10)	0.0389(11)	-0.0073(8)	0.0166(10)	0.0125(9)
C(53)	0.0175(14)	0.0178(14)	0.0216(15)	-0.0029(12)	-0.0021(11)	0.0009(11)
F(54)	0.0938(17)	0.0288(11)	0.0251(10)	0.0024(9)	0.0109(11)	-0.0133(11)
C(54)	0.0198(14)	0.0238(15)	0.0193(15)	-0.0081(12)	0.0003(12)	0.0018(12)
F(55)	0.0385(11)	0.0590(13)	0.0250(10)	0.0112(9)	-0.0087(8)	-0.0036(10)
C(55)	0.0160(13)	0.0232(15)	0.0173(14)	-0.0015(12)	-0.0006(11)	-0.0008(11)
C(57)	0.0297(16)	0.0199(15)	0.0279(17)	-0.0044(13)	0.0019(13)	0.0058(13)
C(56)	0.0173(13)	0.0170(14)	0.0186(14)	-0.0008(11)	-0.0022(11)	-0.0002(11)
F(56)	0.0425(12)	0.0671(14)	0.0277(10)	0.0136(10)	0.0168(9)	0.0191(10)
C(58)	0.0256(16)	0.0297(17)	0.0191(15)	-0.0028(13)	0.0009(12)	0.0017(13)
C(61)	0.0172(13)	0.0111(13)	0.0175(14)	0.0007(11)	0.0001(11)	0.0036(10)
C(62)	0.0213(14)	0.0186(14)	0.0204(15)	0.0003(12)	0.0033(12)	0.0011(11)
C(63)	0.0239(15)	0.0245(15)	0.0158(14)	-0.0020(12)	-0.0024(12)	0.0044(12)
F(62)	0.129(2)	0.0788(19)	0.0265(12)	0.0219(12)	0.0066(14)	-0.0013(17)
F(63)	0.0458(12)	0.105(2)	0.0201(10)	-0.0165(11)	-0.0031(9)	-0.0233(13)
F(61)	0.0323(12)	0.155(3)	0.0217(11)	-0.0198(14)	0.0043(9)	0.0017(14)
C(64)	0.0216(14)	0.0245(15)	0.0198(15)	-0.0010(12)	-0.0059(12)	0.0007(12)
C	0.0221(14)	0.0092(13)	0.0182(14)	-0.0013(11)	-0.0021(11)	0.0024(11)
Pd	0.0161(1)	0.0153(1)	0.0129(1)	0.0005(1)	-0.0027(1)	-0.0016(1)
C(73)	0.0307(16)	0.0149(14)	0.0178(14)	-0.0018(11)	0.0034(12)	-0.0002(12)
C(72)	0.0232(15)	0.0157(14)	0.0180(14)	-0.0012(11)	0.0023(11)	0.0003(11)
C(71)	0.0200(14)	0.0147(13)	0.0122(13)	-0.0041(11)	0.0008(11)	0.0000(11)
C(68)	0.0293(8)	0.0495(12)	0.0328(11)	0.0077(10)	-0.0028(8)	-0.0135(8)
C(78)	0.0234(15)	0.0274(17)	0.0265(16)	-0.0039(13)	0.0025(13)	-0.0065(13)
C(77)	0.0524(11)	0.0292(9)	0.0349(9)	0.0080(7)	-0.0012(8)	0.0000(7)
C(76)	0.0231(14)	0.0155(14)	0.0151(14)	-0.0023(11)	0.0008(11)	-0.0010(11)
F(76)	0.0305(11)	0.0563(13)	0.0608(14)	-0.0295(11)	-0.0109(10)	-0.0076(9)
C(75)	0.0212(14)	0.0194(14)	0.0189(14)	-0.0053(12)	0.0019(11)	-0.0033(11)
F(75)	0.0253(10)	0.0595(13)	0.0371(11)	0.0045(10)	0.0123(8)	-0.0012(9)
C(74)	0.0294(16)	0.0203(15)	0.0191(15)	-0.0007(12)	0.0061(12)	-0.0086(12)
F(74)	0.0215(9)	0.0417(12)	0.0571(13)	0.0159(10)	-0.0022(9)	-0.0002(8)
F(81)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
F(83)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
					Conti	nued on next page

	TI	TI	TT	TI	TI	TT
atom	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
F(82)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
F(6)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
F(5)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
F(4)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
F(9)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
F(8)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
F(7)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
C(81)	0.0128(12)	0.0135(13)	0.0166(13)	0.0004(11)	0.0029(10)	-0.0045(10)
C(82)	0.0158(13)	0.0164(13)	0.0147(13)	-0.0004(11)	-0.0003(11)	-0.0023(11)
C(83)	0.0172(13)	0.0167(14)	0.0193(14)	-0.0014(11)	0.0013(11)	-0.0015(11)
C(87)	0.0311(9)	0.0208(8)	0.0259(9)	-0.0043(7)	0.0009(8)	0.0019(7)
C(86)	0.0150(13)	0.0191(14)	0.0176(14)	-0.0022(11)	-0.0005(11)	-0.0010(11)
C(85)	0.0146(13)	0.0215(15)	0.0212(15)	0.0010(12)	-0.0011(11)	0.0000(11)
C(84)	0.0161(13)	0.0149(14)	0.0258(15)	-0.0009(12)	0.0003(11)	0.0009(11)
C(88)	0.0433(12)	0.0386(11)	0.0260(8)	0.0000(8)	-0.0117(8)	0.0086(9)

Table S13. – continued from previous page
atom – atom	distance	atom – atom	distance
F(86) – C(88)	1.344(6)	F(84) - C(88)	1.364(6)
F(85) - C(88)	1.345(6)	F(89) - C(88)	1.341(7)
F(88) - C(88)	1.305(7)	F(87) - C(88)	1.396(7)
F(93) - C(88)	1.304(9)	F(92) - C(88)	1.347(9)
F(91) - C(88)	1.343(9)	F(72) - C(77)	1.400(5)
F(71) - C(77)	1.281(5)	F(73) - C(77)	1.335(6)
F(78) - C(77)	1.362(7)	F(77) - C(77)	1.290(6)
F(79) - C(77)	1.417(6)	P(1) - C(12)	1.813(3)
P(1) - C(32)	1.839(3)	P(1) - C(31)	1.844(3)
P(1) - Pd	2.3161(7)	I – Pd	2.6255(3)
P(2) - C(22)	1.824(3)	P(2) - C(41)	1.830(3)
P(2) - C(42)	1.838(3)	P(2) - Pd	2.2884(7)
C(11) - C(16)	1.405(4)	C(11) - C(12)	1.414(4)
C(11) - C	1.442(4)	C(10) - C(14)	1.528(4)
C(10) - C(18)	1.530(4)	C(10) - C(17)	1.531(5)
C(10) - C(19)	1.534(4)	C(12) - C(13)	1.383(4)
C(14) - C(13)	1.388(4)	C(14) - C(15)	1.395(4)
C(13) - H(13)	0.9500	C(15) - C(16)	1.373(4)
C(15) - H(15)	0.9500	C(16) - H(16)	0.9500
C(21) - C(26)	1.409(4)	C(21) - C(22)	1.412(4)
C(21) - C	1.440(4)	C(20) - C(28)	1.522(5)
C(20) - C(24)	1.529(4)	C(20) - C(29)	1.533(4)
C(20) - C(27)	1.537(4)	C(19) - H(19A)	0.9800
C(19) - H(19B)	0.9800	C(19) - H(19C)	0.9800
C(18) - H(18A)	0.9800	C(18) - H(18B)	0.9800
C(18) - H(18C)	0.9800	C(17) - H(17A)	0.9800
C(17) - H(17B)	0.9800	C(17) - H(17C)	0.9800
C(22) - C(23)	1.384(4)	C(26) - C(25)	1.369(4)
C(26) - H(26)	0.9500	C(25) - C(24)	1.394(4)
C(25) - H(25)	0.9500	C(24) - C(23)	1.397(4)
C(23) - H(23)	0.9500	C(66) - C(65)	1.384(4)
C(66) - C(61)	1.397(4)	C(66) – H(66)	0.9500
C(65) - C(64)	1.382(4)	C(65) - C(68)	1.482(4)
C(31) - C(33)	1.524(4)	C(31) - C(34)	1.526(4)
C(31) - H(31)	1.0000	C(29) - H(29A)	0.9800
C(29) - H(29B)	0.9800	C(29) - H(29C)	0.9800
C(28) – H(28A)	0.9800	C(28) - H(28B)	0.9800
C(28) – H(28C)	0.9800	C(27) - H(27A)	0.9800
C(27) – H(27B)	0.9800	C(27) - H(27C)	0.9800
C(67) - F(61)	1.323(4)	C(67) - F(63)	1.326(4)
C(67) - F(62)	1.334(4)	C(67) - C(63)	1.487(4)
F(67) - C(68)	1.334(7)	F(69) - C(68)	1.273(8)
F(68) - C(68)	1.424(7)	F(65) - C(68)	1.377(6)
F(66) - C(68)	1.354(6)	F(64) - C(68)	1.339(7)
F(2) - C(68)	1.484(11)	F(3) - C(68)	1.337(11)
F(1) - C(68)	1.209(10)	C(32) - C(35)	1.526(4)
C(32) - C(36)	1.527(4)	C(32) - H(32)	1.0000
C(33) – H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) – H(33C)	0.9800	C(34) - H(34A)	0.9800
C(34) – H(34B)	0.9800	C(34) - H(34C)	0.9800
			Continued on next page

Table S14. Distances [Å] for $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5).

T 11 C14	. 10	•
Table S14	- continued from	n previous page

atom – atom	distance	atom – atom	distance
C(35) – H(35A)	0.9800	C(35) – H(35B)	0.9800
C(35) - H(35C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
B - C(71)	1.639(4)	B - C(61)	1.641(4)
B - C(51)	1.645(4)	B - C(81)	1.646(4)
C(41) - C(43)	1.525(4)	C(41) - C(44)	1.525(4)
C(41) - H(41)	1.0000	C(42) - C(45)	1.524(4)
C(42) - C(46)	1.525(4)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
F(51) - C(57)	1.327(4)	C(51) - C(52)	1.393(4)
C(51) - C(56)	1.400(4)	C(52) - C(53)	1.386(4)
C(52) - H(52)	0.9500	F(52) - C(57)	1.335(4)
F(53) - C(57)	1.332(3)	C(53) - C(54)	1.376(4)
C(53) - C(57)	1.494(4)	F(54) - C(58)	1.331(4)
C(54) - C(55)	1.382(4)	C(54) - H(54)	0.9500
F(55) - C(58)	1.333(3)	C(55) - C(56)	1.389(4)
C(55) - C(58)	1.494(4)	C(56) - H(56)	0.9500
F(56) - C(58)	1.331(3)	C(61) - C(62)	1.394(4)
C(62) - C(63)	1.389(4)	C(62) - H(62)	0.9500
C(63) - C(64)	1.380(4)	C(64) - H(64)	0.9500
C – Pd	1.968(3)	C(73) - C(74)	1.378(4)
C(73) - C(72)	1.390(4)	C(73) - C(77)	1.484(4)
C(72) - C(71)	1.396(4)	C(72) - H(72)	0.9500
C(71) - C(76)	1.398(4)	C(78) - F(74)	1.329(4)
C(78) - F(75)	1.333(3)	C(78) - F(76)	1.341(3)
C(78) - C(75)	1.491(4)	C(76) - C(75)	1.388(4)
C(76) - H(76)	0.9500	C(75) - C(74)	1.379(4)
C(74) - H(74)	0.9500	F(81) - C(87)	1.344(7)
F(83) - C(87)	1.409(7)	F(82) - C(87)	1.363(7)
F(6) - C(87)	1.305(11)	F(5) - C(87)	1.342(12)
F(4) - C(87)	1.340(11)	F(9) - C(87)	1.377(9)
F(8) - C(87)	1.348(10)	F(7) - C(87)	1.266(9)
C(81) - C(86)	1.397(4)	C(81) - C(82)	1.399(4)
C(82) - C(83)	1.383(4)	C(82) - H(82)	0.9500
C(83) - C(84)	1.387(4)	C(83) - C(87)	1.487(4)
C(86) - C(85)	1.389(4)	C(86) – H(86)	0.9500
C(85) - C(84)	1.382(4)	C(85) - C(88)	1.486(4)
C(84) - H(84)	0.9500		

Table S15. Angles $[^{\circ}]$ for $[{PC(sp^2)P}^{tBu}PdI][BAr_4^F]$ (5).

atom – atom	angle	atom – atom – atom	angle
C(12) - P(1) - C(32)	104.36(13)	C(12) - P(1) - C(31)	106.90(13)
C(32) - P(1) - C(31)	107.08(13)	C(12) - P(1) - Pd	97.87(9)
C(32) - P(1) - Pd	124.83(9)	C(31) - P(1) - Pd	113.59(10)
C(22) - P(2) - C(41)	108.05(13)	C(22) - P(2) - C(42)	103.87(13)
C(41) - P(2) - C(42)	108.67(14)	C(22) - P(2) - Pd	100.62(9)
C(41) - P(2) - Pd	114.61(10)	C(42) - P(2) - Pd	119.54(10)
C(16) - C(11) - C(12)	117.9(3)	C(16) - C(11) - C	124.4(2)
C(12) - C(11) - C	117.5(2)	C(14) - C(10) - C(18)	110.4(3)
C(14) - C(10) - C(17)	112.5(2)	C(18) - C(10) - C(17)	108.2(3)
C(14) - C(10) - C(19)	107.1(2)	C(18) - C(10) - C(19)	110.4(3)
C(17) - C(10) - C(19)	108.2(3)	C(13) - C(12) - C(11)	120.2(2)
C(13) - C(12) - P(1)	125.5(2)	C(11) - C(12) - P(1)	114.2(2)
C(13) - C(14) - C(15)	117.7(3)	C(13) - C(14) - C(10)	121.9(3)
C(15) - C(14) - C(10)	120.3(3)	C(12) - C(13) - C(14)	121.6(3)
C(12) - C(13) - H(13)	119.2	C(14) - C(13) - H(13)	119.2
C(16) - C(15) - C(14)	121.9(3)	C(16) - C(15) - H(15)	119.0
C(14) - C(15) - H(15)	119.0	C(15) - C(16) - C(11)	120.4(3)
C(15) - C(16) - H(16)	119.8	C(11) - C(16) - H(16)	119.8
C(26) - C(21) - C(22)	117.8(2)	C(26) - C(21) - C	124.2(3)
C(22) - C(21) - C	118.0(2)	C(28) - C(20) - C(24)	112.2(2)
C(28) - C(20) - C(29)	108.8(3)	C(24) - C(20) - C(29)	111.4(3)
C(28) - C(20) - C(27)	109.0(3)	C(24) - C(20) - C(27)	107.0(2)
C(29) - C(20) - C(27)	108.4(2)	C(10) - C(19) - H(19A)	109.5
C(10) - C(19) - H(19B)	109.5	H(19A) - C(19) - H(19B)	109.5
C(10) - C(19) - H(19C)	109.5	H(19A) - C(19) - H(19C)	109.5
H(19B) - C(19) - H(19C)	109.5	C(10) - C(18) - H(18A)	109.5
C(10) - C(18) - H(18B)	109.5	H(18A) - C(18) - H(18B)	109.5
C(10) - C(18) - H(18C)	109.5	H(18A) - C(18) - H(18C)	109.5
H(18B) - C(18) - H(18C)	109.5	C(10) - C(17) - H(17A)	109.5
C(10) - C(17) - H(17B)	109.5	H(17A) - C(17) - H(17B)	109.5
C(10) - C(17) - H(17C)	109.5	H(17A) - C(17) - H(17C)	109.5
H(17B) - C(17) - H(17C)	109.5	C(23) - C(22) - C(21)	120.6(3)
C(23) - C(22) - P(2)	125.8(2)	C(21) - C(22) - P(2)	113.6(2)
C(25) - C(26) - C(21)	120.4(3)	C(25) - C(26) - H(26)	119.8
C(21) - C(26) - H(26)	119.8	C(26) - C(25) - C(24)	122.2(3)
C(26) - C(25) - H(25)	118.9	C(24) - C(25) - H(25)	118.9
C(25) - C(24) - C(23)	117.7(3)	C(25) - C(24) - C(20)	120.1(3)
C(23) - C(24) - C(20)	122.1(3)	C(22) - C(23) - C(24)	121.2(3)
C(22) - C(23) - H(23)	119.4	C(24) - C(23) - H(23)	119.4
C(65) - C(66) - C(61)	122.2(3)	C(65) - C(66) - H(66)	118.9
C(61) - C(66) - H(66)	118.9	C(64) - C(65) - C(66)	121.1(3)
C(64) - C(65) - C(68)	118.4(3)	C(66) - C(65) - C(68)	120.5(3)
C(33) - C(31) - C(34)	110.9(3)	C(33) - C(31) - P(1)	110.4(2)
C(34) - C(31) - P(1)	113.4(2)	C(33) - C(31) - H(31)	107.3
C(34) - C(31) - H(31)	107.3	P(1) - C(31) - H(31)	107.3
C(20) - C(29) - H(29A)	109.5	C(20) - C(29) - H(29B)	109.5
H(29A) - C(29) - H(29B)	109.5	C(20) - C(29) - H(29C)	109.5
H(29A) - C(29) - H(29C)	109.5	H(29B) - C(29) - H(29C)	109.5
C(20) - C(28) - H(28A)	109.5	C(20) - C(28) - H(28B)	109.5
H(28A) - C(28) - H(28B)	109.5	C(20) - C(28) - H(28C)	109.5
			Continued on next page

Table S15. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(28A) - C(28) - H(28C)	109.5	H(28B) - C(28) - H(28C)	109.5
C(20) - C(27) - H(27A)	109.5	C(20) - C(27) - H(27B)	109.5
H(27A) - C(27) - H(27B)	109.5	C(20) - C(27) - H(27C)	109.5
H(27A) - C(27) - H(27C)	109.5	H(27B) - C(27) - H(27C)	109.5
F(61) - C(67) - F(63)	107.3(3)	F(61) - C(67) - F(62)	105.4(3)
F(63) - C(67) - F(62)	104.7(3)	F(61) - C(67) - C(63)	113.0(3)
F(63) - C(67) - C(63)	113.5(3)	F(62) - C(67) - C(63)	112.2(3)
C(35) - C(32) - C(36)	111.7(2)	C(35) - C(32) - P(1)	110.31(19)
C(36) - C(32) - P(1)	111.33(19)	C(35) - C(32) - H(32)	107.8
C(36) - C(32) - H(32)	107.8	P(1) - C(32) - H(32)	107.8
C(31) - C(33) - H(33A)	109.5	C(31) = C(33) = H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) = C(33) = H(33C)	109.5
C(31) - C(34) - H(34A)	109.5	C(31) = C(34) = H(34B)	109.5
H(34A) = C(34) = H(34B)	109.5	C(31) = C(34) = H(34C)	109.5
H(34A) = C(34) = H(34C)	109.5	H(34B) = C(34) = H(34C)	109.5
C(32) = C(35) = H(35A)	109.5	C(32) = C(35) = H(35B)	109.5
H(35A) = C(35) = H(35A) H(35A) = C(35) = H(35B)	109.5	C(32) = C(35) = H(35D)	109.5
H(35A) - C(35) - H(35B) H(35A) - C(35) - H(35B)	109.5	U(35R) = C(35) = H(35C)	109.5
$\Gamma(33A) = C(33) = \Pi(33C)$ $C(32) = C(36) = \Pi(35C)$	109.5	$\Gamma(33B) = C(33) = \Pi(33C)$	109.5
U(36A) = C(30) = H(30A) U(26A) = C(26) = U(26B)	109.5	C(32) = C(30) = H(30B)	109.5
H(30A) - C(30) - H(30B)	109.5	U(32) = U(30) = H(30C)	109.5
H(30A) - C(30) - H(30C)	109.5	H(30B) - C(30) - H(30C)	109.3
C(1) - B - C(61)	111.2(2)	C(71) = B = C(51)	109.2(2)
C(61) - B - C(51)	108.5(2)	C(71) - B - C(81)	108.2(2)
C(61) - B - C(81)	105.8(2)	C(51) - B - C(81)	113.9(2)
C(43) - C(41) - C(44)	111.4(3)	C(43) - C(41) - P(2)	109.1(2)
C(44) - C(41) - P(2)	114.1(2)	C(43) - C(41) - H(41)	107.3
C(44) - C(41) - H(41)	107.3	P(2) - C(41) - H(41)	107.3
C(45) - C(42) - C(46)	111.4(3)	C(45) - C(42) - P(2)	109.3(2)
C(46) - C(42) - P(2)	113.7(2)	C(45) - C(42) - H(42)	107.4
C(46) - C(42) - H(42)	107.4	P(2) - C(42) - H(42)	107.4
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(52) - C(51) - C(56)	115.1(2)	C(52) - C(51) - B	120.1(2)
C(56) - C(51) - B	124.8(2)	C(53) - C(52) - C(51)	122.7(3)
C(53) - C(52) - H(52)	118.6	C(51) - C(52) - H(52)	118.6
C(54) - C(53) - C(52)	121.1(3)	C(54) - C(53) - C(57)	120.7(3)
C(52) - C(53) - C(57)	118.1(3)	C(53) - C(54) - C(55)	117.6(3)
C(53) - C(54) - H(54)	121.2	C(55) - C(54) - H(54)	121.2
C(54) - C(55) - C(56)	121.0(3)	C(54) - C(55) - C(58)	118.7(3)
C(56) - C(55) - C(58)	120.1(3)	F(51) - C(57) - F(53)	106.4(2)
			Continued on next page

Table S15. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
F(51) - C(57) - F(52)	105.6(3)	F(53) - C(57) - F(52)	105.7(2)
F(51) - C(57) - C(53)	111.7(2)	F(53) - C(57) - C(53)	113.8(3)
F(52) - C(57) - C(53)	113.0(2)	C(55) - C(56) - C(51)	122.3(3)
C(55) - C(56) - H(56)	118.8	C(51) - C(56) - H(56)	118.8
F(54) - C(58) - F(56)	106.9(3)	F(54) - C(58) - F(55)	105.7(2)
F(56) - C(58) - F(55)	104.6(2)	F(54) - C(58) - C(55)	113.2(2)
F(56) - C(58) - C(55)	113.6(2)	F(55) - C(58) - C(55)	112.2(2)
C(62) - C(61) - C(66)	115.5(2)	C(62) - C(61) - B	123.3(2)
C(66) - C(61) - B	120.7(2)	C(63) - C(62) - C(61)	122.6(3)
C(63) - C(62) - H(62)	118.7	C(61) - C(62) - H(62)	118.7
C(64) - C(63) - C(62)	120.7(3)	C(64) - C(63) - C(67)	120.3(3)
C(62) - C(63) - C(67)	119.0(3)	C(63) - C(64) - C(65)	117.9(3)
C(63) - C(64) - H(64)	121.0	C(65) - C(64) - H(64)	121.0
C(21) - C - C(11)	120.9(2)	C(21) - C - Pd	121.2(2)
C(11) - C - Pd	117.59(19)	C - Pd - P(2)	83.52(8)
C - Pd - P(1)	83.03(8)	P(2) - Pd - P(1)	164.98(3)
C - Pd - I	168.44(7)	P(2) - Pd - I	93.767(19)
P(1) - Pd - I	100.717(19)	C(74) - C(73) - C(72)	120.4(3)
C(74) - C(73) - C(77)	120.8(3)	C(72) - C(73) - C(77)	118.8(3)
C(73) - C(72) - C(71)	122.6(3)	C(73) - C(72) - H(72)	118.7
C(71) - C(72) - H(72)	118.7	C(72) - C(71) - C(76)	115.6(2)
C(72) - C(71) - B	122.5(2)	C(76) - C(71) - B	121.9(2)
F(1) - C(68) - F(69)	126.2(6)	F(69) - C(68) - F(67)	110.0(5)
F(1) - C(68) - F(3)	110.6(7)	F(69) - C(68) - F(3)	51.8(5)
F(67) - C(68) - F(3)	130.6(6)	F(1) - C(68) - F(64)	124.9(6)
F(67) - C(68) - F(64)	126.4(4)	F(1) - C(68) - F(66)	65.4(6)
F(69) - C(68) - F(66)	85.0(4)	F(3) - C(68) - F(66)	124.9(6)
F(64) - C(68) - F(66)	107.5(4)	F(69) - C(68) - F(65)	125.2(4)
F(67) - C(68) - F(65)	75.3(4)	F(3) - C(68) - F(65)	82.6(6)
F(64) - C(68) - F(65)	106.5(4)	F(66) - C(68) - F(65)	102.8(4)
F(1) - C(68) - F(68)	65.9(7)	F(69) - C(68) - F(68)	105.3(4)
F(67) - C(68) - F(68)	101.8(5)	F(3) - C(68) - F(68)	56.0(6)
F(64) - C(68) - F(68)	81.8(4)	F(66) - C(68) - F(68)	125.5(4)
F(1) - C(68) - C(65)	118.0(5)	F(69) - C(68) - C(65)	114.9(4)
F(67) - C(68) - C(65)	114.5(4)	F(3) - C(68) - C(65)	114.6(5)
F(64) - C(68) - C(65)	114.3(3)	F(66) - C(68) - C(65)	114.1(3)
F(65) - C(68) - C(65)	110.7(3)	F(68) - C(68) - C(65)	109.2(3)
F(1) - C(68) - F(2)	106.1(7)	F(69) - C(68) - F(2)	48.0(5)
F(67) - C(68) - F(2)	72.5(5)	F(3) - C(68) - F(2)	99.0(7)
F(64) - C(68) - F(2)	73.7(5)	F(65) - C(68) - F(2)	138.3(5)
F(68) - C(68) - F(2)	142.7(5)	C(65) - C(68) - F(2)	106.4(4)
F(74) - C(78) - F(75)	106.2(2)	F(74) - C(78) - F(76)	106.3(3)
F(75) - C(78) - F(76)	105.6(2)	F(74) - C(78) - C(75)	113.7(2)
F(75) - C(78) - C(75)	112.2(3)	F(76) - C(78) - C(75)	112.3(2)
F(71) - C(77) - F(77)	80.9(3)	F(71) - C(77) - F(73)	108.8(4)
F(77) - C(77) - F(73)	119.6(4)	F(71) - C(77) - F(78)	123.0(4)
F(77) - C(77) - F(78)	107.3(4)	F(71) - C(77) - F(72)	106.8(3)
F(73) - C(77) - F(72)	103.8(3)	F(78) - C(77) - F(72)	87.2(3)
F(77) - C(77) - F(79)	107.4(4)	F(73) - C(77) - F(79)	84.3(3)
F(78) - C(77) - F(79)	101.7(4)	F(72) - C(77) - F(79)	130.3(4)
F(71) - C(77) - C(73)	113.4(3)	F(77) - C(77) - C(73)	116.1(4)
			Continued on next page

Table S15. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
F(73) - C(77) - C(73)	113.4(3)	F(78) - C(77) - C(73)	112.3(4)
F(72) - C(77) - C(73)	110.1(3)	F(79) - C(77) - C(73)	111.0(3)
C(75) - C(76) - C(71)	121.9(3)	C(75) - C(76) - H(76)	119.1
C(71) - C(76) - H(76)	119.1	C(74) - C(75) - C(76)	121.1(3)
C(74) - C(75) - C(78)	118.7(3)	C(76) - C(75) - C(78)	120.2(3)
C(73) - C(74) - C(75)	118.4(3)	C(73) - C(74) - H(74)	120.8
C(75) - C(74) - H(74)	120.8	C(86) - C(81) - C(82)	115.1(2)
C(86) - C(81) - B	124.6(2)	C(82) - C(81) - B	120.2(2)
C(83) - C(82) - C(81)	123.0(2)	C(83) - C(82) - H(82)	118.5
C(81) - C(82) - H(82)	118.5	C(82) - C(83) - C(84)	120.5(3)
C(82) - C(83) - C(87)	120.5(2)	C(84) - C(83) - C(87)	119.0(2)
F(7) - C(87) - F(4)	72.8(6)	F(6) - C(87) - F(4)	99.0(7)
F(7) - C(87) - F(5)	127.8(6)	F(6) - C(87) - F(5)	104.0(6)
F(4) - C(87) - F(5)	109.9(6)	F(7) - C(87) - F(81)	89.7(4)
F(6) - C(87) - F(81)	111.8(7)	F(5) - C(87) - F(81)	92.0(5)
F(7) - C(87) - F(8)	102.8(5)	F(6) - C(87) - F(8)	73.7(6)
F(4) - C(87) - F(8)	130.3(6)	F(81) - C(87) - F(8)	117.9(5)
F(7) - C(87) - F(82)	116.3(5)	F(6) - C(87) - F(82)	89.2(5)
F(4) - C(87) - F(82)	121.5(5)	F(81) - C(87) - F(82)	105.6(4)
F(7) - C(87) - F(9)	106.7(5)	F(6) - C(87) - F(9)	124.7(7)
F(5) - C(87) - F(9)	76.7(6)	F(8) - C(87) - F(9)	106.9(5)
F(82) - C(87) - F(9)	92.1(5)	F(4) - C(87) - F(83)	91.8(5)
F(5) - C(87) - F(83)	121.9(5)	F(81) - C(87) - F(83)	108.4(4)
F(8) - C(87) - F(83)	90.9(4)	F(82) - C(87) - F(83)	106.9(3)
F(9) - C(87) - F(83)	125.0(4)	F(7) - C(87) - C(83)	115.1(5)
F(6) - C(87) - C(83)	119.0(6)	F(4) - C(87) - C(83)	112.7(5)
F(5) - C(87) - C(83)	111.2(5)	F(81) - C(87) - C(83)	114.9(3)
F(8) - C(87) - C(83)	113.5(4)	F(82) - C(87) - C(83)	112.8(4)
F(9) - C(87) - C(83)	111.1(4)	F(83) - C(87) - C(83)	107.9(3)
C(85) - C(86) - C(81)	122.5(3)	C(85) - C(86) - H(86)	118.7
C(81) - C(86) - H(86)	118.7	C(84) - C(85) - C(86)	120.8(3)
C(84) - C(85) - C(88)	119.5(3)	C(86) - C(85) - C(88)	119.7(3)
C(85) - C(84) - C(83)	118.0(3)	C(85) - C(84) - H(84)	121.0
C(83) - C(84) - H(84)	121.0	F(93) - C(88) - F(88)	127.8(5)
F(93) - C(88) - F(89)	69.2(5)	F(88) - C(88) - F(89)	109.8(5)
F(93) - C(88) - F(91)	106.9(6)	F(88) - C(88) - F(91)	78.0(5)
F(93) - C(88) - F(86)	72.4(5)	F(88) - C(88) - F(86)	70.0(4)
F(89) - C(88) - F(86)	128.5(4)	F(91) - C(88) - F(86)	135.5(4)
F(88) - C(88) - F(85)	125.5(4)	F(91) - C(88) - F(85)	70.4(5)
F(86) - C(88) - F(85)	104.3(4)	F(93) - C(88) - F(92)	108.4(6)
F(89) - C(88) - F(92)	132.3(5)	F(91) - C(88) - F(92)	109.2(6)
F(85) - C(88) - F(92)	129.1(5)	F(93) - C(88) - F(84)	131.1(5)
F(89) - C(88) - F(84)	78.0(4)	F(86) - C(88) - F(84)	104.3(4)
F(85) - C(88) - F(84)	104.2(4)	F(92) - C(88) - F(84)	69.3(5)
F(88) - C(88) - F(87)	106.3(5)	F(89) - C(88) - F(87)	102.7(5)
F(91) - C(88) - F(87)	135.4(5)	F(85) - C(88) - F(87)	71.9(4)
F(92) - C(88) - F(87)	77.8(5)	F(84) - C(88) - F(87)	133.1(4)
F(93) - C(88) - C(85)	111.9(4)	F(88) - C(88) - C(85)	115.6(4)
F(89) - C(88) - C(85)	112.3(4)	F(91) - C(88) - C(85)	108.1(4)
F(86) - C(88) - C(85)	113.2(3)	F(85) - C(88) - C(85)	116.0(3)
F(92) - C(88) - C(85)	112.2(4)	F(84) - C(88) - C(85)	113.7(3)
			Continued on next page

TO 11 04#	1	C	•	
Table S15.	- continued	from	previous	page

Table S15. – continued from previous page					
atom – atom – atom	angle	atom – atom – atom	angle		
F(87) - C(88) - C(85)	109.2(3)				

Figure S46. Thermal-ellipsoid representation of $[{PC(sp^3)HP}^{tBu}PdI]$ (6) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	pc30	
Empirical formula:	$C_{33}H_{53}IP_2Pd$	
Formula weight:	744.99	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/c$	
Unit cell dimensions:	a = 12.8203(13) Å	$\alpha = 90^{\circ}$
	b = 14.8340(15) Å	$\beta = 106.6410(15)^{\circ}$
	c = 19.1740(19) Å	$\gamma = 90^{\circ}$
Volume:	3493.7(6) Å ³	
Z:	4	
Density (calculated):	$1.416 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	1.525 mm^{-1}	
F(000):	1520	
Crystal size:	$0.12 \times 0.11 \times 0.09 \text{ mm}^3$	
θ range for data collection:	1.66 to 25.00°	
Index ranges:	$-15 \le h \le 15, -17 \le k \le 17, -22 \le l \le 22$	
Reflections collected:	63141	
Independent reflections:	$6140 [R_{int} = 0.0317]$	
Completeness to $\theta = 25.00^{\circ}$:	99.7 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.8942 and 0.8032	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	6140 / 0 / 348	
Goodness-of-fit on F ² :	1.168	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0245, wR_2 = 0.0495$	
R indices (all data):	$R_1 = 0.0278, wR_2 = 0.0505$	
Largest diff. peak and hole:	$1.086 \text{ and } -1.021 \text{ e}^{-} \cdot \text{Å}^{-3}$	

 Table S16. Crystal data and structure refinement for [{PC(sp³)HP}^{tBu}PdI] (6).

atom	X	у	Z	U(eq)
P(1)	0.42889(5)	0.14297(4)	0.12336(3)	0.018(1)
P(2)	0.24559(6)	0.38154(4)	-0.00302(4)	0.019(1)
C(10)	0.1998(2)	-0.16310(18)	0.09453(15)	0.028(1)
C(11)	0.2559(2)	0.10051(16)	0.00822(13)	0.018(1)
C(12)	0.32810(19)	0.06351(16)	0.07120(13)	0.018(1)
C(13)	0.3098(2)	-0.02112(17)	0.09627(14)	0.020(1)
C(14)	0.2166(2)	-0.07127(17)	0.06313(14)	0.021(1)
C(15)	0.1426(2)	-0.03196(17)	0.00351(14)	0.023(1)
C(16)	0.1621(2)	0.05099(17)	-0.02391(14)	0.023(1)
Ι	0.45837(2)	0.39132(1)	0.17099(1)	0.041(1)
Pd	0.35350(2)	0.27546(1)	0.06763(1)	0.017(1)
C(22)	0.1695(2)	0.31944(17)	-0.08287(14)	0.020(1)
C(21)	0.2041(2)	0.23041(17)	-0.08501(13)	0.021(1)
C(20)	-0.0339(2)	0.3547(2)	-0.27156(16)	0.035(1)
C(19)	0.0939(2)	-0.20840(19)	0.05210(18)	0.036(1)
C(18)	0.2928(2)	-0.2257(2)	0.0904(2)	0.048(1)
C(17)	0.1999(5)	-0.1509(3)	0.1738(2)	0.084(2)
C(23)	0.0919(2)	0.35691(18)	-0.14234(14)	0.024(1)
C(24)	0.0480(2)	0.30948(19)	-0.20648(14)	0.026(1)
C(25)	0.0872(2)	0.22233(19)	-0.20927(15)	0.029(1)
C(26)	0.1635(2)	0.18379(18)	-0.15031(14)	0.027(1)
C(27)	-0.0878(3)	0.2874(3)	-0.33105(18)	0.062(1)
C(28)	-0.1242(3)	0.4012(2)	-0.24750(19)	0.049(1)
C(29)	0.0261(3)	0.4284(3)	-0.3015(2)	0.077(2)
C(31)	0.4240(2)	0.12277(18)	0.21734(14)	0.027(1)
C(33)	0.3173(3)	0.1609(2)	0.22513(16)	0.040(1)
C(32)	0.5653(2)	0.10729(19)	0.12100(16)	0.029(1)
C(34)	0.5230(2)	0.1613(2)	0.27462(14)	0.034(1)
C(35)	0.5918(2)	0.0091(2)	0.14267(19)	0.039(1)
C(36)	0.5808(3)	0.1272(2)	0.04752(18)	0.044(1)
C(41)	0.1422(2)	0.44127(18)	0.02958(16)	0.029(1)
C(42)	0.3240(2)	0.46742(18)	-0.03598(16)	0.028(1)
C(43)	0.0943(2)	0.3754(2)	0.07316(17)	0.035(1)
C(44)	0.1860(3)	0.5258(2)	0.0733(2)	0.054(1)
C(45)	0.4121(2)	0.4190(2)	-0.06081(16)	0.033(1)
C(46)	0.2589(3)	0.5316(2)	-0.0953(2)	0.049(1)
С	0.2872(2)	0.18880(16)	-0.02011(13)	0.019(1)
H(13)	0.3623	-0.0457	0.1373	0.024
H(15)	0.0766	-0.0627	-0.0192	0.027
H(16)	0.1101	0.0746	-0.0657	0.027
H(19A)	0.0321	-0.1707	0.0542	0.055
H(19B)	0.0880	-0.2675	0.0736	0.055
H(19C)	0.0934	-0.2161	0.0013	0.055
H(18A)	0.2909	-0.2343	0.0393	0.072
H(18B)	0.2843	-0.2842	0.1120	0.072
H(18C)	0.3626	-0.1988	0.1171	0.072
H(17A)	0.1395	-0.1115	0.1758	0.127
H(17B)	0.2689	-0.1237	0.2016	0.127
H(17C)	0.1914	-0.2098	0.1948	0.127
				Continued on next page

Table S17. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[{PC(sp^3)HP}^{tBu}PdI]$ (6). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

atom	X	У	X	U(eq)
H(23)	0.0684	0.4170	-0.1388	0.029
H(25)	0.0610	0.1883	-0.2528	0.035
H(26)	0.1885	0.1243	-0.1546	0.033
H(27A)	-0.1432	0.3183	-0.3696	0.093
H(27B)	-0.1223	0.2394	-0.3103	0.093
H(27C)	-0.0328	0.2612	-0.3514	0.093
H(28A)	-0.1775	0.4270	-0.2901	0.073
H(28B)	-0.0927	0.4494	-0.2129	0.073
H(28C)	-0.1602	0.3571	-0.2241	0.073
H(29A)	0.0790	0.4003	-0.3229	0.116
H(29B)	0.0641	0.4687	-0.2619	0.116
H(29C)	-0.0267	0.4632	-0.3390	0.116
H(31)	0.4233	0.0561	0.2249	0.032
H(33A)	0.2567	0.1400	0.1845	0.060
H(33B)	0.3201	0.2269	0.2248	0.060
H(33C)	0.3066	0.1403	0.2711	0.060
H(32)	0.6190	0.1452	0.1573	0.035
H(34A)	0.5893	0.1322	0.2701	0.051
H(34B)	0.5155	0.1501	0.3233	0.051
H(34C)	0.5274	0.2264	0.2671	0.051
H(35A)	0.5369	-0.0302	0.1109	0.059
H(35B)	0.5918	0.0003	0.1933	0.059
H(35C)	0.6638	-0.0059	0.1377	0.059
H(36A)	0.5278	0.0927	0.0101	0.066
H(36B)	0.6547	0.1101	0.0476	0.066
H(36C)	0.5701	0.1917	0.0371	0.066
H(41)	0.0823	0.4601	-0.0141	0.035
H(42)	0.3619	0.5054	0.0069	0.033
H(43A)	0.0328	0.4038	0.0854	0.053
H(43B)	0.1502	0.3589	0.1180	0.053
H(43C)	0.0692	0.3211	0.0441	0.053
H(44A)	0.2144	0.5672	0.0433	0.081
H(44B)	0.2445	0.5093	0.1168	0.081
H(44C)	0.1271	0.5554	0.0879	0.081
H(45A)	0.3782	0.3746	-0.0982	0.050
H(45B)	0.4620	0.3884	-0.0192	0.050
H(45C)	0.4526	0.4630	-0.0810	0.050
H(46A)	0.2291	0.4979	-0.1406	0.074
H(46B)	0.3069	0.5795	-0.1032	0.074
H(46C)	0.1992	0.5583	-0.0798	0.074
Н	0.3501	0.1730	-0.0388	0.023

Table S17. – continued from previous page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
P(1)	0.0167(3)	0.0159(3)	0.0162(3)	-0.0006(2)	-0.0013(3)	-0.0020(3)
P(2)	0.0235(3)	0.0128(3)	0.0225(3)	0.0006(3)	0.0072(3)	-0.0002(3)
C(10)	0.0334(16)	0.0236(14)	0.0251(14)	0.0014(11)	0.0047(12)	-0.0097(12)
C(11)	0.0203(13)	0.0146(12)	0.0180(12)	-0.0042(10)	0.0020(10)	0.0008(10)
C(12)	0.0161(13)	0.0178(12)	0.0175(12)	-0.0027(10)	0.0006(10)	-0.0005(10)
C(13)	0.0205(13)	0.0181(12)	0.0185(13)	0.0009(10)	0.0006(10)	0.0014(10)
C(14)	0.0232(14)	0.0178(12)	0.0233(13)	-0.0027(11)	0.0076(11)	-0.0017(11)
C(15)	0.0171(13)	0.0197(13)	0.0282(14)	-0.0071(11)	0.0016(11)	-0.0021(10)
C(16)	0.0206(13)	0.0178(13)	0.0224(13)	-0.0034(11)	-0.0047(11)	0.0043(11)
Ι	0.0739(2)	0.0235(1)	0.0193(1)	-0.0051(1)	0.0025(1)	-0.0213(1)
Pd	0.0207(1)	0.0129(1)	0.0145(1)	-0.0014(1)	0.0027(1)	-0.0029(1)
C(22)	0.0195(13)	0.0181(12)	0.0214(13)	0.0026(10)	0.0049(11)	0.0003(10)
C(21)	0.0215(13)	0.0182(12)	0.0205(13)	0.0022(10)	0.0041(11)	0.0010(11)
C(20)	0.0277(16)	0.0439(18)	0.0277(16)	0.0160(14)	-0.0006(12)	0.0082(14)
C(19)	0.0267(16)	0.0217(14)	0.059(2)	0.0047(14)	0.0091(14)	-0.0075(12)
C(18)	0.0297(17)	0.0231(15)	0.076(3)	0.0209(16)	-0.0079(16)	-0.0047(13)
C(17)	0.165(5)	0.058(3)	0.042(2)	-0.0106(19)	0.049(3)	-0.064(3)
C(23)	0.0224(14)	0.0214(13)	0.0287(15)	0.0069(11)	0.0070(11)	0.0056(11)
C(24)	0.0225(14)	0.0314(15)	0.0226(14)	0.0087(12)	0.0040(11)	0.0040(12)
C(25)	0.0286(15)	0.0326(15)	0.0199(14)	0.0010(12)	-0.0020(11)	0.0042(13)
C(26)	0.0327(16)	0.0207(13)	0.0225(14)	-0.0018(11)	-0.0010(12)	0.0061(12)
C(27)	0.067(3)	0.075(3)	0.0273(18)	-0.0010(18)	-0.0149(17)	0.035(2)
C(28)	0.0346(18)	0.051(2)	0.050(2)	0.0084(17)	-0.0051(16)	0.0159(16)
C(29)	0.044(2)	0.109(4)	0.069(3)	0.068(3)	0.002(2)	0.006(2)
C(31)	0.0321(15)	0.0251(14)	0.0166(13)	0.0032(11)	-0.0029(11)	-0.0099(12)
C(33)	0.0381(18)	0.061(2)	0.0239(15)	0.0013(15)	0.0131(14)	-0.0114(16)
C(32)	0.0181(14)	0.0292(15)	0.0352(16)	-0.0071(13)	0.0009(12)	-0.0014(12)
C(34)	0.0418(18)	0.0350(16)	0.0164(14)	-0.0004(12)	-0.0053(12)	-0.0078(14)
C(35)	0.0232(16)	0.0326(16)	0.053(2)	-0.0084(15)	-0.0042(14)	0.0071(13)
C(36)	0.0330(18)	0.056(2)	0.0449(19)	-0.0057(16)	0.0151(15)	0.0044(16)
C(41)	0.0283(15)	0.0221(14)	0.0394(17)	-0.0061(12)	0.0123(13)	0.0023(12)
C(42)	0.0294(15)	0.0214(14)	0.0315(15)	0.0056(12)	0.0072(12)	-0.0046(12)
C(43)	0.0295(16)	0.0429(18)	0.0375(17)	-0.0071(14)	0.0153(14)	-0.0035(14)
C(44)	0.056(2)	0.0314(18)	0.086(3)	-0.0284(18)	0.038(2)	-0.0060(16)
C(45)	0.0328(16)	0.0394(17)	0.0287(16)	0.0032(13)	0.0113(13)	-0.0082(13)
C(46)	0.045(2)	0.0354(18)	0.064(2)	0.0288(17)	0.0089(18)	-0.0028(15)
С	0.0219(13)	0.0158(12)	0.0174(12)	-0.0018(10)	0.0037(10)	0.0025(10)

Table S18. Anisotropic displacement parameters (Å²) for [{PC(sp³)HP}^{*i*Bu}PdI] (6). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom – atom	distance	atom – atom	distance
P(1) - C(12)	1.822(2)	P(1) - C(32)	1.840(3)
P(1) - C(31)	1.845(3)	P(1) - Pd	2.3123(7)
P(2) - C(22)	1.813(3)	P(2) - C(42)	1.843(3)
P(2) - C(41)	1.846(3)	P(2) - Pd	2.2698(7)
C(10) - C(19)	1.525(4)	C(10) - C(14)	1.529(4)
C(10) - C(17)	1.530(4)	C(10) - C(18)	1.531(4)
C(11) - C(16)	1.393(3)	C(11) - C(12)	1.406(3)
C(11) - C	1.516(3)	C(12) - C(13)	1.388(3)
C(13) - C(14)	1.396(4)	C(13) - H(13)	0.9500
C(14) - C(15)	1.388(4)	C(15) - C(16)	1.389(4)
C(15) - H(15)	0.9500	C(16) - H(16)	0.9500
I – Pd	2.6763(3)	Pd – C	2.094(2)
C(22) - C(23)	1.396(4)	C(22) - C(21)	1.397(4)
C(21) - C(26)	1.394(4)	C(21) - C	1.518(3)
C(20) - C(27)	1.525(5)	C(20) - C(28)	1.528(5)
C(20) - C(24)	1.536(4)	C(20) - C(29)	1.539(5)
C(19) - H(19A)	0.9800	C(19) - H(19B)	0.9800
C(19) - H(19C)	0.9800	C(18) - H(18A)	0.9800
C(18) - H(18B)	0.9800	C(18) - H(18C)	0.9800
C(17) - H(17A)	0.9800	C(17) - H(17B)	0.9800
C(17) - H(17C)	0.9800	C(23) - C(24)	1.389(4)
C(23) - H(23)	0.9500	C(24) - C(25)	1.394(4)
C(25) - C(26)	1.388(4)	C(25) - H(25)	0.9500
C(26) - H(26)	0.9500	C(27) - H(27A)	0.9800
C(27) - H(27B)	0.9800	C(27) - H(27C)	0.9800
C(28) - H(28A)	0.9800	C(28) - H(28B)	0.9800
C(28) - H(28C)	0.9800	C(29) - H(29A)	0.9800
C(29) - H(29B)	0.9800	C(29) - H(29C)	0.9800
C(31) - C(33)	1.527(4)	C(31) - C(34)	1.531(4)
C(31) - H(31)	1.0000	C(33) - H(33A)	0.9800
C(33) - H(33B)	0.9800	C(33) - H(33C)	0.9800
C(32) - C(36)	1.507(4)	C(32) - C(35)	1.526(4)
C(32) - H(32)	1.0000	C(34) - H(34A)	0.9800
C(34) - H(34B)	0.9800	C(34) - H(34C)	0.9800
C(35) - H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(41) - C(44)	1.523(4)	C(41) - C(43)	1.525(4)
C(41) - H(41)	1.0000	C(42) - C(45)	1.525(4)
C(42) - C(46)	1.533(4)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C – H	1.0000		

Table S19. Distances [Å] for $[{PC(sp^3)HP}^{'Bu}PdI]$ (6).

Table S20. Angles [°] for $[{PC(sp^3)HP}^{tBu}PdI]$ (6).

atom – atom – atom	angle	atom – atom – atom	angle
C(12) - P(1) - C(32)	109.27(12)	C(12) - P(1) - C(31)	102.36(12)
C(32) - P(1) - C(31)	105.98(13)	C(12) - P(1) - Pd	99.17(8)
C(32) - P(1) - Pd	120.50(10)	C(31) - P(1) - Pd	117.56(10)
C(22) - P(2) - C(42)	106.02(12)	C(22) - P(2) - C(41)	105.37(13)
C(42) - P(2) - C(41)	107.41(13)	C(22) - P(2) - Pd	103.90(8)
C(42) - P(2) - Pd	112.64(9)	C(41) - P(2) - Pd	120.31(10)
C(19) - C(10) - C(14)	112.8(2)	C(19) - C(10) - C(17)	109.2(3)
C(14) - C(10) - C(17)	109.0(2)	C(19) - C(10) - C(18)	107.0(2)
C(14) - C(10) - C(18)	108.7(2)	C(17) - C(10) - C(18)	110.1(3)
C(16) - C(11) - C(12)	116.5(2)	C(16) - C(11) - C	125.5(2)
C(12) - C(11) - C	117.9(2)	C(13) - C(12) - C(11)	121.0(2)
C(13) - C(12) - P(1)	123.98(19)	C(11) - C(12) - P(1)	114.09(18)
C(12) - C(13) - C(14)	122.1(2)	C(12) - C(13) - H(13)	118.9
C(14) - C(13) - H(13)	118.9	C(15) - C(14) - C(13)	116.4(2)
C(15) - C(14) - C(10)	123.9(2)	C(13) - C(14) - C(10)	119.6(2)
C(14) - C(15) - C(16)	122.0(2)	C(14) - C(15) - H(15)	119.0
C(16) - C(15) - H(15)	119.0	C(15) - C(16) - C(11)	121.7(2)
C(15) - C(16) - H(16)	119.1	C(11) - C(16) - H(16)	119.1
C - Pd - P(2)	84.74(7)	C - Pd - P(1)	82.49(7)
P(2) - Pd - P(1)	165.40(2)	C - Pd - I	172.41(7)
P(2) - Pd - I	95.04(2)	P(1) - Pd - I	98.557(18)
C(23) - C(22) - C(21)	120.7(2)	C(23) - C(22) - P(2)	124.9(2)
C(21) - C(22) - P(2)	113.96(18)	C(26) - C(21) - C(22)	117.0(2)
C(26) - C(21) - C	121.9(2)	C(22) - C(21) - C	121.0(2)
C(27) - C(20) - C(28)	107.5(3)	C(27) - C(20) - C(24)	112.3(3)
C(28) - C(20) - C(24)	110.6(2)	C(27) - C(20) - C(29)	110.7(3)
C(28) - C(20) - C(29)	107.1(3)	C(24) - C(20) - C(29)	108.4(2)
C(10) - C(19) - H(19A)	109.5	C(10) - C(19) - H(19B)	109.5
H(19A) - C(19) - H(19B)	109.5	C(10) - C(19) - H(19C)	109.5
H(19A) - C(19) - H(19C)	109.5	H(19B) - C(19) - H(19C)	109.5
C(10) - C(18) - H(18A)	109.5	C(10) - C(18) - H(18B)	109.5
H(18A) - C(18) - H(18B)	109.5	C(10) - C(18) - H(18C)	109.5
H(18A) - C(18) - H(18C)	109.5	H(18B) - C(18) - H(18C)	109.5
C(10) - C(17) - H(17A)	109.5	C(10) - C(17) - H(17B)	109.5
H(17A) - C(17) - H(17B)	109.5	C(10) - C(17) - H(17C)	109.5
H(17A) - C(17) - H(17C)	109.5	H(17B) - C(17) - H(17C)	109.5
C(24) - C(23) - C(22)	122.3(2)	C(24) - C(23) - H(23)	118.8
C(22) - C(23) - H(23)	118.8	C(23) - C(24) - C(25)	116.4(2)
C(23) - C(24) - C(20)	120.5(3)	C(25) - C(24) - C(20)	123.0(3)
C(26) - C(25) - C(24)	121.9(3)	C(26) - C(25) - H(25)	119.1
C(24) - C(25) - H(25)	119.1	C(25) - C(26) - C(21)	121.5(2)
C(25) - C(26) - H(26)	119.3	C(21) - C(26) - H(26)	119.3
C(20) - C(27) - H(27A)	109.5	C(20) - C(27) - H(27B)	109.5
H(27A) - C(27) - H(27B)	109.5	C(20) - C(27) - H(27C)	109.5
H(27A) - C(27) - H(27C)	109.5	H(27B) - C(27) - H(27C)	109.5
C(20) - C(28) - H(28A)	109.5	C(20) - C(28) - H(28B)	109.5
H(28A) - C(28) - H(28B)	109.5	C(20) - C(28) - H(28C)	109.5
H(28A) - C(28) - H(28C)	109.5	H(28B) - C(28) - H(28C)	109.5
C(20) - C(29) - H(29A)	109.5	C(20) - C(29) - H(29B)	109.5
H(29A) - C(29) - H(29B)	109.5	C(20) - C(29) - H(29C)	109.5
		C	Continued on next page

Table S20. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(29A) - C(29) - H(29C)	109.5	H(29B) - C(29) - H(29C)	109.5
C(33) - C(31) - C(34)	111.9(2)	C(33) - C(31) - P(1)	108.49(18)
C(34) - C(31) - P(1)	112.78(19)	C(33) - C(31) - H(31)	107.8
C(34) - C(31) - H(31)	107.8	P(1) - C(31) - H(31)	107.8
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(36) - C(32) - C(35)	111.2(3)	C(36) - C(32) - P(1)	110.3(2)
C(35) - C(32) - P(1)	114.0(2)	C(36) - C(32) - H(32)	106.9
C(35) - C(32) - H(32)	106.9	P(1) - C(32) - H(32)	106.9
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(44) - C(41) - C(43)	111.6(3)	C(44) - C(41) - P(2)	113.2(2)
C(43) - C(41) - P(2)	108.6(2)	C(44) - C(41) - H(41)	107.7
C(43) - C(41) - H(41)	107.7	P(2) - C(41) - H(41)	107.7
C(45) - C(42) - C(46)	110.8(3)	C(45) - C(42) - P(2)	107.88(19)
C(46) - C(42) - P(2)	116.7(2)	C(45) - C(42) - H(42)	107.0
C(46) - C(42) - H(42)	107.0	P(2) - C(42) - H(42)	107.0
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(11) - C - C(21)	116.7(2)	C(11) - C - Pd	109.32(16)
$\mathbf{C}(21) - \mathbf{C} - \mathbf{Pd}$	115.91(16)	C(11) - C - H	104.4
С(21) – С – Н	104.4	Pd - C - H	104.4

5.4 Crystal data for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf] \cdot Et_2O(8 \cdot Et_2O)$

Figure S47. Thermal-ellipsoid representation of $[{PC(sp^3)(SPh)P}^{tBu}PdOTf] \cdot Et_2O$ (8 $\cdot Et_2O$) at 50% probability. Hydrogen atoms and the solvent were omitted for clarity.

Identification code:	pc39a	
Empirical formula:	$C_{44}H_{67}F_3O_4P_2PdS_2$	
Formula weight:	949.44	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Orthorhombic	
Space group:	$P2_{1}2_{1}2_{1}$	
Unit cell dimensions:	a = 14.0266(6) Å	$\alpha = 90^{\circ}$
	b = 15.2323(6) Å	$\beta = 90^{\circ}$
	c = 21.3735(9) Å	$\gamma = 90^{\circ}$
Volume:	$4566.6(3) Å^3$	•
Z:	4	
Density (calculated):	$1.381 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (µ):	0.620 mm^{-1}	
F(000):	1992	
Crystal size:	$0.09 \times 0.08 \times 0.02 \text{ mm}^3$	
θ range for data collection:	1.64 to 26.91°	
Index ranges:	$-13 \le h \le 17, -19 \le k \le 18, -27 \le l \le 27$	
Reflections collected:	77120	
Independent reflections:	9882 [$R_{int} = 0.0493$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	1.0000 and 0.9527	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	9882 / 0 / 516	
Goodness-of-fit on F ² :	1.012	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0260, wR_2 = 0.0561$	
R indices (all data):	$R_1 = 0.0331, wR_2 = 0.0590$	
Absolute structure parameter:	-0.022(15)	
Largest diff. peak and hole:	0.885 and $-0.528 \text{ e}^{-1} \text{Å}^{-3}$	

 Table S21. Crystal data and structure refinement for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf] \cdot Et_2O$ (8·Et₂O).

_

Table S22. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[{PC(sp^3)(SPh)P}'^{Bu}PdOTf] \cdot Et_2O$ (8·Et₂O). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	у	Z	U(eq)
Pd	0.41412(1)	0.49818(1)	0.47367(1)	0.014(1)
P(1)	0.40919(5)	0.63744(4)	0.51194(3)	0.016(1)
S	0.36480(4)	0.50739(4)	0.33191(2)	0.017(1)
P(2)	0.49064(4)	0.37483(4)	0.43015(3)	0.016(1)
C(13)	0.42178(18)	0.79545(14)	0.44103(12)	0.020(1)
C(20)	0.82267(18)	0.42296(16)	0.31278(12)	0.021(1)
C(19)	0.3181(4)	0.9682(3)	0.4004(3)	0.035(1)
C(18)	0.4863(4)	0.9812(3)	0.4289(3)	0.035(1)
C(17)	0.4416(4)	0.9789(3)	0.3175(3)	0.035(1)
C(22)	0.57058(17)	0.43737(14)	0.38026(11)	0.016(1)
C(21)	0.54495(17)	0.52493(14)	0.36924(11)	0.015(1)
C(23)	0.65872(18)	0.40638(16)	0.36027(11)	0.018(1)
C(24)	0.72394(18)	0.45989(16)	0.32961(12)	0.017(1)
C(25)	0.69844(19)	0.54656(16)	0.31983(13)	0.021(1)
C(26)	0.61033(18)	0.57858(15)	0.33895(12)	0.019(1)
C(27)	0.88033(18)	0.48744(19)	0.27385(12)	0.028(1)
C(28)	0.87611(19)	0.40438(18)	0.37382(13)	0.027(1)
C(29)	0.81115(19)	0.33739(17)	0.27569(13)	0.026(1)
C(31)	0.5110(2)	0.66463(17)	0.56221(12)	0.026(1)
C(32)	0.30344(19)	0.67426(16)	0.55516(12)	0.022(1)
C(33)	0.60362(19)	0.63806(18)	0.53013(16)	0.033(1)
C(34)	0.5015(2)	0.6218(2)	0.62614(13)	0.039(1)
C(35)	0.3041(2)	0.77016(17)	0.57625(15)	0.034(1)
C(36)	0.21363(18)	0.65254(18)	0.51810(14)	0.030(1)
C(41)	0.57276(18)	0.31416(15)	0.48191(12)	0.021(1)
C(42)	0.43322(18)	0.29394(15)	0.37851(12)	0.021(1)
C(43)	0.6265(2)	0.37898(18)	0.52301(16)	0.030(1)
C(44)	0.52182(19)	0.24488(17)	0.52167(13)	0.028(1)
C(45)	0.5023(2)	0.22624(16)	0.35127(13)	0.028(1)
C(46)	0.3452(2)	0.25127(17)	0.40834(13)	0.028(1)
C(51)	0.24957(18)	0.54088(16)	0.35665(11)	0.018(1)
C(52)	0.20881(18)	0.61731(17)	0.33375(11)	0.022(1)
C(53)	0.11612(19)	0.63889(18)	0.35044(12)	0.027(1)
C(54)	0.06470(19)	0.58479(18)	0.38934(13)	0.028(1)
C(55)	0.10513(17)	0.50864(19)	0.41262(11)	0.026(1)
C(56)	0.19774(17)	0.48723(17)	0.39648(11)	0.022(1)
С	0.44611(17)	0.55644(14)	0.38973(11)	0.015(1)
C(14)	0.42412(18)	0.84165(15)	0.38536(11)	0.018(1)
C(16)	0.43488(17)	0.70222(15)	0.33139(12)	0.020(1)
C(15)	0.42920(18)	0.79270(15)	0.33061(12)	0.021(1)
C(11)	0.43422(16)	0.65597(15)	0.38803(11)	0.016(1)
C(10)	0.4191(2)	0.94215(16)	0.38394(14)	0.035(1)
O(7)	0.17564(14)	0.25158(13)	0.26152(9)	0.033(1)
C(12)	0.42323(18)	0.70360(14)	0.44253(11)	0.017(1)
F(61)	0.18489(12)	0.38273(11)	0.67857(7)	0.037(1)
O(61)	0.36997(13)	0.43521(11)	0.56108(8)	0.024(1)
F(62)	0.33225(13)	0.41445(16)	0.69062(8)	0.055(1)
O(62)	0.20182(14)	0.41398(14)	0.53911(9)	0.039(1)
			Conti	nued on next page

 Table S22. – continued from previous page

atom	X	У	X	U(eq)
F(63)	0.23599(15)	0.51005(13)	0.65394(8)	0.055(1)
C(71)	0.3237(2)	0.3077(2)	0.22396(14)	0.035(1)
C(72)	0.2321(2)	0.32779(18)	0.25740(14)	0.032(1)
C(73)	0.0930(2)	0.2671(2)	0.29785(14)	0.037(1)
C(74)	0.0387(2)	0.1834(2)	0.30582(16)	0.043(1)
C(91)	0.5072(5)	0.9749(3)	0.3518(3)	0.035(1)
C(93)	0.3288(5)	0.9727(4)	0.3523(3)	0.035(1)
C(96)	0.4181(5)	0.9817(3)	0.4509(3)	0.035(1)
O(63)	0.29479(16)	0.29528(12)	0.58236(11)	0.041(1)
C(6)	0.2578(2)	0.42570(18)	0.65383(12)	0.026(1)
S(6)	0.28217(5)	0.38745(4)	0.57483(3)	0.021(1)
H(13)	0.4191	0.8270	0.4793	0.024
H(19A)	0.2733	0.9278	0.3802	0.052
H(19B)	0.3060	1.0282	0.3857	0.052
H(19C)	0 3097	0.9656	0 4459	0.052
H(18A)	0.5518	0.9689	0.4155	0.052
H(18B)	0 4755	0.9558	0 4704	0.052
H(18C)	0 4764	1 0448	0.4306	0.052
H(17A)	0 5091	0.9693	0.3079	0.052
H(17B)	0 4278	1 0419	0.3164	0.052
H(17C)	0.4021	0.9486	0.2865	0.052
H(23)	0.6749	0.3467	0.3678	0.021
H(25)	0.7420	0.5850	0.2996	0.025
H(26)	0 5946	0.6382	0.3311	0.023
H(27A)	0.9420	0.4612	0.2632	0.042
H(27B)	0.8907	0.5414	0.2979	0.042
H(27C)	0.8455	0.5013	0.2354	0.042
H(28A)	0.9408	0.3842	0.3642	0.041
H(28B)	0.8423	0.3589	0 3975	0.041
H(28C)	0.8794	0.4582	0.3988	0.041
H(29A)	0.7758	0.3492	0.2370	0.040
H(29B)	0.7761	0.2945	0.3010	0.040
H(29C)	0.8742	0.3138	0.2653	0.040
H(31)	0.5120	0.7297	0.5683	0.031
H(32)	0.3007	0.6380	0.5941	0.026
H(33A)	0.6056	0.5741	0.5255	0.050
H(33B)	0.6579	0.6574	0.5555	0.050
H(33C)	0.6070	0.6656	0.4888	0.050
H(34A)	0.4914	0.5586	0.6210	0.058
H(34B)	0.4472	0.6474	0.6484	0.058
H(34C)	0.5599	0.6318	0.6503	0.058
H(35A)	0.2991	0.8085	0.5396	0.051
H(35B)	0.3636	0.7826	0.5985	0.051
H(35C)	0.2499	0.7808	0.6042	0.051
H(36A)	0.2154	0.6830	0.4777	0.046
H(36B)	0.1574	0.6716	0.5417	0.046
H(36C)	0.2103	0.5890	0.5110	0.046
H(41)	0.6204	0.2833	0.4549	0.025
H(42)	0.4088	0.3281	0.3419	0.025
H(43A)	0.6605	0.4212	0.4965	0.046
H(43B)	0.6724	0.3472	0.5491	0.046
<u> </u>			Conti	nued on next page

atom	X	y	X	U(eq)
H(43C)	0.5813	0.4103	0.5499	0.046
H(44A)	0.4941	0.2001	0.4943	0.042
H(44B)	0.4711	0.2729	0.5461	0.042
H(44C)	0.5677	0.2173	0.5501	0.042
H(45A)	0.4682	0.1882	0.3218	0.041
H(45B)	0.5289	0.1906	0.3852	0.041
H(45C)	0.5540	0.2566	0.3293	0.041
H(46A)	0.3098	0.2186	0.3764	0.042
H(46B)	0.3042	0.2970	0.4261	0.042
H(46C)	0.3654	0.2110	0.4415	0.042
H(52)	0.2441	0.6547	0.3068	0.026
H(53)	0.0880	0.6913	0.3349	0.033
H(54)	0.0011	0.5998	0.4003	0.033
H(55)	0.0695	0.4713	0.4395	0.031
H(56)	0.2260	0.4354	0.4128	0.026
H(16)	0.4393	0.6710	0.2930	0.024
H(15)	0.4288	0.8224	0.2915	0.025
H(71A)	0.3101	0.2929	0.1803	0.052
H(71B)	0.3554	0.2580	0.2443	0.052
H(71C)	0.3655	0.3593	0.2255	0.052
H(72A)	0.2462	0.3500	0.2999	0.038
H(72B)	0.1969	0.3740	0.2345	0.038
H(73A)	0.0523	0.3113	0.2769	0.044
H(73B)	0.1115	0.2905	0.3394	0.044
H(74A)	0.0173	0.1623	0.2648	0.064
H(74B)	-0.0168	0.1938	0.3326	0.064
H(74C)	0.0800	0.1392	0.3252	0.064
H(91A)	0.5132	0.9466	0.3108	0.052
H(91B)	0.5632	0.9609	0.3773	0.052
H(91C)	0.5028	1.0387	0.3462	0.052
H(93A)	0.3306	0.9564	0.3080	0.052
H(93B)	0.3235	1.0366	0.3560	0.052
H(93C)	0.2737	0.9449	0.3723	0.052
H(96A)	0.4204	1.0459	0.4482	0.052
H(96B)	0.4737	0.9605	0.4742	0.052
H(96C)	0.3597	0.9637	0.4725	0.052

 Table S22. – continued from previous page

atom		U _{ac}		<u>II + + 211Ka + U</u>	<u> </u>	Uic
	$\frac{0}{0.0150(1)}$	$\frac{0.0101(1)}{0.0101(1)}$	$\frac{0.33}{0.0145(1)}$	$\frac{0.023}{0.0012(1)}$	$\frac{U_{13}}{0.0012(1)}$	$\frac{0.0000}{0.0000}$
гu D(1)	0.0139(1) 0.0214(2)	0.0101(1)	0.0143(1)	0.0012(1)	0.0013(1)	0.0000(1)
r(1) S	0.0214(3) 0.0192(2)	0.0110(3)	0.0130(3)	-0.0007(2)	-0.0011(3)	-0.0003(2)
3 D(2)	0.0182(3) 0.0171(2)	0.0130(3)	0.0108(2)	-0.0024(3)	-0.0002(2)	0.0018(3)
P(2) = C(12)	0.01/1(3) 0.0216(12)	0.0114(3) 0.0125(10)	0.0184(3) 0.0245(12)	0.0019(2)	0.0030(3)	0.0002(2)
C(13)	0.0210(13)	0.0135(10)	0.0245(12)	-0.0018(9)	-0.0024(11)	-0.0022(10)
C(20)	0.0101(13)	0.0214(13)	0.0249(13)	0.0022(10)	0.0022(11)	0.0020(10)
C(19)	0.0470(12)	0.0109(7)	0.0471(11)	0.0023(7)	-0.0045(10)	-0.0007(8)
C(18)	0.0470(12)	0.0109(7)	0.0471(11)	0.0023(7)	-0.0045(10)	-0.0007(8)
C(17)	0.04/0(12)	0.0109(7)	0.04/1(11)	0.0023(7)	-0.0045(10)	-0.0007(8)
C(22)	0.0182(13)	0.0135(11)	0.0161(11)	0.0009(9)	-0.0018(10)	-0.0028(10)
C(21)	0.0198(12)	0.0115(12)	0.0133(11)	-0.0011(8)	0.0010(9)	0.0005(9)
C(23)	0.0168(13)	0.0146(11)	0.0223(12)	-0.0002(9)	0.0000(10)	0.0016(9)
C(24)	0.0157(13)	0.0193(12)	0.0173(12)	-0.0004(10)	0.0016(11)	0.0000(10)
C(25)	0.0191(14)	0.0196(13)	0.0230(13)	0.0025(10)	0.0029(11)	-0.0037(10)
C(26)	0.0227(15)	0.0110(11)	0.0240(13)	0.0027(10)	0.0004(11)	-0.0002(9)
C(27)	0.0197(12)	0.0311(16)	0.0332(13)	0.0014(12)	0.0060(10)	-0.0010(12)
C(28)	0.0190(13)	0.0311(15)	0.0318(15)	0.0036(12)	-0.0005(12)	0.0002(11)
C(29)	0.0224(14)	0.0245(13)	0.0326(15)	-0.0026(11)	0.0067(12)	0.0006(11)
C(31)	0.0336(16)	0.0188(12)	0.0248(14)	-0.0019(11)	-0.0106(12)	-0.0006(11)
C(32)	0.0302(15)	0.0152(12)	0.0198(12)	-0.0004(10)	0.0082(11)	0.0009(11)
C(33)	0.0264(16)	0.0293(14)	0.0444(17)	0.0019(14)	-0.0091(15)	-0.0057(11)
C(34)	0.0492(19)	0.0400(17)	0.0266(15)	0.0062(13)	-0.0174(14)	-0.0065(15)
C(35)	0.0426(18)	0.0209(14)	0.0391(16)	-0.0088(12)	0.0132(15)	0.0023(12)
C(36)	0.0233(14)	0.0256(14)	0.0422(17)	-0.0068(13)	0.0060(13)	0.0023(11)
C(41)	0.0215(13)	0.0172(11)	0.0243(13)	0.0049(9)	0.0030(11)	0.0029(10)
C(42)	0.0229(15)	0.0152(11)	0.0245(13)	-0.0024(10)	-0.0005(11)	-0.0015(10)
C(43)	0.0280(15)	0.0274(14)	0.0359(15)	0.0080(13)	-0.0108(14)	0.0011(12)
C(44)	0.0300(15)	0.0242(13)	0.0300(14)	0.0118(12)	0.0021(13)	0.0029(11)
C(45)	0.0347(16)	0.0151(12)	0.0331(15)	-0.0052(11)	0.0035(13)	0.0011(11)
C(46)	0.0262(15)	0.0169(13)	0.0413(16)	-0.0017(11)	0.0021(12)	-0.0057(11)
C(51)	0.0166(13)	0.0193(12)	0.0175(12)	-0.0058(9)	-0.0048(10)	0.0019(10)
C(52)	0.0247(14)	0.0211(12)	0.0202(12)	-0.0018(10)	-0.0036(11)	0.0022(11)
C(53)	0.0284(15)	0.0245(14)	0.0293(14)	-0.0038(11)	-0.0081(12)	0.0106(11)
C(54)	0.0176(14)	0.0330(15)	0.0320(14)	-0.0095(12)	-0.0008(12)	0.0027(11)
C(55)	0.0227(13)	0.0263(13)	0.0297(12)	-0.0057(12)	0.0015(10)	-0.0052(12)
C(56)	0.0231(13)	0.0213(14)	0.0205(11)	-0.0016(10)	-0.0014(10)	0.0007(11)
С	0.0185(13)	0.0123(11)	0.0148(11)	0.0026(9)	0.0009(10)	-0.0006(9)
C(14)	0.0149(12)	0.0137(10)	0.0267(12)	0.0015(9)	-0.0020(11)	-0.0007(10)
C(16)	0.0218(14)	0.0171(11)	0.0199(12)	0.0008(9)	-0.0002(10)	0.0021(10)
C(15)	0.0208(14)	0.0172(11)	0.0238(13)	0.0064(9)	-0.0019(11)	-0.0011(10)
C(11)	0.0137(13)	0.0136(11)	0.0205(12)	0.0033(9)	-0.0016(10)	-0.0012(9)
C(10)	0.0470(12)	0.0109(7)	0.0471(11)	0.0023(7)	-0.0045(10)	-0.0007(8)
O(7)	0.0299(12)	0.0331(11)	0.0371(11)	-0.0085(9)	0.0049(9)	0.0011(9)
C(12)	0.0153(12)	0.0135(10)	0.0216(12)	0.0007(9)	-0.0008(10)	-0.0009(10)
F(61)	0.0366(10)	0.0402(10)	0.0352(9)	-0.0018(8)	0.0174(8)	-0.0115(8)
O(61)	0.0252(10)	0.0259(9)	0.0206(9)	0.0057(7)	0.0049(8)	-0.0034(8)
F(62)	0.0379(11)	0.1066(17)	0.0205(8)	0.0057(10)	-0.0049(8)	-0.0171(11)
O(62)	0.0332(12)	0.0525(13)	0.0312(12)	0.0125(10)	-0.0111(9)	-0.0087(10)
F(63)	0.0781(13)	0.0265(10)	0.0592(11)	-0.0134(9)	0.0357(10)	-0.0056(10)
					Cont	inued on next page

Table S23. Anisotropic displacement parameters (Å²) for [{PC(sp³)(SPh)P}^{*i*Bu}PdOTf]·Et₂O (8·Et₂O). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2hka*b*U₁₂].

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(71)	0.0313(17)	0.0409(17)	0.0317(16)	-0.0080(13)	0.0010(14)	-0.0004(13)
C(72)	0.0328(17)	0.0271(15)	0.0352(16)	-0.0047(12)	0.0005(13)	0.0003(12)
C(73)	0.0314(17)	0.0420(17)	0.0378(16)	-0.0055(13)	0.0078(15)	0.0064(14)
C(74)	0.0438(19)	0.0420(19)	0.0428(19)	-0.0100(15)	0.0068(16)	-0.0029(15)
C(91)	0.0470(12)	0.0109(7)	0.0471(11)	0.0023(7)	-0.0045(10)	-0.0007(8)
C(93)	0.0470(12)	0.0109(7)	0.0471(11)	0.0023(7)	-0.0045(10)	-0.0007(8)
C(96)	0.0470(12)	0.0109(7)	0.0471(11)	0.0023(7)	-0.0045(10)	-0.0007(8)
O(63)	0.0549(15)	0.0152(9)	0.0535(14)	0.0003(9)	0.0244(12)	-0.0002(9)
C(6)	0.0277(16)	0.0285(15)	0.0225(13)	-0.0020(11)	0.0067(12)	-0.0086(12)
S(6)	0.0270(3)	0.0173(3)	0.0181(3)	0.0019(2)	0.0034(3)	-0.0010(2)

 Table S23. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd – C	2.051(2)	Pd - O(61)	2.1895(17)
Pd - P(1)	2.2745(6)	Pd - P(2)	2.3554(6)
P(1) - C(12)	1.804(2)	P(1) - C(31)	1.835(3)
P(1) - C(32)	1.835(3)	S - C(51)	1.776(3)
S-C	1.840(2)	P(2) - C(22)	1.817(2)
P(2) - C(42)	1.840(2)	P(2) - C(41)	1.845(2)
C(13) - C(14)	1.383(3)	C(13) - C(12)	1.400(3)
C(13) - H(13)	0.9500	C(20) - C(27)	1.520(4)
C(20) - C(28)	1.531(4)	C(20) - C(29)	1.534(4)
C(20) - C(24)	1.537(3)	C(19) - C(10)	1.512(7)
C(19) - H(19A)	0.9800	C(19) - H(19B)	0.9800
C(19) - H(19C)	0.9800	C(18) - C(10)	1.471(6)
C(18) - H(18A)	0.9800	C(18) - H(18B)	0.9800
C(18) - H(18C)	0.9800	C(17) - C(10)	1.558(6)
C(17) - H(17A)	0.9800	C(17) - H(17B)	0.9800
C(17) - H(17C)	0.9800	C(22) - C(23)	1.391(3)
C(22) - C(21)	1.401(3)	C(21) - C(26)	1.389(3)
C(21) - C	1.531(3)	C(23) - C(24)	1.389(3)
C(23) - H(23)	0.9500	C(24) - C(25)	1.384(3)
C(25) - C(26)	1.390(4)	C(25) - H(25)	0.9500
C(26) - H(26)	0.9500	C(27) - H(27A)	0.9800
C(27) - H(27B)	0.9800	C(27) - H(27C)	0.9800
C(28) - H(28A)	0.9800	C(28) - H(28B)	0.9800
C(28) - H(28C)	0.9800	C(29) - H(29A)	0.9800
C(29) - H(29B)	0.9800	C(29) - H(29C)	0.9800
C(31) - C(34)	1.520(4)	C(31) - C(33)	1.524(4)
C(31) - H(31)	1.0000	C(32) - C(36)	1.524(4)
C(32) - C(35)	1.529(3)	C(32) - H(32)	1.0000
C(33) - H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(34) - H(34A)	0.9800
C(34) - H(34B)	0.9800	C(34) - H(34C)	0.9800
C(35) - H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(41) - C(43)	1.522(4)	C(41) - C(44)	1.532(3)
C(41) - H(41)	1.0000	C(42) - C(45)	1.530(3)
C(42) - C(46)	1.534(4)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(51) - C(56)	1.386(3)	C(51) - C(52)	1.386(3)
C(52) - C(53)	1.388(4)	C(52) - H(52)	0.9500
C(53) - C(54)	1.375(4)	C(53) - H(53)	0.9500
C(54) - C(55)	1.384(4)	C(54) - H(54)	0.9500
C(55) - C(56)	1.383(3)	C(55) - H(55)	0.9500
C(56) - H(56)	0.9500	C - C(11)	1.526(3)
C(14) - C(15)	1.389(3)	C(14) - C(10)	1.533(3)
			Continued on next page

Table S24. Distances [Å] for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf] \cdot Et_2O$ (8·Et₂O).

		C	•	
Table S24.	 – continued 	from	previous	page

atom – atom	distance	atom – atom	distance
C(16) - C(15)	1.381(3)	C(16) - C(11)	1.401(3)
C(16) - H(16)	0.9500	C(15) - H(15)	0.9500
C(11) - C(12)	1.381(3)	C(10) - C(91)	1.500(7)
C(10) - C(93)	1.509(7)	C(10) - C(96)	1.553(7)
O(7) - C(72)	1.408(3)	O(7) - C(73)	1.415(3)
F(61) - C(6)	1.324(3)	O(61) - S(6)	1.4603(18)
F(62) - C(6)	1.318(3)	O(62) - S(6)	1.420(2)
F(63) - C(6)	1.321(3)	C(71) - C(72)	1.502(4)
C(71) - H(71A)	0.9800	C(71) - H(71B)	0.9800
C(71) - H(71C)	0.9800	C(72) - H(72A)	0.9900
C(72) - H(72B)	0.9900	C(73) - C(74)	1.495(4)
C(73) - H(73A)	0.9900	C(73) - H(73B)	0.9900
C(74) - H(74A)	0.9800	C(74) - H(74B)	0.9800
C(74) - H(74C)	0.9800	C(91) - H(91A)	0.9800
C(91) - H(91B)	0.9800	C(91) - H(91C)	0.9800
C(93) – H(93A)	0.9800	C(93) - H(93B)	0.9800
C(93) – H(93C)	0.9800	C(96) - H(96A)	0.9800
C(96) – H(96B)	0.9800	C(96) – H(96C)	0.9800
O(63) – S(6)	1.424(2)	C(6) - S(6)	1.818(3)

Table S25. Angles [°] for $[{PC(sp^3)(SPh)P}^{tBu}PdOTf] \cdot Et_2O(8 \cdot Et_2O).$

atom – atom – atom	angle	atom – atom – atom	angle
C - Pd - O(61)	176.11(8)	C - Pd - P(1)	85.28(6)
O(61) - Pd - P(1)	95.34(5)	C - Pd - P(2)	84.26(6)
O(61) - Pd - P(2)	96.68(5)	P(1) - Pd - P(2)	154.14(2)
C(12) - P(1) - C(31)	105.69(12)	C(12) - P(1) - C(32)	109.35(11)
C(31) - P(1) - C(32)	105.39(12)	C(12) - P(1) - Pd	102.82(7)
C(31) - P(1) - Pd	113.42(9)	C(32) - P(1) - Pd	119.38(8)
C(51) - S - C	104.33(11)	C(22) - P(2) - C(42)	105.62(11)
C(22) - P(2) - C(41)	103.25(11)	C(42) - P(2) - C(41)	107.31(11)
C(22) - P(2) - Pd	95.43(8)	C(42) - P(2) - Pd	124.87(8)
C(41) - P(2) - Pd	116.56(8)	C(14) - C(13) - C(12)	121.9(2)
C(14) - C(13) - H(13)	119.1	C(12) - C(13) - H(13)	119.1
C(27) - C(20) - C(28)	109.0(2)	C(27) - C(20) - C(29)	108.8(2)
C(28) - C(20) - C(29)	109.6(2)	C(27) - C(20) - C(24)	111.8(2)
C(28) - C(20) - C(24)	108.0(2)	C(29) - C(20) - C(24)	109.7(2)
C(10) - C(19) - H(19A)	109.5	C(10) - C(19) - H(19B)	109.5
H(19A) - C(19) - H(19B)	109.5	C(10) - C(19) - H(19C)	109.5
H(19A) - C(19) - H(19C)	109.5	H(19B) - C(19) - H(19C)	109.5
C(10) - C(18) - H(18A)	109.5	C(10) - C(18) - H(18B)	109.5
H(18A) - C(18) - H(18B)	109.5	C(10) - C(18) - H(18C)	109.5
H(18A) - C(18) - H(18C)	109.5	H(18B) - C(18) - H(18C)	109.5
C(10) - C(17) - H(17A)	109.5	C(10) - C(17) - H(17B)	109.5
H(17A) - C(17) - H(17B)	109.5	C(10) - C(17) - H(17C)	109.5
H(17A) - C(17) - H(17C)	109.5	H(17B) - C(17) - H(17C)	109.5
C(23) - C(22) - C(21)	120.0(2)	C(23) - C(22) - P(2)	123.43(18)
C(21) - C(22) - P(2)	116.06(18)	C(26) - C(21) - C(22)	118.0(2)
C(26) - C(21) - C	123.2(2)	C(22) - C(21) - C	118.9(2)
C(24) - C(23) - C(22)	122.1(2)	C(24) - C(23) - H(23)	119.0
C(22) - C(23) - H(23)	119.0	C(25) - C(24) - C(23)	117.4(2)
C(25) - C(24) - C(20)	123.1(2)	C(23) - C(24) - C(20)	119.3(2)
C(24) - C(25) - C(26)	121.3(2)	C(24) - C(25) - H(25)	119.3
C(26) - C(25) - H(25)	119.3	C(21) - C(26) - C(25)	121.2(2)
C(21) - C(26) - H(26)	119.4	C(25) - C(26) - H(26)	119.4
C(20) - C(27) - H(27A)	109.5	C(20) - C(27) - H(27B)	109.5
H(27A) - C(27) - H(27B)	109.5	C(20) - C(27) - H(27C)	109.5
H(27A) - C(27) - H(27C)	109.5	H(27B) - C(27) - H(27C)	109.5
C(20) - C(28) - H(28A)	109.5	C(20) - C(28) - H(28B)	109.5
H(28A) - C(28) - H(28B)	109.5	C(20) - C(28) - H(28C)	109.5
H(28A) - C(28) - H(28C)	109.5	H(28B) - C(28) - H(28C)	109.5
C(20) - C(29) - H(29A)	109.5	C(20) - C(29) - H(29B)	109.5
H(29A) - C(29) - H(29B)	109.5	C(20) - C(29) - H(29C)	109.5
H(29A) - C(29) - H(29C)	109.5	H(29B) - C(29) - H(29C)	109.5
C(34) - C(31) - C(33)	111.4(2)	C(34) - C(31) - P(1)	111.2(2)
C(33) - C(31) - P(1)	109.89(19)	C(34) - C(31) - H(31)	108.1
C(33) - C(31) - H(31)	108.1	P(1) - C(31) - H(31)	108.1
C(36) - C(32) - C(35)	111.4(2)	C(36) - C(32) - P(1)	109.88(17)
C(35) - C(32) - P(1)	115.84(19)	C(36) - C(32) - H(32)	106.4
C(35) - C(32) - H(32)	106.4	P(1) - C(32) - H(32)	106.4
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
			Continued on next page

Table S25. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(43) - C(41) - C(44)	111.0(2)	C(43) - C(41) - P(2)	109.30(16)
C(44) - C(41) - P(2)	112.74(17)	C(43) - C(41) - H(41)	107.9
C(44) - C(41) - H(41)	107.9	P(2) - C(41) - H(41)	107.9
C(45) - C(42) - C(46)	112.5(2)	C(45) - C(42) - P(2)	113.73(18)
C(46) - C(42) - P(2)	112.75(18)	C(45) - C(42) - H(42)	105.7
C(46) - C(42) - H(42)	105.7	P(2) - C(42) - H(42)	105.7
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(56) - C(51) - C(52)	119.7(2)	C(56) - C(51) - S	119.41(19)
C(52) - C(51) - S	120.8(2)	C(51) - C(52) - C(53)	119.6(2)
C(51) - C(52) - H(52)	120.2	C(53) - C(52) - H(52)	120.2
C(54) - C(53) - C(52)	120.3(2)	C(54) - C(53) - H(53)	119.8
C(52) - C(53) - H(53)	119.8	C(53) - C(54) - C(55)	120.3(2)
C(53) - C(54) - H(54)	119.8	C(55) - C(54) - H(54)	119.8
C(56) - C(55) - C(54)	119.5(3)	C(56) - C(55) - H(55)	120.2
C(54) - C(55) - H(55)	120.2	C(55) - C(56) - C(51)	120.5(3)
C(55) - C(56) - H(56)	119.8	C(51) - C(56) - H(56)	119.8
C(11) - C - C(21)	113.81(19)	C(11) - C - S	108.65(16)
C(21) - C - S	104.00(15)	C(11) - C - Pd	115.27(16)
C(21) - C - Pd	108.22(15)	S-C-Pd	106.03(11)
C(13) - C(14) - C(15)	116.9(2)	C(13) - C(14) - C(10)	121.6(2)
C(15) - C(14) - C(10)	121.4(2)	C(15) - C(16) - C(11)	120.8(2)
C(15) - C(16) - H(16)	119.6	C(11) - C(16) - H(16)	119.6
C(16) - C(15) - C(14)	121.9(2)	C(16) - C(15) - H(15)	119.0
C(14) - C(15) - H(15)	119.0	C(12) - C(11) - C(16)	117.7(2)
C(12) - C(11) - C	120.9(2)	C(16) - C(11) - C	121.3(2)
C(12) = C(10) - C(91)	68.7(4)	C(18) - C(10) - C(93)	134.9(3)
C(91) - C(10) - C(93)	112.5(4)	C(18) - C(10) - C(19)	110.0(4)
C(91) - C(10) - C(19)	142.3(4)	C(18) - C(10) - C(14)	111.2(3)
C(91) - C(10) - C(14)	107.7(3)	C(93) - C(10) - C(14)	110.8(3)
C(19) - C(10) - C(14)	107.5(3)	C(91) - C(10) - C(96)	107.5(4)
C(93) - C(10) - C(96)	106.6(4)	C(19) - C(10) - C(96)	71.1(4)
× / × / -× -/	~ /		Continued on next page

Table S25. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(14) - C(10) - C(96)	111.7(3)	C(18) - C(10) - C(17)	108.6(4)
C(91) - C(10) - C(17)	45.2(3)	C(93) - C(10) - C(17)	69.6(4)
C(19) - C(10) - C(17)	107.9(4)	C(14) - C(10) - C(17)	111.6(3)
C(96) - C(10) - C(17)	134.6(3)	C(72) - O(7) - C(73)	110.9(2)
C(11) - C(12) - C(13)	120.5(2)	C(11) - C(12) - P(1)	114.35(16)
C(13) - C(12) - P(1)	125.15(19)	S(6) - O(61) - Pd	128.95(11)
C(72) - C(71) - H(71A)	109.5	C(72) - C(71) - H(71B)	109.5
H(71A) - C(71) - H(71B)	109.5	C(72) - C(71) - H(71C)	109.5
H(71A) - C(71) - H(71C)	109.5	H(71B) - C(71) - H(71C)	109.5
O(7) - C(72) - C(71)	110.1(2)	O(7) - C(72) - H(72A)	109.6
C(71) - C(72) - H(72A)	109.6	O(7) - C(72) - H(72B)	109.6
C(71) - C(72) - H(72B)	109.6	H(72A) - C(72) - H(72B)	108.2
O(7) - C(73) - C(74)	109.7(2)	O(7) - C(73) - H(73A)	109.7
C(74) - C(73) - H(73A)	109.7	O(7) - C(73) - H(73B)	109.7
C(74) - C(73) - H(73B)	109.7	H(73A) - C(73) - H(73B)	108.2
C(73) - C(74) - H(74A)	109.5	C(73) - C(74) - H(74B)	109.5
H(74A) - C(74) - H(74B)	109.5	C(73) - C(74) - H(74C)	109.5
H(74A) - C(74) - H(74C)	109.5	H(74B) - C(74) - H(74C)	109.5
C(10) - C(91) - H(91A)	109.5	C(10) - C(91) - H(91B)	109.5
C(10) - C(91) - H(91C)	109.5	C(10) - C(93) - H(93A)	109.5
C(10) - C(93) - H(93B)	109.5	C(10) - C(93) - H(93C)	109.5
C(10) - C(96) - H(96A)	109.5	C(10) - C(96) - H(96B)	109.5
C(10) - C(96) - H(96C)	109.5	F(62) - C(6) - F(63)	108.0(2)
F(62) - C(6) - F(61)	108.0(2)	F(63) - C(6) - F(61)	107.5(2)
F(62) - C(6) - S(6)	111.30(19)	F(63) - C(6) - S(6)	110.91(19)
F(61) - C(6) - S(6)	110.95(18)	O(62) - S(6) - O(63)	116.10(14)
O(62) - S(6) - O(61)	114.79(11)	O(63) - S(6) - O(61)	114.14(12)
O(62) - S(6) - C(6)	105.01(13)	O(63) - S(6) - C(6)	103.55(13)
O(61) - S(6) - C(6)	100.71(12)		

5.5 Crystal data for $[{PC(sp^3)(SPh)P}^{tBu}PdSPh] \cdot C_5H_{12} (9 \cdot C_5H_{12})$

Figure S48. Thermal-ellipsoid representation of $[{PC(sp^3)(SPh)P}^{tBu}PdSPh] \cdot C_5H_{12}$ (9 $\cdot C_5H_{12}$) at 50% probability. Hydrogen atoms and the solvent were omitted for clarity.

Identification code:	pc36	
Empirical formula:	$C_{50}H_{74}P_2PdS_2$	
Formula weight:	907.55	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/n$	
Unit cell dimensions:	a = 11.297(3) Å	$\alpha = 90^{\circ}$
	b = 11.590(3) Å	$\beta = 92.926(4)^{\circ}$
	c = 36.768(10) Å	$\gamma = 90^{\circ}$
Volume:	4808(2) Å ³	
Z:	4	
Density (calculated):	$1.254 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	0.571 mm^{-1}	
F(000):	1928	
Crystal size:	$0.18 \times 0.13 \times 0.05 \text{ mm}^3$	
θ range for data collection:	1.84 to 28.81°	
Index ranges:	$-15 \le h \le 15, -15 \le k \le 15, -49 \le l \le 49$	
Reflections collected:	111329	
Independent reflections:	12309 [$R_{int} = 0.0632$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.9737 and 0.9052	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	12309 / 0 / 507	
Goodness-of-fit on F ² :	1.055	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0392, wR_2 = 0.0754$	
R indices (all data):	$R_1 = 0.0557, wR_2 = 0.0807$	
Largest diff. peak and hole:	1.121 and $-0.773 \text{ e}^{-1} \text{Å}^{-3}$	

 $\textbf{Table S26. Crystal data and structure refinement for [{PC(sp^3)(SPh)P}^{tBu}PdSPh] \cdot C_5H_{12} (\textbf{9} \cdot \textbf{C}_5\textbf{H}_{12}).$

Table S27. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[{PC(sp^3)(SPh)P}'^{Bu}PdSPh] \cdot C_5H_{12}$ (9·C₅H₁₂). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	у	Z	U(eq)
Pd	0.66755(1)	0.33226(1)	0.65633(1)	0.013(1)
P(1)	0.60311(5)	0.17718(5)	0.62339(2)	0.015(1)
P(2)	0.67856(5)	0.50065(5)	0.69169(2)	0.015(1)
S(2)	0.62991(5)	0.51062(5)	0.60039(2)	0.018(1)
S(1)	0.80739(5)	0.21561(5)	0.69109(2)	0.020(1)
С	0.52947(18)	0.42195(18)	0.62720(6)	0.014(1)
C(81)	0.2603(14)	0.1856(13)	0.4810(4)	0.038(1)
C(82)	0.2746(14)	0.0154(13)	0.5212(4)	0.038(1)
C(83)	0.1085(14)	0.1602(14)	0.5274(4)	0.038(1)
C(11)	0.45293(18)	0.34964(18)	0.60063(6)	0.015(1)
C(13)	0.41212(19)	0.1660(2)	0.56986(6)	0.019(1)
C(12)	0.47787(19)	0.23220(19)	0.59562(6)	0.015(1)
C(14)	0.3179(2)	0.2125(2)	0.54849(6)	0.020(1)
C(15)	0.2953(2)	0.3298(2)	0.55301(6)	0.020(1)
C(16)	0.36096(19)	0.39710(19)	0.57800(6)	0.018(1)
C(20)	0.3832(2)	0.8244(2)	0.74525(7)	0.026(1)
C(17)	0.2437(3)	0.1355(3)	0.52208(8)	0.038(1)
C(21)	0.46384(18)	0.49475(19)	0.65410(6)	0.015(1)
C(22)	0.52960(18)	0.55551(19)	0.68147(6)	0.015(1)
C(23)	0.47674(19)	0.63820(18)	0.70291(6)	0.015(1)
C(24)	0.35476(19)	0.6583(2)	0.70017(6)	0.017(1)
C(25)	0.28803(19)	0.5872(2)	0.67633(6)	0.020(1)
C(26)	0.34027(19)	0.5081(2)	0.65364(6)	0.019(1)
C(27)	0.2936(2)	0.7492(2)	0.72323(6)	0.019(1)
C(29)	0.2145(2)	0.6876(2)	0.74974(7)	0.027(1)
C(28)	0.2175(2)	0.8283(2)	0.69814(7)	0.026(1)
C(18)	0.1847(3)	0.0398(3)	0.54402(10)	0.038(1)
C(19)	0.1480(3)	0.2012(3)	0.50109(11)	0.038(1)
C(10)	0.3250(3)	0.0780(3)	0.49550(10)	0.038(1)
C(31)	0.6946(2)	0.1043(2)	0.59014(6)	0.020(1)
C(34)	0.7847(2)	0.0192(2)	0.60713(7)	0.029(1)
C(33)	0.7547(2)	0.1963(2)	0.56757(7)	0.026(1)
C(32)	0.5481(2)	0.06348(19)	0.65326(6)	0.019(1)
C(36)	0.4858(2)	-0.0380(2)	0.63387(7)	0.028(1)
C(35)	0.4699(2)	0.1179(2)	0.68125(7)	0.024(1)
C(46)	0.7487(3)	0.7200(2)	0.66445(8)	0.031(1)
C(45)	0.9093(2)	0.5803(3)	0.68443(10)	0.043(1)
C(44)	0.7940(2)	0.4445(2)	0.75947(7)	0.031(1)
C(43)	0.5836(2)	0.3770(2)	0.74820(7)	0.027(1)
C(42)	0.7846(2)	0.6240(2)	0.69101(7)	0.023(1)
C(41)	0.6728(2)	0.4724(2)	0.74121(6)	0.020(1)
C(51)	0.94000(19)	0.2148(2)	0.66798(6)	0.018(1)
C(52)	0.9666(2)	0.2989(2)	0.64256(7)	0.022(1)
C(53)	1.0734(2)	0.2963(2)	0.62527(8)	0.030(1)
C(54)	1.1551(2)	0.2096(3)	0.63303(8)	0.031(1)
C(55)	1.1294(2)	0.1251(2)	0.65777(7)	0.029(1)
C(61)	0.5376(2)	0.6066(2)	0.57342(7)	0.021(1)
C(62)	0.4662(2)	0.6888(2)	0.58922(7)	0.025(1)
			Conti	nued on next page

m 11			C	•	
Table	SZ1	confinued	from	previous	nage
Invit		commuca	110111	previous	puge

atom	X	y	X	U(eq)
C(63)	0.3918(2)	0.7582(2)	0.56731(8)	0.031(1)
C(64)	0.3908(3)	0.7490(2)	0.52976(8)	0.036(1)
C(65)	0.4652(3)	0.6715(3)	0.51387(8)	0.038(1)
C(66)	0.5379(2)	0.5993(2)	0.53561(7)	0.030(1)
C(71)	1.0305(5)	0.7891(5)	0.59853(14)	0.093(2)
C(72)	1.0855(4)	0.6757(6)	0.59781(14)	0.097(2)
C(73)	1.0469(4)	0.6008(4)	0.56676(15)	0.081(2)
C(74)	0.9260(4)	0.5569(4)	0.56704(12)	0.070(1)
C(75)	0.8881(4)	0.4721(4)	0.53574(14)	0.087(2)
C(56)	1.0231(2)	0.1271(2)	0.67515(7)	0.023(1)
H(81A)	0.2132	0 1391	0.4633	0.057
H(81R)	0.3441	0.1816	0.4754	0.057
H(81C)	0.2335	0.2660	0.4797	0.057
$H(82\Delta)$	0.2204	-0.0250	0.5038	0.046
H(82R)	0.2204	-0.0180	0.5455	0.046
H(82C)	0.2005	0.0073	0.5435	0.046
H(83A)	0.0034	0.2432	0.5251	0.057
H(03A) H(03B)	0.0934	0.1341	0.5251	0.057
$\Pi(03D)$	0.0679	0.1341	0.5510	0.057
H(03C)	0.0002	0.0871	0.5000	0.037
П(15)	0.4322	0.0871	0.5008	0.023
H(15)	0.2331	0.3649	0.5386	0.024
H(16)	0.3434	0.4770	0.5799	0.021
H(20A)	0.4356	0.8630	0.7286	0.039
H(20B)	0.4305	0.7758	0.7623	0.039
H(20C)	0.3407	0.8826	0.7589	0.039
H(23)	0.5249	0.6819	0.7198	0.019
H(25)	0.2041	0.5931	0.6756	0.024
H(26)	0.2915	0.4623	0.6375	0.022
H(29A)	0.1541	0.6424	0.7360	0.040
H(29B)	0.1757	0.7448	0.7647	0.040
H(29C)	0.2630	0.6361	0.7655	0.040
H(28A)	0.2678	0.8659	0.6807	0.039
H(28B)	0.1796	0.8871	0.7128	0.039
H(28C)	0.1565	0.7824	0.6849	0.039
H(18A)	0.1391	-0.0112	0.5273	0.057
H(18B)	0.1315	0.0749	0.5611	0.057
H(18C)	0.2459	-0.0049	0.5575	0.057
H(19A)	0.1839	0.2630	0.4871	0.057
H(19B)	0.0935	0.2348	0.5181	0.057
H(19C)	0.1043	0.1487	0.4844	0.057
H(10A)	0.2786	0.0250	0.4796	0.057
H(10B)	0.3873	0.0349	0.5092	0.057
H(10C)	0.3613	0.1372	0.4806	0.057
H(31)	0.6398	0.0597	0.5732	0.024
H(34A)	0.8293	-0.0165	0.5879	0.043
H(34B)	0.7431	-0.0408	0.6203	0.043
H(34C)	0.8395	0.0602	0.6241	0.043
H(33A)	0.7952	0.1591	0.5478	0.039
H(33B)	0.8124	0.2388	0.5832	0.039
H(33C)	0.6947	0.2499	0.5573	0.039
H(32)	0.6189	0.0311	0.6671	0.022
				Continued on next page

atom	X	у	X	U(eq)
H(36A)	0.4077	-0.0133	0.6240	0.043
H(36B)	0.4765	-0.1011	0.6512	0.043
H(36C)	0.5335	-0.0645	0.6140	0.043
H(35A)	0.4009	0.1542	0.6687	0.035
H(35B)	0.5154	0.1763	0.6952	0.035
H(35C)	0.4432	0.0581	0.6978	0.035
H(46A)	0.7457	0.6898	0.6395	0.047
H(46B)	0.8070	0.7826	0.6666	0.047
H(46C)	0.6705	0.7496	0.6701	0.047
H(45A)	0.9133	0.5561	0.6590	0.064
H(45B)	0.9279	0.5145	0.7005	0.064
H(45C)	0.9668	0.6422	0.6896	0.064
H(44A)	0.8276	0.3771	0.7477	0.046
H(44B)	0.7850	0.4278	0.7853	0.046
H(44C)	0.8470	0.5107	0.7571	0.046
H(43A)	0.5077	0.3951	0.7354	0.041
H(43B)	0.5725	0.3713	0.7744	0.041
H(43C)	0.6135	0.3034	0.7393	0.041
H(42)	0.7877	0.6587	0.7159	0.028
H(41)	0.6436	0.5444	0.7528	0.024
H(52)	0.9112	0.3587	0.6370	0.026
H(53)	1.0902	0.3544	0.6080	0.036
H(54)	1.2283	0.2084	0.6214	0.037
H(55)	1.1849	0.0650	0.6630	0.034
H(62)	0.4684	0.6974	0.6149	0.030
H(63)	0.3412	0.8122	0.5782	0.038
H(64)	0.3391	0.7961	0.5150	0.043
H(65)	0.4669	0.6672	0.4881	0.046
H(66)	0.5878	0.5450	0.5246	0.036
H(71A)	1.0488	0.8318	0.5765	0.139
H(71B)	1.0612	0.8314	0.6201	0.139
H(71C)	0.9444	0.7804	0.5995	0.139
H(72A)	1.0689	0.6351	0.6207	0.116
H(72B)	1.1724	0.6862	0.5975	0.116
H(73A)	1.0550	0.6448	0.5440	0.097
H(73B)	1.1015	0.5342	0.5662	0.097
H(74A)	0.8711	0.6235	0.5660	0.084
H(74B)	0.9163	0.5173	0.5905	0.084
H(75A)	0.8951	0.5106	0.5122	0.130
H(75B)	0.8056	0.4484	0.5383	0.130
H(75C)	0.9395	0.4040	0.5370	0.130
H(56)	1.0066	0.0682	0.6921	0.027

 Table S27. – continued from previous page

atom	U ₁₁	Um	Um Um	U22	U ₁₂ .	U12
Pd	0.0116(1)	0.0139(1)	$\frac{0.0123(1)}{0.0123(1)}$	-0.0006(1)	-0.0019(1)	$\frac{0.021}{0.0021(1)}$
P(1)	0.0163(3)	0.0136(3)	0.0123(1) 0.0134(3)	-0.0018(2)	-0.0019(1)	0.0021(1) 0.0028(2)
P(2)	0.0103(3)	0.0150(3)	0.015+(3)	-0.0010(2)	-0.0017(2)	0.0020(2)
S(2)	0.0124(2)	0.0137(3)	0.0133(3)	0.0023(2)	0.0001(2)	0.0012(2)
S(1)	0.0179(3)	0.0105(3) 0.0251(3)	0.0178(3)	0.0014(2) 0.0055(2)	-0.0003(2)	0.0001(2) 0.0059(2)
C C	0.0130(10)	0.0231(3) 0.0146(10)	0.0170(3) 0.0147(11)	0.0003(2) 0.0002(8)	-0.0020(8)	0.0009(2) 0.0008(8)
C(81)	0.0439(10)	0.0323(9)	0.0364(10)	-0.0104(7)	-0.0165(8)	-0.0039(7)
C(82)	0.0439(10)	0.0323(9)	0.0364(10)	-0.0104(7)	-0.0165(8)	-0.0039(7)
C(83)	0.0439(10)	0.0323(9)	0.0364(10)	-0.0104(7)	-0.0165(8)	-0.0039(7)
C(11)	0.0146(10)	0.0162(11)	0.0135(10)	-0.0007(8)	-0.0009(8)	0.0003(8)
C(13)	0.0220(11)	0.0171(10)	0.0168(11)	-0.0033(9)	-0.0029(8)	0.0019(9)
C(12)	0.0161(10)	0.0159(10)	0.0143(11)	-0.0002(8)	0.0001(8)	0.0027(8)
C(14)	0.0230(11)	0.0217(11)	0.0141(11)	-0.0034(9)	-0.0034(9)	0.0004(9)
C(15)	0.0207(11)	0.0223(11)	0.0164(11)	0.0013(10)	-0.0053(8)	0.0038(10)
C(16)	0.0184(10)	0.0165(11)	0.0172(11)	-0.0003(9)	-0.0022(9)	0.0037(8)
C(20)	0.0274(12)	0.0241(12)	0.0264(13)	-0.0080(11)	0.0016(10)	0.0064(10)
C(17)	0.0439(10)	0.0323(9)	0.0364(10)	-0.0104(7)	-0.0165(8)	-0.0039(7)
C(21)	0.0160(10)	0.0141(10)	0.0135(10)	0.0007(8)	-0.0022(8)	0.0022(8)
C(22)	0.0119(9)	0.0161(10)	0.0161(11)	0.0006(8)	-0.0016(8)	0.0005(8)
C(23)	0.0163(10)	0.0156(10)	0.0143(11)	-0.0012(8)	-0.0018(8)	0.0004(8)
C(24)	0.0178(10)	0.0180(11)	0.0152(10)	0.0010(9)	0.0003(8)	0.0038(9)
C(25)	0.0126(10)	0.0254(12)	0.0211(12)	-0.0019(10)	-0.0008(9)	0.0028(9)
C(26)	0.0154(10)	0.0223(11)	0.0175(11)	-0.0034(9)	-0.0034(8)	-0.0004(9)
C(27)	0.0186(11)	0.0210(11)	0.0174(12)	-0.0002(9)	0.0017(9)	0.0053(9)
C(29)	0.0288(13)	0.0277(14)	0.0250(13)	0.0010(10)	0.0073(10)	0.0037(10)
C(28)	0.0229(11)	0.0250(12)	0.0298(13)	0.0011(11)	0.0032(10)	0.0076(10)
C(18)	0.0439(10)	0.0323(9)	0.0364(10)	-0.0104(7)	-0.0165(8)	-0.0039(7)
C(19)	0.0439(10)	0.0323(9)	0.0364(10)	-0.0104(7)	-0.0165(8)	-0.0039(7)
C(10)	0.0439(10)	0.0323(9)	0.0364(10)	-0.0104(7)	-0.0165(8)	-0.0039(7)
C(31)	0.0204(11)	0.0221(12)	0.0163(11)	-0.0067(9)	-0.0004(9)	0.0047(9)
C(34)	0.0282(13)	0.0286(14)	0.0283(14)	-0.0065(11)	-0.0031(11)	0.0124(11)
C(33)	0.0274(13)	0.0322(14)	0.0199(13)	-0.0034(10)	0.0062(10)	0.0021(10)
C(32)	0.0199(11)	0.0173(11)	0.0187(12)	0.0017(9)	-0.0011(9)	0.0022(9)
C(36)	0.0374(14)	0.0205(12)	0.0271(14)	0.0002(10)	-0.0005(11)	-0.0063(11)
C(35)	0.0229(12)	0.0268(13)	0.0214(13)	0.0014(10)	0.0032(10)	-0.0026(10)
C(46)	0.0360(15)	0.0251(13)	0.0329(15)	0.0000(11)	-0.0017(12)	-0.0110(11)
C(45)	0.0183(13)	0.0355(16)	0.075(2)	-0.0116(16)	0.0072(14)	-0.0071(11)
C(44)	0.0313(14)	0.0332(14)	0.0255(14)	-0.0043(11)	-0.0148(11)	0.0060(11)
C(43)	0.0327(14)	0.0314(13)	0.0173(12)	0.0033(10)	0.0007(10)	0.0014(11)
C(42)	0.0176(11)	0.0222(12)	0.0302(14)	-0.0051(10)	-0.0006(10)	-0.0040(9)
C(41)	0.0244(12)	0.0227(12)	0.0136(11)	-0.0042(9)	-0.0038(9)	0.0043(9)
C(51)	0.0160(10)	0.0198(11)	0.0169(11)	-0.0026(9)	-0.0039(8)	0.0007(9)
C(52)	0.0187(11)	0.0227(12)	0.0246(13)	0.0030(9)	-0.0013(9)	0.0015(9)
C(53)	0.0249(13)	0.0365(15)	0.0295(14)	0.0086(11)	0.0046(11)	-0.0001(11)
C(54)	0.0164(11)	0.0463(16)	0.0306(15)	0.0018(12)	0.0054(10)	0.0031(11)
C(55)	0.0219(12)	0.0344(14)	0.0293(14)	-0.0010(11)	-0.0001(10)	0.0106(10)
C(61)	0.0226(11)	0.0197(12)	0.0209(12)	0.0039(9)	-0.0012(9)	-0.0022(9)
C(62)	0.0326(13)	0.0184(12)	0.0236(13)	0.0002(9)	-0.0047(10)	0.0002(10)
C(63)	0.0352(15)	0.0206(12)	0.0377(16)	0.0000(11)	-0.0049(12)	0.0045(11)
					Cont	inued on next page

Table S28. Anisotropic displacement parameters (Å²) for [{PC(sp³)(SPh)P}^{/Bu}PdSPh]·C₅H₁₂ (**9**·C₅H₁₂). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U₁₁ + ... + 2hka*b*U₁₂].

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(64)	0.0415(16)	0.0302(14)	0.0338(16)	0.0094(12)	-0.0115(13)	0.0042(12)
C(65)	0.0478(17)	0.0445(17)	0.0216(14)	0.0097(13)	-0.0020(12)	0.0039(15)
C(66)	0.0323(14)	0.0358(15)	0.0225(14)	0.0047(11)	0.0028(11)	0.0044(12)
C(71)	0.092(4)	0.114(5)	0.069(3)	0.015(3)	-0.016(3)	-0.004(3)
C(72)	0.043(2)	0.174(6)	0.073(3)	0.052(4)	0.004(2)	0.011(3)
C(73)	0.060(3)	0.083(3)	0.101(4)	0.040(3)	0.022(3)	0.014(2)
C(74)	0.060(2)	0.085(3)	0.065(3)	0.024(2)	0.009(2)	0.029(2)
C(75)	0.103(4)	0.051(2)	0.114(4)	0.023(3)	0.074(3)	0.018(2)
C(56)	0.0211(11)	0.0247(12)	0.0223(12)	0.0038(10)	-0.0006(9)	0.0048(9)

Table S28. – continued from previous page

atom – atom	distance	atom – atom	distance
Pd – C	2.119(2)	Pd - P(1)	2.2666(7)
Pd - P(2)	2.3449(8)	Pd - S(1)	2.3980(7)
P(1) - C(12)	1.818(2)	P(1) - C(32)	1.844(2)
P(1) - C(31)	1.846(2)	P(2) - C(22)	1.820(2)
P(2) - C(41)	1.854(2)	P(2) - C(42)	1.866(2)
S(2) - C(61)	1.789(2)	S(2) - C	1.852(2)
S(1) - C(51)	1.760(2)	C - C(21)	1.521(3)
C - C(11)	1.523(3)	C(81) - C(17)	1.638(16)
C(81) - H(81A)	0.9800	C(81) - H(81B)	0.9800
C(81) - H(81C)	0.9800	C(82) - C(17)	1.436(15)
C(82) - H(82A)	0.9800	C(82) - H(82B)	0.9800
C(82) - H(82C)	0.9800	C(83) - C(17)	1.575(16)
C(83) - H(83A)	0.9800	C(83) - H(83B)	0.9800
C(83) - H(83C)	0.9800	C(11) - C(12)	1.404(3)
C(11) - C(16)	1.409(3)	C(13) - C(14)	1.399(3)
C(13) - C(12)	1.402(3)	C(13) - H(13)	0.9500
C(14) - C(15)	1.395(3)	C(14) - C(17)	1.536(3)
C(15) - C(16)	1.390(3)	C(15) - H(15)	0.9500
C(16) - H(16)	0.9500	C(20) - C(27)	1.536(3)
C(20) - H(20A)	0.9800	C(20) - H(20B)	0.9800
C(20) - H(20C)	0.9800	C(17) - C(19)	1.503(5)
C(17) - C(10)	1.528(5)	C(17) - C(18)	1.543(5)
C(21) - C(26)	1.404(3)	C(21) - C(22)	1.409(3)
C(22) - C(23)	1.395(3)	C(23) - C(24)	1.396(3)
C(23) - H(23)	0.9500	C(24) - C(25)	1.396(3)
C(24) - C(27)	1.538(3)	C(25) - C(26)	1.391(3)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(27) - C(29)	1.532(3)	C(27) - C(28)	1.532(3)
C(29) - H(29A)	0.9800	C(29) - H(29B)	0.9800
C(29) - H(29C)	0.9800	C(28) - H(28A)	0.9800
C(28) - H(28B)	0.9800	C(28) - H(28C)	0.9800
C(18) - H(18A)	0.9800	C(18) - H(18B)	0.9800
C(18) - H(18C)	0.9800	C(19) - H(19A)	0.9800
C(19) - H(19B)	0.9800	C(19) - H(19C)	0.9800
C(10) - H(10A)	0.9800	C(10) - H(10B)	0.9800
C(10) - H(10C)	0.9800	C(31) - C(34)	1.528(3)
C(31) - C(33)	1.531(3)	C(31) - H(31)	1.0000
C(34) - H(34A)	0.9800	C(34) - H(34B)	0.9800
C(34) - H(34C)	0.9800	C(33) - H(33A)	0.9800
C(33) - H(33B)	0.9800	C(33) - H(33C)	0.9800
C(32) - C(35)	1.526(3)	C(32) - C(36)	1.528(3)
C(32) - H(32)	1.0000	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(35) – H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(46) - C(42)	1.522(4)
C(46) – H(46A)	0.9800	C(46) - H(46B)	0.9800
C(46) - H(46C)	0.9800	C(45) - C(42)	1.528(4)
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(44) - C(41)	1.528(3)
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
			Continued on next page

 $\label{eq:table_solution} \textbf{Table S29.} \ Distances \ [Å] \ for \ [\{PC(sp^3)(SPh)P\}^{tBu}PdSPh] \cdot C_5H_{12} \ (\textbf{9} \cdot C_5H_{12}).$

T 11 CAO	1	C	•	
Table S29.	- continued	from	previous	page

atom – atom	distance	atom – atom	distance		
C(44) – H(44C)	0.9800	C(43) – C(41)	1.526(4)		
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800		
C(43) - H(43C)	0.9800	C(42) - H(42)	1.0000		
C(41) - H(41)	1.0000	C(51) - C(52)	1.393(3)		
C(51) - C(56)	1.400(3)	C(52) - C(53)	1.392(3)		
C(52) - H(52)	0.9500	C(53) - C(54)	1.385(4)		
C(53) - H(53)	0.9500	C(54) - C(55)	1.378(4)		
C(54) - H(54)	0.9500	C(55) - C(56)	1.389(3)		
C(55) - H(55)	0.9500	C(61) - C(66)	1.393(4)		
C(61) - C(62)	1.394(3)	C(62) - C(63)	1.390(3)		
C(62) - H(62)	0.9500	C(63) - C(64)	1.384(4)		
C(63) - H(63)	0.9500	C(64) - C(65)	1.381(4)		
C(64) - H(64)	0.9500	C(65) - C(66)	1.395(4)		
C(65) - H(65)	0.9500	C(66) - H(66)	0.9500		
C(71) - C(72)	1.454(7)	C(71) - H(71A)	0.9800		
C(71) - H(71B)	0.9800	C(71) - H(71C)	0.9800		
C(72) - C(73)	1.482(7)	C(72) - H(72A)	0.9900		
C(72) - H(72B)	0.9900	C(73) - C(74)	1.457(6)		
C(73) - H(73A)	0.9900	C(73) - H(73B)	0.9900		
C(74) - C(75)	1.557(7)	C(74) - H(74A)	0.9900		
C(74) - H(74B)	0.9900	C(75) - H(75A)	0.9800		
C(75) - H(75B)	0.9800	C(75) - H(75C)	0.9800		
C(56) - H(56)	0.9500				
Table S30.	Angles [°] for	$[{PC(sp^3)(Sl)}]$	Ph)P} ^{tBu} PdSPh	$-C_5H_{12}$ ($9 \cdot C_5 H_{12}$).
------------	----------------	--------------------	----------------------------	----------------	-------------------------
------------	----------------	--------------------	----------------------------	----------------	-------------------------

atom – atom – atom	angle	atom – atom – atom	angle
C - Pd - P(1)	84.89(6)	C - Pd - P(2)	83.61(6)
P(1) - Pd - P(2)	164.32(2)	C - Pd - S(1)	173.64(6)
P(1) - Pd - S(1)	91.29(3)	P(2) - Pd - S(1)	99.15(3)
C(12) - P(1) - C(32)	107.99(11)	C(12) - P(1) - C(31)	103.58(10)
C(32) - P(1) - C(31)	106.54(11)	C(12) - P(1) - Pd	103.98(7)
C(32) - P(1) - Pd	110.94(8)	C(31) - P(1) - Pd	122.78(8)
C(22) - P(2) - C(41)	100.72(10)	C(22) - P(2) - C(42)	108.48(11)
C(41) - P(2) - C(42)	101.73(11)	C(22) - P(2) - Pd	98.86(7)
C(41) - P(2) - Pd	113.19(8)	C(42) - P(2) - Pd	130.25(8)
C(61) - S(2) - C	106.53(10)	C(51) - S(1) - Pd	107.43(8)
C(21) - C - C(11)	116.28(18)	C(21) - C - S(2)	111.75(15)
C(11) - C - S(2)	107.88(15)	C(21) - C - Pd	108.31(14)
$\mathbf{C}(11) - \mathbf{C} - \mathbf{Pd}$	115.69(14)	S(2) - C - Pd	94.94(9)
C(17) - C(81) - H(81A)	109.5	C(17) - C(81) - H(81B)	109.5
H(81A) - C(81) - H(81B)	109.5	C(17) - C(81) - H(81C)	109.5
H(81A) - C(81) - H(81C)	109.5	H(81B) - C(81) - H(81C)	109.5
C(17) - C(82) - H(82A)	109.5	C(17) - C(82) - H(82B)	109.5
H(82A) - C(82) - H(82B)	109.5	C(17) - C(82) - H(82C)	109.5
H(82A) - C(82) - H(82C)	109.5	H(82B) - C(82) - H(82C)	109.5
C(17) - C(83) - H(83A)	109.5	C(17) - C(83) - H(83B)	109.5
H(83A) - C(83) - H(83B)	109.5	C(17) - C(83) - H(83C)	109.5
H(83A) - C(83) - H(83C)	109.5	H(83B) - C(83) - H(83C)	109.5
C(12) - C(11) - C(16)	116.6(2)	C(12) - C(11) - C	120.44(19)
C(16) - C(11) - C	122.78(19)	C(14) - C(13) - C(12)	122.0(2)
C(14) - C(13) - H(13)	119.0	C(12) - C(13) - H(13)	119.0
C(13) - C(12) - C(11)	121.1(2)	C(13) - C(12) - P(1)	123.91(17)
C(11) - C(12) - P(1)	114.97(16)	C(15) - C(14) - C(13)	116.6(2)
C(15) - C(14) - C(17)	123.0(2)	C(13) - C(14) - C(17)	120.4(2)
C(16) - C(15) - C(14)	122.1(2)	C(16) - C(15) - H(15)	119.0
C(14) - C(15) - H(15)	119.0	C(15) - C(16) - C(11)	121.6(2)
C(15) - C(16) - H(16)	119.2	C(11) - C(16) - H(16)	119.2
C(27) - C(20) - H(20A)	109.5	C(27) - C(20) - H(20B)	109.5
H(20A) - C(20) - H(20B)	109.5	C(27) - C(20) - H(20C)	109.5
H(20A) - C(20) - H(20C)	109.5	H(20B) - C(20) - H(20C)	109.5
C(82) - C(17) - C(19)	130.5(6)	C(82) = C(17) = C(10)	53.6(7)
C(19) - C(17) - C(10)	109.4(3)	C(82) - C(17) - C(14)	110.9(0)
C(19) - C(17) - C(14)	112.7(2)	C(10) - C(17) - C(14)	109.4(2)
C(82) - C(17) - C(18)	55.1(7)	C(19) - C(17) - C(18)	108.3(3) 108.0(2)
C(10) - C(17) - C(18)	108.1(3) 114.7(0)	C(14) - C(17) - C(18)	108.9(2)
C(82) - C(17) - C(83)	114.7(9) 140.0(6)	C(19) - C(17) - C(83)	43.2(0)
C(10) - C(17) - C(83)	140.9(0)	C(14) - C(17) - C(83)	108.3(0)
C(18) - C(17) - C(83) C(10) - C(17) - C(81)	07.0(7) 57.2(6)	C(82) - C(17) - C(81)	100.4(9) 57.6(6)
C(14) = C(17) = C(81)	107.0(5)	C(10) - C(17) - C(81)	$\frac{144}{16}$
C(14) - C(17) - C(81)	107.0(3) 102.0(8)	C(16) = C(17) = C(81) C(26) = C(21) = C(22)	1162(2)
C(26) = C(21) = C(21)	124 79(19)	C(20) = C(21) = C(22) C(22) = C(21) = C	110.2(2)
C(23) = C(21) = C C(23) = C(22) = C(21)	121 46(19)	C(22) = C(21) = C C(23) = C(22) = P(2)	122 70(16)
C(21) = C(22) = C(21) C(21) = C(22) = P(2)	114 91(16)	$C(22) = C(22) = \Gamma(2)$ C(22) = C(23) = C(24)	122.79(10)
C(22) = C(23) = H(23)	119.2	C(22) = C(23) = C(24)	119.2
C(25) - C(24) - C(23)	116 5(2)	C(25) - C(24) - C(27)	120 45(19)
			Continued on next page

Table S30. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(23) - C(24) - C(27)	123.0(2)	C(26) - C(25) - C(24)	122.3(2)
C(26) - C(25) - H(25)	118.9	C(24) - C(25) - H(25)	118.9
C(25) - C(26) - C(21)	121.2(2)	C(25) - C(26) - H(26)	119.4
C(21) - C(26) - H(26)	119.4	C(29) - C(27) - C(28)	109.54(19)
C(29) - C(27) - C(20)	108.6(2)	C(28) - C(27) - C(20)	108.2(2)
C(29) - C(27) - C(24)	108.92(19)	C(28) - C(27) - C(24)	109.38(19)
C(20) - C(27) - C(24)	112.12(19)	C(27) - C(29) - H(29A)	109.5
C(27) - C(29) - H(29B)	109.5	H(29A) - C(29) - H(29B)	109.5
C(27) - C(29) - H(29C)	109.5	H(29A) - C(29) - H(29C)	109.5
H(29B) - C(29) - H(29C)	109.5	C(27) - C(28) - H(28A)	109.5
C(27) - C(28) - H(28B)	109.5	H(28A) - C(28) - H(28B)	109.5
C(27) - C(28) - H(28C)	109.5	H(28A) - C(28) - H(28C)	109.5
H(28B) - C(28) - H(28C)	109.5	C(17) - C(18) - H(18A)	109.5
C(17) - C(18) - H(18B)	109.5	C(17) - C(18) - H(18C)	109.5
C(17) - C(19) - H(19A)	109.5	C(17) - C(19) - H(19B)	109.5
C(17) - C(19) - H(19C)	109.5	C(17) - C(10) - H(10A)	109.5
C(17) - C(10) - H(10B)	109.5	C(17) - C(10) - H(10C)	109.5
C(34) - C(31) - C(33)	111.6(2)	C(34) - C(31) - P(1)	114.11(17)
C(33) - C(31) - P(1)	108.58(16)	C(34) - C(31) - H(31)	107.4
C(33) - C(31) - H(31)	107.4	P(1) - C(31) - H(31)	107.4
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(35) - C(32) - C(36)	111.4(2)	C(35) - C(32) - P(1)	109.31(16)
C(36) - C(32) - P(1)	115.67(17)	C(35) - C(32) - H(32)	106.7
C(36) - C(32) - H(32)	106.7	P(1) - C(32) - H(32)	106.7
C(32) - C(36) - H(36A)	109.5	C(32) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(32) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(41) - C(43) - H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(46) - C(42) - C(45)	111.0(2)	C(46) - C(42) - P(2)	114.79(17)
C(45) - C(42) - P(2)	110.24(18)	C(46) - C(42) - H(42)	106.8
C(45) - C(42) - H(42)	106.8	P(2) - C(42) - H(42)	106.8
C(43) - C(41) - C(44)	110.9(2)	C(43) - C(41) - P(2)	110.48(16)
			Continued on next page

Table S30. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(44) - C(41) - P(2)	113.15(18)	C(43) - C(41) - H(41)	107.3
C(44) - C(41) - H(41)	107.3	P(2) - C(41) - H(41)	107.3
C(52) - C(51) - C(56)	117.9(2)	C(52) - C(51) - S(1)	122.58(18)
C(56) - C(51) - S(1)	119.49(18)	C(53) - C(52) - C(51)	120.9(2)
C(53) - C(52) - H(52)	119.6	C(51) - C(52) - H(52)	119.6
C(54) - C(53) - C(52)	120.4(2)	C(54) - C(53) - H(53)	119.8
C(52) - C(53) - H(53)	119.8	C(55) - C(54) - C(53)	119.4(2)
C(55) - C(54) - H(54)	120.3	C(53) - C(54) - H(54)	120.3
C(54) - C(55) - C(56)	120.5(2)	C(54) - C(55) - H(55)	119.7
C(56) - C(55) - H(55)	119.7	C(66) - C(61) - C(62)	119.2(2)
C(66) - C(61) - S(2)	119.00(19)	C(62) - C(61) - S(2)	121.81(19)
C(63) - C(62) - C(61)	120.0(2)	C(63) - C(62) - H(62)	120.0
C(61) - C(62) - H(62)	120.0	C(64) - C(63) - C(62)	120.5(3)
C(64) - C(63) - H(63)	119.8	C(62) - C(63) - H(63)	119.8
C(65) - C(64) - C(63)	119.9(3)	C(65) - C(64) - H(64)	120.1
C(63) - C(64) - H(64)	120.1	C(64) - C(65) - C(66)	120.1(3)
C(64) - C(65) - H(65)	120.0	C(66) - C(65) - H(65)	120.0
C(61) - C(66) - C(65)	120.3(3)	C(61) - C(66) - H(66)	119.8
C(65) - C(66) - H(66)	119.8	C(72) - C(71) - H(71A)	109.5
C(72) - C(71) - H(71B)	109.5	H(71A) - C(71) - H(71B)	109.5
C(72) - C(71) - H(71C)	109.5	H(71A) - C(71) - H(71C)	109.5
H(71B) - C(71) - H(71C)	109.5	C(71) - C(72) - C(73)	115.7(4)
C(71) - C(72) - H(72A)	108.3	C(73) - C(72) - H(72A)	108.3
C(71) - C(72) - H(72B)	108.3	C(73) - C(72) - H(72B)	108.3
H(72A) - C(72) - H(72B)	107.4	C(74) - C(73) - C(72)	116.0(4)
C(74) - C(73) - H(73A)	108.3	C(72) - C(73) - H(73A)	108.3
C(74) - C(73) - H(73B)	108.3	C(72) - C(73) - H(73B)	108.3
H(73A) - C(73) - H(73B)	107.4	C(73) - C(74) - C(75)	116.0(4)
C(73) - C(74) - H(74A)	108.3	C(75) - C(74) - H(74A)	108.3
C(73) - C(74) - H(74B)	108.3	C(75) - C(74) - H(74B)	108.3
H(74A) - C(74) - H(74B)	107.4	C(74) - C(75) - H(75A)	109.5
C(74) - C(75) - H(75B)	109.5	H(75A) - C(75) - H(75B)	109.5
C(74) - C(75) - H(75C)	109.5	H(75A) - C(75) - H(75C)	109.5
H(75B) - C(75) - H(75C)	109.5	C(55) - C(56) - C(51)	120.9(2)
C(55) - C(56) - H(56)	119.6	C(51) - C(56) - H(56)	119.6

Figure S49. Thermal-ellipsoid representation of $[{PC(sp^3)(NH^pTol)P}^{IBu}PdI]$ (10) at 50% probability. Most hydrogen atoms were omitted for clarity.

Identification code:	pc32	
Empirical formula:	$C_{40}H_{60}INP_2Pd$	
Formula weight:	850.13	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_{1}/n$	
Unit cell dimensions:	a = 17.0891(17) Å	$\alpha = 90^{\circ}$
	b = 14.0140(14) Å	$\beta = 100.081(3)^{\circ}$
	c = 18.4206(18) Å	$\gamma = 90^{\circ}$
Volume:	4343.4(7) Å ³	
Z:	4	
Density (calculated):	$1.300 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (μ):	1.237 mm^{-1}	
F(000):	1744	
Crystal size:	$0.18 \times 0.13 \times 0.10 \text{ mm}^3$	
θ range for data collection:	1.50 to 25.00°	
Index ranges:	$-13 \le h \le 20, -16 \le k \le 16, -21 \le l \le 21$	
Reflections collected:	67692	
Independent reflections:	7652 [$\mathbf{R}_{int} = 0.0271$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.8863 and 0.8081	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	7652 / 0 / 408	
Goodness-of-fit on F ² :	1.035	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0300, wR_2 = 0.0772$	
R indices (all data):	$R_1 = 0.0334, wR_2 = 0.0792$	
Largest diff. peak and hole:	1.637 and $-1.126 e^{-} \cdot A^{-3}$	

Table S31. Crystal data and structure refinement for $[{PC(sp^3)(NH^pTol)P}^{tBu}PdI]$ (10).

atom	X	у	Z	U(eq)
C(24)	0.35252(19)	0.1762(3)	-0.17618(17)	0.037(1)
Ι	0.13372(1)	0.15340(2)	0.15375(1)	0.041(1)
Pd	0.25344(1)	0.09070(1)	0.08894(1)	0.021(1)
C(17)	0.3410(3)	-0.4063(2)	-0.0267(2)	0.058(1)
C(15)	0.37431(16)	-0.2011(2)	-0.02075(15)	0.026(1)
C(11)	0.35321(15)	-0.05118(19)	0.03694(14)	0.021(1)
C(10)	0.38007(19)	-0.3605(2)	0.04527(17)	0.031(1)
P(2)	0.20394(4)	0.15634(5)	-0.02170(4)	0.022(1)
P(1)	0.30442(4)	-0.03056(5)	0.16928(4)	0.024(1)
C(12)	0.34461(15)	-0.10199(19)	0.10101(15)	0.022(1)
C(13)	0.35399(16)	-0.2000(2)	0.10369(15)	0.025(1)
C(16)	0.36714(16)	-0.10298(19)	-0.02377(15)	0.024(1)
C(14)	0.36884(16)	-0.2522(2)	0.04297(15)	0.025(1)
С	0.35438(15)	0.0568(2)	0.04182(14)	0.022(1)
C(18)	0.4690(2)	-0.3804(3)	0.0558(2)	0.048(1)
C(19)	0.3446(3)	-0.4048(2)	0.1073(2)	0.059(1)
C(20)	0.3518(3)	0.2073(4)	-0.2558(2)	0.073(1)
C(21)	0.35434(16)	0.10589(19)	-0.03202(14)	0.021(1)
C(22)	0.28615(16)	0.14670(19)	-0.07167(15)	0.023(1)
C(23)	0.28508(18)	0.1786(2)	-0.14391(16)	0.030(1)
N	0.42855(14)	0.07706(18)	0.09214(13)	0.025(1)
C(25)	0.42185(18)	0.1417(2)	-0.13336(17)	0.033(1)
C(26)	0.42281(17)	0.1067(2)	-0.06350(16)	0.026(1)
C(29)	0.3661(3)	0.1082(4)	-0.3006(2)	0.073(1)
C(28)	0.4211(3)	0.2674(4)	-0.2637(2)	0.073(1)
C(27)	0.2772(3)	0.2381(4)	-0.2952(2)	0.073(1)
C(31)	0.38589(19)	-0.0049(2)	0.24748(16)	0.034(1)
C(33)	0.3677(2)	0.0857(2)	0.28738(18)	0.044(1)
C(32)	0.23624(19)	-0.1154(2)	0.20272(17)	0.033(1)
C(34)	0.4095(2)	-0.0878(3)	0.29944(19)	0.043(1)
C(36)	0.1711(2)	-0.1443(2)	0.1392(2)	0.043(1)
C(35)	0.2002(2)	-0.0757(3)	0.2667(2)	0.045(1)
C(41)	0.12300(17)	0.0888(2)	-0.07864(17)	0.032(1)
C(43)	0.1454(2)	-0.0166(2)	-0.0782(2)	0.049(1)
C(42)	0.16946(18)	0.2813(2)	-0.02540(17)	0.031(1)
C(45)	0.2318(2)	0.3460(2)	0.0185(2)	0.042(1)
C(46)	0.1402(2)	0.3213(3)	-0.1024(2)	0.049(1)
C(51)	0.45669(16)	0.16396(19)	0.12057(14)	0.023(1)
C(52)	0.52569(17)	0.1667(2)	0.17412(15)	0.028(1)
C(53)	0.55516(18)	0.2527(2)	0.20313(16)	0.033(1)
C(54)	0.51887(19)	0.3388(2)	0.18092(16)	0.033(1)
C(55)	0.45032(18)	0.3343(2)	0.12770(16)	0.030(1)
C(56)	0.41976(17)	0.2497(2)	0.09825(16)	0.027(1)
C(57)	0.5512(2)	0.4325(3)	0.2128(2)	0.051(1)
C(44)	0.0432(2)	0.1027(3)	-0.0549(2)	0.051(1)
H(17A)	0.3656	-0.3817	-0.0672	0.088
H(17B)	0.2841	-0.3911	-0.0361	0.088
H(17C)	0.3480	-0.4756	-0.0234	0.088
Н	0.4557(19)	0.030(2)	0.1089(17)	0.029(9)
				Continued on next page

Table S32. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[{PC(sp^3)(NH^pTol)P}^{tBu}PdI]$ (10). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

atom	X	У	X	U(eq)
H(15)	0.3832	-0.2347	-0.0634	0.031
H(13)	0.3502	-0.2327	0.1481	0.030
H(16)	0.3718	-0.0704	-0.0681	0.028
H(18A)	0.4779	-0.4494	0.0552	0.072
H(18B)	0.4951	-0.3542	0.1033	0.072
H(18C)	0.4912	-0.3504	0.0159	0.072
H(19A)	0.2892	-0.3846	0.1034	0.089
H(19B)	0.3749	-0.3841	0.1549	0.089
H(19C)	0.3469	-0.4745	0.1039	0.089
H(23)	0.2369	0.2024	-0.1715	0.035
H(25)	0.4698	0.1423	-0.1529	0.040
H(26)	0.4711	0.0825	-0.0361	0.031
H(29A)	0.3684	0.1235	-0.3521	0.109
H(29B)	0.3221	0.0639	-0.2987	0.109
H(29C)	0.4162	0.0786	-0.2774	0.109
H(28A)	0.4208	0.2802	-0.3161	0.109
H(28B)	0.4702	0.2339	-0.2427	0.109
H(28C)	0.4182	0.3279	-0.2376	0.109
H(27A)	0.2813	0 2491	-0.3469	0.087
H(27B)	0.2617	0.2975	-0.2735	0.087
H(27C)	0.2371	0.1889	-0.2923	0.087
H(31)	0.4337	0.0100	0.2250	0.040
$H(33\Delta)$	0.3578	0.1385	0.2230	0.040
H(33R)	0.4131	0.1014	0.2520	0.000
H(33C)	0.3205	0.0754	0.3008	0.000
H(33C)	0.3203	0.1730	0.3098	0.000
H(32) H(24A)	0.2073	-0.1739	0.2203	0.059
$\Pi(34A)$ $\Pi(24P)$	0.4200	-0.1438	0.2711	0.064
$\Pi(34D)$ $\Pi(24C)$	0.3039	-0.1025	0.3239	0.004
H(34C)	0.4371	-0.0708	0.5549	0.064
H(30A)	0.1398	-0.0880	0.1208	0.064
H(30B)	0.1505	-0.1918	0.1304	0.064
H(30C)	0.1952	-0.1/1/	0.0994	0.064
H(35A)	0.1687	-0.0188	0.2504	0.068
H(35B)	0.2429	-0.0588	0.3075	0.068
H(35C)	0.1659	-0.1241	0.2833	0.068
H(41)	0.1181	0.1123	-0.1305	0.038
H(43A)	0.1037	-0.0522	-0.1104	0.074
H(43B)	0.1511	-0.0415	-0.0278	0.074
H(43C)	0.1959	-0.0239	-0.0960	0.074
H(42)	0.1228	0.2828	0.0006	0.037
H(45A)	0.2783	0.3493	-0.0060	0.063
H(45B)	0.2478	0.3202	0.0683	0.063
H(45C)	0.2097	0.4101	0.0213	0.063
H(46A)	0.1847	0.3252	-0.1294	0.073
H(46B)	0.1179	0.3852	-0.0984	0.073
H(46C)	0.0990	0.2793	-0.1290	0.073
H(52)	0.5523	0.1091	0.1905	0.034
H(53)	0.6019	0.2530	0.2396	0.040
H(55)	0.4238	0.3919	0.1112	0.036
H(56)	0.3727	0.2497	0.0621	0.032
H(57A)	0.5453	0.4808	0.1738	0.076
·				Continued on next page

 Table S32. – continued from previous page

atom	X	У	X	U(eq)
H(57B)	0.6076	0.4252	0.2341	0.076
H(57C)	0.5219	0.4525	0.2514	0.076
H(44A)	0.0267	0.1695	-0.0625	0.077
H(44B)	0.0477	0.0865	-0.0026	0.077
H(44C)	0.0036	0.0612	-0.0843	0.077

 Table S32. – continued from previous page

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(24)	0.0310(17)	0.052(2)	0.0281(15)	0.0065(14)	0.0065(13)	-0.0040(15)
Ι	0.0410(1)	0.0470(1)	0.0415(1)	0.0016(1)	0.0231(1)	0.0196(1)
Pd	0.0210(1)	0.0230(1)	0.0218(1)	-0.0009(1)	0.0080(1)	0.0049(1)
C(17)	0.090(3)	0.0246(17)	0.059(2)	-0.0061(16)	0.007(2)	-0.0089(18)
C(15)	0.0266(15)	0.0278(15)	0.0261(14)	-0.0032(11)	0.0124(12)	0.0013(12)
C(11)	0.0166(13)	0.0235(13)	0.0240(13)	0.0012(11)	0.0060(10)	0.0024(10)
C(10)	0.0423(18)	0.0227(14)	0.0330(16)	0.0036(12)	0.0210(14)	0.0051(13)
P(2)	0.0179(3)	0.0237(4)	0.0246(3)	-0.0021(3)	0.0036(3)	0.0028(3)
P(1)	0.0282(4)	0.0258(4)	0.0218(3)	0.0008(3)	0.0119(3)	0.0057(3)
C(12)	0.0188(13)	0.0267(14)	0.0235(13)	-0.0013(11)	0.0090(11)	0.0028(11)
C(13)	0.0246(14)	0.0274(14)	0.0243(14)	0.0041(11)	0.0107(11)	0.0032(11)
C(16)	0.0240(14)	0.0256(14)	0.0236(13)	0.0022(11)	0.0094(11)	0.0005(11)
C(14)	0.0236(14)	0.0261(14)	0.0294(14)	0.0007(11)	0.0120(12)	0.0018(11)
С	0.0171(13)	0.0261(14)	0.0226(13)	0.0010(11)	0.0062(10)	0.0029(11)
C(18)	0.055(2)	0.0312(17)	0.062(2)	0.0074(16)	0.0223(19)	0.0147(16)
C(19)	0.099(3)	0.0227(17)	0.072(3)	0.0079(16)	0.063(3)	0.0081(18)
C(20)	0.0612(13)	0.116(2)	0.0432(11)	0.0227(12)	0.0151(10)	0.0021(14)
C(21)	0.0215(14)	0.0206(13)	0.0224(13)	-0.0019(10)	0.0045(11)	-0.0008(11)
C(22)	0.0217(14)	0.0230(14)	0.0255(14)	-0.0015(11)	0.0046(11)	-0.0007(11)
C(23)	0.0252(15)	0.0376(16)	0.0247(14)	0.0043(12)	0.0013(12)	0.0003(13)
Ν	0.0216(12)	0.0243(12)	0.0281(12)	0.0011(10)	0.0027(10)	0.0051(10)
C(25)	0.0251(16)	0.0446(18)	0.0327(16)	0.0041(14)	0.0125(13)	-0.0043(13)
C(26)	0.0213(14)	0.0278(15)	0.0300(15)	0.0033(12)	0.0058(11)	0.0018(11)
C(29)	0.0612(13)	0.116(2)	0.0432(11)	0.0227(12)	0.0151(10)	0.0021(14)
C(28)	0.0612(13)	0.116(2)	0.0432(11)	0.0227(12)	0.0151(10)	0.0021(14)
C(27)	0.0612(13)	0.116(2)	0.0432(11)	0.0227(12)	0.0151(10)	0.0021(14)
C(31)	0.0412(18)	0.0354(17)	0.0257(15)	-0.0006(12)	0.0103(13)	0.0039(14)
C(33)	0.062(2)	0.0393(19)	0.0313(17)	-0.0084(14)	0.0071(16)	0.0048(16)
C(32)	0.0379(17)	0.0310(15)	0.0347(16)	0.0066(13)	0.0220(14)	0.0047(13)
C(34)	0.046(2)	0.046(2)	0.0353(17)	0.0051(15)	0.0059(15)	0.0082(16)
C(36)	0.0311(18)	0.0423(19)	0.060(2)	0.0041(16)	0.0221(16)	-0.0039(14)
C(35)	0.052(2)	0.046(2)	0.047(2)	0.0086(16)	0.0365(17)	0.0115(17)
C(41)	0.0198(14)	0.0390(17)	0.0347(16)	-0.0068(13)	0.0005(12)	-0.0029(12)
C(43)	0.044(2)	0.0361(19)	0.062(2)	-0.0191(17)	-0.0047(17)	-0.0057(16)
C(42)	0.0287(15)	0.0271(15)	0.0360(16)	-0.0008(12)	0.0035(13)	0.0083(12)
C(45)	0.0399(19)	0.0267(16)	0.057(2)	-0.0049(15)	0.0020(16)	0.0054(14)
C(46)	0.061(2)	0.0401(19)	0.044(2)	0.0059(16)	0.0058(17)	0.0219(18)
C(51)	0.0215(14)	0.0273(14)	0.0208(13)	0.0010(11)	0.0094(11)	0.0006(11)
C(52)	0.0266(15)	0.0352(16)	0.0226(14)	0.0031(12)	0.0056(12)	0.0014(12)
C(53)	0.0299(16)	0.0463(18)	0.0215(14)	0.0023(13)	0.0008(12)	-0.0033(14)
C(54)	0.0382(17)	0.0370(17)	0.0238(14)	-0.0036(12)	0.0085(13)	-0.0064(14)
C(55)	0.0343(17)	0.0276(15)	0.0298(15)	0.0016(12)	0.0079(13)	0.0008(13)
C(56)	0.0231(14)	0.0302(15)	0.0277(14)	0.0005(12)	0.0042(11)	0.0015(12)
C(57)	0.063(2)	0.044(2)	0.0395(19)	-0.0074(16)	-0.0036(17)	-0.0105(18)
C(44)	0.0247(17)	0.063(2)	0.065(2)	-0.020(2)	0.0092(16)	-0.0107(16)

Table S33. Anisotropic displacement parameters (Å²) for [{PC(sp³)(NH^{*p*}Tol)P}^{*t*Bu}PdI] (10). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

atom – atom	distance	atom – atom	distance
C(24) - C(23)	1.386(4)	C(24) – C(25)	1.390(5)
C(24) - C(20)	1.528(5)	I – Pd	2.6903(3)
Pd – C	2.116(3)	Pd - P(2)	2.2609(8)
Pd - P(1)	2.3206(7)	C(17) - C(10)	1.519(5)
C(17) - H(17A)	0.9800	C(17) - H(17B)	0.9800
C(17) - H(17C)	0.9800	C(15) - C(16)	1.381(4)
C(15) - C(14)	1.392(4)	C(15) - H(15)	0.9500
C(11) - C(16)	1.388(4)	C(11) - C(12)	1.408(4)
C(11) - C	1.515(4)	C(10) - C(19)	1.518(4)
C(10) - C(18)	1.524(5)	C(10) - C(14)	1.529(4)
P(2) - C(22)	1.815(3)	P(2) - C(41)	1.845(3)
P(2) - C(42)	1.845(3)	P(1) - C(12)	1.833(3)
P(1) - C(32)	1.844(3)	P(1) - C(31)	1.855(3)
C(12) - C(13)	1.383(4)	C(13) - C(14)	1.397(4)
C(13) - H(13)	0.9500	C(16) - H(16)	0.9500
C - N	1.461(3)	C - C(21)	1.524(4)
C(18) - H(18A)	0.9800	C(18) - H(18B)	0.9800
C(18) - H(18C)	0.9800	C(19) - H(19A)	0.9800
C(19) - H(19B)	0.9800	C(19) - H(19C)	0.9800
C(20) - C(27)	1.419(6)	C(20) - C(28)	1.482(7)
C(20) - C(29)	1.654(8)	C(21) - C(22)	1.386(4)
C(21) - C(26)	1.394(4)	C(22) - C(23)	1.401(4)
C(23) - H(23)	0.9500	N - C(51)	1.378(4)
N - H	0.84(3)	C(25) - C(26)	1.375(4)
C(25) - H(25)	0.9500	C(26) - H(26)	0.9500
C(29) - H(29A)	0.9800	C(29) - H(29B)	0.9800
C(29) - H(29C)	0.9800	C(28) - H(28A)	0.9800
C(28) - H(28B)	0.9800	C(28) - H(28C)	0.9800
C(27) - H(27A)	0.9800	C(27) - H(27B)	0.9800
C(27) - H(27C)	0.9800	C(31) - C(34)	1.515(4)
C(31) - C(33)	1.526(4)	C(31) - H(31)	1.0000
C(33) - H(33A)	0.9800	C(33) - H(33B)	0.9800
C(33) - H(33C)	0.9800	C(32) - C(36)	1.522(5)
C(32) - C(35)	1.527(4)	C(32) - H(32)	1.0000
C(34) - H(34A)	0.9800	C(34) - H(34B)	0.9800
C(34) - H(34C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(35) - H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(41) - C(44)	1.516(4)
C(41) - C(43)	1.526(5)	C(41) - H(41)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(42) - C(45)	1.519(4)
C(42) - C(46)	1.527(4)	C(42) - H(42)	1.0000
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(51) - C(56)	1.385(4)	C(51) - C(52)	1.399(4)
C(52) - C(53)	1.377(4)	C(52) - H(52)	0.9500
C(53) - C(54)	1.385(5)	C(53) - H(53)	0.9500
C(54) - C(55)	1.391(4)	C(54) - C(57)	1.504(4)
			Continued on next page

Table S34. Distances [Å] for $[{PC(sp^3)(NH^pTol)P}^{tBu}PdI]$ (10).

Table S34. – continued from previous page

atom – atom	distance	atom – atom	distance
C(55) - C(56)	1.369(4)	C(55) – H(55)	0.9500
C(56) - H(56)	0.9500	C(57) - H(57A)	0.9800
C(57) - H(57B)	0.9800	C(57) - H(57C)	0.9800
C(44) - H(44A)	0.9800	C(44) - H(44B)	0.9800
C(44) - H(44C)	0.9800		

Table S35. Angles $[^{\circ}]$ for $[{PC(sp^3)(NH^pTol)P}^{tBu}PdI]$ (10).

atom – atom	angle	atom – atom – atom	angle
C(23) - C(24) - C(25)	117.0(3)	C(23) - C(24) - C(20)	122.5(3)
C(25) - C(24) - C(20)	120.4(3)	C - Pd - P(2)	85.69(7)
C - Pd - P(1)	81.67(7)	P(2) - Pd - P(1)	155.81(3)
C - Pd - I	173.25(8)	P(2) - Pd - I	94.22(2)
P(1) - Pd - I	100.715(19)	C(10) - C(17) - H(17A)	109.5
C(10) - C(17) - H(17B)	109.5	H(17A) - C(17) - H(17B)	109.5
C(10) - C(17) - H(17C)	109.5	H(17A) - C(17) - H(17C)	109.5
H(17B) - C(17) - H(17C)	109.5	C(16) - C(15) - C(14)	121.9(3)
C(16) - C(15) - H(15)	119.1	C(14) - C(15) - H(15)	119.1
C(16) - C(11) - C(12)	117.9(2)	C(16) - C(11) - C	124.6(2)
C(12) - C(11) - C	117.2(2)	C(19) - C(10) - C(17)	108.2(3)
C(19) - C(10) - C(18)	110.4(3)	C(17) - C(10) - C(18)	108.1(3)
C(19) - C(10) - C(14)	111.3(2)	C(17) - C(10) - C(14)	111.2(3)
C(18) - C(10) - C(14)	107.6(3)	C(22) - P(2) - C(41)	104.09(13)
C(22) - P(2) - C(42)	108.81(13)	C(41) - P(2) - C(42)	105.27(14)
C(22) - P(2) - Pd	103.08(9)	C(41) - P(2) - Pd	115.39(11)
C(42) - P(2) - Pd	119.08(10)	C(12) - P(1) - C(32)	102.23(13)
C(12) - P(1) - C(31)	108.57(13)	C(32) - P(1) - C(31)	107.34(15)
C(12) - P(1) - Pd	96.10(9)	C(32) - P(1) - Pd	119.76(11)
C(31) - P(1) - Pd	120.01(10)	C(13) - C(12) - C(11)	120.3(2)
C(13) - C(12) - P(1)	125.0(2)	C(11) - C(12) - P(1)	113.9(2)
C(12) - C(13) - C(14)	121.9(3)	C(12) - C(13) - H(13)	119.1
C(14) - C(13) - H(13)	119.1	C(15) - C(16) - C(11)	121.0(3)
C(15) - C(16) - H(16)	119.5	C(11) - C(16) - H(16)	119.5
C(15) - C(14) - C(13)	117.0(3)	C(15) - C(14) - C(10)	120.5(2)
C(13) - C(14) - C(10)	122.5(2)	N - C - C(11)	103.5(2)
N - C - C(21)	110.1(2)	C(11) - C - C(21)	113.6(2)
N - C - Pd	112.02(17)	C(11) - C - Pd	104.20(17)
C(21) - C - Pd	113.05(17)	C(10) - C(18) - H(18A)	109.5
C(10) - C(18) - H(18B)	109.5	H(18A) - C(18) - H(18B)	109.5
C(10) - C(18) - H(18C)	109.5	H(18A) - C(18) - H(18C)	109.5
H(18B) - C(18) - H(18C)	109.5	C(10) - C(19) - H(19A)	109.5
C(10) - C(19) - H(19B)	109.5	H(19A) - C(19) - H(19B)	109.5
C(10) - C(19) - H(19C)	109.5	H(19A) - C(19) - H(19C)	109.5
H(19B) - C(19) - H(19C)	109.5	C(27) - C(20) - C(28)	116.0(4)
C(27) - C(20) - C(24)	115.6(4)	C(28) - C(20) - C(24)	112.6(4)
C(27) - C(20) - C(29)	101.4(4)	C(28) - C(20) - C(29)	103.8(4)
C(24) - C(20) - C(29)	105.2(4)	C(22) - C(21) - C(26)	117.8(2)
C(22) - C(21) - C	121.7(2)	C(26) - C(21) - C	120.4(2)
C(21) - C(22) - C(23)	120.2(3)	C(21) - C(22) - P(2)	114.7(2)
C(23) - C(22) - P(2)	125.2(2)	C(24) - C(23) - C(22)	121.7(3)
C(24) - C(23) - H(23)	119.1	C(22) - C(23) - H(23)	119.1
C(51) - N - C	128.2(2)	C(51) - N - H	115(2)
C - N - H	116(2)	C(26) - C(25) - C(24)	121.7(3)
C(26) - C(25) - H(25)	119.2	C(24) - C(25) - H(25)	119.2
C(25) - C(26) - C(21)	121.3(3)	C(25) - C(26) - H(26)	119.4
C(21) - C(26) - H(26)	119.4	C(20) - C(29) - H(29A)	109.5
C(20) - C(29) - H(29B)	109.5	H(29A) - C(29) - H(29B)	109.5
C(20) - C(29) - H(29C)	109.5	H(29A) - C(29) - H(29C)	109.5
H(29B) - C(29) - H(29C)	109.5	C(20) - C(28) - H(28A)	109.5
			Continued on next page

Table S35. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(20) - C(28) - H(28B)	109.5	H(28A) - C(28) - H(28B)	109.5
C(20) - C(28) - H(28C)	109.5	H(28A) - C(28) - H(28C)	109.5
H(28B) - C(28) - H(28C)	109.5	C(20) - C(27) - H(27A)	109.5
C(20) - C(27) - H(27B)	109.5	H(27A) - C(27) - H(27B)	109.5
C(20) - C(27) - H(27C)	109.5	H(27A) - C(27) - H(27C)	109.5
H(27B) - C(27) - H(27C)	109.5	C(34) - C(31) - C(33)	112.8(3)
C(34) - C(31) - P(1)	115.0(2)	C(33) - C(31) - P(1)	110.3(2)
C(34) - C(31) - H(31)	106.0	C(33) - C(31) - H(31)	106.0
P(1) - C(31) - H(31)	106.0	C(31) - C(33) - H(33A)	109.5
C(31) - C(33) - H(33B)	109.5	H(33A) - C(33) - H(33B)	109.5
C(31) - C(33) - H(33C)	109.5	H(33A) - C(33) - H(33C)	109.5
H(33B) - C(33) - H(33C)	109.5	C(36) - C(32) - C(35)	110.6(3)
C(36) - C(32) - P(1)	109.5(2)	C(35) - C(32) - P(1)	112.8(2)
C(36) - C(32) - H(32)	107.9	C(35) - C(32) - H(32)	107.9
P(1) - C(32) - H(32)	107.9	C(31) - C(34) - H(34A)	109.5
C(31) - C(34) - H(34B)	109.5	H(34A) - C(34) - H(34B)	109.5
C(31) - C(34) - H(34C)	109.5	H(34A) - C(34) - H(34C)	109.5
H(34B) - C(34) - H(34C)	109.5	C(32) - C(36) - H(36A)	109.5
C(32) - C(36) - H(36B)	109.5	H(36A) - C(36) - H(36B)	109.5
C(32) - C(36) - H(36C)	109.5	H(36A) - C(36) - H(36C)	109.5
H(36B) = C(36) = H(36C)	109.5	C(32) - C(35) - H(35A)	109.5
C(32) - C(35) - H(35B)	109.5	H(35A) - C(35) - H(35B)	109.5
C(32) - C(35) - H(35C)	109.5	H(35A) - C(35) - H(35C)	109.5
H(35B) - C(35) - H(35C)	109.5	C(44) - C(41) - C(43)	111 2(3)
C(44) - C(41) - P(2)	113 1(2)	C(43) - C(41) - P(2)	109.3(2)
C(44) - C(41) - H(41)	107.7	C(43) - C(41) - H(41)	107 7
P(2) - C(41) - H(41)	107.7	C(41) - C(43) - H(43A)	109.5
C(41) - C(43) - H(43B)	109.5	H(43A) - C(43) - H(43B)	109.5
C(41) - C(43) - H(43C)	109.5	H(43A) - C(43) - H(43C)	109.5
H(43B) - C(43) - H(43C)	109.5	C(45) - C(42) - C(46)	111.1(3)
C(45) - C(42) - P(2)	110.9(2)	C(46) - C(42) - P(2)	115.7(2)
C(45) - C(42) - H(42)	106.1	C(46) - C(42) - H(42)	106.1
P(2) - C(42) - H(42)	106.1	C(42) - C(45) - H(45A)	109.5
C(42) - C(45) - H(45B)	109.5	H(45A) - C(45) - H(45B)	109.5
C(42) - C(45) - H(45C)	109.5	H(45A) - C(45) - H(45C)	109.5
H(45B) - C(45) - H(45C)	109.5	C(42) - C(46) - H(46A)	109.5
C(42) - C(46) - H(46B)	109.5	H(46A) - C(46) - H(46B)	109.5
C(42) - C(46) - H(46C)	109.5	H(46A) - C(46) - H(46C)	109.5
H(46B) - C(46) - H(46C)	109.5	N - C(51) - C(56)	122.9(2)
N - C(51) - C(52)	119.2(3)	C(56) - C(51) - C(52)	118.0(3)
C(53) - C(52) - C(51)	120.2(3)	C(53) - C(52) - H(52)	119.9
C(51) - C(52) - H(52)	119.9	C(52) - C(53) - C(54)	122.2(3)
C(52) - C(53) - H(53)	118.9	C(54) - C(53) - H(53)	118.9
C(53) - C(54) - C(55)	116.5(3)	C(53) - C(54) - C(57)	122.0(3)
C(55) - C(54) - C(57)	121.5(3)	C(56) - C(55) - C(54)	122.3(3)
C(56) - C(55) - H(55)	118.9	C(54) - C(55) - H(55)	118.9
C(55) - C(56) - C(51)	120.7(3)	C(55) - C(56) - H(56)	119.6
C(51) - C(56) - H(56)	119.6	C(54) - C(57) - H(57A)	109.5
C(54) - C(57) - H(57B)	109.5	H(57A) - C(57) - H(57B)	109.5
C(54) - C(57) - H(57C)	109.5	H(57A) - C(57) - H(57C)	109.5
H(57B) - C(57) - H(57C)	109.5	C(41) - C(44) - H(44A)	109.5
			Continued on next page

Table S35. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle	
C(41) - C(44) - H(44B)	109.5	H(44A) - C(44) - H(44B)	109.5	
C(41) - C(44) - H(44C)	109.5	H(44A) - C(44) - H(44C)	109.5	
H(44B) - C(44) - H(44C)	109.5			

5.7 Crystal data for [{PC(sp³)(OPhP)}^{tBu}PdI] (11)

Figure S50. Thermal-ellipsoid representation of the two crystallographically independent molecules of $[{PC(sp^3)(OPhP)}^{tBu}PdI]$ (11) at 50% probability. Hydrogen atoms and the solvent were omitted for clarity.

Identification code:	pc35b	
Empirical formula:	$C_{39}H_{57}IOP_2Pd$	
Formula weight:	837.09	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Triclinic	
Space group:	PĪ	
Unit cell dimensions:	a = 11.8764(6) Å	$\alpha = 101.2966(16)^{\circ}$
	b = 14.4330(8) Å	$\beta = 93.5784(16)^{\circ}$
	c = 25.1741(14) Å	$\gamma = 111.2000(15)^{\circ}$
Volume:	3903.0(4) Å ³	
Z:	4	
Density (calculated):	$1.425 \text{ g} \cdot \text{cm}^{-3}$	
Absorption coefficient (µ):	1.376 mm^{-1}	
F(000):	1712	
Crystal size:	$0.09 \times 0.08 \times 0.05 \text{ mm}^3$	
θ range for data collection:	1.67 to 25.00°	
Index ranges:	$-14 \le h \le 14, -17 \le k \le 17, -29 \le l \le 29$	
Reflections collected:	95643	
Independent reflections:	13721 [$\mathbf{R}_{int} = 0.0511$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.9344 and 0.8862	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	13721 / 0 / 841	
Goodness-of-fit on F ² :	1.031	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0389, wR_2 = 0.0886$	
R indices (all data):	$R_1 = 0.0556, wR_2 = 0.0934$	
Largest diff. peak and hole:	3.446 and $-2.064 \text{ e}^{-1} \text{Å}^{-3}$	

Table S36. Crystal data and structure refinement for $[{PC(sp^3)(OPhP)}^{\prime Bu}PdI]$ (11).

5

atom	X	V	<u> </u>	U(eq)
Pd(1)	0.8684(3)	0.1959(2)	0.14206(12)	0.010(1)
I(1)	1.02028(17)	0.32115(14)	0.23212(8)	0.019(1)
P(1)	0.42571(9)	0.59684(8)	0.33646(4)	0.018(1)
O (1)	0.6304(3)	0.1504(2)	0.07849(13)	0.030(1)
C(62)	1.0721(5)	0.4355(4)	0.0911(2)	0.047(1)
C(65)	0.7484(5)	0.3354(4)	0.1010(2)	0.036(1)
C(60)	1.1278(5)	0.3545(4)	0.0912(2)	0.038(1)
C(59)	0.7727(4)	0.0268(3)	0.22811(17)	0.027(1)
C(58)	0.6428(4)	0.2503(4)	0.09767(19)	0.031(1)
C(57)	0.5002(4)	0.0237(4)	0.2253(2)	0.037(1)
C(56)	0.6881(4)	0.8358(3)	0.4752(2)	0.031(1)
C(55)	0.7103(5)	0.9380(4)	0.4983(2)	0.039(1)
C(54)	0.6248(5)	0.9649(4)	0.5248(2)	0.043(1)
C(53)	0.5161(5)	0.8892(4)	0.5286(2)	0.035(1)
C(61)	1.2237(5)	0.3638(4)	0.0523(2)	0.049(2)
I	0.67166(3)	0.77566(3)	0.26906(2)	0.051(1)
0	0.5443(2)	0.6575(2)	0.45674(12)	0.023(1)
Pd	0.63714(3)	0.68113(2)	0.35155(1)	0.019(1)
P(2)	0.83558(9)	0.69929(8)	0.36686(4)	0.020(1)
P(4)	0.71833(10)	0.08513(8)	0.17798(4)	0.021(1)
C(10)	0.2721(4)	0.1929(3)	0.32749(19)	0.028(1)
C(11)	0.5314(3)	0.5068(3)	0.39824(16)	0.017(1)
C	0.6169(3)	0.6177(3)	0.41989(16)	0.018(1)
C(12)	0.4264(4)	0.4864(3)	0.36140(16)	0.017(1)
C(13)	0.3428(4)	0.3865(3)	0.34114(17)	0.021(1)
C(16)	0.5489(4)	0.4241(3)	0.41210(17)	0.023(1)
C(15)	0.4670(4)	0.3244(3)	0.38942(18)	0.024(1)
C(14)	0.3624(4)	0.3027(3)	0.35429(17)	0.022(1)
C(20)	1.0815(4)	0.6877(3)	0.55111(17)	0.024(1)
C(19)	0.1482(4)	0.1778(4)	0.3464(2)	0.040(1)
C(18)	0.3151(5)	0.1130(3)	0.3428(2)	0.040(1)
C(17)	0.2578(5)	0.1779(4)	0.26515(19)	0.036(1)
C(21)	0.7366(4)	0.6336(3)	0.45367(16)	0.018(1)
C(22)	0.8474(4)	0.6695(3)	0.43364(16)	0.018(1)
C(23)	0.9552(4)	0.6823(3)	0.46460(16)	0.019(1)
C(24)	0.9586(4)	0.6641(3)	0.51679(16)	0.019(1)
C(25)	0.8467(4)	0.6293(3)	0.53626(17)	0.022(1)
C(26)	0.7384(4)	0.6138(3)	0.50555(17)	0.022(1)
C(27)	1.0660(4)	0.6515(4)	0.60411(18)	0.031(1)
C(28)	1.1524(4)	0.8036(4)	0.5650(2)	0.038(1)
C(29)	1.1551(4)	0.6348(4)	0.5188(2)	0.036(1)
C(30)	0.6010(4)	-0.1223(3)	0.11641(17)	0.022(1)
C(31)	0.3448(4)	0.5423(3)	0.26611(17)	0.022(1)
C(32)	0.3241(4)	0.6457(3)	0.37583(17)	0.022(1)
C(33)	0.4162(4)	0.4923(4)	0.23023(18)	0.033(1)
C(81)	0.4538(17)	-0.3291(12)	0.1233(7)	0.043(1)
C(90)	0.5903(15)	-0.3677(11)	0.0610(7)	0.043(1)
C(99)	0.3953(15)	-0.3649(10)	0.0229(6)	0.043(1)
C(35)	0.1891(4)	0.5767(4)	0.35983(18)	0.028(1)
			Con	tinued on next page

Table S37. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[{PC(sp^3)(OPhP)}]^{tBu}PdI]$ (11). U(eq) is defined as one third of the trace of the orthogonalized U_{ii} tensor

Table 627	agentinyad	frame	marriana	-
Table 557. –	continued	from	previous	page

atom	X	y	Х	U(eq)
C(34)	0.3163(4)	0.6202(4)	0.24028(19)	0.032(1)
C(39)	0.8789(4)	-0.0008(4)	0.20992(19)	0.032(1)
C(36)	0.3518(5)	0.7580(4)	0.3764(2)	0.039(1)
C(40)	0.5847(4)	0.1090(3)	0.20154(18)	0.025(1)
C(41)	0.8760(4)	0.6027(4)	0.32121(18)	0.032(1)
C(42)	0.9564(4)	0.8240(4)	0.3667(2)	0.033(1)
C(43)	0.8964(5)	0.6242(5)	0.2651(2)	0.051(2)
C(44)	0.7794(5)	0.4961(4)	0.3159(2)	0.038(1)
C(45)	1.0876(4)	0.8317(4)	0.3753(2)	0.044(1)
C(46)	0.9405(5)	0.9114(4)	0.4055(2)	0.046(1)
C(47)	0.9942(5)	0.0295(4)	0.0676(2)	0.036(1)
C(48)	1.0860(4)	0.1381(3)	0.07468(18)	0.025(1)
C(51)	0.5785(4)	0.7606(3)	0.47889(18)	0.025(1)
C(52)	0.5703(1) 0.4922(4)	0.7873(4)	0.50570(18)	0.025(1)
C(52)	1.0546(5)	0.7675(4) 0.2494(4)	-0.1315(2)	0.030(1)
C(64)	0.8720(5)	0.2494(4) 0.0997(4)	-0.1777(2)	0.042(1)
C(66)	0.5384(5)	0.0997(4)	0.1146(2)	0.042(1)
C(67)	0.5304(5) 0.5418(5)	0.2019(4) 0.3593(4)	0.1140(2) 0.1363(2)	0.049(1)
C(07)	1 1857(5)	0.3575(4) 0.1661(4)	0.1303(2) 0.1227(2)	0.047(1)
C(72)	0.6569(4)	-0.0662(3)	0.1227(2)	0.047(1)
C(71)	0.0309(4) 0.6847(3)	-0.0002(3)	0.01332(10)	0.020(1)
C(70)	0.0047(3) 0.6585(4)	0.0103(3)	0.11627(16)	0.010(1)
C(09)	0.0303(4)	-0.0197(3)	0.11027(10)	0.019(1)
C(08) C(75)	0.8000(4) 0.6250(5)	0.0920(4) 0.2148(4)	0.28000(18)	0.035(1)
C(73)	0.0230(3) 0.5087(4)	0.2140(4) 0.3125(3)	0.2408(2) 0.06005(10)	0.040(1)
C(74)	0.5087(4) 0.5704(4)	-0.3123(3) 0.1001(3)	0.00903(19) 0.06871(17)	0.028(1)
C(75)	0.3704(4) 0.8628(6)	-0.1991(3) 0.2710(5)	0.00871(17) 0.1586(2)	0.022(1)
C(70)	0.3028(0) 0.7503(5)	0.2719(3) 0.4210(4)	-0.1380(3)	0.005(2)
C(77)	0.7303(3)	0.4319(4) 0.4445(5)	0.1230(2)	0.040(1)
C(78)	0.0473(0)	0.4443(3) 0.1694(2)	0.1410(2)	0.032(2)
C(97)	0.0018(4) 0.7275(2)	-0.1084(3)	0.02110(17)	0.023(1)
C(91)	0.7373(3) 0.7823(4)	0.1245(3) 0.1508(2)	0.00987(17)	0.019(1)
C(98)	0.7832(4)	0.1508(3) 0.1050(2)	0.01/49(18) 0.01577(18)	0.022(1)
C(82)	0.9084(4)	0.1959(3)	0.01377(18)	0.024(1)
C(83)	0.9304(4) 0.9715(4)	0.2108(3)	-0.05595(18)	0.026(1)
C(84)	0.8/15(4)	0.1802(3)	-0.08212(19)	0.023(1)
C(85)	0.7467(4)	0.1464(4)	-0.0/81(2)	0.032(1)
C(86)	0.7029(4)	0.1281(4)	-0.03007(19)	0.031(1)
C(87)	0.9163(4)	0.2028(4)	-0.13642(19)	0.031(1)
C(92)	0.4174(10)	-0.3263(7)	0.1068(4)	0.043(1)
C(79)	0.4549(10)	-0.3/8/(6)	0.0112(4)	0.043(1)
C(80)	0.6097(9)	-0.3458(7)	0.0906(5)	0.043(1)
I(3)	1.0096(6)	0.3292(4)	0.2262(3)	0.066(1)
Pd(91)	0.8595(6)	0.2025(5)	0.1361(3)	0.037(1)
P(3)	1.00566(10)	0.22812(9)	0.08173(5)	0.027(1)
H(62A)	1.1377	0.5034	0.0981	0.071
H(62B)	1.0198	0.4338	0.1198	0.071
H(62C)	1.0234	0.4210	0.0554	0.071
H(65)	0.8187	0.3278	0.0880	0.043
H(60)	1.1728	0.3707	0.1289	0.046
H(59)	0.7041	-0.0385	0.2283	0.032
H(57A)	0.4263	0.0364	0.2323	0.056
				Continued on next page

atom	X	У	X	U(eq)
H(57B)	0.5425	0.0223	0.2596	0.056
H(57C)	0.4779	-0.0422	0.1990	0.056
H(56)	0.7478	0.8180	0.4571	0.037
H(55)	0.7854	0.9897	0.4958	0.046
H(54)	0.6404	1.0346	0.5404	0.051
H(53)	0.4569	0.9071	0.5470	0.042
H(61A)	1.2396	0.3007	0.0447	0.073
H(61B)	1.2994	0.4217	0.0694	0.073
H(61C)	1.1933	0.3748	0.0180	0.073
H(13)	0.2705	0.3746	0.3178	0.026
H(16)	0.6179	0.4357	0.4375	0.027
H(15)	0.4840	0.2694	0.3985	0.029
H(19A)	0.1185	0.2277	0.3358	0.060
H(19B)	0.1568	0.1875	0.3863	0.060
H(19C)	0.0899	0.1084	0.3291	0.060
H(18A)	0.2572	0.0445	0.3238	0.060
H(18B)	0.3201	0.1196	0.3825	0.060
H(18C)	0.3959	0.1234	0.3320	0.060
H(17A)	0 2010	0 1081	0 2479	0.054
H(17R)	0.3374	0 1894	0.2529	0.054
H(17C)	0.2259	0.2267	0.2548	0.054
H(23)	1.0292	0.7042	0.4496	0.023
H(25)	0.8453	0.6159	0.5717	0.025
H(26)	0.6640	0.5893	0.5200	0.027
H(27A)	1 0191	0.5776	0.5956	0.046
H(27R)	1 0224	0.6867	0.6266	0.046
H(27C)	1 1464	0.6671	0.6242	0.046
H(28A)	1.1687	0.8266	0.5311	0.057
H(28R)	1.2300	0.8200	0.5881	0.057
H(28C)	1.2300	0.8200	0.5846	0.057
H(20C) $H(20\Delta)$	1.1077	0.5517	0.5040	0.054
H(29R)	1.1077	0.6483	0.5417	0.054
H(29C)	1.1732	0.6613	0.4860	0.054
H(2)C)	0.5820	-0.1405	0.4500	0.027
H(30) H(31)	0.2651	0.4873	0.1500	0.027
H(32)	0.2051	0.4875	0.2070	0.020
$\Pi(32)$ $\Pi(32\Lambda)$	0.3437	0.0444	0.4140	0.027
H(33R)	0.3074	0.4430	0.1941	0.049
H(33D) H(33C)	0.4341	0.5450	0.2475	0.049
H(33C)	0.4929	0.3450	0.2201	0.049
$\Pi(01A)$ $\Pi(01B)$	0.3910	-0.3001	0.1272	0.005
$\Pi(01D)$ $\Pi(01C)$	0.3166	-0.2932	0.1347	0.065
H(00A)	0.4173	-0.4023	0.1217	0.065
$\Pi(90\mathbf{A})$	0.0108	-0.3720	0.0257	0.005
H(90D)	0.5497	-0.4308	0.0003	0.065
H(90C)	0.0032	-0.5514	0.0874	0.005
П(УУА) Ц(ООР)	0.4210	-0.5304	-0.0120	0.005
П(УУВ) Ц(ООС)	0.5558	-0.5552	0.0303	0.005
H(99C)	0.55/0	-0.43/9	0.0220	0.005
п(ЭЭА) Ц(25D)	0.1399	0.5815	0.3230	0.042
П(33В) Ц(25С)	0.1422	0.5980	0.3808	0.042
п(ээс)	0.1/8/	0.5058	0.3389	0.042
				Continued on next page

 Table S37. – continued from previous page

atom	Х	У	X	U(eq)
H(34A)	0.3926	0.6768	0.2396	0.047
H(34B)	0.2639	0.6466	0.2619	0.047
H(34C)	0.2742	0.5872	0.2028	0.047
H(39A)	0.8531	-0.0479	0.1737	0.048
H(39B)	0.9047	-0.0337	0.2362	0.048
H(39C)	0.9473	0.0614	0.2082	0.048
H(36A)	0.3260	0.7637	0.3398	0.059
H(36B)	0.4397	0.7976	0.3869	0.059
H(36C)	0.3074	0.7848	0.4028	0.059
H(40)	0.5356	0.1112	0.1684	0.031
H(41)	0.9544	0.6040	0.3390	0.038
H(42)	0.9430	0.8349	0.3292	0.040
H(43A)	0.9223	0.5730	0.2438	0.076
H(43R)	0.9598	0.6924	0.2693	0.076
H(43C)	0.8202	0.6211	0.2460	0.076
H(44A)	0.7031	0.4902	0.2955	0.057
H(44R)	0.7653	0.4848	0.3525	0.057
H(44C)	0.8077	0 4449	0.2964	0.057
H(45A)	1.0938	0.7702	0.3533	0.067
H(45R)	1 1125	0.8378	0.4141	0.067
H(45C)	1.1125	0.8971	0.3641	0.067
$H(46\Delta)$	1.0014	0.9765	0.4020	0.069
H(46R)	0.9514	0.9703	0.4020	0.069
H(46C)	0.8584	0.9100	0.3963	0.069
H(40C) $H(47\Delta)$	0.0200	0.0140	0.0370	0.054
H(47R)	0.9579	0.0229	0.0070	0.054
H(47C)	1.0356	-0.0183	0.1012	0.054
H(48)	1.1253	0.1417	0.0377	0.030
H(52)	0.4169	0.7359	0.5084	0.036
H(63A)	1 0784	0.7555	-0.1677	0.050
H(63R)	1 0892	0.2059	-0.1166	0.062
H(63C)	1.0856	0.2035	-0.1069	0.062
H(64A)	0.8966	0.1100	-0.2132	0.062
H(64B)	0.7828	0.0674	-0.1817	0.062
H(64C)	0.9081	0.0554	-0.1648	0.062
H(66)	0.4653	0.2037	0.1113	0.048
H(67)	0.4704	0.3673	0.1476	0.058
H(72A)	1 2220	0.1144	0.1184	0.070
H(72R)	1.1506	0.1688	0.1569	0.070
H(72C)	1.1500	0.2330	0.1237	0.070
H(71)	0.6756	-0.0484	-0.0138	0.070
H(68A)	0.8714	0.1582	0.2877	0.052
H(68B)	0.8356	0.0570	0.3106	0.052
H(68C)	0.7347	0.1028	0.2990	0.052
H(75A)	0.6822	0.2661	0.2248	0.060
H(75R)	0.6650	0.2138	0.2240	0.060
H(75C)	0 5534	0.2318	0.2750	0.060
H(76A)	0.8868	0.2785	-0 1947	0.094
H(76B)	0.8937	0.3396	-0.1334	0.094
H(76C)	0.7735	0.2419	-0.1620	0.094
H(77)	0.8232	0.4903	0.1269	0.055
<u> </u>				Continued on next page

 Table S37. – continued from previous page

atom	X	y y	X	U(eq)
H(78)	0.6498	0.5107	0.1573	0.063
H(97)	0.5851	-0.2191	-0.0119	0.027
H(83)	1.0359	0.2388	-0.0346	0.031
H(85)	0.6897	0.1313	-0.1098	0.038
H(86)	0.6173	0.0999	-0.0296	0.037
H(92A)	0.3514	-0.3076	0.0933	0.065
H(92B)	0.4561	-0.2827	0.1432	0.065
H(92C)	0.3839	-0.3980	0.1091	0.065
H(79A)	0.3947	-0.3563	-0.0049	0.065
H(79B)	0.4151	-0.4504	0.0128	0.065
H(79C)	0.5203	-0.3719	-0.0114	0.065
H(80A)	0.5754	-0.4196	0.0881	0.065
H(80B)	0.6413	-0.3092	0.1289	0.065
H(80C)	0.6761	-0.3296	0.0685	0.065

Table S37. – continued from previous page

	110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0.12}{0.040(4)}$
I(1) = 0.0167(5) = 0.007(5) = 0.007(6) = 0.0017(4) = 0.0019(5) =	0.007(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0007(4)
O(1) $0.0246(17)$ $0.0311(18)$ $0.0338(18)$ $0.0032(4)$ $0.0036(14)$ (0.0045(4)
C(62) 0.056(4) 0.021(10) 0.0530(10) 0.0057(14) 0.0050(14) (0.0050(14)) (0.0050(1	0.0120(14)
C(62) 0.030(1) 0.021(3) 0.000(1) 0.015(5) 0.020(3) (C(65) 0.037(3) 0.032(3) 0.041(3) 0.006(2) 0.001(2) (C(65) 0.020(3) 0.020(3) 0.001(2) (C(65) 0.000(3)	0.017(2)
C(60) = 0.037(3) = 0.022(3) = 0.040(3) = 0.000(2) = 0.001(2) = 0.001(2)	0.00(2)
C(59) = 0.024(2) = 0.027(2) = 0.022(2) = 0.0019(19) = 0.0053(18) = 0.0019(19) = 0.0053(18) = 0.0019(19) = 0.0053(18) = 0.0019(19) = 0.0053(18) = 0.0019(19) = 0.0019(19) = 0.0053(18) = 0.0019(19) = 0	0.0017(19)
C(58) = 0.035(3) = 0.033(3) = 0.027(2) = 0.004(2) = 0.003(2)	0.018(2)
C(57) 0.024(2) 0.037(3) 0.042(3) -0.002(2) 0.010(2) (0.010(2))	0.006(2)
C(56) = 0.028(3) = 0.025(2) = 0.038(3) = 0.004(2) = 0.004(2)	0.010(2)
C(55) 0.035(3) 0.024(3) 0.051(3) 0.005(2) 0.000(2) (0.009(2)
C(54) 0.048(3) 0.029(3) 0.047(3) -0.006(2) -0.007(3) (0.022(3)
C(53) 0.036(3) 0.041(3) 0.034(3) 0.002(2) 0.002(2) (0.023(2)
C(61) 0.031(3) 0.042(3) 0.057(4) 0.003(3) 0.019(3) -0	0.003(2)
I 0.0280(2) 0.0650(3) 0.0559(2) 0.0477(2) -0.0039(2) -0	0.0016(2)
O 0.0193(15) 0.0217(15) 0.0262(16) 0.0024(13) 0.0024(12) (0.0079(12)
Pd 0.0130(2) 0.0204(2) 0.0211(2) 0.0097(1) -0.0001(1) (0.0027(1)
P(2) 0.0134(5) 0.0260(6) 0.0196(6) 0.0099(5) 0.0013(4) (0.0030(4)
P(4) 0.0177(5) 0.0173(5) 0.0205(6) $-0.0034(4)$ 0.0051(4) (0.0006(4)
C(10) 0.029(2) 0.017(2) 0.034(3) 0.0033(19) 0.005(2) (0.0042(19)
C(11) 0.014(2) 0.017(2) 0.018(2) 0.0048(16) 0.0055(16) (0.0049(16)
C 0.014(2) 0.019(2) 0.019(2) 0.0049(17) 0.0041(16) (0.0047(17)
C(12) 0.017(2) 0.018(2) 0.019(2) 0.0050(16) 0.0067(16) (0.0069(17)
C(13) 0.017(2) 0.024(2) 0.021(2) 0.0035(18) 0.0046(17) (0.0064(18)
C(16) 0.016(2) 0.029(2) 0.025(2) 0.0097(19) 0.0030(17) (0.0085(18)
C(15) 0.027(2) 0.020(2) 0.030(2) 0.0095(19) 0.0071(19) (0.0106(19)
C(14) 0.020(2) 0.021(2) 0.025(2) 0.0052(18) 0.0060(18) (0.0058(18)
$C(20) \qquad 0.016(2) \qquad 0.027(2) \qquad 0.023(2) \qquad 0.0054(18) -0.0010(17) (12)$	0.0042(18)
$C(19) \qquad 0.030(3) \qquad 0.024(3) \qquad 0.051(3) \qquad -0.001(2) \qquad 0.010(2) \qquad -0$	0.003(2)
C(18) 0.044(3) 0.021(2) 0.048(3) 0.006(2) -0.004(2) (0.007(2)
$C(17) \qquad 0.043(3) \qquad 0.023(2) \qquad 0.034(3) \qquad -0.003(2) \qquad 0.003(2) \qquad (12)$	0.010(2)
$C(21) \qquad 0.019(2) \qquad 0.017(2) \qquad 0.016(2) \qquad 0.0032(16) \qquad 0.0006(16) \qquad (16)$	0.0074(17)
$C(22) \qquad 0.016(2) \qquad 0.019(2) \qquad 0.018(2) \qquad 0.0040(17) \qquad 0.0025(16) \qquad ($).0067(17)
$C(23) \qquad 0.015(2) \qquad 0.021(2) \qquad 0.021(2) \qquad 0.0050(17) \qquad 0.0056(17) \qquad ($	0.0053(17)
$C(24) \qquad 0.018(2) \qquad 0.019(2) \qquad 0.018(2) \qquad 0.0027(17) \qquad 0.0003(17) \qquad ($).0062(17)
C(25) 0.023(2) 0.026(2) 0.018(2) 0.0066(18) 0.0016(17) (0.0085(19)
$C(26) \qquad 0.016(2) \qquad 0.026(2) \qquad 0.025(2) \qquad 0.0085(18) \qquad 0.0053(17) \qquad (0.0053(17)) \qquad (0.0053(17))$	0.0081(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.013(2)
C(28) $U.031(3)$ $U.034(3)$ $U.035(3)$ $U.005(2)$ $-0.012(2)$ $($	0.002(2)
C(29) $U.022(2)$ $U.056(3)$ $U.032(3)$ $U.005(2)$ $U.001(2)$ $U(001(2))$	J.021(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J.0021(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J.0045(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0121(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	J.01/(2)
C(81) $U.052(3)$ $U.0198(19)$ $U.048(3)$ $U.005(2)$ $U.014(3)$ $U.014(3)$ $U.005(2)$ $U.014(3)$	0.002(2)
C(90) $0.052(3)$ $0.0198(19)$ $0.048(3)$ $0.005(2)$ $0.014(3)$ $C(00)$ $0.052(2)$ $0.018(10)$ $0.048(2)$ $0.005(2)$ $0.014(2)$ $(0.014(2))$	0.002(2)
C(35) $0.021(2)$ $0.025(2)$ $0.028(3)$ $0.005(2)$ $0.014(3)$ $C(25)$ $0.021(2)$ $0.025(2)$ $0.028(2)$ $0.028(2)$ $0.0024(410)$ (10)	J.002(2)
$\frac{C(55)}{C(55)} = 0.021(2) = 0.055(5) = 0.028(2) = 0.003(2) = 0.0044(19) = 0.004(19) = 0.00$	J.011(2)

Table S38. Anisotropic displacement parameters (Å²) for [{PC(sp³)(OPhP)}^{*Bu*}PdI] (**11**). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Table S38	. – continued fror	n previous page				
atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(34)	0.027(2)	0.043(3)	0.025(2)	0.014(2)	-0.001(2)	0.012(2)
C(39)	0.029(3)	0.036(3)	0.029(3)	0.009(2)	0.004(2)	0.011(2)
C(36)	0.037(3)	0.036(3)	0.045(3)	0.002(2)	-0.003(2)	0.020(2)
C(40)	0.019(2)	0.029(2)	0.024(2)	-0.0004(19)	0.0057(18)	0.0064(19)
C(41)	0.027(2)	0.051(3)	0.018(2)	0.006(2)	0.0054(19)	0.016(2)
C(42)	0.021(2)	0.036(3)	0.038(3)	0.019(2)	0.003(2)	0.000(2)
C(43)	0.055(4)	0.071(4)	0.025(3)	0.012(3)	0.015(3)	0.021(3)
C(44)	0.042(3)	0.037(3)	0.034(3)	0.003(2)	0.010(2)	0.017(2)
C(45)	0.021(3)	0.051(3)	0.053(3)	0.024(3)	0.004(2)	0.000(2)
C(46)	0.032(3)	0.031(3)	0.066(4)	0.018(3)	0.008(3)	-0.003(2)
C(47)	0.039(3)	0.036(3)	0.038(3)	0.010(2)	0.009(2)	0.019(2)
C(48)	0.022(2)	0.033(3)	0.021(2)	0.0053(19)	0.0062(18)	0.013(2)
C(51)	0.026(2)	0.023(2)	0.026(2)	0.0038(18)	-0.0023(19)	0.0122(19)
C(52)	0.026(2)	0.034(3)	0.031(3)	0.005(2)	0.001(2)	0.015(2)
C(63)	0.043(3)	0.040(3)	0.036(3)	0.011(2)	0.019(2)	0.007(2)
C(64)	0.037(3)	0.052(3)	0.034(3)	0.005(2)	0.009(2)	0.017(3)
C(66)	0.038(3)	0.048(3)	0.035(3)	0.001(2)	0.006(2)	0.024(3)
C(67)	0.053(4)	0.057(4)	0.044(3)	-0.003(3)	0.005(3)	0.037(3)
C(72)	0.040(3)	0.053(3)	0.046(3)	0.004(3)	-0.003(3)	0.022(3)
C(71)	0.018(2)	0.022(2)	0.015(2)	0.0017(17)	0.0020(16)	0.0023(17)
C(70)	0.0106(19)	0.018(2)	0.023(2)	0.0009(17)	0.0010(16)	0.0040(16)
C(69)	0.015(2)	0.018(2)	0.019(2)	-0.0005(17)	0.0036(16)	0.0032(17)
C(68)	0.028(3)	0.039(3)	0.025(3)	0.001(2)	0.002(2)	0.004(2)
C(75)	0.033(3)	0.037(3)	0.045(3)	-0.001(2)	0.012(2)	0.012(2)
C(74)	0.032(3)	0.017(2)	0.030(2)	0.0014(19)	0.007(2)	0.0045(19)
C(73)	0.018(2)	0.019(2)	0.025(2)	0.0019(18)	0.0036(17)	0.0055(17)
C(76)	0.090(5)	0.084(5)	0.064(4)	0.053(4)	0.052(4)	0.065(4)
C(77)	0.052(3)	0.034(3)	0.048(3)	0.002(2)	-0.003(3)	0.017(3)
C(78)	0.059(4)	0.045(3)	0.052(4)	-0.005(3)	-0.004(3)	0.029(3)
C(97)	0.021(2)	0.018(2)	0.019(2)	-0.0053(17)	0.0016(17)	0.0010(18)
C(91)	0.013(2)	0.015(2)	0.027(2)	0.0019(17)	0.0065(17)	0.0035(16)
C(98)	0.021(2)	0.017(2)	0.030(2)	0.0071(18)	0.0051(18)	0.0078(18)
C(82)	0.020(2)	0.018(2)	0.030(2)	0.0012(18)	0.0094(19)	0.0042(18)
C(83)	0.024(2)	0.018(2)	0.029(2)	-0.0005(18)	0.012(2)	0.0016(18)
C(84)	0.031(2)	0.016(2)	0.035(3)	0.0094(19)	0.015(2)	0.0119(19)
C(85)	0.029(3)	0.041(3)	0.032(3)	0.018(2)	0.005(2)	0.016(2)
C(86)	0.019(2)	0.040(3)	0.040(3)	0.021(2)	0.008(2)	0.010(2)
C(87)	0.036(3)	0.033(3)	0.035(3)	0.016(2)	0.014(2)	0.020(2)
C(92)	0.052(3)	0.0198(19)	0.048(3)	0.005(2)	0.014(3)	0.002(2)
C(79)	0.052(3)	0.0198(19)	0.048(3)	0.005(2)	0.014(3)	0.002(2)

0.048(3)

0.036(2)

0.0262(6)

0.0388(15)

C(80)

Pd(91)

I(3)

P(3)

0.052(3)

0.0474(16)

0.0244(17)

0.0213(6)

0.0198(19)

0.0558(19)

0.0255(19)

0.0255(6)

0.005(2)

-0.0255(11)

-0.0128(12)

0.0000(5)

0.014(3)

0.0112(11)

0.0102(13)

0.0061(5)

0.002(2)

-0.0270(11)

-0.0112(11)

0.0010(5)

atom – atom	distance	atom – atom	distance
Pd(1) - C(91)	2.130(5)	Pd(1) - P(3)	2.284(3)
Pd(1) - P(4)	2.293(3)	Pd(1) - I(1)	2.681(4)
P(1) - C(12)	1.826(4)	P(1) - C(31)	1.837(4)
P(1) - C(32)	1.851(4)	P(1) - Pd	2.3282(10)
O(1) - C(58)	1.378(5)	O(1) - C(91)	1.466(5)
C(62) - C(60)	1.539(7)	C(62) - H(62A)	0.9800
C(62) - H(62B)	0.9800	C(62) - H(62C)	0.9800
C(65) - C(58)	1.386(7)	C(65) - C(77)	1.389(7)
C(65) - H(65)	0.9500	C(60) - C(61)	1.533(7)
C(60) - P(3)	1.833(5)	C(60) - H(60)	1.0000
C(59) - C(68)	1.525(6)	C(59) - C(39)	1.525(6)
C(59) - P(4)	1.851(5)	C(59) - H(59)	1.0000
C(58) - C(66)	1.392(7)	C(57) - C(40)	1.533(6)
C(57) - H(57A)	0.9800	C(57) - H(57B)	0.9800
C(57) - H(57C)	0.9800	C(56) - C(51)	1.383(6)
C(56) - C(55)	1.395(6)	C(56) - H(56)	0.9500
C(55) - C(54)	1.377(7)	C(55) - H(55)	0.9500
C(54) - C(53)	1.380(7)	C(54) - H(54)	0.9500
C(53) - C(52)	1.385(7)	C(53) - H(53)	0.9500
C(61) - H(61A)	0.9800	C(61) - H(61B)	0.9800
C(61) - H(61C)	0.9800	I – Pd	2.6746(4)
O - C(51)	1.378(5)	O – C	1.477(5)
Pd – C	2.089(4)	Pd - P(2)	2.2741(11)
P(2) - C(22)	1.824(4)	P(2) - C(41)	1.849(5)
P(2) - C(42)	1.853(5)	P(4) - C(69)	1.836(4)
P(4) - C(40)	1.850(4)	P(4) - Pd(91)	2.378(7)
C(10) - C(18)	1.522(6)	C(10) - C(19)	1.527(6)
C(10) - C(17)	1.531(7)	C(10) - C(14)	1.543(6)
C(11) - C(16)	1.387(6)	C(11) - C(12)	1.409(5)
C(11) - C	1.518(5)	C - C(21)	1.528(5)
C(12) - C(13)	1.392(6)	C(13) - C(14)	1.406(6)
C(13) - H(13)	0.9500	C(16) - C(15)	1.393(6)
C(16) - H(16)	0.9500	C(15) - C(14)	1.378(6)
C(15) - H(15)	0.9500	C(20) - C(27)	1.523(6)
C(20) - C(29)	1.529(6)	C(20) - C(28)	1.531(6)
C(20) - C(24)	1.536(6)	C(19) - H(19A)	0.9800
C(19) - H(19B)	0.9800	C(19) - H(19C)	0.9800
C(18) - H(18A)	0.9800	C(18) - H(18B)	0.9800
C(18) - H(18C)	0.9800	C(17) - H(17A)	0.9800
C(17) - H(17B)	0.9800	C(17) - H(17C)	0.9800
C(21) - C(26)	1.391(6)	C(21) - C(22)	1.395(6)
C(22) - C(23)	1.389(6)	C(23) - C(24)	1.390(6)
C(23) - H(23)	0.9500	C(24) - C(25)	1.398(6)
C(25) - C(26)	1.380(6)	C(25) - H(25)	0.9500
C(26) - H(26)	0.9500	C(27) - H(27A)	0.9800
C(27) - H(27B)	0.9800	C(27) - H(27C)	0.9800
C(28) – H(28A)	0.9800	C(28) - H(28B)	0.9800
C(28) - H(28C)	0.9800	C(29) – H(29A)	0.9800
C(29) - H(29B)	0.9800	C(29) - H(29C)	0.9800
C(30) – C(69)	1.389(6)	C(30) - C(73)	1.392(6)
			Continued on next page

Table S39. Distances [Å] for $[{PC(sp^3)(OPhP)}^{tBu}PdI]$ (11).

Table S39. – continued from previous page

atom – atom	distance	atom – atom	distance
C(30) – H(30)	0.9500	C(31) - C(34)	1.528(6)
C(31) - C(33)	1.530(6)	C(31) - H(31)	1.0000
C(32) - C(35)	1.527(6)	C(32) - C(36)	1.530(6)
C(32) - H(32)	1.0000	C(33) - H(33A)	0.9800
C(33) - H(33B)	0.9800	C(33) - H(33C)	0.9800
C(81) - C(74)	1.573(18)	C(81) - H(81A)	0.9800
C(81) - H(81B)	0.9800	C(81) - H(81C)	0.9800
C(90) - C(74)	1.463(16)	C(90) - H(90A)	0.9800
C(90) - H(90B)	0.9800	C(90) - H(90C)	0.9800
C(99) - C(74)	1.568(16)	C(99) - H(99A)	0.9800
C(99) - H(99B)	0.9800	C(99) - H(99C)	0.9800
C(35) - H(35A)	0.9800	C(35) - H(35B)	0.9800
C(35) - H(35C)	0.9800	C(34) - H(34A)	0.9800
C(34) - H(34B)	0.9800	C(34) - H(34C)	0.9800
C(39) - H(39A)	0.9800	C(39) - H(39B)	0.9800
C(39) - H(39C)	0.9800	C(36) - H(36A)	0.9800
C(36) - H(36B)	0.9800	C(36) - H(36C)	0.9800
C(40) - C(75)	1.535(6)	C(40) - H(40)	1.0000
C(41) - C(43)	1.521(7)	C(41) - C(44)	1.525(7)
C(41) - H(41)	1.0000	C(42) - C(46)	1.514(7)
C(42) - C(45)	1.519(7)	C(42) - H(42)	1.0000
C(43) - H(43A)	0.9800	C(43) - H(43B)	0.9800
C(43) - H(43C)	0.9800	C(44) - H(44A)	0.9800
C(44) - H(44B)	0.9800	C(44) - H(44C)	0.9800
C(45) - H(45A)	0.9800	C(45) - H(45B)	0.9800
C(45) - H(45C)	0.9800	C(46) - H(46A)	0.9800
C(46) - H(46B)	0.9800	C(46) - H(46C)	0.9800
C(47) - C(48)	1.518(6)	C(47) - H(47A)	0.9800
C(47) - H(47B)	0.9800	C(47) - H(47C)	0.9800
C(48) - C(72)	1.521(6)	C(48) - P(3)	1.860(4)
C(48) - H(48)	1.0000	C(51) - C(52)	1.387(6)
C(52) - H(52)	0.9500	C(63) - C(87)	1.519(7)
C(63) - H(63A)	0.9800	C(63) - H(63B)	0.9800
C(63) - H(63C)	0.9800	C(64) - C(87)	1.528(7)
C(64) - H(64A)	0.9800	C(64) - H(64B)	0.9800
C(64) - H(64C)	0.9800	C(66) - C(67)	1.389(7)
C(66) - H(66)	0.9500	C(67) - C(78)	1.380(8)
C(67) - H(67)	0.9500	C(72) - H(72A)	0.9800
C(72) - H(72B)	0.9800	C(72) - H(72C)	0.9800
C(71) - C(70)	1.386(5)	C(71) - C(97)	1.389(6)
C(71) - H(71)	0.9500	C(70) - C(69)	1.400(6)
C(70) - C(91)	1.524(5)	C(68) - H(68A)	0.9800
C(68) - H(68B)	0.9800	C(68) - H(68C)	0.9800
C(75) - H(75A)	0.9800	C(75) - H(75B)	0.9800
C(75) - H(75C)	0.9800	C(74) - C(92)	1.471(12)
C(74) - C(79)	1.530(10)	C(74) - C(73)	1.534(6)
C(74) - C(80)	1.550(11)	C(73) - C(97)	1.383(6)
C(76) - C(87)	1.531(7)	C(76) - H(76A)	0.9800
C(76) - H(76B)	0.9800	C(76) - H(76C)	0.9800
C(77) - C(78)	1.388(8)	C(77) - H(77)	0.9500
C(78) - H(78)	0.9500	C(97) - H(97)	0.9500
		· · ·	Continued on next page

T 11 CAO	. 1.0	•
Table 839. –	continued from	om previous page

atom – atom	distance	atom – atom	distance
C(91) – C(98)	1.521(6)	C(91) – Pd(91)	1.983(9)
C(98) - C(86)	1.389(6)	C(98) - C(82)	1.398(6)
C(82) - C(83)	1.402(6)	C(82) - P(3)	1.838(5)
C(83) - C(84)	1.387(6)	C(83) – H(83)	0.9500
C(84) - C(85)	1.401(6)	C(84) - C(87)	1.529(6)
C(85) - C(86)	1.380(6)	C(85) – H(85)	0.9500
C(86) - H(86)	0.9500	C(92) - H(92A)	0.9800
C(92) - H(92B)	0.9800	C(92) - H(92C)	0.9800
C(79) – H(79A)	0.9800	C(79) - H(79B)	0.9800
C(79) - H(79C)	0.9800	C(80) - H(80A)	0.9800
C(80) - H(80B)	0.9800	C(80) - H(80C)	0.9800
I(3) - Pd(91)	2.678(7)	Pd(91) – P(3)	2.248(6)

Table S40. Angles [°] for $[{PC(sp^3)(OPhP)}^{Bu}PdI]$ (11).

atom – atom – atom	angle	atom – atom – atom	angle
C(91) - Pd(1) - P(3)	83.96(15)	C(91) - Pd(1) - P(4)	81.64(16)
P(3) - Pd(1) - P(4)	151.40(16)	C(91) - Pd(1) - I(1)	167.44(16)
P(3) - Pd(1) - I(1)	97.12(13)	P(4) - Pd(1) - I(1)	102.27(12)
C(12) - P(1) - C(31)	104.42(19)	C(12) - P(1) - C(32)	106.14(18)
C(31) - P(1) - C(32)	105.78(19)	C(12) - P(1) - Pd	94.94(13)
C(31) - P(1) - Pd	119.81(14)	C(32) - P(1) - Pd	122.58(14)
C(58) - O(1) - C(91)	121.0(3)	C(60) - C(62) - H(62A)	109.5
C(60) - C(62) - H(62B)	109.5	H(62A) - C(62) - H(62B)	109.5
C(60) - C(62) - H(62C)	109.5	H(62A) - C(62) - H(62C)	109.5
H(62B) - C(62) - H(62C)	109.5	C(58) - C(65) - C(77)	119.2(5)
C(58) - C(65) - H(65)	120.4	C(77) - C(65) - H(65)	120.4
C(61) - C(60) - C(62)	111.4(4)	C(61) - C(60) - P(3)	116.6(3)
C(62) - C(60) - P(3)	109.7(4)	C(61) - C(60) - H(60)	106.1
C(62) - C(60) - H(60)	106.1	P(3) - C(60) - H(60)	106.1
C(68) - C(59) - C(39)	110.6(4)	C(68) - C(59) - P(4)	114.0(3)
C(39) - C(59) - P(4)	110.6(3)	C(68) - C(59) - H(59)	107.1
C(39) - C(59) - H(59)	107.1	P(4) - C(59) - H(59)	107.1
O(1) - C(58) - C(65)	125.1(4)	O(1) - C(58) - C(66)	114.6(4)
C(65) - C(58) - C(66)	120.2(4)	C(40) - C(57) - H(57A)	109.5
C(40) - C(57) - H(57B)	109.5	H(57A) - C(57) - H(57B)	109.5
C(40) - C(57) - H(57C)	109.5	H(57A) - C(57) - H(57C)	109.5
H(57B) - C(57) - H(57C)	109.5	C(51) - C(56) - C(55)	119.5(4)
C(51) - C(56) - H(56)	120.3	C(55) - C(56) - H(56)	120.3
C(54) - C(55) - C(56)	120.9(5)	C(54) - C(55) - H(55)	119.5
C(56) - C(55) - H(55)	119 5	C(55) - C(54) - C(53)	119.1(5)
C(55) - C(54) - H(54)	120.5	C(53) - C(54) - H(54)	120.5
C(54) - C(53) - C(52)	120.8(5)	C(54) - C(53) - H(53)	119.6
C(52) - C(53) - H(53)	119.6	C(60) - C(61) - H(61A)	109.5
C(60) - C(61) - H(61B)	109.5	H(61A) - C(61) - H(61B)	109.5
C(60) - C(61) - H(61C)	109.5	H(61A) - C(61) - H(61C)	109.5
H(61B) - C(61) - H(61C)	109.5	C(51) = 0 = C	121.8(3)
C - Pd - P(2)	85.27(11)	C - Pd - P(1)	81.33(11)
P(2) - Pd - P(1)	157 20(4)	C - Pd - I	175 82(11)
P(2) - Pd - I	93 57(3)	P(1) - Pd - I	101.02(3)
C(22) - P(2) - C(41)	103.7(2)	C(22) - P(2) - C(42)	110.6(2)
C(41) - P(2) - C(42)	105.2(2)	C(22) - P(2) - Pd	102.73(13)
C(41) - P(2) - Pd	115.15(16)	C(42) - P(2) - Pd	118.54(16)
C(69) - P(4) - C(40)	106.09(19)	C(69) - P(4) - C(59)	103.16(19)
C(40) - P(4) - C(59)	107.3(2)	C(69) - P(4) - Pd(1)	97 42(15)
C(40) - P(4) - Pd(1)	124 42(16)	C(59) - P(4) - Pd(1)	115 32(16)
C(69) - P(4) - Pd(91)	95 9(2)	C(40) - P(4) - Pd(91)	120 5(2)
C(59) - P(4) - Pd(91)	120 6(3)	C(18) - C(10) - C(19)	1087(4)
C(18) - C(10) - C(17)	109.0(4)	C(19) - C(10) - C(17)	100.7(1) 109.1(4)
C(18) - C(10) - C(14)	112.0(4)	C(19) - C(10) - C(14)	108.9(4)
C(17) - C(10) - C(14)	109.1(4)	C(16) - C(11) - C(12)	100.9(1) 117 6(4)
C(16) - C(11) - C	109.1(1) 124 8(4)	C(12) - C(11) - C(12)	117.6(3)
O - C - C(11)	101 7(3)	0 - C - C(21)	108 1(3)
C(11) - C - C(21)	114 8(3)	O - C - Pd	111 3(2)
C(11) - C - Pd	105 3(3)	C(21) - C - Pd	114 8(3)
C(13) - C(12) - C(11)	1204(4)	C(13) - C(12) - P(1)	125 0(3)
		(12) 1(1)	Continued on next page

Table S40. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(11) - C(12) - P(1)	113.9(3)	C(12) - C(13) - C(14)	121.8(4)
C(12) - C(13) - H(13)	119.1	C(14) - C(13) - H(13)	119.1
C(11) - C(16) - C(15)	121.2(4)	C(11) - C(16) - H(16)	119.4
C(15) - C(16) - H(16)	119.4	C(14) - C(15) - C(16)	122.2(4)
C(14) - C(15) - H(15)	118.9	C(16) - C(15) - H(15)	118.9
C(15) - C(14) - C(13)	116.8(4)	C(15) - C(14) - C(10)	123.2(4)
C(13) - C(14) - C(10)	119.9(4)	C(27) - C(20) - C(29)	107.5(4)
C(27) - C(20) - C(28)	109.0(4)	C(29) - C(20) - C(28)	109.4(4)
C(27) - C(20) - C(24)	112.4(3)	C(29) - C(20) - C(24)	110.4(3)
C(28) - C(20) - C(24)	108.1(3)	C(10) - C(19) - H(19A)	109.5
C(10) - C(19) - H(19B)	109.5	H(19A) - C(19) - H(19B)	109.5
C(10) - C(19) - H(19C)	109.5	H(19A) - C(19) - H(19C)	109.5
H(19B) - C(19) - H(19C)	109.5	C(10) - C(18) - H(18A)	109.5
C(10) - C(18) - H(18B)	109.5	H(18A) - C(18) - H(18B)	109.5
C(10) - C(18) - H(18C)	109.5	H(18A) - C(18) - H(18C)	109.5
H(18B) - C(18) - H(18C)	109.5	C(10) - C(17) - H(17A)	109.5
C(10) - C(17) - H(17B)	109.5	H(17A) - C(17) - H(17B)	109.5
C(10) - C(17) - H(17C)	109.5	H(17A) - C(17) - H(17C)	109.5
H(17B) - C(17) - H(17C)	109.5	C(26) - C(21) - C(22)	118.1(4)
C(26) - C(21) - C	120.9(4)	C(22) - C(21) - C	121.0(3)
C(23) - C(22) - C(21)	120.2(4)	C(23) - C(22) - P(2)	125.3(3)
C(21) - C(22) - P(2)	114.4(3)	C(22) - C(23) - C(24)	122.3(4)
C(22) - C(23) - H(23)	118.8	C(24) - C(23) - H(23)	118.8
C(23) - C(24) - C(25)	116.4(4)	C(23) - C(24) - C(20)	120.2(4)
C(25) - C(24) - C(20)	123.3(4)	C(26) - C(25) - C(24)	122.0(4)
C(26) - C(25) - H(25)	119.0	C(24) - C(25) - H(25)	119.0
C(25) - C(26) - C(21)	120.9(4)	C(25) - C(26) - H(26)	119.6
C(21) - C(26) - H(26)	119.6	C(20) - C(27) - H(27A)	109.5
C(20) - C(27) - H(27B)	109.5	H(27A) - C(27) - H(27B)	109.5
C(20) - C(27) - H(27C)	109.5	H(27A) - C(27) - H(27C)	109.5
H(27B) - C(27) - H(27C)	109.5	C(20) - C(28) - H(28A)	109.5
C(20) - C(28) - H(28B)	109.5	H(28A) - C(28) - H(28B)	109.5
C(20) - C(28) - H(28C)	109.5	H(28A) - C(28) - H(28C)	109.5
H(28B) - C(28) - H(28C)	109.5	C(20) - C(29) - H(29A)	109.5
C(20) - C(29) - H(29B)	109.5	H(29A) - C(29) - H(29B)	109.5
C(20) - C(29) - H(29C)	109.5	H(29A) - C(29) - H(29C)	109.5
H(29B) - C(29) - H(29C)	109.5	C(69) - C(30) - C(73)	121.8(4)
C(69) - C(30) - H(30)	119.1	C(73) - C(30) - H(30)	119.1
C(34) - C(31) - C(33)	110.6(4)	C(34) - C(31) - P(1)	113.1(3)
C(33) - C(31) - P(1)	110.7(3)	C(34) - C(31) - H(31)	107.4
C(33) - C(31) - H(31)	107.4	P(1) - C(31) - H(31)	107.4
C(35) - C(32) - C(36)	114.0(4)	C(35) - C(32) - P(1)	113.4(3)
C(36) - C(32) - P(1)	111.7(3)	C(35) - C(32) - H(32)	105.6
C(36) - C(32) - H(32)	105.6	P(1) - C(32) - H(32)	105.6
C(31) - C(33) - H(33A)	109.5	C(31) - C(33) - H(33B)	109.5
H(33A) - C(33) - H(33B)	109.5	C(31) - C(33) - H(33C)	109.5
H(33A) - C(33) - H(33C)	109.5	H(33B) - C(33) - H(33C)	109.5
C(74) - C(81) - H(81A)	109.5	C(74) - C(81) - H(81B)	109.5
H(81A) - C(81) - H(81B)	109.5	C(74) - C(81) - H(81C)	109.5
H(81A) - C(81) - H(81C)	109.5	H(81B) - C(81) - H(81C)	109.5
C(74) - C(90) - H(90A)	109.5	C(74) - C(90) - H(90B)	109.5
			Continued on next page

Table S40. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(90A) - C(90) - H(90B)	109.5	C(74) - C(90) - H(90C)	109.5
H(90A) - C(90) - H(90C)	109.5	H(90B) - C(90) - H(90C)	109.5
C(74) - C(99) - H(99A)	109.5	C(74) - C(99) - H(99B)	109.5
H(99A) - C(99) - H(99B)	109.5	C(74) - C(99) - H(99C)	109.5
H(99A) - C(99) - H(99C)	109.5	H(99B) - C(99) - H(99C)	109.5
C(32) - C(35) - H(35A)	109.5	C(32) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(32) - C(35) - H(35C)	109.5
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(31) - C(34) - H(34A)	109.5	C(31) - C(34) - H(34B)	109.5
H(34A) - C(34) - H(34B)	109.5	C(31) - C(34) - H(34C)	109.5
H(34A) - C(34) - H(34C)	109.5	H(34B) - C(34) - H(34C)	109.5
C(59) - C(39) - H(39A)	109.5	C(59) - C(39) - H(39B)	109.5
H(39A) - C(39) - H(39B)	109.5	C(59) - C(39) - H(39C)	109.5
H(39A) - C(39) - H(39C)	109.5	H(39B) = C(39) = H(39C)	109.5
C(32) = C(36) = H(36A)	109.5	C(32) = C(36) = H(36B)	109.5
H(36A) = C(36) = H(36B)	109.5	C(32) = C(36) = H(36C)	109.5
H(36A) = C(36) = H(36C)	109.5	H(36B) = C(36) = H(36C)	109.5
C(57) = C(40) = C(75)	109.3 112 $A(A)$	C(57) C(40) P(4)	113 7(3)
C(75) = C(40) = C(75)	112.4(4) 110.8(3)	C(57) = C(40) = I(4) C(57) = C(40) = H(40)	106.5
C(75) - C(40) - F(4) C(75) - C(40) - H(40)	10.6(5)	P(4) = C(40) = H(40)	106.5
C(73) - C(40) - H(40) C(42) - C(41) - C(44)	100.3 110 7(4)	$\Gamma(4) = C(40) = \Pi(40)$ $C(42) = C(41) = \Pi(2)$	112 5(4)
C(43) - C(41) - C(44)	110.7(4) 110.2(2)	C(43) - C(41) - P(2)	113.3(4)
C(44) - C(41) - P(2)	110.2(5)	C(43) = C(41) = H(41)	107.4
C(44) - C(41) - H(41)	107.4	P(2) = C(41) = H(41)	107.4
C(46) - C(42) - C(43)	110.7(4)	C(40) - C(42) - P(2)	111.6(3)
C(45) - C(42) - P(2)	110.8(4)	C(46) - C(42) - H(42)	105.6
C(45) - C(42) - H(42)	105.6	P(2) - C(42) - H(42)	105.6
U(42A) = U(43) = H(43A)	109.5	C(41) - C(43) - H(43B)	109.5
H(43A) - C(43) - H(43B)	109.5	C(41) - C(43) - H(43C)	109.5
H(43A) - C(43) - H(43C)	109.5	H(43B) - C(43) - H(43C)	109.5
C(41) - C(44) - H(44A)	109.5	C(41) - C(44) - H(44B)	109.5
H(44A) - C(44) - H(44B)	109.5	C(41) - C(44) - H(44C)	109.5
H(44A) - C(44) - H(44C)	109.5	H(44B) - C(44) - H(44C)	109.5
C(42) - C(45) - H(45A)	109.5	C(42) - C(45) - H(45B)	109.5
H(45A) - C(45) - H(45B)	109.5	C(42) - C(45) - H(45C)	109.5
H(45A) - C(45) - H(45C)	109.5	H(45B) - C(45) - H(45C)	109.5
C(42) - C(46) - H(46A)	109.5	C(42) - C(46) - H(46B)	109.5
H(46A) - C(46) - H(46B)	109.5	C(42) - C(46) - H(46C)	109.5
H(46A) - C(46) - H(46C)	109.5	H(46B) - C(46) - H(46C)	109.5
C(48) - C(47) - H(47A)	109.5	C(48) - C(47) - H(47B)	109.5
H(47A) - C(47) - H(47B)	109.5	C(48) - C(47) - H(47C)	109.5
H(47A) - C(47) - H(47C)	109.5	H(47B) - C(47) - H(47C)	109.5
C(47) - C(48) - C(72)	111.0(4)	C(47) - C(48) - P(3)	109.8(3)
C(72) - C(48) - P(3)	112.3(3)	C(47) - C(48) - H(48)	107.9
C(72) - C(48) - H(48)	107.9	P(3) - C(48) - H(48)	107.9
O - C(51) - C(56)	125.2(4)	O - C(51) - C(52)	115.0(4)
C(56) - C(51) - C(52)	119.8(4)	C(53) - C(52) - C(51)	119.9(5)
C(53) - C(52) - H(52)	120.1	C(51) - C(52) - H(52)	120.1
C(87) - C(63) - H(63A)	109.5	C(87) - C(63) - H(63B)	109.5
H(63A) - C(63) - H(63B)	109.5	C(87) - C(63) - H(63C)	109.5
H(63A) - C(63) - H(63C)	109.5	H(63B) - C(63) - H(63C)	109.5
C(87) - C(64) - H(64A)	109.5	C(87) - C(64) - H(64B)	109.5
			Continued on next page

Table S40. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(64A) - C(64) - H(64B)	109.5	C(87) - C(64) - H(64C)	109.5
H(64A) - C(64) - H(64C)	109.5	H(64B) - C(64) - H(64C)	109.5
C(67) - C(66) - C(58)	119.5(5)	C(67) - C(66) - H(66)	120.3
C(58) - C(66) - H(66)	120.3	C(78) - C(67) - C(66)	120.9(5)
C(78) - C(67) - H(67)	119.5	C(66) - C(67) - H(67)	119.5
C(48) - C(72) - H(72A)	109.5	C(48) - C(72) - H(72B)	109.5
H(72A) - C(72) - H(72B)	109.5	C(48) - C(72) - H(72C)	109.5
H(72A) - C(72) - H(72C)	109.5	H(72B) - C(72) - H(72C)	109.5
C(70) - C(71) - C(97)	120.7(4)	C(70) - C(71) - H(71)	119.6
C(97) - C(71) - H(71)	119.6	C(71) - C(70) - C(69)	117.6(4)
C(71) - C(70) - C(91)	124.9(4)	C(69) - C(70) - C(91)	117.5(3)
C(30) - C(69) - C(70)	120.7(4)	C(30) - C(69) - P(4)	124.6(3)
C(70) - C(69) - P(4)	114.4(3)	C(59) - C(68) - H(68A)	109.5
C(59) - C(68) - H(68B)	109.5	H(68A) - C(68) - H(68B)	109.5
C(59) - C(68) - H(68C)	109.5	H(68A) - C(68) - H(68C)	109.5
H(68B) - C(68) - H(68C)	109.5	C(40) - C(75) - H(75A)	109.5
C(40) - C(75) - H(75B)	109.5	H(75A) - C(75) - H(75B)	109.5
C(40) - C(75) - H(75C)	109.5	H(75A) - C(75) - H(75C)	109.5
H(75B) - C(75) - H(75C)	109.5	C(90) - C(74) - C(92)	125.8(8)
C(90) - C(74) - C(79)	79.6(8)	C(92) - C(74) - C(79)	112.5(6)
C(90) - C(74) - C(73)	113.1(6)	C(92) - C(74) - C(73)	110.4(5)
C(79) - C(74) - C(73)	111.4(5)	C(92) - C(74) - C(80)	108.2(6)
C(79) - C(74) - C(80)	107.1(6)	C(73) - C(74) - C(80)	106.9(4)
C(90) - C(74) - C(99)	109.0(9)	C(92) - C(74) - C(99)	84.8(7)
C(73) - C(74) - C(99)	109 3(6)	C(80) - C(74) - C(99)	133 8(7)
C(90) - C(74) - C(81)	107 9(9)	C(79) - C(74) - C(81)	126 8(8)
C(73) - C(74) - C(81)	112.8(7)	C(80) - C(74) - C(81)	86 7(8)
C(99) - C(74) - C(81)	104 3(9)	C(97) - C(73) - C(30)	1167(4)
C(97) - C(73) - C(74)	121 6(4)	C(30) - C(73) - C(74)	121 8(4)
C(87) - C(76) - H(76A)	109 5	C(87) - C(76) - H(76B)	109 5
H(76A) - C(76) - H(76B)	109.5	C(87) - C(76) - H(76C)	109.5
H(76A) - C(76) - H(76C)	109.5	H(76B) - C(76) - H(76C)	109.5
C(78) - C(77) - C(65)	121.1(5)	C(78) - C(77) - H(77)	119.5
C(65) - C(77) - H(77)	119.5	C(67) - C(78) - C(77)	119.0(5)
C(67) - C(78) - H(78)	120.5	C(77) - C(78) - H(78)	120.5
C(73) - C(97) - C(71)	122.4(4)	C(73) - C(97) - H(97)	118.8
C(71) - C(97) - H(97)	118.8	O(1) - C(91) - C(98)	110.1(3)
O(1) - C(91) - C(70)	101.0(3)	C(98) - C(91) - C(70)	114.0(3)
O(1) - C(91) - Pd(91)	105.9(3)	C(98) - C(91) - Pd(91)	112.9(3)
C(70) - C(91) - Pd(91)	111.9(4)	O(1) - C(91) - Pd(1)	108.4(3)
C(98) - C(91) - Pd(1)	115.2(3)	C(70) - C(91) - Pd(1)	107.1(3)
C(86) - C(98) - C(82)	118.3(4)	C(86) - C(98) - C(91)	121.3(4)
C(82) - C(98) - C(91)	120.3(4)	C(98) - C(82) - C(83)	120.0(4)
C(98) - C(82) - P(3)	114.5(3)	C(83) - C(82) - P(3)	125.4(3)
C(84) - C(83) - C(82)	122.3(4)	C(84) - C(83) - H(83)	118.8
C(82) - C(83) - H(83)	118.8	C(83) - C(84) - C(85)	115.9(4)
C(83) - C(84) - C(87)	122.7(4)	C(85) - C(84) - C(87)	121.4(4)
C(86) - C(85) - C(84)	123.0(4)	C(86) - C(85) - H(85)	118.5
C(84) - C(85) - H(85)	118.5	C(85) - C(86) - C(98)	120.3(4)
C(85) - C(86) - H(86)	119.8	C(98) - C(86) - H(86)	119.8
C(63) - C(87) - C(64)	107.5(4)	C(63) - C(87) - C(84)	112.9(4)
			Continued on next page

Table S40. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(64) - C(87) - C(84)	108.9(4)	C(63) - C(87) - C(76)	109.4(4)
C(64) - C(87) - C(76)	108.5(5)	C(84) - C(87) - C(76)	109.6(4)
C(74) - C(92) - H(92A)	109.5	C(74) - C(92) - H(92B)	109.5
C(74) - C(92) - H(92C)	109.5	C(74) - C(79) - H(79A)	109.5
C(74) - C(79) - H(79B)	109.5	C(74) - C(79) - H(79C)	109.5
C(74) - C(80) - H(80A)	109.5	C(74) - C(80) - H(80B)	109.5
C(74) - C(80) - H(80C)	109.5	C(91) - Pd(91) - P(3)	88.4(3)
C(91) - Pd(91) - P(4)	82.6(2)	P(3) - Pd(91) - P(4)	146.9(3)
C(91) - Pd(91) - I(3)	171.3(3)	P(3) - Pd(91) - I(3)	94.6(2)
P(4) - Pd(91) - I(3)	99.1(2)	C(60) - P(3) - C(82)	109.6(2)
C(60) - P(3) - C(48)	104.4(2)	C(82) - P(3) - C(48)	105.92(19)
C(60) - P(3) - Pd(91)	120.6(2)	C(82) - P(3) - Pd(91)	98.6(3)
C(48) - P(3) - Pd(91)	116.6(3)	C(60) - P(3) - Pd(1)	121.16(19)
C(82) - P(3) - Pd(1)	103.27(16)	C(48) - P(3) - Pd(1)	111.62(16)

5.8 Crystal data for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_4^F]$ (12)

Figure S51. Thermal-ellipsoid representation of the two crystallographically independent molecules of $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_4^F]$ (12) at 50% probability. Hydrogen atoms and the anions were omitted for clarity.

Identification code:	pc29	
Empirical formula:	$C_{68}H_{72}BF_{24}IP_3Pd$	
Formula weight:	1682.28	
Temperature:	120(2) K	
Wavelength:	0.71073 Å	
Crystal system:	Monoclinic	
Space group:	$P2_1$	
Unit cell dimensions:	a = 10.0901(7) Å	$\alpha = 90^{\circ}$
	b = 23.7955(17) Å	$\beta = 90.532(2)^{\circ}$
	c = 31.205(2) Å	$\gamma = 90^{\circ}$
Volume:	7492.0(9) Å ³	
Z:	4	
Density (calculated):	1.491 g⋅cm ⁻³	
Absorption coefficient (μ):	0.822 mm^{-1}	
F(000):	3380	
Crystal size:	$0.12 \times 0.10 \times 0.08 \text{ mm}^3$	
θ range for data collection:	0.65 to 25.00°	
Index ranges:	$-11 \le h \le 11, -26 \le k \le 28, -37 \le l \le 35$	
Reflections collected:	134462	
Independent reflections:	25436 [$R_{int} = 0.0348$]	
Completeness to $\theta = 25.00^{\circ}$:	100.0 %	
Absorption correction:	Semi-empirical from equivalents	
Max. and min. transmission:	0.9106 and 0.8668	
Refinement method:	Full-matrix least-squares on F ²	
Data / restraints / parameters:	25436 / 1 / 1563	
Goodness-of-fit on F ² :	1.019	
Final R indices $[I>2\sigma(I)]$:	$R_1 = 0.0632, wR_2 = 0.1651$	
R indices (all data):	$R_1 = 0.0658, wR_2 = 0.1675$	
Absolute structure parameter:	0.347(17)	
Largest diff. peak and hole:	2.325 and $-1.408 \text{ e}^{-} \cdot \text{\AA}^{-3}$	

_

Table S42. Atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_4^F]$ (12). U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor

atom	X	у	Z	U(eq)
Pd	0.50136(5)	0.54672(2)	0.77405(2)	0.017(1)
F(1)	-0.0776(11)	0.2811(4)	0.2619(2)	0.102(3)
B(1)	0.0748(8)	0.3330(3)	0.4526(3)	0.018(2)
С	0.2946(7)	0.5378(3)	0.7637(2)	0.018(2)
Ι	0.75789(5)	0.55439(3)	0.78935(2)	0.041(1)
F(9)	0.3761(5)	0.5606(2)	0.47363(16)	0.038(1)
F(8)	0.4161(6)	0.5079(2)	0.42037(16)	0.043(1)
F(7)	0.2233(5)	0.5409(2)	0.4276(2)	0.052(2)
F(6)	0.4509(9)	0.3632(3)	0.3399(2)	0.077(2)
F(5)	0.3276(9)	0.4218(3)	0.3065(3)	0.090(3)
F(4)	0.3733(9)	0.3479(3)	0.2786(2)	0.084(3)
F(3)	-0.2154(11)	0.3256(4)	0.3026(3)	0.110(4)
P(1)	0.48522(18)	0.46738(8)	0.81371(6)	0.021(1)
F(11)	0.4356(9)	0.3544(3)	0.5823(2)	0.077(2)
C(11)	0.2366(7)	0.4837(3)	0.7826(2)	0.019(2)
P(2)	0.49601(17)	0.60997(8)	0.71715(5)	0.018(1)
F(12)	0.2630(8)	0.3869(4)	0.60801(18)	0.082(3)
C(21)	0.2649(6)	0.5481(4)	0.7161(2)	0.020(1)
P(3)	0.22002(19)	0.59646(8)	0.79439(6)	0.021(1)
F(13)	0.4280(8)	0.4422(2)	0.59633(19)	0.065(2)
C(13)	0.1231(8)	0.5735(4)	0.8390(3)	0.030(2)
F(14)	0.0294(6)	0.1216(3)	0.57180(17)	0.052(1)
C(14)	0.3357(9)	0.6430(4)	0.8196(3)	0.041(2)
C(15)	0.1118(10)	0.6374(4)	0.7614(3)	0.042(2)
F(15)	-0.0096(6)	0.2052(3)	0.59252(18)	0.052(1)
C(200)	0.0386(7)	0.2480(3)	0.5066(2)	0.019(2)
F(16)	-0.1381(6)	0.1662(3)	0.54849(18)	0.052(1)
C(16)	0.832(2)	0.3769(8)	0.1912(5)	0.105(1)
C(017)	0.2063(6)	0.2371(3)	0.4543(2)	0.013(1)
F(17)	0.4248(5)	0.1282(2)	0.47884(15)	0.039(1)
C(17)	0.961(2)	0.3891(8)	0.1282(5)	0.105(1)
C(018)	-0.3405(8)	0.3879(3)	0.4783(3)	0.031(2)
F(18)	0.2865(5)	0.10304(18)	0.43066(15)	0.033(1)
C(18)	0.757(2)	0.3442(8)	0.1214(5)	0.105(1)
F(19)	0.4076(4)	0.17413(19)	0.41981(14)	0.027(1)
C(201)	0.1657(7)	0.1619(3)	0.5044(2)	0.017(1)
C(202)	-0.1860(8)	0.3161(3)	0.4585(2)	0.023(2)
C(203)	-0.0774(7)	0.3521(3)	0.4634(3)	0.022(1)
P(21)	0.52338(19)	0.61029(9)	0.20625(6)	0.022(1)
F(21)	-0.4033(8)	0.2438(3)	0.4749(3)	0.098(2)
F(20)	-0.4237(8)	0.2752(3)	0.4156(4)	0.098(2)
G(21	0.2672(6)	0.6395(3)	0.2217(2)	0.016(1)
P(22)	0.50335(18)	0.69345(8)	0.33694(6)	0.019(1)
F(22)	-0.5376(8)	0.3137(3)	0.4572(4)	0.098(2)
C(22)	0.2827(7)	0.7085(3)	0.2869(2)	0.019(2)
P(23)	0.24672(17)	0.59392(8)	0.30059(6)	0.018(1)
C(23)	0.1458(8)	0.5454(4)	0.2700(3)	0.029(2)
C(24)	0.3670(7)	0.5498(4)	0.3254(3)	0.028(2)
				Continued on next page

Table	S42. –	continued	from	previous	page
				r	r - 0 -

atom	X	У	X	U(eq)
F(24)	-0.1708(10)	0.5170(3)	0.4935(4)	0.104(2)
C(25)	0.1428(7)	0.6209(4)	0.3409(2)	0.024(2)
F(25)	-0.3654(10)	0.5056(3)	0.4810(4)	0.104(2)
C(27)	0.3375(7)	0.4596(3)	0.5150(2)	0.022(2)
F(27)	1.1441(6)	0.1708(2)	0.0198(3)	0.067(2)
C(26)	0.2065(7)	0.4292(3)	0.4554(2)	0.021(2)
F(26)	-0.3219(10)	0.4808(3)	0.5375(4)	0.104(2)
C(204)	-0.3123(8)	0.3325(3)	0.4652(3)	0.027(2)
F(28)	1.3481(7)	0.1863(3)	0.0227(4)	0.100(3)
C(28)	0.2281(8)	0.3694(3)	0.5165(2)	0.023(2)
Pd(2)	0.52536(5)	0.63981(2)	0.27521(2)	0.016(1)
F(2)	-0.1595(9)	0.2409(3)	0.3169(2)	0.087(3)
B(2)	0.8942(8)	0.3584(4)	0.0495(3)	0.019(2)
C(2)	0.3172(6)	0.6507(3)	0.2671(2)	0.015(2)
I(2)	0.78300(5)	0.62284(3)	0.28797(2)	0.044(1)
F(29)	1 2309(10)	0.02201(3)	-0.0368(3)	0.087(3)
C(205)	-0.2376(7)	0.2022(3) 0.4234(3)	0.0300(3) 0.4851(3)	0.027(1)
C(205)	-0.1058(8)	0.4254(3) 0.4064(3)	0.4031(3) 0.4772(3)	0.022(1)
E(200)	0.7813(7)	0.4004(3) 0.1472(3)	0.9772(3)	0.022(1)
C(31)	0.7815(7) 0.4976(9)	0.1472(3) 0.6873(4)	0.0741(3) 0.7244(3)	0.072(2)
E(31)	0.4970(9) 0.5848(8)	0.0675(4) 0.1605(3)	0.7244(3) 0.0844(2)	0.052(2)
$\Gamma(31)$	0.5046(8)	0.1095(3) 0.7067(4)	0.0044(2) 0.7530(3)	0.071(2)
E(32)	0.6340(8)	0.7007(4) 0.1230(3)	0.7339(3)	0.050(2)
F(32)	0.0340(8) 0.4955(10)	0.1230(3) 0.7214(4)	0.0200(2) 0.6823(3)	0.009(2)
E(33)	0.4955(10) 0.5720(6)	0.7214(4) 0.5210(2)	0.0823(3) 0.0738(2)	0.041(2) 0.053(2)
F(33)	0.5750(0)	0.3219(2) 0.5057(2)	0.0736(2)	0.033(2)
C(34)	0.6078(8)	0.3937(3) 0.5012(2)	0.0720(2)	0.027(2)
$\Gamma(34)$	0.0300(9)	0.3912(3)	0.0404(3) 0.2802(2)	0.089(3)
C(207)	0.2134(9)	0.3400(3)	0.3802(2)	0.027(1)
F(30)	0.9516(10)	0.5555(5)	-0.0813(3)	0.103(1)
C(36)	0.7487(8)	0.6191(4)	0.6771(3)	0.037(2)
C(35)	0.6111(9)	0.5329(4)	0.6622(3)	0.035(2)
F(35)	0.5142(7)	0.5330(4)	0.0099(2)	0.080(2)
C(37)	0.5154(8)	0.4619(4)	0.8/1/(2)	0.033(2)
F(37)	1.1182(11)	0.5200(5)	-0.0513(3)	0.105(1)
C(38)	0.4463(12)	0.5074(6)	0.8950(3)	0.059(3)
F(38)	0.9979(9)	0.4762(4)	-0.0947(2)	0.088(3)
C(39)	0.6639(9)	0.4630(5)	0.8836(3)	0.043(2)
F(39)	1.5006(9)	0.3742(5)	0.0627(5)	0.154(3)
C(208)	0.867(2)	0.3634(8)	0.1018(5)	0.105(1)
C(209)	-0.4205(16)	0.2935(7)	0.4584(7)	0.098(2)
C(210)	0.738(2)	0.3500(8)	0.1652(5)	0.105(1)
C(211)	1.0461(9)	0.3366(3)	0.0413(3)	0.030(2)
C(40)	0.5805(8)	0.4115(3)	0.7875(3)	0.030(2)
F(40)	1.3669(9)	0.4345(5)	0.0766(5)	0.154(3)
C(212)	1.2099(9)	0.2647(4)	0.0228(4)	0.045(2)
C(42)	0.5471(12)	0.4099(4)	0.7410(3)	0.050(3)
C(41)	0.5634(10)	0.3520(4)	0.8074(3)	0.039(2)
F(41)	1.4281(10)	0.4167(5)	0.0159(6)	0.154(3)
C(44)	0.2564(8)	0.4017(3)	0.8283(3)	0.030(2)
F(44)	1.1573(12)	0.3929(5)	0.2003(3)	0.105(1)
F(43)	1.0954(11)	0.4664(4)	0.1839(3)	0.105(1)
				Continued on next page

T-LL C44		C		
1able 542.	– continued	trom	previous	page
			r	r - 0 -

$\begin{array}{ccccc} (4.6) & 0.1263(8) & 0.3882(3) & 0.8243(3) & 0.072(2) \\ F(45) & 1.0249(11) & 0.4270(4) & 0.2382(3) & 0.105(1) \\ C(46) & 0.0466(8) & 0.44254(3) & 0.7991(2) & 0.027(2) \\ F(46) & 0.5749(11) & 0.2767(4) & 0.1677(3) & 0.105(1) \\ C(213) & -0.012(9) & 0.3114(3) & 0.3738(2) & 0.027(1) \\ C(47) & 0.1018(8) & 0.4711(4) & 0.7795(2) & 0.027(2) \\ F(47) & 0.5149(12) & 0.3454(4) & 0.1693(3) & 0.105(1) \\ C(48) & 0.0822(9) & 0.3361(4) & 0.8455(4) & 0.046(3) \\ C(214) & 0.0997(14) & 0.2861(5) & 0.8136(5) & 0.074(2) \\ C(214) & 1.2851(10) & 0.3543(5) & 0.0424(5) & 0.0804(4) \\ C(50) & 0.1361(14) & 0.3224(5) & 0.8884(5) & 0.074(2) \\ C(51) & -0.0818(13) & 0.3399(5) & 0.8892(5) & 0.074(2) \\ C(53) & 0.2997(7) & 0.6663(3) & 0.6531(2) & 0.021(2) \\ C(54) & 0.1922(7) & 0.5816(3) & 0.6517(2) & 0.022(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.022(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.028(2) \\ C(57) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.028(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ C(215) & 0.125(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.3914(2) & 0.025(2) \\ C(58) & 0.0731(8) & 0.6537(2) & 0.036(2) \\ C(215) & 0.125(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.3914(2) & 0.025(2) \\ C(53) & 0.735(8) & 0.6739(3) & 0.4005(2) & 0.029(2) \\ C(64) & 0.6158(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3404(5) & 0.037(3) \\ C(66) & 0.6345(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.2708(5) & -0.0743(3) & 0.0136(2) \\ C(71) & 0.1982(8) & 0.6651(4) & 0.33104(2) & 0.025(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.3236(2) & 0.024(2) \\ C(74) & 0.182(9) & 0.8578(4) & 0.3584(4) & 0.066(2) \\ C(75) & 0.745(8) & 0.747(7) & 0.3236(2) & 0.024(2) \\ C(75) & 0.132(4) & 0.747(7) & 0.0322(2) & 0.025(2) \\ C(74) & 0.182(8) & 0.747(7) & 0.3236(2) & 0.021(2) \\ C(75) & 0.132(10) & 0.747(7) & 0.3236(2) & 0.023(2) \\ C(76) & 0.038(2) & 0.747(7) & 0.3236(2) & 0.038(2) \\ $	atom	x	У	Х	U(eq)
F(45) 1.0249(11) 0.4270(4) 0.2382(3) 0.105(1) C(46) 0.0466(8) 0.4254(3) 0.7991(2) 0.027(2) F(46) 0.5749(11) 0.2767(4) 0.1677(3) 0.105(1) C(213) -0.0126(9) 0.3114(3) 0.3738(2) 0.027(2) F(47) 0.5149(12) 0.3454(4) 0.1633(3) 0.105(1) C(48) 0.0662(9) 0.336(4) 0.8455(4) 0.046(3) C(214) 1.2851(10) 0.3543(5) 0.0424(5) 0.066(3) C(50) 0.136(14) 0.3224(5) 0.8884(5) 0.074(2) C(51) -0.0818(13) 0.3399(5) 0.8482(5) 0.074(2) C(53) 0.1355(8) 0.5506(3) 0.6531(2) 0.022(2) C(55) 0.1358(8) 0.5506(3) 0.6537(2) 0.022(2) C(55) 0.1355(8) 0.5536(3) 0.6537(2) 0.022(2) C(55) 0.1358(8) 0.6579(3) 0.5394(3) 0.030(2) C(55) 0.1358(8) 0.6512(5) 0.5597(2) 0.025(2) C(56) 0.2693(8) 0.6519(4)	C(45)	0.1263(8)	0.3882(3)	0.8243(3)	0.027(2)
$\begin{array}{ccccc} (46) & 0.0466(8) & 0.4254(3) & 0.7991(2) & 0.027(2) \\ (46) & 0.5749(11) & 0.2767(4) & 0.1677(3) & 0.105(1) \\ (2(213) & -0.0126(9) & 0.3114(3) & 0.3738(2) & 0.027(1) \\ (2(47) & 0.1018(8) & 0.4711(4) & 0.7795(2) & 0.027(2) \\ (2(48) & 0.0682(9) & 0.3361(4) & 0.3455(4) & 0.046(3) \\ (2(49) & 0.0997(14) & 0.286(15) & 0.8136(5) & 0.074(2) \\ (2(214) & 1.2851(10) & 0.3543(5) & 0.0424(5) & 0.0690(4) \\ (2(50) & 0.1361(14) & 0.3224(5) & 0.8884(5) & 0.074(2) \\ (2(51) & -0.0818(13) & 0.3399(5) & 0.8482(5) & 0.074(2) \\ (2(53) & 0.2997(7) & 0.606(3) & 0.6531(2) & 0.021(2) \\ (2(54) & 0.1927(7) & 0.581(6) & 0.6531(2) & 0.022(2) \\ (2(55) & 0.1355(8) & 0.5561(3) & 0.6537(2) & 0.028(2) \\ (2(55) & 0.1355(8) & 0.5561(3) & 0.6517(2) & 0.028(2) \\ (2(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.025(2) \\ (2(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ (2(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.030(2) \\ (2(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.036(2) \\ (2(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ (2(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ (2(63) & 0.4618(10) & 0.269(5) & -0.0743(3) & 0.111(2) \\ (2(64) & 0.6415(8) & 0.7544(4) & 0.3406(3) & 0.039(2) \\ (7(64) & 0.6458(1) & 0.7307(4) & 0.2868(3) & 0.039(2) \\ (7(65) & 0.7458(10) & 0.7307(4) & 0.2968(3) & 0.0402(2) \\ (7(66) & 0.6345(10) & 0.7307(4) & 0.2968(3) & 0.0402(2) \\ (7(7) & 0.0878(12) & 0.8879(7) & 0.3328(5) & 0.1239) \\ (7(7) & 0.0878(12) & 0.8879(7) & 0.3328(5) & 0.1239) \\ (7(7) & 0.0878(12) & 0.8879(7) & 0.3328(5) & 0.1239) \\ (7(7) & 0.0878(12) & 0.8879(7) & 0.3328(5) & 0.1239) \\ (7(7) & 0.0878(12) & 0.8879(7) & 0.3328(5) & 0.1239) \\ (7(7) & 0.0878(12) & 0.8879(7) & 0.3328(5) & 0.1239) \\ (7(7) & 0.0878(12) & 0.857(3) & 0.3714(2) & 0.025(2) \\ (7(7) & 0.0878(12) & 0.587(3) & 0.3714(2) & 0.025(2) \\ (7(7) & 0.038(2) & 0.774(3) & 0.3328(5) & 0.1239) \\ (7(7) & 0.0729(15) & 0.6897(7) & 0.3234(2) & 0.025(2) \\ (7(7) & 0.038(2) & 0.774(3) & 0.3328(5) & 0.1239) \\ (7(7) & 0.038(2) & 0.774(3) & 0.3328(5) & 0.1239) \\ (7(7) & 0.038(2) & 0.774(3$	F(45)	1.0249(11)	0.4270(4)	0.2382(3)	0.105(1)
$\begin{array}{cccc} F(46) & 0.5749(11) & 0.2767(4) & 0.1677(3) & 0.105(1) \\ C(213) & -0.0126(9) & 0.3114(3) & 0.3738(2) & 0.027(2) \\ F(47) & 0.5149(12) & 0.3454(4) & 0.1693(3) & 0.105(1) \\ C(48) & 0.0682(9) & 0.336(14) & 0.8455(4) & 0.046(3) \\ C(49) & 0.0997(14) & 0.2861(5) & 0.8136(5) & 0.074(2) \\ C(214) & 1.2851(10) & 0.3543(5) & 0.0424(5) & 0.050(4) \\ C(50) & 0.1361(14) & 0.3224(5) & 0.8884(5) & 0.074(2) \\ C(51) & -0.0818(13) & 0.3399(5) & 0.8492(5) & 0.074(2) \\ C(53) & 0.297(7) & 0.606(3) & 0.6551(2) & 0.021(2) \\ C(54) & 0.1922(7) & 0.5816(3) & 0.6317(2) & 0.022(2) \\ C(55) & 0.1668(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.1355(8) & 0.550(3) & 0.5877(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.028(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5597(2) & 0.036(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.0609(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.259(5) & -0.073(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3661(3) & 0.036(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3627(3) & 0.040(2) \\ F(64) & 0.6528(10) & 0.797(4) & 0.298(3) & 0.047(3) \\ C(66) & 0.345(10) & 0.797(4) & 0.298(3) & 0.047(3) \\ C(66) & 0.345(10) & 0.797(4) & 0.2968(3) & 0.047(3) \\ C(66) & 0.345(10) & 0.797(4) & 0.326(2) & 0.027(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.3310(2) & 0.026(2) \\ C(71) & 0.1985(8) & 0.867(3) & 0.3310(2) & 0.026(2) \\ C(77) & 0.0781(12) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(76) & 0.0338(2) & 0.744(3) & 0.354(3) & 0.037(3) \\ C(66) & 0.3345(10) & 0.797(4) & 0.3236(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.797(4) & 0.3236(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.791(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.033(8) & 0.774(3) & 0.3310(2) & 0.026(2) \\ C(77) & 0.0729(15) & 0.6589(7) & 0.0326(2) \\ C(76) & 0.033(8) & 0.774(3) & 0.1382(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.791(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.035(8) &$	C(46)	0.0466(8)	0.4254(3)	0.7991(2)	0.027(2)
$\begin{array}{ccccc} (C13) & -0.0126(9) & 0.3114(3) & 0.3738(2) & 0.027(1) \\ C(47) & 0.1018(8) & 0.4711(4) & 0.7795(2) & 0.027(2) \\ F(47) & 0.5149(12) & 0.3454(4) & 0.1693(3) & 0.105(1) \\ C(48) & 0.0682(9) & 0.3361(4) & 0.8455(4) & 0.046(3) \\ C(49) & 0.0997(14) & 0.286(15) & 0.8136(5) & 0.074(2) \\ C(214) & 1.2851(10) & 0.3324(5) & 0.0424(5) & 0.060(4) \\ C(50) & 0.1361(14) & 0.3224(5) & 0.8492(5) & 0.074(2) \\ C(51) & -0.0818(13) & 0.3399(5) & 0.8492(5) & 0.074(2) \\ C(53) & 0.2997(7) & 0.6063(3) & 0.6531(2) & 0.021(2) \\ C(54) & 0.1668(8) & 0.520(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.135(8) & 0.536(3) & 0.6517(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.036(2) \\ C(59) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ C(51) & 0.1215(13) & 0.3222(4) & 0.3104(3) & 0.036(2) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6613(4) & 0.3914(2) & 0.025(2) \\ C(65) & 0.7458(9) & 0.728(3) & 0.4005(2) & 0.029(2) \\ C(65) & 0.7458(9) & 0.728(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2695(5) & -0.0743(3) & 0.111(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.366(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.7594(4) & 0.3627(3) & 0.040(2) \\ F(64) & 0.6448(10) & 0.2695(5) & -0.0743(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6458(1) & 0.7544(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(64) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3587(4) & 0.057(3) \\ C(75) & 0.1423(8) & 0.791(3) & 0.328(5) & 0.123(9) \\ C(76) & 0.0266(13) & 0.3496(7) & 0.3310(2) & 0.026(2) \\ C(75) & 0.1423(8) & 0.791(3) & 0.328(5) & 0.123(9) \\ C(76) & 0.0266(15) & 0.515(7) & 0.0697(4) & 0.080(2) \\ C(75) & 0.1423(8) & 0.791(3) & 0.2905(3) & 0.031(2) \\ C(75) & 0.1423(8) & 0.791(3) & 0.2905(3) & 0.031(2) \\ C(75) & 0.1423(8) & 0.691(3) & 0.1382(2) & 0.026(2) \\ C(75) & 0.1423(8) & 0.694(3) & 0.1493(2) & 0.026(2) \\ C(75) & 0.1423(8) & 0.691(3) & 0.1382(2) & 0.026(2) $	F(46)	0.5749(11)	0.2767(4)	0.1677(3)	0.105(1)
$\begin{array}{cccc} (47) & 0.1018(8) & 0.4711(4) & 0.7795(2) & 0.027(2) \\ F(47) & 0.5149(12) & 0.3454(4) & 0.1693(3) & 0.105(1) \\ C(48) & 0.0082(9) & 0.3361(4) & 0.8455(4) & 0.046(3) \\ C(214) & 1.2851(10) & 0.2543(5) & 0.0424(5) & 0.060(4) \\ C(50) & 0.1361(14) & 0.3224(5) & 0.8492(5) & 0.074(2) \\ C(51) & -0.0818(13) & 0.3399(5) & 0.8492(5) & 0.074(2) \\ C(53) & 0.097(7) & 0.6063(3) & 0.6531(2) & 0.021(2) \\ C(54) & 0.1922(7) & 0.5816(3) & 0.6531(2) & 0.022(2) \\ C(55) & 0.1668(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.028(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5949(3) & 0.030(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5979(2) & 0.036(2) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5683(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6611(4) & 0.3914(2) & 0.022(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ C(64) & 0.6148(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.039(2) \\ F(63) & 0.4748(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(65) & 0.7548(9) & 0.7444(4) & 0.3406(3) & 0.036(2) \\ F(65) & 0.7548(9) & 0.7444(4) & 0.3406(3) & 0.036(2) \\ F(65) & 0.7548(9) & 0.7444(4) & 0.3406(3) & 0.036(2) \\ F(65) & 0.7581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6434(10) & 0.2659(5) & -0.0243(3) & 0.111(2) \\ C(66) & 0.6434(10) & 0.2659(5) & -0.0243(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7847(7) & 0.328(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.8778(4) & 0.3307(2) & 0.026(2) \\ C(72) & 0.303(8) & 0.746(3) & 0.3987(4) & 0.057(3) \\ C(66) & 0.6434(10) & 0.7807(7) & 0.328(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.877(7) & 0.0244(4) & 0.069(2) \\ C(72) & 0.303(8) & 0.746(3) & 0.3310(2) & 0.026(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.2304(3) & 0.038(2) \\ C(75) & 0.1423(8) & 0.791(3) & 0.2905(3) & 0.031(2) \\ C(75) & 0.1423(8) & 0.791(3) & 0.2905(3) & 0.031(2) \\ C(75) & 0.1423(8) & 0.744(7) & 0.0250(2) \\ C(75) & 0.1423(8) & 0.744(7) & 0.0250(2) \\ C(75) & 0.1423(8)$	C(213)	-0.0126(9)	0.3114(3)	0.3738(2)	0.027(1)
$\begin{array}{cccc} F(47) & 0.5149(12) & 0.3454(4) & 0.1693(3) & 0.105(1) \\ C(48) & 0.0682(9) & 0.3361(4) & 0.8455(4) & 0.046(3) \\ C(249) & 0.0997(14) & 0.2861(5) & 0.8136(5) & 0.074(2) \\ C(214) & 1.2851(10) & 0.3543(5) & 0.0424(5) & 0.074(2) \\ C(50) & 0.1361(14) & 0.3224(5) & 0.8884(5) & 0.074(2) \\ C(51) & -0.0818(13) & 0.3399(5) & 0.8492(5) & 0.074(2) \\ C(53) & 0.2997(7) & 0.6063(3) & 0.6517(2) & 0.022(2) \\ C(56) & 0.1668(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.025(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.025(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5994(3) & 0.030(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5683(3) & 0.036(2) \\ C(61) & 0.4989(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.0390(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7037(4) & 0.4280(3) & 0.036(2) \\ C(70) & 0.1482(9) & 0.878(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7405(4) & 0.3034(4) & 0.064(4) \\ C(69) & 0.038(2) & 0.774(3) & 0.3328(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.878(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.188(8) & 0.7427(3) & 0.328(5) & 0.027(2) \\ C(72) & 0.303(8) & 0.774(6) & 0.3328(5) & 0.027(2) \\ C(73) & 0.1345(8) & 0.7427(3) & 0.3328(5) & 0.027(2) \\ C(75) & 0.142(8) & 0.7913(3) & 0.2704(2) & 0.025(2) \\ C(77) & 0.025(15) & 0.6597(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.025(15) & 0.6597(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.023(2) & 0.6597(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.023(2) & 0.6597(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.123(4) & 0.6059(7) & 0.0732(4) & 0.080(2) \\ C(77) & 0.123(8) & 0.6197(3) & 0.1997(2) & 0.025(2) \\ C(73) & 0.133(7) & 0.6447(3) & 0.1097(2) & 0.025($	C(47)	0.1018(8)	0.4711(4)	0.7795(2)	0.027(2)
$\begin{array}{ccccc} C(48) & 0.0682(9) & 0.3361(4) & 0.8455(4) & 0.046(3) \\ C(49) & 0.0997(14) & 0.2861(5) & 0.8136(5) & 0.074(2) \\ C(214) & 1.2851(10) & 0.35345(5) & 0.0424(5) & 0.060(4) \\ C(50) & 0.1361(14) & 0.3224(5) & 0.8845(5) & 0.074(2) \\ C(51) & -0.0818(13) & 0.3399(5) & 0.8492(5) & 0.074(2) \\ C(53) & 0.0297(7) & 0.6063(3) & 0.6531(2) & 0.021(2) \\ C(54) & 0.1922(7) & 0.5816(3) & 0.6531(2) & 0.022(2) \\ C(55) & 0.1368(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.028(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5594(2) & 0.036(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3627(3) & 0.011(2) \\ C(65) & 0.7488(9) & 0.7445(4) & 0.3627(3) & 0.011(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.3282(5) & 0.027(3) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.328(5) & 0.047(3) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.328(5) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8387(7) & 0.3310(2) & 0.026(2) \\ C(71) & 0.1985(8) & 0.807(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.303(8) & 0.7746(3) & 0.3310(2) & 0.026(2) \\ C(74) & 0.1825(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(74) & 0.1825(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.1985(8) & 0.604(3) & 0.1832(2) & 0.027(2) \\ C(73) & 0.131(8) & 0.6109(3) & 0.1382(2) & 0.023(2) \\ C(73) & 0.131(7) & 0.6144(3) & 0.1997(2) & 0.028(2) \\ C(73) & 0.131(7) & 0.6144(3) & 0.1997(2) & 0.028(2) \\ C(73) & 0.1313(7) & 0.61447(3) & 0.1997(2) & 0.028(2) \\ C(73) & 0.1313(7) & 0.6144(3) & 0.1997(2) & $	F(47)	0.5149(12)	0.3454(4)	0.1693(3)	0.105(1)
$\begin{array}{ccccc} C(49) & 0.0997(14) & 0.2861(5) & 0.8136(5) & 0.074(2) \\ C(214) & 1.2851(10) & 0.3543(5) & 0.0424(5) & 0.074(2) \\ C(50) & 0.1361(14) & 0.3224(5) & 0.8884(5) & 0.074(2) \\ C(51) & -0.0818(13) & 0.3399(5) & 0.8492(5) & 0.074(2) \\ C(53) & 0.2997(7) & 0.6063(3) & 0.6531(2) & 0.021(2) \\ C(54) & 0.1922(7) & 0.5816(3) & 0.6517(2) & 0.022(2) \\ C(55) & 0.1358(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.1358(8) & 0.5306(3) & 0.5877(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.036(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.036(2) \\ C(59) & 0.2093(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2569(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.0306(2) \\ F(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.0306(2) \\ F(64) & 0.6145(8) & 0.7544(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.7488(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.7488(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.7488(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5458(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(77) & 0.0878(12) & 0.8868(4) & 0.3847(4) & 0.057(3) \\ C(76) & 0.038(2) & 0.897(7) & 0.3328(5) & 0.021(2) \\ C(73) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(77) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(77) & 0.1428(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(74) & 0.1825(8) & 0.747(7) & 0.0422(4) & 0.080(2) \\ C(75) & 0.1423(8) & 0.7917(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7917(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7917(3) & 0.2704(2)$	C(48)	0.0682(9)	0.3361(4)	0.8455(4)	0.046(3)
$\begin{array}{ccccc} C(214) & 1.2851(10) & 0.3543(5) & 0.0424(5) & 0.060(4) \\ C(50) & 0.1361(14) & 0.3224(5) & 0.8884(5) & 0.074(2) \\ C(53) & 0.2997(7) & 0.6663(3) & 0.6531(2) & 0.021(2) \\ C(54) & 0.1922(7) & 0.5816(3) & 0.6317(2) & 0.022(2) \\ C(55) & 0.168(8) & 0.5209(4) & 0.6692(2) & 0.027(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6636(3) & 0.5877(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6636(3) & 0.5877(2) & 0.025(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5597(3) & 0.030(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.022(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.61528(10) & 0.2708(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.61528(10) & 0.2708(5) & -0.0743(3) & 0.0130(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.0743(3) & 0.0111(2) \\ C(66) & 0.7438(9) & 0.744(4) & 0.3627(3) & 0.049(2) \\ F(64) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(66) & 0.7438(9) & 0.748(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(71) & 0.1832(9) & 0.8774(1) & 0.3914(2) & 0.057(3) \\ C(72) & 0.3033(8) & 0.7746(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.3033(8) & 0.7746(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.3033(8) & 0.774(7) & 0.3228(5) & 0.123(9) \\ C(77) & 0.0733(8) & 0.7747(7) & 0.0424(4) & 0.080(2) \\ C(77) & 0.1731(8) & 0.619(3) & 0.1382(2) & 0.027(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7974(7) & 0.0328(5) & 0.033(2) \\ C(77) & 0.029(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.1731(8) & 0.619(3) & 0.1382(2) & 0.022(2) \\ C(88) & 0.1331(7) & 0.6447(3) & 0.1997(2) & 0.023(2) \\ C(84) & 0.0908(8) & 0.619(4) & 0.1997(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.619(4) & 0.1997(2) & 0.023(2) \\ C(75) & 0.1422(15) & 0.5597(7) & 0.0482(4) & 0.066(3) \\ C(77) & 0.073(1) & 0.5399(4) & 0.1891(3) &$	C(49)	0.0997(14)	0.2861(5)	0.8136(5)	0.074(2)
$\begin{array}{ccccc} C(50) & 0.1361(14) & 0.3224(5) & 0.8884(5) & 0.074(2) \\ C(51) & -0.0818(13) & 0.3399(5) & 0.8492(5) & 0.074(2) \\ C(53) & 0.2997(7) & 0.6663(3) & 0.6531(2) & 0.021(2) \\ C(54) & 0.1922(7) & 0.5816(3) & 0.6317(2) & 0.022(2) \\ C(55) & 0.135(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.135(8) & 0.5501(3) & 0.6517(2) & 0.025(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.025(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(65) & 0.5581(10) & 0.2569(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(65) & 0.5581(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(64) & 0.6528(10) & 0.2708(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.038(2) & 0.8897(7) & 0.328(5) & 0.123(9) \\ C(77) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8945(5) & 0.3684(4) & 0.064(4) \\ C(77) & 0.0878(12) & 0.8386(4) & 0.3987(4) & 0.057(3) \\ C(66) & 0.038(2) & 0.8879(7) & 0.3238(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3510(2) & 0.022(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.310(2) & 0.022(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.747(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.1731(8) & 0.6109(3) & 0.1382(2) & 0.022(2) \\ C(73) & 0.345(67) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(79) & 0.1211(9) & 0.577(4) & 0.0930(2) & 0.036(2) \\ C(79) & 0.1211(9) & 0.5727(4) & 0.0930(2) & 0.036(2) \\ C(79) & 0.1211(9) & 0.5727(4) & 0.0930(2) & 0.023(2) \\ C(75) & 0.1731(8) & 0.6109(3) & 0.1382(2) & 0$	C(214)	1.2851(10)	0.3543(5)	0.0424(5)	0.060(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(50)	0.1361(14)	0.3224(5)	0.8884(5)	0.074(2)
$\begin{array}{cccccc} C(53) & 0.2997(7) & 0.6063(3) & 0.6531(2) & 0.021(2) \\ C(54) & 0.1922(7) & 0.5816(3) & 0.6317(2) & 0.022(2) \\ C(55) & 0.135(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.025(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5994(3) & 0.030(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(60) & 0.0619(9) & 0.3619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.036(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(66) & 0.345(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8878(4) & 0.3987(4) & 0.057(3) \\ C(66) & 0.038(2) & 0.8878(4) & 0.3987(4) & 0.057(3) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.198(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.033(8) & 0.742(3) & 0.3310(2) & 0.025(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.3236(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.198(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.033(8) & 0.742(3) & 0.3236(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(76) & 0.0345(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1907(2) & 0.02$	C(51)	-0.0818(13)	0.3399(5)	0.8492(5)	0.074(2)
$\begin{array}{cccccc} (54) & 0.1922(7) & 0.5816(3) & 0.6317(2) & 0.022(2) \\ (C(56) & 0.1668(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ (C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.028(2) \\ (C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.028(2) \\ (C(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ (C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ (C(115) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ (C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ (C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ (C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ (C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ (C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ (F(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ (F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ (C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ (F(65) & 0.5381(10) & 0.3707(4) & 0.2968(3) & 0.047(3) \\ (C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ (C(66) & 0.6345(10) & 0.7807(4) & 0.3987(4) & 0.057(3) \\ (C(66) & 0.6345(10) & 0.7807(4) & 0.3987(4) & 0.057(3) \\ (C(66) & 0.6345(10) & 0.7807(4) & 0.3987(4) & 0.057(3) \\ (C(77) & 0.0878(12) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ (C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ (C(71) & 0.198(8) & 0.3067(3) & 0.3310(2) & 0.026(2) \\ (C72) & 0.3033(8) & 0.7746(3) & 0.3454(3) & 0.038(2) \\ (C(71) & 0.198(8) & 0.3067(3) & 0.3310(2) & 0.026(2) \\ (C73) & 0.445(7) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ (C(74) & 0.1825(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ (C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ (C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ (C(76) & 0.026(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ (C(77) & 0.0729(15) & 0.5509(7) & 0.0723(4) & 0.080(2) \\ (C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ (C(79) & 0.121(9) & 0.5972(4) & 0.0967(4) & 0.080(2) \\ (C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ (C(78) & 0.331(7) & 0.644(3) & 0.1932(2) & 0.027(2) \\ (C(84) & 0.0908(8) & 0.6314(3) & 0.1997(2) & 0.022(2) \\ (C(84) & 0.090$	C(53)	0.2997(7)	0.6063(3)	0.6531(2)	0.021(2)
$\begin{array}{ccccc} C(56) & 0.1688(8) & 0.5209(4) & 0.6928(2) & 0.027(2) \\ C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.0036(3) & 0.5977(2) & 0.025(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(65) & 0.7358(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.027(2) \\ C(73) & 0.3346(7) & 0.7274(3) & 0.3236(5) & 0.123(9) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.027(2) \\ C(73) & 0.3345(7) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ C(74) & 0.182(8) & 0.746(3) & 0.3451(3) & 0.027(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.029(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(79) & 0.121(9) & 0.5972(4) & 0.0967(4) & 0.080(2) \\ C(79) & 0.121(9) & 0.5972(4) & 0.0967(4) & 0.080(2) \\ C(79) & 0.121(9) & 0.5972(4) & 0.0967(4) & 0.080(2) \\ C(78) & 0.331(7) & 0.6447(3) & 0.1907(2) & 0.022(2) \\ C(84) & 0.908(8) & 0.6314(3) & 0.1907(2) & 0.022(2) \\ C(84) & 0.9098(8) & 0.6314(3) & 0.1995(2) & 0.028(2) \\ C(85) & 0.7709(9) & 0.5399(4) & 0.1891(3) & 0.038(2) \\ C(86) & 0.7175(12) & 0.5291(5) & 0.1892(4) & 0.06$	C(54)	0.1922(7)	0.5816(3)	0.6317(2)	0.022(2)
$\begin{array}{ccccc} C(55) & 0.1335(8) & 0.5361(3) & 0.6517(2) & 0.028(2) \\ C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.025(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(66) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8878(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8945(5) & 0.3684(4) & 0.064(4) \\ C(69) & 0.038(2) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(71) & 0.1985(8) & 0.7746(3) & 0.3310(2) & 0.027(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.747(3) & 0.2306(2) & 0.021(2) \\ C(75) & 0.1423(8) & 0.713(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.1242(8) & 0.747(3) & 0.2306(2) & 0.021(2) \\ C(77) & 0.1243(8) & 0.713(3) & 0.2905(3) & 0.031(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.1243(8) & 0.6199(3) & 0.1382(2) & 0.023(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.1211(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ C(78) & 0.131(7) & 0.6447(3) & 0.1189(2) & 0.025(2) \\ C(78) & 0.315(7) & 0.6184(3) & 0.1982(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.6314(3) & 0.1695(2) & 0.028(2) \\ C(83) & 0.515(7) & 0.6182(4) & 0.1891(3) & 0.038(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1695(2) & 0.028(2) \\ C(85) & 0.7709(9) & 0.5399(4) & 0.1891(3) & 0.03$	C(56)	0.1668(8)	0.5209(4)	0.6928(2)	0.022(2)
$\begin{array}{cccccc} C(57) & 0.1495(7) & 0.6036(3) & 0.5877(2) & 0.025(2) \\ C(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6228(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8945(5) & 0.3684(4) & 0.004(4) \\ C(69) & 0.038(2) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.303(8) & 0.7746(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.303(8) & 0.747(3) & 0.2270(2) \\ C(74) & 0.1825(8) & 0.7217(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2904(2) & 0.025(2) \\ C(76) & 0.026(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.00723(4) & 0.080(2) \\ C(78) & 0.131(7) & 0.6447(3) & 0.1182(2) & 0.025(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(83) & 0.131(7) & 0.6414(3) & 0.1907(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1695(2) & 0.028(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1881(2) & 0.028(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1881(2) & 0.028(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1733(3) & -0044(2) \\ \end{array} \right)$	C(55)	0.1335(8)	0.5361(3)	0.6517(2)	0.028(2)
$\begin{array}{ccccc} C(58) & 0.0731(8) & 0.6579(3) & 0.5949(3) & 0.030(2) \\ C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.039(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.024(3) & 0.011(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8945(5) & 0.3684(4) & 0.064(4) \\ C(69) & 0.038(2) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.310(2) & 0.026(2) \\ C(72) & 0.303(8) & 0.7746(3) & 0.310(2) & 0.026(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.2704(2) & 0.025(2) \\ C(74) & 0.182(8) & 0.7427(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.121(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(78) & 0.1311(7) & 0.6484(3) & 0.1189(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(82) & 0.3515(7) & 0.6184(3) & 0.1997(2) & 0.023(2) \\ C(83) & 0.1311(7) & 0.6484(3) & 0.1695(2) & 0.023(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1695(2) & 0.023(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1891(3) & 0.038(2) \\ C(86) & 0.7175(12) & 0.5291(5) & 0.1892(4) & 0.062(3) \\ C(87) & 0.6152(10) & 0.6613(4) & 0.1733(3) $	C(57)	0 1495(7)	0.6036(3)	0.5877(2)	0.025(2)
$\begin{array}{ccccc} C(59) & 0.2693(8) & 0.6152(5) & 0.5597(2) & 0.036(2) \\ C(215) & 0.1215(13) & 0.3252(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6621(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3584(4) & 0.064(4) \\ C(69) & 0.038(2) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3441(3) & 0.038(2) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.303(8) & 0.7746(3) & 0.3328(5) & 0.123(9) \\ C(77) & 0.1482(8) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.22905(3) & 0.031(2) \\ C(75) & 0.1423(8) & 0.7427(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0242(15) & 0.5714(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0242(15) & 0.5714(7) & 0.0967(4) & 0.080(2) \\ C(78) & 0.2342(15) & 0.5714(7) & 0.0930(2) & 0.036(2) \\ C(80) & 0.1731(8) & 0.6109(3) & 0.1382(2) & 0.021(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1997(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1997(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1892(4) & 0.060(3) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1892(4) & 0.060(2) \\ C(86) & 0.7175(12) & 0.5291(5) & 0.1892(4) & 0.060(2) \\ C(87) & 0.6152(10) & 0.6613(4) & 0.1733(3) & 0.044(2) \\ \end{array}$	C(58)	0.0731(8)	0.6579(3)	0.5077(2) 0.5949(3)	0.030(2)
$\begin{array}{cccccc} C(215) & 0.1215(13) & 0.3322(4) & 0.3104(3) & 0.051(3) \\ C(60) & 0.0619(9) & 0.5619(4) & 0.5638(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.6069(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8945(5) & 0.3684(4) & 0.064(4) \\ C(69) & 0.038(2) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.3033(8) & 0.7746(3) & 0.3310(2) & 0.026(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.2326(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.22704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(79) & 0.121(9) & 0.5774(7) & 0.0642(4) & 0.080(2) \\ C(79) & 0.1211(9) & 0.5774(7) & 0.0642(4) & 0.080(2) \\ C(79) & 0.1211(9) & 0.5774(7) & 0.0967(4) & 0.080(2) \\ C(78) & 0.331(7) & 0.6184(3) & 0.1932(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1997(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1997(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1997(2) & 0.022(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1891(3) & 0.038(2) \\ C(86) & 0.7175(12) & 0.5291(5) & 0.1892(4) & 0.062(3) \\ C(87) & 0.6152(10) & 0.6613(4) & 0.1733(3) & 0.044(2) \\ \end{array} \right)$	C(59)	0.2693(8)	0.6379(5)	0.5597(2)	0.036(2)
$\begin{array}{ccccc} C(60) & 0.0519(9) & 0.5519(4) & 0.5538(3) & 0.036(2) \\ C(61) & 0.4898(8) & 0.6631(4) & 0.3914(2) & 0.025(2) \\ C(62) & 0.0609(8) & 0.6228(3) & 0.4005(2) & 0.029(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8945(5) & 0.3684(4) & 0.064(4) \\ C(69) & 0.038(2) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(71) & 0.1985(8) & 0.7746(3) & 0.3310(2) & 0.027(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.2204(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.2704(2) & 0.021(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.1211(9) & 0.5972(4) & 0.093(2) & 0.031(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(77) & 0.123(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(77) & 0.1211(9) & 0.5972(4) & 0.093(2) & 0.031(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(79) & 0.1211(9) & 0.5972(4) & 0.093(2) & 0.036(2) \\ C(80) & 0.1731(8) & 0.6109(3) & 0.1382(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.023(2) \\ C(83) & 0.1331(7) & 0.6447(3) & 0.2105(2) & 0.024(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1695(2) & 0.023(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1891(3) & 0.038(2) \\ C(86) & 0.7175(12) & 0.5291(5) & 0.1892(4) & 0.062(3) \\ C(87) & 0.6152(10) & 0.6613(4) & 0.1733(3) & 0.044(2) \\ \end{array}$	C(215)	0.1215(13)	0.3252(3)	0.3397(2) 0.3104(3)	0.050(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(60)	0.0619(9)	0.5232(4) 0 5619(4)	0.5638(3)	0.036(2)
$\begin{array}{cccccc} C(62) & 0.605(6) & 0.6228(3) & 0.4005(2) & 0.024(2) \\ C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.26259(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7544(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8945(5) & 0.3684(4) & 0.0657(3) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.3033(8) & 0.7746(3) & 0.3310(2) & 0.026(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.1731(8) & 0.6199(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.1211(9) & 0.5972(4) & 0.093(2) & 0.036(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(79) & 0.1211(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(79) & 0.1211(9) & 0.5972(4) & 0.0930(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6199(3) & 0.1382(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.614(3) & 0.1907(2) & 0.022(2) \\ C(83) & 0.1331(7) & 0.6447(3) & 0.1891(3) & 0.038(2) \\ C(86) & 0.7175(12) & 0.5291(5) & 0.1892(4) & 0.062(3) \\ C(87) & 0.6152(10) & 0.6613(4) & 0.1733(3) & 0.044(2) \\ \end{array} \right)$	C(61)	0.4898(8)	0.5017(4)	0.3014(2)	0.025(2)
$\begin{array}{cccccc} C(63) & 0.4713(10) & 0.7037(4) & 0.4280(3) & 0.039(2) \\ F(63) & 0.4648(10) & 0.2659(5) & -0.0743(3) & 0.111(2) \\ C(64) & 0.6145(8) & 0.7344(4) & 0.3406(3) & 0.036(2) \\ F(64) & 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ C(65) & 0.7458(9) & 0.7445(4) & 0.3627(3) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8945(5) & 0.3684(4) & 0.057(3) \\ C(69) & 0.038(2) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.1988(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.3033(8) & 0.7746(3) & 0.3310(2) & 0.027(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.2326(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(79) & 0.121(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ C(79) & 0.121(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(78) & 0.3345(7) & 0.6447(3) & 0.1493(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.022(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1695(2) & 0.028(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1891(3) & 0.038(2) \\ C(86) & 0.7175(12) & 0.5291(5) & 0.1892(4) & 0.062(3) \\ C(87) & 0.6152(10) & 0.6613(4) & 0.1733(3) & 0.044(2) \\ \end{array}$	C(62)	0.4050(0)	0.6031(4)	0.3914(2) 0.4005(2)	0.029(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(62)	0.0009(0)	0.0220(3) 0.7037(4)	0.4003(2) 0.4280(3)	0.029(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(63)	0.4648(10)	0.7659(5)	-0.0743(3)	0.039(2) 0.111(2)
$\begin{array}{ccccc} 0.3436(1) & 0.3436(1) & 0.3434(1) & 0.3406(2) & 0.3406(2) \\ \hline 0.6528(10) & 0.2708(5) & -0.1024(3) & 0.111(2) \\ \hline 0.6528(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ \hline 0.665 & 0.5581(10) & 0.3404(5) & -0.0777(3) & 0.111(2) \\ \hline 0.666 & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ \hline 0.677 & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ \hline 0.688 & 0.2656(13) & 0.8845(5) & 0.3684(4) & 0.064(4) \\ \hline 0.699 & 0.038(2) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ \hline 0.700 & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ \hline 0.711 & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ \hline 0.72 & 0.3033(8) & 0.7746(3) & 0.3236(2) & 0.021(2) \\ \hline 0.73 & 0.3456(7) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ \hline 0.75 & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ \hline 0.76 & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ \hline 0.778 & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ \hline 0.778 & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ \hline 0.778 & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ \hline 0.779 & 0.1211(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ \hline 0.781 & 0.3045(8) & 0.6109(3) & 0.1382(2) & 0.021(2) \\ \hline 0.781 & 0.3045(8) & 0.6109(3) & 0.1493(2) & 0.023(2) \\ \hline 0.781 & 0.3045(8) & 0.6109(3) & 0.1493(2) & 0.023(2) \\ \hline 0.781 & 0.3045(8) & 0.6144(3) & 0.1907(2) & 0.022(2) \\ \hline 0.781 & 0.3045(8) & 0.6144(3) & 0.1907(2) & 0.022(2) \\ \hline 0.781 & 0.3045(8) & 0.6314(3) & 0.1907(2) & 0.022(2) \\ \hline 0.783 & 0.1311(7) & 0.6184(3) & 0.1907(2) & 0.023(2) \\ \hline 0.781 & 0.3045(8) & 0.6314(3) & 0.1695(2) & 0.024(2) \\ \hline 0.782 & 0.3515(7) & 0.6399(4) & 0.1891(3) & 0.038(2) \\ \hline 0.783 & 0.131(7) & 0.6447(3) & 0.2105(2) & 0.024(2) \\ \hline 0.783 & 0.1311(7) & 0.6447(3) & 0.1907(2) & 0.022(2) \\ \hline 0.783 & 0.1311(7) & 0.6184(3) & 0.1907(2) & 0.028(2) \\ \hline 0.783 & 0.131(7) & 0.6184(3) & 0.1695(2) & 0.028(2) \\ \hline 0.785 & 0.5709(9) & 0.5399(4) & 0.1891(3) & 0.038(2) \\ \hline 0.785 & 0.5709(9) & 0.5291(5) & 0.1892(4) & 0.062(3) \\ \hline 0.791 & 0.6152(10) & 0.6613(4) & 0.1733(3) \\ \hline 0.044(2) \\ \hline 0.7153(3) & 0.044(2) \\ \hline$	C(64)	0.4048(10)	0.2037(3) 0.7544(4)	0.0745(3)	0.036(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(64)	0.6528(10)	0.7344(4) 0.2708(5)	-0.1024(3)	0.030(2)
$\begin{array}{cccccc} C(5) & 0.743(7) & 0.744(7) & 0.307(7) & 0.040(2) \\ F(65) & 0.5581(10) & 0.3404(5) & -0.077(3) & 0.111(2) \\ C(66) & 0.6345(10) & 0.7807(4) & 0.2968(3) & 0.047(3) \\ C(67) & 0.0878(12) & 0.8368(4) & 0.3987(4) & 0.057(3) \\ C(68) & 0.2656(13) & 0.8879(7) & 0.3328(5) & 0.123(9) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.3033(8) & 0.7746(3) & 0.3326(2) & 0.021(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(79) & 0.1211(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ C(79) & 0.1211(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ C(80) & 0.1731(8) & 0.6109(3) & 0.1382(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(83) & 0.1331(7) & 0.6447(3) & 0.2105(2) & 0.022(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1695(2) & 0.028(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1891(3) & 0.038(2) \\ C(86) & 0.7175(12) & 0.5291(5) & 0.1892(4) & 0.062(3) \\ C(87) & 0.6152(10) & 0.6613(4) & 0.1733(3) & 0.044(2) \\ \end{array}$	$\Gamma(04)$	0.7458(9)	0.2700(3) 0.7445(4)	0.1024(3) 0.3627(3)	0.111(2) 0.040(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(65)	0.7438(9) 0.5581(10)	0.7443(4) 0.3404(5)	-0.0777(3)	0.040(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Gamma(05)$	0.6345(10)	0.3404(3) 0.7807(4)	0.0777(3)	0.047(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(67)	0.0343(10) 0.0878(12)	0.7307(4) 0.8368(4)	0.2908(3) 0.3087(4)	0.047(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(68)	0.0676(12)	0.8945(5)	0.3987(4) 0.3684(4)	0.057(5)
$\begin{array}{ccccccc} C(5) & 0.038(2) & 0.8579(7) & 0.328(3) & 0.125(9) \\ C(70) & 0.1482(9) & 0.8578(4) & 0.3544(3) & 0.038(2) \\ C(71) & 0.1985(8) & 0.8067(3) & 0.3310(2) & 0.026(2) \\ C(72) & 0.3033(8) & 0.7746(3) & 0.3451(3) & 0.027(2) \\ C(73) & 0.3456(7) & 0.7274(3) & 0.3236(2) & 0.021(2) \\ C(74) & 0.1825(8) & 0.7427(3) & 0.2704(2) & 0.025(2) \\ C(75) & 0.1423(8) & 0.7913(3) & 0.2905(3) & 0.031(2) \\ C(76) & 0.0206(15) & 0.5515(7) & 0.0967(4) & 0.080(2) \\ C(77) & 0.0729(15) & 0.6509(7) & 0.0723(4) & 0.080(2) \\ C(78) & 0.2342(15) & 0.5747(7) & 0.0642(4) & 0.080(2) \\ C(79) & 0.1211(9) & 0.5972(4) & 0.0930(2) & 0.036(2) \\ C(80) & 0.1731(8) & 0.6109(3) & 0.1382(2) & 0.023(2) \\ C(81) & 0.3045(8) & 0.6046(3) & 0.1493(2) & 0.027(2) \\ C(82) & 0.3515(7) & 0.6184(3) & 0.1907(2) & 0.022(2) \\ C(83) & 0.1331(7) & 0.6447(3) & 0.2105(2) & 0.024(2) \\ C(84) & 0.0908(8) & 0.6314(3) & 0.1695(2) & 0.028(2) \\ C(85) & 0.5709(9) & 0.5399(4) & 0.1891(3) & 0.038(2) \\ C(87) & 0.6152(10) & 0.6613(4) & 0.1733(3) & -1 \\ \end{array}$	C(60)	0.2050(15)	0.8943(3)	0.308+(+) 0.3328(5)	0.004(4) 0.123(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(09)	0.038(2) 0.1482(0)	0.8879(7) 0.8578(4)	0.3528(3) 0.3544(3)	0.123(9) 0.038(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(70)	0.1462(9) 0.1085(8)	0.8078(4) 0.8067(3)	0.3344(3) 0.3310(2)	0.038(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(71)	0.1965(6)	0.8007(3)	0.3310(2) 0.3451(3)	0.020(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(72)	0.3055(8)	0.7740(3)	0.3431(3) 0.3236(2)	0.027(2)
C(74) $0.1825(8)$ $0.7427(3)$ $0.2704(2)$ $0.023(2)$ $C(75)$ $0.1423(8)$ $0.7913(3)$ $0.2905(3)$ $0.031(2)$ $C(76)$ $0.0206(15)$ $0.5515(7)$ $0.0967(4)$ $0.080(2)$ $C(77)$ $0.0729(15)$ $0.6509(7)$ $0.0723(4)$ $0.080(2)$ $C(78)$ $0.2342(15)$ $0.5747(7)$ $0.0642(4)$ $0.080(2)$ $C(79)$ $0.1211(9)$ $0.5972(4)$ $0.0930(2)$ $0.036(2)$ $C(80)$ $0.1731(8)$ $0.6109(3)$ $0.1382(2)$ $0.023(2)$ $C(81)$ $0.3045(8)$ $0.6046(3)$ $0.1493(2)$ $0.027(2)$ $C(82)$ $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5291(5)$ $0.1891(3)$ $0.038(2)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(73)	0.3430(7)	0.7274(3) 0.7427(3)	0.3230(2) 0.2704(2)	0.021(2)
C(73) $0.1425(8)$ $0.7913(3)$ $0.2903(3)$ $0.031(2)$ $C(76)$ $0.0206(15)$ $0.5515(7)$ $0.0967(4)$ $0.080(2)$ $C(77)$ $0.0729(15)$ $0.6509(7)$ $0.0723(4)$ $0.080(2)$ $C(78)$ $0.2342(15)$ $0.5747(7)$ $0.0642(4)$ $0.080(2)$ $C(79)$ $0.1211(9)$ $0.5972(4)$ $0.0930(2)$ $0.036(2)$ $C(80)$ $0.1731(8)$ $0.6109(3)$ $0.1382(2)$ $0.023(2)$ $C(81)$ $0.3045(8)$ $0.6046(3)$ $0.1493(2)$ $0.027(2)$ $C(82)$ $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5399(4)$ $0.1891(3)$ $0.038(2)$ $C(86)$ $0.7175(12)$ $0.5291(5)$ $0.1892(4)$ $0.062(3)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(74)	0.1623(8)	0.7427(3) 0.7012(3)	0.2704(2) 0.2005(2)	0.023(2)
C(76) $0.0206(13)$ $0.5315(7)$ $0.0967(4)$ $0.080(2)$ $C(77)$ $0.0729(15)$ $0.6509(7)$ $0.0723(4)$ $0.080(2)$ $C(78)$ $0.2342(15)$ $0.5747(7)$ $0.0642(4)$ $0.080(2)$ $C(79)$ $0.1211(9)$ $0.5972(4)$ $0.0930(2)$ $0.036(2)$ $C(80)$ $0.1731(8)$ $0.6109(3)$ $0.1382(2)$ $0.023(2)$ $C(81)$ $0.3045(8)$ $0.6046(3)$ $0.1493(2)$ $0.027(2)$ $C(82)$ $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5399(4)$ $0.1891(3)$ $0.038(2)$ $C(86)$ $0.7175(12)$ $0.5291(5)$ $0.1892(4)$ $0.062(3)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(75)	0.1423(8)	0.7915(3) 0.5515(7)	0.2903(3)	0.031(2)
C(77) $0.0729(13)$ $0.0509(7)$ $0.0723(4)$ $0.080(2)$ $C(78)$ $0.2342(15)$ $0.5747(7)$ $0.0642(4)$ $0.080(2)$ $C(79)$ $0.1211(9)$ $0.5972(4)$ $0.0930(2)$ $0.036(2)$ $C(80)$ $0.1731(8)$ $0.6109(3)$ $0.1382(2)$ $0.023(2)$ $C(81)$ $0.3045(8)$ $0.6046(3)$ $0.1493(2)$ $0.027(2)$ $C(82)$ $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5399(4)$ $0.1891(3)$ $0.038(2)$ $C(86)$ $0.7175(12)$ $0.5291(5)$ $0.1892(4)$ $0.062(3)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(70)	0.0200(13)	0.5515(7) 0.6500(7)	0.0907(4) 0.0722(4)	0.080(2)
C(78) $0.2342(13)$ $0.5747(7)$ $0.0642(4)$ $0.080(2)$ $C(79)$ $0.1211(9)$ $0.5972(4)$ $0.0930(2)$ $0.036(2)$ $C(80)$ $0.1731(8)$ $0.6109(3)$ $0.1382(2)$ $0.023(2)$ $C(81)$ $0.3045(8)$ $0.6046(3)$ $0.1493(2)$ $0.027(2)$ $C(82)$ $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5399(4)$ $0.1891(3)$ $0.038(2)$ $C(86)$ $0.7175(12)$ $0.5291(5)$ $0.1892(4)$ $0.062(3)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(77)	0.0729(15)	0.0309(7)	0.0723(4)	0.080(2)
C(79) $0.1211(9)$ $0.3972(4)$ $0.0930(2)$ $0.036(2)$ $C(80)$ $0.1731(8)$ $0.6109(3)$ $0.1382(2)$ $0.023(2)$ $C(81)$ $0.3045(8)$ $0.6046(3)$ $0.1493(2)$ $0.027(2)$ $C(82)$ $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5399(4)$ $0.1891(3)$ $0.038(2)$ $C(86)$ $0.7175(12)$ $0.5291(5)$ $0.1892(4)$ $0.062(3)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(78)	0.2342(13)	0.3747(7) 0.5072(4)	0.0042(4) 0.0020(2)	0.080(2)
C(80) $0.1731(8)$ $0.6109(3)$ $0.1382(2)$ $0.023(2)$ $C(81)$ $0.3045(8)$ $0.6046(3)$ $0.1493(2)$ $0.027(2)$ $C(82)$ $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5399(4)$ $0.1891(3)$ $0.038(2)$ $C(86)$ $0.7175(12)$ $0.5291(5)$ $0.1892(4)$ $0.062(3)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(79)	0.1211(9)	0.5972(4)	0.0930(2)	0.036(2)
C(81) $0.5045(8)$ $0.0040(3)$ $0.1493(2)$ $0.027(2)$ $C(82)$ $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5399(4)$ $0.1891(3)$ $0.038(2)$ $C(86)$ $0.7175(12)$ $0.5291(5)$ $0.1892(4)$ $0.062(3)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(80)	0.1/31(8)	0.0109(3)	0.1382(2)	0.023(2)
C(82) $0.3515(7)$ $0.6184(3)$ $0.1907(2)$ $0.022(2)$ $C(83)$ $0.1331(7)$ $0.6447(3)$ $0.2105(2)$ $0.024(2)$ $C(84)$ $0.0908(8)$ $0.6314(3)$ $0.1695(2)$ $0.028(2)$ $C(85)$ $0.5709(9)$ $0.5399(4)$ $0.1891(3)$ $0.038(2)$ $C(86)$ $0.7175(12)$ $0.5291(5)$ $0.1892(4)$ $0.062(3)$ $C(87)$ $0.6152(10)$ $0.6613(4)$ $0.1733(3)$ $0.044(2)$	C(81)	0.3045(8)	0.0040(3)	0.1493(2)	0.027(2)
C(85) 0.1331(7) 0.6447(3) 0.2105(2) 0.024(2) C(84) 0.0908(8) 0.6314(3) 0.1695(2) 0.028(2) C(85) 0.5709(9) 0.5399(4) 0.1891(3) 0.038(2) C(86) 0.7175(12) 0.5291(5) 0.1892(4) 0.062(3) C(87) 0.6152(10) 0.6613(4) 0.1733(3) 0.044(2)	C(82)	0.3515(7)	0.0184(3)	0.1907(2)	0.022(2)
C(84) 0.0908(8) 0.6314(3) 0.1695(2) 0.028(2) C(85) 0.5709(9) 0.5399(4) 0.1891(3) 0.038(2) C(86) 0.7175(12) 0.5291(5) 0.1892(4) 0.062(3) C(87) 0.6152(10) 0.6613(4) 0.1733(3) 0.044(2)	C(83)	0.1331(7)	0.6447(3)	0.2105(2)	0.024(2)
C(85) 0.5709(9) 0.5399(4) 0.1891(3) 0.038(2) C(86) 0.7175(12) 0.5291(5) 0.1892(4) 0.062(3) C(87) 0.6152(10) 0.6613(4) 0.1733(3) 0.044(2)	C(84)	0.0908(8)	0.6314(3)	0.1695(2)	0.028(2)
C(80) 0.7175(12) 0.5291(5) 0.1892(4) 0.062(3) C(87) 0.6152(10) 0.6613(4) 0.1733(3) 0.044(2)	C(85)	0.5/09(9)	0.5399(4)	0.1891(3)	0.038(2)
$\begin{array}{cccc} C(87) & 0.0152(10) & 0.0013(4) & 0.1733(3) & 0.044(2) \\ \hline \end{array}$	C(86)	0.7175(12)	0.5291(5)	0.1892(4)	0.062(3)
	C(87)	0.6152(10)	0.6613(4)	0.1733(3)	0.044(2)
Table S42. – continued from previous page

atom	Х	у	X	U(eq)
C(88)	0.5588(10)	0.7188(4)	0.1804(3)	0.044(2)
C(89)	0.6301(13)	0.6512(5)	0.1277(3)	0.061(3)
C(90)	0.4949(11)	0.4959(4)	0.2135(5)	0.059(3)
C(91)	0.8134(9)	0.5233(4)	-0.0126(3)	0.031(2)
C(92)	0.9381(7)	0.4398(3)	-0.0073(2)	0.022(2)
C(93)	0.7649(7)	0.4547(3)	0.0403(2)	0.019(2)
C(94)	1.0788(8)	0.2824(4)	0.0287(3)	0.035(2)
C(95)	1.3162(10)	0.3024(5)	0.0304(5)	0.058(3)
C(96)	1.1528(8)	0.3730(4)	0.0467(4)	0.046(3)
C(97)	0.7741(7)	0.2587(3)	0.0473(2)	0.019(2)
C(98)	0.6291(8)	0.2265(4)	-0.0087(3)	0.031(2)
C(99)	0.7276(8)	0.3194(3)	-0.0095(2)	0.026(2)
C(100)	0.3380(6)	0.5894(3)	0.6036(2)	0.015(1)
C(101)	0.3140(7)	0.3097(3) 0.4482(3)	0.0930(2) 0.8073(2)	0.012(1)
C(102)	0.1761(6)	0.3785(3)	0.0075(2) 0.4751(2)	0.022(2)
C(102) C(103)	0.2875(7)	0.3789(3) 0.4689(3)	0.4750(2)	0.013(1)
C(103)	0.2075(7)	0.400(3)	0.4700(2) 0.4503(3)	0.020(2)
C(104)	0.3210(0)	0.3200(3) 0.4118(3)	0.4303(3) 0.5361(2)	0.029(2)
C(105)	0.3034(8)	0.4110(3) 0.2001(4)	0.5301(2) 0.5707(3)	0.024(2) 0.045(3)
C(100)	0.0072(12)	0.3991(4) 0.2082(4)	0.3797(3) 0.2200(3)	0.045(3)
C(107)	0.0075(12)	0.3083(4) 0.2802(7)	0.3290(3) 0.2025(4)	0.040(3)
C(108)	-0.1090(18)	0.2895(7)	0.3033(4)	0.082(3)
C(109)	0.0953(9)	0.3290(3)	0.4004(2)	0.027(1)
C(110)	0.2254(11)	0.3443(4)	0.3360(3)	0.041(2)
C(111)	0.3432(14)	0.3678(5)	0.3161(4)	0.056(3)
C(112)	0.2347(6)	0.1840(3)	0.4699(2)	0.012(1)
C(113)	0.3388(6)	0.1486(3)	0.4500(2)	0.019(1)
C(114)	-0.0091(11)	0.1716(5)	0.5579(3)	0.052(1)
C(115)	0.0676(7)	0.1946(3)	0.5224(2)	0.018(2)
C(117)	0.10/1(6)	0.2700(3)	0.4720(2)	0.014(1)
C(118)	0.7378(8)	0.5051(3)	0.0208(2)	0.023(2)
C(120)	0.8691(7)	0.4193(3)	0.0276(2)	0.019(2)
C(121)	0.9148(8)	0.4906(4)	-0.0267(2)	0.027(2)
C(122)	0.997(2)	0.5093(9)	-0.0627(5)	0.105(1)
C(123)	0.6760(10)	0.1628(4)	0.0527(3)	0.041(2)
C(124)	0.6948(8)	0.2181(3)	0.0293(2)	0.024(2)
C(125)	0.6462(9)	0.2781(4)	-0.0279(3)	0.033(2)
C(126)	0.581(2)	0.2870(10)	-0.0684(5)	0.111(2)
C(127)	0.7930(7)	0.3116(3)	0.0282(2)	0.016(1)
C(128)	0.6207(11)	0.5385(4)	0.0360(3)	0.044(3)
C(129)	-0.2574(19)	0.4806(6)	0.5011(7)	0.104(2)
C(150)	0.622(2)	0.3248(9)	0.1867(5)	0.105(1)
C(151)	1.035(2)	0.4275(9)	0.1984(5)	0.105(1)
C(152)	0.940(2)	0.3960(8)	0.1711(5)	0.105(1)
C(153)	1.3902(19)	0.3923(10)	0.0488(11)	0.154(3)
C(154)	1.2389(9)	0.2052(4)	0.0065(4)	0.045(2)
F(250)	0.5997(11)	0.3464(5)	0.2233(3)	0.105(1)
H(13A)	0.1113	0.6048	0.8590	0.045
H(13B)	0.1688	0.5425	0.8536	0.045
H(13C)	0.0362	0.5606	0.8287	0.045
H(14A)	0.4030	0.6543	0.7988	0.061
H(14B)	0.3786	0.6238	0.8438	0.061
				Continued on next page

atom	X	У	X	U(eq)
H(14C)	0.2890	0.6764	0.8299	0.061
H(15A)	0.1625	0.6544	0.7381	0.063
H(15B)	0.0712	0.6670	0.7787	0.063
H(15C)	0.0424	0.6132	0.7493	0.063
H(200)	-0.0291	0.2696	0.5196	0.022
H(16)	0.8207	0.3814	0.2212	0.125
H(017)	0.2557	0.2514	0.4309	0.015
H(17)	1.0412	0.4022	0.1161	0.125
H(018)	-0.4293	0.4000	0.4822	0.037
H(18)	0.6900	0.3262	0.1046	0.125
H(201)	0.1853	0.1255	0.5153	0.021
H(202)	-0.1703	0.2783	0.4500	0.027
H(23A)	0.0571	0.5613	0.2657	0.044
H(23B)	0.1389	0.5097	0.2855	0.044
H(23C)	0.1866	0.5387	0.2421	0.044
H(24A)	0.3227	0.5233	0.3446	0.042
H(24B)	0.4295	0.5728	0.3420	0.042
H(24C)	0.4151	0.5290	0.3034	0.042
H(25A)	0.0812	0.6482	0.3283	0.037
H(25B)	0.1970	0.6393	0.3630	0.037
H(25C)	0.0926	0.5900	0.3538	0.037
H(27)	0.3945	0.4865	0.5281	0.027
H(26)	0.1708	0.4369	0.4278	0.025
H(28)	0.2115	0.3352	0.5310	0.028
H(206)	-0.0355	0.4325	0.4813	0.027
H(31)	0.4128	0.6966	0.7392	0.038
H(32A)	0.6912	0.7001	0.7406	0.054
H(32B)	0.6003	0.6858	0.7809	0.054
H(32C)	0.5942	0.7469	0.7595	0.054
H(33A)	0.4202	0.7094	0.6645	0.061
H(33B)	0.5782	0.7151	0.6668	0.061
H(33C)	0.4867	0.7615	0.6890	0.061
H(34)	0.5678	0.6146	0.6469	0.032
H(207)	0.2863	0.3585	0.3972	0.033
H(36A)	0.7929	0.6175	0.6493	0.056
H(36B)	0.7985	0.5965	0.6981	0.056
H(36C)	0.7447	0.6582	0.6869	0.056
H(35A)	0.5209	0.5177	0.6630	0.052
H(35B)	0.6666	0.5134	0.6834	0.052
H(35C)	0.6480	0.5274	0.6336	0.052
H(37)	0.4782	0.4252	0.8816	0.039
H(38A)	0.4933	0.5430	0.8906	0.089
H(38B)	0.4446	0.4986	0.9256	0.089
H(38C)	0.3553	0.5108	0.8840	0.089
H(39A)	0.7110	0.4349	0.8665	0.064
H(39B)	0.6752	0.4543	0.9141	0.064
H(39C)	0.7001	0.5004	0.8777	0.064
H(40)	0.6764	0.4216	0.7902	0.037
H(42A)	0.5201	0.3757	0.7280	0.060
H(42B)	0.5528	0.4432	0.7243	0.060
H(41A)	0.4748	0.3376	0.8005	0.058
				Continued on next page

 Table S42. – continued from previous page

atom	X	У	X	U(eq)
H(41B)	0.5742	0.3543	0.8386	0.058
H(41C)	0.6304	0.3266	0.7958	0.058
H(44)	0.3114	0.3790	0.8461	0.037
H(46)	-0.0456	0.4183	0.7958	0.032
H(213)	-0.0955	0.3016	0.3859	0.033
H(47)	0.0460	0.4953	0.7632	0.033
H(49A)	0.0309	0.2572	0.8159	0.111
H(49B)	0.1861	0.2697	0.8210	0.111
H(49C)	0.1017	0.3004	0.7842	0.111
H(50A)	0.2282	0.3114	0.8834	0.111
H(50B)	0.0890	0.2915	0.9023	0.111
H(50C)	0.1343	0.3557	0.9069	0.111
H(51A)	-0.1071	0.3787	0.8559	0.111
H(51B)	-0.1118	0.3149	0.8721	0.111
H(51C)	-0.1231	0.3286	0.8220	0.111
H(53)	0.3476	0.6355	0.6393	0.026
H(56)	0.1209	0.4905	0.7058	0.033
H(55)	0.0686	0.5149	0.6365	0.034
H(58A)	0.0381	0.6717	0.5674	0.045
H(58B)	0.1324	0.6862	0.6074	0.045
H(58C)	-0.0005	0.6509	0.6144	0.045
H(59A)	0.2394	0.6236	0.5304	0.055
H(59B)	0.3271	0.5821	0.5595	0.055
H(59C)	0.3184	0.6475	0.5712	0.055
H(215)	0.1303	0.3239	0.2802	0.061
H(60A)	0.0463	0.5753	0.5345	0.054
H(60B)	-0.0230	0.5583	0.5785	0.054
H(60C)	0.1059	0.5252	0.5629	0.054
H(61)	0.4085	0.6391	0.3908	0.030
H(62A)	0.6217	0.5989	0.3755	0.044
H(62B)	0.5863	0.5993	0.4253	0.044
H(62C)	0.6871	0.6448	0.4066	0.044
H(63A)	0.5527	0.7255	0.4323	0.058
H(63B)	0.4513	0.6827	0.4542	0.058
H(63C)	0.3977	0.7293	0.4213	0.058
H(64)	0.5671	0.7832	0.3581	0.043
H(65A)	0.7947	0.7152	0.3475	0.060
H(65B)	0.7307	0.7325	0.3923	0.060
H(65C)	0.7975	0.7794	0.3627	0.060
H(66A)	0.6946	0.7572	0.2800	0.071
H(66B)	0.6729	0.8183	0.3002	0.071
H(66C)	0.5490	0.7836	0.2818	0.071
H(67A)	0.0091	0.8137	0.3930	0.085
H(67B)	0.0630	0.8694	0.4161	0.085
H(67C)	0.1541	0.8144	0.4142	0.085
H(68A)	0.3069	0.9111	0.3431	0.096
H(68B)	0.3307	0.8713	0.3838	0.096
H(68C)	0.2343	0.9245	0.3873	0.096
H(69A)	0.0743	0.9148	0.3122	0.185
H(69B)	-0.0139	0.9082	0.3542	0.185
H(69C)	-0.0187	0.8608	0.3178	0.185
				Continued on next page

 Table S42. – continued from previous page

atom	X	y	X	U(eq)
H(72)	0.3482	0.7853	0.3708	0.033
H(74)	0.1402	0.7321	0.2442	0.030
H(75)	0.0772	0.8147	0.2774	0.037
H(76A)	-0.0643	0.5676	0.1056	0.120
H(76B)	0.0506	0.5240	0.1181	0.120
H(76C)	0.0093	0.5329	0.0689	0.120
H(77A)	0.0546	0.6442	0.0418	0.120
H(77B)	0.1412	0.6800	0.0753	0.120
H(77C)	-0.0083	0.6635	0.0864	0.120
H(78A)	0.2013	0.5706	0.0347	0.120
H(78B)	0.2640	0.5381	0.0750	0.120
H(78C)	0.3085	0.6012	0.0648	0.120
H(81)	0.3648	0.5906	0.1286	0.033
H(83)	0.0712	0.6573	0.2311	0.029
H(84)	-0.0002	0.6367	0.1626	0.033
H(85)	0.5412	0.5365	0.1585	0.045
H(86A)	0.7376	0.4987	0.1691	0.093
H(86B)	0.7465	0.5183	0.2181	0.093
H(86C)	0.7641	0.5634	0.1805	0.093
H(87)	0.7072	0.6623	0.1855	0.053
H(88A)	0.5387	0.7423	0.1566	0.053
H(88B)	0.5432	0.7317	0.2087	0.053
H(89A)	0.5434	0.6541	0.1135	0.091
H(89B)	0.6664	0.6134	0.1233	0.091
H(89C)	0.6905	0.6791	0.1157	0.091
H(90A)	0.5254	0.4954	0.2434	0.071
H(90B)	0.5099	0.4589	0.2006	0.071
H(90C)	0.4001	0.5048	0.2124	0.071
H(91)	0.7953	0.5584	-0.0258	0.037
H(92)	1.0065	0.4170	-0.0187	0.026
H(93)	0.7108	0.4432	0.0634	0.023
H(94)	1.0093	0.2562	0.0238	0.042
H(95)	1.4058	0.2912	0.0270	0.070
H(96)	1.1364	0.4113	0.0535	0.056
H(97)	0.8178	0.2508	0.0737	0.023
H(98)	0.5746	0.1982	-0.0212	0.037
H(99)	0.7375	0.3542	-0.0240	0.031

 Table S42. – continued from previous page

atom	U ₁₁	U22	U33	U23	<u>U13</u>	U12
Pd	0.0131(2)	0.0211(3)	$\frac{-33}{0.0164(2)}$	0.0030(2)	-0.0022(2)	-0.0029(2)
F(1)	0.0191(2) 0.196(10)	0.087(6)	0.022(3)	-0.006(3)	-0.022(4)	-0.032(6)
B(1)	0.021(4)	0.007(0) 0.010(4)	0.022(3) 0.023(4)	-0.002(3)	0.022(1)	0.002(0) 0.004(3)
C	0.021(1) 0.019(3)	0.018(4)	0.023(1) 0.017(3)	0.002(3)	0.001(3)	0.001(3)
ĩ	0.019(3)	0.010(1) 0.0592(4)	0.017(3) 0.0480(3)	0.002(3) 0.0197(3)	-0.0090(2)	-0.002(3)
F(9)	0.060(3)	0.0392(1) 0.018(3)	0.037(3)	-0.003(2)	0.0000(2)	-0.021(2)
F(8)	0.060(3)	0.010(3) 0.037(3)	0.031(3)	0.003(2)	0.001(2)	-0.011(3)
F(7)	0.000(3) 0.048(3)	0.034(3)	0.031(3) 0.073(4)	0.002(2) 0.031(3)	-0.022(3)	-0.011(3)
F(6)	0.092(6)	0.034(5)	0.079(4)	0.001(3)	0.022(3)	-0.012(4)
F(5)	0.002(0) 0.112(6)	0.070(3) 0.033(4)	0.070(3) 0.127(7)	0.000(4) 0.025(4)	0.075(5)	0.012(4)
F(4)	0.112(0)	0.033(4)	0.127(7) 0.044(4)	0.025(4)	0.073(3) 0.053(4)	0.000(4) 0.037(5)
F(3)	0.119(0) 0.128(8)	0.090(5)	0.044(4) 0.114(7)	-0.043(5)	-0.078(6)	0.037(5) 0.017(6)
P(3)	0.120(0)	0.087(0)	0.114(7) 0.0201(0)	-0.043(3)	-0.078(0)	0.017(0) 0.0003(7)
F(1) F(11)	0.0177(9) 0.127(7)	0.0252(10) 0.035(4)	0.0201(9)	0.0070(8)	-0.0029(7)	0.0003(7) 0.013(4)
$\Gamma(11)$	0.127(7) 0.018(3)	0.033(4)	0.008(4) 0.016(3)	0.014(3)	-0.001(4)	0.013(4) 0.007(3)
$\mathbf{C}(11)$	0.016(3)	0.022(4)	0.010(3)	0.004(3)	-0.000(3)	0.007(3)
F(2) F(12)	0.0103(8)	0.0192(10) 0.122(7)	0.0173(8) 0.022(3)	0.0022(7)	-0.0023(0)	-0.0040(7)
F(12)	0.100(0)	0.123(7)	0.023(3)	0.012(3)	-0.011(3)	-0.043(3)
C(21)	0.019(3)	0.024(4)	0.010(3)	0.003(3)	-0.001(2)	0.007(3)
F(3)	0.0242(9) 0.112(6)	0.0190(10)	0.0209(9)	0.0013(7)	0.0003(7)	0.0003(7)
$\Gamma(13)$	0.112(0)	0.032(3)	0.049(3)	0.001(3)	-0.048(4)	-0.022(3)
C(13)	0.021(4)	0.043(3)	0.020(4)	0.002(3)	0.007(3)	0.000(3)
$\Gamma(14)$	0.0536(18)	0.002(2)	0.0405(10)	0.0200(13)	0.0208(14)	-0.0033(10)
C(14)	0.052(5)	0.033(5)	0.038(3)	-0.019(4)	0.021(4)	-0.022(4)
C(15)	0.050(5)	0.041(6)	0.035(5)	0.012(4)	0.014(4)	0.029(5)
F(15)	0.0538(18)	0.062(2)	0.0403(10)	0.0200(15)	0.0208(14)	-0.0055(10)
C(200)	0.014(3)	0.022(4)	0.020(3)	0.002(3)	0.005(3)	0.005(3)
F(16)	0.0538(18)	0.062(2)	0.0403(16)	0.0206(15)	0.0208(14)	-0.0055(16)
C(16)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(017)	0.015(3)	0.011(3)	0.013(3)	0.007(2)	0.001(2)	-0.004(3)
F(17)	0.034(3)	0.052(4)	0.031(2)	0.002(2)	0.0011(19)	0.028(2)
C(17)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(018)	0.019(4)	0.020(4)	0.053(5)	-0.009(4)	-0.009(3)	0.006(3)
F(18)	0.044(3)	0.011(2)	0.044(3)	-0.0129(19)	0.013(2)	-0.0059(19)
C(18)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
F(19)	0.027(2)	0.027(3)	0.027(2)	-0.005/(19)	0.0140(18)	-0.0020(19)
C(201)	0.022(3)	0.013(4)	0.016(3)	0.003(3)	0.000(3)	-0.002(3)
C(202)	0.031(4)	0.010(4)	0.027(4)	-0.004(3)	-0.014(3)	0.00/(3)
C(203)	0.020(2)	0.014(2)	0.033(2)	0.0005(17)	-0.002/(17)	-0.0012(17)
P(21)	0.0230(9)	0.0284(11)	0.0156(8)	-0.0021(7)	0.0021(7)	0.0084(8)
F(21)	0.070(3)	0.061(3)	0.164(5)	0.006(3)	-0.038(3)	-0.038(2)
F(20)	0.070(3)	0.061(3)	0.164(5)	0.006(3)	-0.038(3)	-0.038(2)
G(21	0.018(3)	0.014(3)	0.017(3)	0.004(3)	-0.006(2)	-0.002(3)
P(22)	0.0190(9)	0.0205(10)	0.0182(9)	-0.0021(7)	-0.0065(7)	0.0003(7)
F(22)	0.070(3)	0.061(3)	0.164(5)	0.006(3)	-0.038(3)	-0.038(2)
C(22)	0.013(3)	0.025(4)	0.018(3)	-0.004(3)	-0.002(3)	0.001(3)
P(23)	0.0170(9)	0.0176(10)	0.0188(9)	-0.0041(7)	0.0001(7)	-0.0014(7)
C(23)	0.034(4)	0.020(4)	0.033(4)	0.000(3)	-0.004(3)	-0.011(4)
C(24)	0.029(4)	0.021(4)	0.034(4)	0.005(3)	0.001(3)	0.001(3)
F(24)	0.106(4)	0.037(3)	0.170(5)	-0.031(3)	0.023(4)	0.017(2)
					Cont	inued on next page

Table S43. Anisotropic displacement parameters (Å²) for [{PC(sp³)(PMe₃)P}^{*t*Bu}PdI][BAr^F₄] (12). The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Table S43. –	continued	from	previous	page
			P	r 0 -

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(25)	0.023(4)	0.029(4)	0.021(3)	0.001(3)	0.007(3)	-0.003(3)
F(25)	0.106(4)	0.037(3)	0.170(5)	-0.031(3)	0.023(4)	0.017(2)
C(27)	0.024(4)	0.012(4)	0.030(4)	0.000(3)	-0.005(3)	0.004(3)
F(27)	0.054(4)	0.019(3)	0.130(6)	-0.016(3)	0.009(4)	-0.005(3)
C(26)	0.029(4)	0.015(4)	0.020(3)	-0.004(3)	0.008(3)	0.010(3)
F(26)	0.106(4)	0.037(3)	0.170(5)	-0.031(3)	0.023(4)	0.017(2)
C(204)	0.026(4)	0.018(4)	0.037(5)	-0.001(3)	-0.007(3)	0.001(3)
F(28)	0.044(4)	0.040(4)	0.213(10)	-0.040(5)	-0.044(5)	0.024(3)
C(28)	0.029(4)	0.015(4)	0.027(4)	0.002(3)	0.000(3)	0.004(3)
Pd(2)	0.0135(2)	0.0206(3)	0.0146(2)	0.0006(2)	-0.0011(2)	0.0025(2)
F(2)	0.125(7)	0.082(6)	0.053(4)	0.016(4)	-0.029(4)	-0.064(5)
B(2)	0.017(4)	0.022(5)	0.018(4)	-0.001(3)	-0.007(3)	-0.005(3)
C(2)	0.015(3)	0.018(4)	0.015(3)	0.003(3)	-0.001(2)	0.006(3)
I(2)	0.0169(2)	0.0802(5)	0.0344(3)	-0.0027(3)	-0.0024(2)	0.0138(3)
F(29)	0.128(7)	0.056(5)	0.078(5)	-0.012(4)	0.031(5)	0.029(5)
C(205)	0.020(2)	0.014(2)	0.033(2)	0.0005(17)	-0.0027(17)	-0.0012(17)
C(206)	0.020(2)	0.014(2)	0.033(2)	0.0005(17)	-0.0027(17)	-0.0012(17)
F(30)	0.059(4)	0.033(4)	0.122(6)	0.032(4)	-0.035(4)	-0.007(3)
C(31)	0.039(5)	0.025(5)	0.031(4)	-0.001(3)	0.003(4)	-0.010(4)
F(31)	0.095(5)	0.064(5)	0.054(4)	0.031(3)	0.011(4)	-0.015(4)
C(32)	0.039(5)	0.039(5)	0.030(4)	0.002(4)	-0.005(4)	-0.017(4)
F(32)	0.124(6)	0.028(3)	0.055(4)	0.005(3)	-0.030(4)	-0.035(4)
C(33)	0.061(6)	0.026(5)	0.035(5)	0.012(4)	-0.007(4)	-0.006(4)
F(33)	0.058(4)	0.034(3)	0.068(4)	-0.001(3)	0.033(3)	0.012(3)
C(34)	0.030(4)	0.030(4)	0.021(4)	0.006(3)	0.006(3)	0.001(3)
F(34)	0.118(6)	0.023(3)	0.127(7)	-0.007(4)	0.083(6)	0.002(3)
C(207)	0.052(3)	0.015(2)	0.015(2)	0.0029(16)	-0.0002(19)	-0.0070(19)
F(36)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(36)	0.027(4)	0.054(6)	0.030(4)	-0.003(4)	0.007(3)	-0.002(4)
C(35)	0.045(5)	0.031(5)	0.029(4)	0.001(3)	0.020(4)	0.006(4)
F(35)	0.068(4)	0.108(7)	0.064(4)	-0.006(4)	-0.013(3)	0.038(4)
C(37)	0.031(4)	0.046(5)	0.021(4)	0.010(4)	-0.005(3)	0.005(4)
F(37)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(38)	0.059(7)	0.085(9)	0.033(5)	-0.006(5)	-0.008(5)	0.017(6)
F(38)	0.118(6)	0.107(6)	0.040(4)	-0.017(4)	0.052(4)	-0.043(5)
C(39)	0.038(5)	0.054(6)	0.036(5)	0.006(4)	-0.014(4)	0.004(4)
F(39)	0.061(3)	0.101(5)	0.298(11)	-0.050(5)	-0.037(4)	-0.034(3)
C(208)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(209)	0.070(3)	0.061(3)	0.164(5)	0.006(3)	-0.038(3)	-0.038(2)
C(210)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(211)	0.033(5)	0.016(4)	0.041(5)	0.001(3)	-0.011(4)	0.001(3)
C(40)	0.020(4)	0.022(4)	0.050(5)	0.003(4)	0.008(3)	0.002(3)
F(40)	0.061(3)	0.101(5)	0.298(11)	-0.050(5)	-0.037(4)	-0.034(3)
C(212)	0.031(5)	0.025(5)	0.078(7)	-0.015(5)	-0.003(5)	0.008(4)
C(42)	0.092(8)	0.033(5)	0.026(5)	0.004(4)	0.022(5)	0.014(5)
C(41)	0.056(6)	0.020(4)	0.041(5)	0.011(4)	0.003(4)	0.014(4)
F(41)	0.061(3)	0.101(5)	0.298(11)	-0.050(5)	-0.037(4)	-0.034(3)
C(44)	0.017(4)	0.025(4)	0.050(5)	0.011(4)	0.009(3)	0.007(3)
F(44)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
F(43)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(45)	0.027(4)	0.022(4)	0.033(4)	0.004(3)	0.004(3)	0.001(3)
	~ /	~ /	~ /	X- /	Cont	inued on next page

T-11-042		C	· · · · · · ·	
1 able 545. –	continued	trom	previous	page
			P	r - 0 -

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F(45)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(46)	0.025(4)	0.024(4)	0.031(4)	0.008(3)	-0.005(3)	-0.006(3)
F(46)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(213)	0.052(3)	0.015(2)	0.015(2)	0.0029(16)	-0.0002(19)	-0.0070(19)
C(47)	0.026(4)	0.032(5)	0.025(4)	0.015(3)	-0.011(3)	-0.007(3)
F(47)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(48)	0.033(5)	0.019(5)	0.085(8)	0.019(5)	0.006(5)	-0.002(4)
C(49)	0.073(5)	0.037(4)	0.113(6)	0.032(4)	0.004(4)	-0.023(3)
C(214)	0.021(5)	0.042(6)	0.118(10)	-0.025(6)	-0.021(5)	0.009(4)
C(50)	0.073(5)	0.037(4)	0.113(6)	0.032(4)	0.004(4)	-0.023(3)
C(51)	0.073(5)	0.037(4)	0.113(6)	0.032(4)	0.004(4)	-0.023(3)
C(53)	0.020(3)	0.023(4)	0.021(3)	0.006(3)	-0.002(3)	-0.004(3)
C(54)	0.026(4)	0.019(4)	0.022(4)	-0.003(3)	-0.001(3)	0.003(3)
C(56)	0.028(4)	0.028(4)	0.026(4)	0.006(3)	-0.009(3)	-0.007(3)
C(55)	0.033(4)	0.024(5)	0.027(4)	0.002(3)	-0.015(3)	-0.013(3)
C(57)	0.026(4)	0.029(5)	0.020(4)	0.005(3)	-0.005(3)	-0.001(3)
C(58)	0.036(4)	0.026(4)	0.028(4)	0.009(3)	-0.009(3)	0.008(3)
C(59)	0.027(4)	0.058(6)	0.024(4)	0.001(4)	-0.003(3)	-0.004(4)
C(215)	0.107(9)	0.032(5)	0.014(4)	-0.009(3)	0.010(5)	-0.014(5)
C(60)	0.039(5)	0.042(6)	0.027(4)	0.005(4)	-0.012(3)	-0.007(4)
C(61)	0.026(4)	0.032(4)	0.016(3)	0.001(3)	-0.008(3)	0.002(3)
C(62)	0.036(4)	0.027(4)	0.025(4)	0.007(3)	-0.008(3)	0.003(3)
C(63)	0.064(6)	0.035(5)	0.018(4)	-0.007(3)	-0.003(4)	0.005(4)
F(63)	0.118(4)	0.156(5)	0.058(3)	0.027(3)	-0.056(3)	-0.017(4)
C(64)	0.027(4)	0.032(5)	0.048(5)	0.001(4)	-0.011(4)	-0.008(4)
F(64)	0.118(4)	0.156(5)	0.058(3)	0.027(3)	-0.056(3)	-0.017(4)
C(65)	0.030(4)	0.032(5)	0.057(6)	-0.003(4)	-0.017(4)	-0.007(4)
F(65)	0.118(4)	0.156(5)	0.058(3)	0.027(3)	-0.056(3)	-0.017(4)
C(66)	0.041(5)	0.041(6)	0.060(6)	0.026(5)	-0.014(5)	-0.022(4)
C(67)	0.072(7)	0.029(6)	0.070(7)	-0.025(5)	0.030(6)	-0.011(5)
C(68)	0.084(8)	0.031(6)	0.078(8)	-0.032(5)	0.032(7)	-0.020(5)
C(69)	0.21(2)	0.090(12)	0.066(9)	-0.045(8)	-0.063(11)	0.111(14)
C(70)	0.044(5)	0.024(5)	0.047(5)	-0.020(4)	-0.003(4)	0.000(4)
C(71)	0.028(4)	0.025(4)	0.025(4)	-0.013(3)	-0.006(3)	0.001(3)
C(72)	0.030(4)	0.024(4)	0.027(4)	-0.014(3)	-0.006(3)	-0.006(3)
C(73)	0.021(4)	0.017(4)	0.024(4)	0.001(3)	-0.003(3)	0.000(3)
C(74)	0.029(4)	0.024(4)	0.022(4)	-0.005(3)	-0.014(3)	0.005(3)
C(75)	0.035(4)	0.021(4)	0.037(4)	-0.004(3)	-0.013(4)	0.004(3)
C(76)	0.102(6)	0.099(6)	0.039(4)	-0.026(4)	-0.021(4)	0.004(5)
C(77)	0.102(6)	0.099(6)	0.039(4)	-0.026(4)	-0.021(4)	0.004(5)
C(78)	0.102(6)	0.099(6)	0.039(4)	-0.026(4)	-0.021(4)	0.004(5)
C(79)	0.050(5)	0.041(5)	0.017(4)	-0.003(3)	-0.014(3)	0.001(4)
C(80)	0.032(4)	0.018(4)	0.018(3)	-0.004(3)	-0.010(3)	0.008(3)
C(81)	0.036(4)	0.026(4)	0.019(4)	-0.004(3)	-0.004(3)	0.007(3)
C(82)	0.028(4)	0.022(4)	0.017(3)	-0.003(3)	0.001(3)	0.014(3)
C(83)	0.031(4)	0.020(4)	0.021(3)	-0.008(3)	-0.006(3)	0.009(3)
C(84)	0.029(4)	0.028(5)	0.026(4)	-0.003(3)	-0.015(3)	0.009(3)
C(85)	0.034(4)	0.036(5)	0.043(5)	-0.016(4)	-0.004(4)	0.011(4)
C(86)	0.057(7)	0.055(7)	0.073(8)	-0.016(6)	0.006(6)	0.013(5)
C(87)	0.036(5)	0.050(6)	0.047(5)	0.022(5)	0.020(4)	0.018(4)
C(88)	0.049(6)	0.046(6)	0.039(5)	0.021(4)	0.013(4)	0.008(5)
-()		(*)		(-)	Conti	nued on next page

T 11 C 43	1	C	•	
Table 843. –	confinued	trom	previous	page
	••••••••		P10.10000	P

atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(89)	0.089(9)	0.051(7)	0.043(6)	0.008(5)	0.017(6)	0.000(6)
C(90)	0.051(6)	0.020(5)	0.107(10)	-0.009(6)	0.019(6)	0.000(4)
C(91)	0.046(5)	0.022(4)	0.025(4)	0.005(3)	-0.011(4)	-0.011(4)
C(92)	0.018(3)	0.027(4)	0.021(4)	-0.003(3)	0.000(3)	-0.004(3)
C(93)	0.027(4)	0.017(4)	0.014(3)	-0.004(3)	0.001(3)	0.003(3)
C(94)	0.023(4)	0.024(5)	0.057(6)	-0.003(4)	-0.007(4)	-0.001(3)
C(95)	0.028(5)	0.039(7)	0.108(10)	0.001(6)	-0.005(5)	0.009(4)
C(96)	0.013(4)	0.019(5)	0.108(9)	-0.006(5)	-0.005(4)	0.007(3)
C(97)	0.021(3)	0.011(4)	0.027(4)	0.004(3)	-0.007(3)	0.001(3)
C(98)	0.029(4)	0.035(5)	0.029(4)	0.001(4)	-0.007(3)	-0.011(4)
C(99)	0.035(4)	0.021(4)	0.021(4)	0.005(3)	-0.003(3)	-0.008(3)
C(100)	0.013(3)	0.013(4)	0.018(3)	-0.001(3)	-0.003(3)	-0.003(3)
C(101)	0.025(4)	0.020(4)	0.022(4)	0.004(3)	-0.001(3)	-0.002(3)
C(102)	0.006(3)	0.020(4)	0.020(3)	0.002(3)	0.006(2)	0.002(3)
C(103)	0.014(3)	0.015(4)	0.032(4)	-0.006(3)	-0.001(3)	0.004(3)
C(104)	0.035(4)	0.017(4)	0.035(4)	-0.003(3)	0.002(3)	-0.007(3)
C(105)	0.024(4)	0.022(4)	0.026(4)	0.003(3)	-0.006(3)	-0.002(3)
C(106)	0.074(7)	0.024(5)	0.034(5)	0.004(4)	-0.032(5)	-0.019(5)
C(107)	0.080(7)	0.041(6)	0.016(4)	0.002(4)	-0.007(4)	-0.015(5)
C(108)	0.125(13)	0.088(11)	0.032(6)	-0.022(6)	-0.024(7)	-0.030(10)
C(109)	0.052(3)	0.015(2)	0.015(2)	0.0029(16)	-0.0002(19)	-0.0070(19)
C(110)	0.080(7)	0.023(5)	0.019(4)	0.001(3)	0.021(4)	-0.005(4)
C(111)	0.081(9)	0.051(7)	0.037(6)	-0.006(5)	0.019(6)	0.007(6)
C(112)	0.012(3)	0.013(3)	0.012(3)	-0.002(2)	0.002(2)	0.000(2)
C(113)	0.015(3)	0.019(4)	0.022(3)	-0.001(3)	-0.001(3)	0.004(3)
C(114)	0.0538(18)	0.062(2)	0.0403(16)	0.0206(15)	0.0208(14)	-0.0055(16)
C(115)	0.017(3)	0.022(4)	0.016(3)	-0.004(3)	0.001(3)	-0.001(3)
C(117)	0.013(3)	0.013(4)	0.015(3)	-0.007(3)	-0.003(2)	-0.002(3)
C(118)	0.031(4)	0.022(4)	0.017(3)	-0.001(3)	-0.012(3)	0.000(3)
C(120)	0.018(3)	0.018(4)	0.020(3)	-0.001(3)	0.002(3)	-0.003(3)
C(121)	0.041(5)	0.028(4)	0.011(3)	0.002(3)	-0.002(3)	-0.008(4)
C(122)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(123)	0.045(5)	0.036(5)	0.042(5)	0.009(4)	-0.017(4)	-0.012(4)
C(124)	0.026(4)	0.024(4)	0.023(4)	0.003(3)	-0.001(3)	-0.007(3)
C(125)	0.038(5)	0.032(5)	0.029(4)	0.002(3)	-0.012(4)	-0.004(4)
C(126)	0.118(4)	0.156(5)	0.058(3)	0.027(3)	-0.056(3)	-0.017(4)
C(127)	0.021(3)	0.013(4)	0.012(3)	-0.002(3)	-0.001(3)	-0.003(3)
C(128)	0.078(7)	0.035(6)	0.018(4)	-0.003(4)	-0.020(4)	0.030(5)
C(129)	0.106(4)	0.037(3)	0.170(5)	-0.031(3)	0.023(4)	0.017(2)
C(150)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(151)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(152)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)
C(153)	0.061(3)	0.101(5)	0.298(11)	-0.050(5)	-0.037(4)	-0.034(3)
C(154)	0.033(5)	0.016(5)	0.086(8)	-0.010(4)	-0.006(5)	-0.003(4)
F(250)	0.140(3)	0.113(2)	0.0607(15)	0.0074(15)	0.0041(16)	-0.041(2)

atom – atom	distance	atom – atom	distance
Pd-C	2.119(7)	Pd - P(1)	2.264(2)
Pd - P(2)	2.3279(18)	Pd – I	2.6340(7)
F(1) - C(108)	1.355(14)	B(1) - C(203)	1.639(11)
B(1) - C(102)	1.642(11)	B(1) - C(109)	1.645(11)
B(1) - C(117)	1.650(11)	C - C(21)	1.533(9)
C - C(11)	1.534(10)	C - P(3)	1.856(7)
F(9) - C(104)	1.325(9)	F(8) - C(104)	1.370(10)
F(7) - C(104)	1.313(10)	F(6) - C(111)	1.315(15)
F(5) - C(111)	1.329(14)	F(4) - C(111)	1.299(12)
F(3) - C(108)	1.378(19)	P(1) - C(101)	1.797(8)
P(1) - C(37)	1.838(8)	P(1) - C(40)	1.838(8)
F(11) - C(106)	1.313(13)	C(11) - C(101)	1.381(10)
C(11) - C(47)	1.395(10)	P(2) - C(100)	1.817(7)
P(2) - C(34)	1.831(8)	P(2) - C(31)	1.853(9)
F(12) - C(106)	1.354(13)	C(21) - C(56)	1.383(11)
C(21) - C(100)	1.418(10)	P(3) - C(15)	1.782(9)
P(3) - C(14)	1.786(9)	P(3) - C(13)	1.794(8)
F(13) - C(106)	1.338(10)	C(13) - H(13A)	0.9800
C(13) - H(13B)	0.9800	C(13) - H(13C)	0.9800
F(14) - C(114)	1.322(13)	C(14) - H(14A)	0.9800
C(14) - H(14B)	0.9800	C(14) - H(14C)	0.9800
C(15) - H(15A)	0.9800	C(15) - H(15B)	0.9800
C(15) - H(15C)	0.9800	F(15) - C(114)	1.344(13)
C(200) - C(117)	1.389(10)	C(200) - C(115)	1.391(11)
C(200) – H(200)	0.9500	F(16) - C(114)	1.338(13)
C(16) - C(152)	1.34(2)	C(16) - C(210)	1.40(2)
C(16) - H(16)	0.9500	C(017) - C(112)	1.383(10)
C(017) - C(117)	1.390(9)	C(017) - H(017)	0.9500
F(17) - C(113)	1.335(8)	C(17) - C(152)	1.36(2)
C(17) - C(208)	1.39(2)	C(17) - H(17)	0.9500
C(018) - C(205)	1.355(11)	C(018) - C(204)	1.408(12)
C(018) - H(018)	0.9500	F(18) - C(113)	1.345(8)
C(18) - C(208)	1.35(2)	C(18) - C(210)	1.39(2)
C(18) - H(18)	0.9500	F(19) - C(113)	1.324(8)
C(201) - C(115)	1.382(10)	C(201) - C(112)	1.392(9)
C(201) - H(201)	0.9500	C(202) - C(204)	1.351(11)
C(202) - C(203)	1.399(11)	C(202) - H(202)	0.9500
C(203) - C(206)	1.392(11)	P(21) - C(82)	1.807(7)
P(21) - C(85)	1.825(9)	P(21) - C(87)	1.845(9)
P(21) - Pd(2)	2.2636(18)	F(21) - C(209)	1.300(19)
F(20) - C(209)	1.41(2)	G(21 - C(82))	1.386(10)
G(21 - C(83))	1.399(10)	G(21 - C(2))	1.525(9)
P(22) - C(73)	1.830(8)	P(22) - C(64)	1.837(8)
P(22) - C(61)	1.852(8)	P(22) - Pd(2)	2.3231(19)
F(22) - C(209)	1.276(19)	C(22) - C(73)	1.380(10)
C(22) - C(74)	1.394(10)	C(22) - C(2)	1.549(10)
P(23) - C(25)	1.765(7)	P(23) - C(24)	1.777(8)
P(23) - C(23)	1.807(8)	P(23) - C(2)	1.853(7)
C(23) - H(23A)	0.9800	C(23) - H(23B)	0.9800
C(23) - H(23C)	0.9800	C(24) - H(24A)	0.9800
			Continued on next page

Table S44. Distances [Å] for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_4^F]$ (12).

Table S44. – continued from previous page

atom – atom	distance	atom – atom	distance
C(24) – H(24B)	0.9800	C(24) – H(24C)	0.9800
F(24) - C(129)	1.26(2)	C(25) - H(25A)	0.9800
C(25) - H(25B)	0.9800	C(25) - H(25C)	0.9800
F(25) - C(129)	1.39(2)	C(27) - C(105)	1.356(11)
C(27) - C(103)	1.362(11)	C(27) - H(27)	0.9500
F(27) - C(154)	1.329(12)	C(26) - C(103)	1.387(11)
C(26) - C(102)	1.390(11)	C(26) - H(26)	0.9500
F(26) - C(129)	1.31(2)	C(204) - C(209)	1.448(15)
F(28) - C(154)	1.287(12)	C(28) - C(102)	1.405(10)
C(28) - C(105)	1.410(11)	C(28) - H(28)	0.9500
Pd(2) - C(2)	2.129(7)	Pd(2) - I(2)	2.6398(7)
F(2) - C(108)	1.329(17)	B(2) - C(120)	1.619(11)
B(2) - C(211)	1.641(12)	B(2) - C(127)	1.647(10)
B(2) - C(208)	1.663(18)	F(29) - C(154)	1.355(14)
C(205) - C(206)	1.414(11)	C(205) - C(129)	1.463(15)
C(206) - H(206)	0.9500	F(30) - C(123)	1.303(11)
C(31) - C(32)	1.487(12)	C(31) - C(33)	1.545(11)
C(31) - H(31)	1.0000	F(31) - C(123)	1.364(13)
C(32) - H(32A)	0.9800	C(32) = H(32B)	0.9800
C(32) = H(32C)	0.9800	F(32) - C(123)	1.275(11)
C(33) - H(33A)	0.9800	C(33) = H(33B)	0.9800
C(33) - H(33C)	0.9800	F(33) = C(128)	1.337(11)
C(34) - C(35)	1.528(12)	C(34) = C(36)	1.537(11) 1 532(11)
C(34) - H(34)	1.0000	F(34) = C(128)	1.332(11) 1 297(12)
C(207) - C(110)	1.0000 1.386(11)	C(207) = C(109)	1.297(12) 1.408(12)
C(207) - H(207)	0.9500	F(36) = C(122)	1.400(12) 1.32(2)
C(36) = H(36A)	0.9800	C(36) = H(36B)	0.9800
C(36) - H(36C)	0.9800	C(35) - H(35A)	0.9800
C(35) - H(35B)	0.9800	C(35) - H(35C)	0.9800
F(35) - C(128)	1349(12)	C(37) - C(38)	1.482(14)
C(37) - C(39)	1.540(12)	C(37) - H(37)	1.0000
F(37) - C(122)	1.340(12) 1.29(2)	C(38) - H(38A)	0.9800
C(38) - H(38B)	0.9800	C(38) - H(38C)	0.9800
F(38) - C(122)	1.27(2)	C(39) - H(39A)	0.9800
C(39) - H(39B)	0.9800	C(39) - H(39C)	0.9800
F(39) - C(153)	1.27(2)	C(210) - C(150)	1 48(2)
C(211) - C(94)	1.390(12)	C(211) - C(96)	1.391(12)
C(40) - C(42)	1.487(13)	C(40) - C(41)	1.556(11)
C(40) - H(40)	1.0000	F(40) - C(153)	1.35(3)
C(212) - C(94)	1.402(12)	C(212) - C(95)	1.417(15)
C(212) - C(154)	1.535(13)	C(42) - H(42A)	0.9500
C(42) - H(42B)	0.9500	C(41) - H(41A)	0.9800
C(41) - H(41B)	0.9800	C(41) - H(41C)	0.9800
F(41) - C(153)	1.24(3)	C(44) - C(45)	1.357(12)
C(44) - C(101)	1.413(11)	C(44) - H(44)	0.9500
F(44) - C(151)	1.49(2)	F(43) - C(151)	1.201(18)
C(45) - C(46)	1.428(11)	C(45) - C(48)	1.524(11)
F(45) - C(151)	1.246(17)	C(46) - C(47)	1.368(11)
C(46) - H(46)	0.9500	F(46) - C(150)	1.37(2)
F(46) - F(47)	1.744(16)	C(213) - C(107)	1.417(11)
C(213) - C(109)	1.430(12)	C(213) - H(213)	0.9500
<u> </u>			Continued on next page

Table S44. – continued from previous page

atom – atom	distance	atom – atom	distance
C(47) - H(47)	0.9500	F(47) - C(150)	1.30(2)
C(48) - C(51)	1.522(16)	C(48) - C(50)	1.533(18)
C(48) - C(49)	1.585(18)	C(49) - H(49A)	0.9800
C(49) - H(49B)	0.9800	C(49) - H(49C)	0.9800
C(214) - C(95)	1.329(15)	C(214) - C(153)	1.41(2)
C(214) - C(96)	1.414(12)	C(50) - H(50A)	0.9800
C(50) - H(50B)	0.9800	C(50) - H(50C)	0.9800
C(51) - H(51A)	0.9800	C(51) - H(51B)	0.9800
C(51) - H(51C)	0.9800	C(53) - C(100)	1.379(10)
C(53) - C(54)	1.398(10)	C(53) - H(53)	0.9500
C(54) - C(55)	1.384(11)	C(54) - C(57)	1.526(10)
C(56) - C(55)	1.373(11)	C(56) - H(56)	0.9500
C(55) - H(55)	0.9500	C(57) - C(60)	1.520(11)
C(57) - C(59)	1.523(11)	C(57) - C(58)	1.523(11)
C(58) - H(58A)	0.9800	C(58) - H(58B)	0.9800
C(58) - H(58C)	0.9800	C(59) - H(59A)	0.9800
C(59) - H(59B)	0.9800	C(59) - H(59C)	0.9800
C(215) - C(107)	1.356(16)	C(215) - C(110)	1.389(16)
C(215) - H(215)	0.9500	C(60) - H(60A)	0.9800
C(60) - H(60B)	0.9800	C(60) - H(60C)	0.9800
C(61) - C(63)	1.509(11)	C(61) - C(62)	1.547(11)
C(61) - H(61)	1 0000	C(62) - H(62A)	0.9800
C(62) - H(62B)	0.9800	C(62) - H(62C)	0.9800
C(63) - H(63A)	0.9800	C(62) - H(62C)	0.9800
C(63) - H(63C)	0.9800	F(63) - C(126)	1.29(2)
C(64) - C(65)	1.508(11)	C(64) - C(66)	1.518(13)
C(64) - H(64)	1.0000	F(64) - C(126)	1.34(2)
C(65) - H(65A)	0.9800	C(65) - H(65B)	0.9800
C(65) - H(65C)	0.9800	F(65) - C(126)	1 32(2)
C(66) - H(66A)	0.9800	C(66) - H(66B)	0.9800
C(66) - H(66C)	0.9800	C(67) - C(70)	1.596(15)
C(67) - H(67A)	0.9800	C(67) - H(67B)	0.9800
C(67) - H(67C)	0.9800	C(68) - C(70)	1.531(14)
C(68) - H(68A)	0.9800	C(68) - H(68B)	0.9800
C(68) - H(68C)	0.9800	C(69) - C(70)	1 479(16)
C(69) - H(69A)	0.9800	C(69) - H(69B)	0.9800
C(69) - H(69C)	0.9800	C(70) - C(71)	1 510(11)
C(71) - C(72)	1.374(12)	C(71) - C(75)	1.310(11) 1.428(11)
C(72) - C(73)	1.378(11)	C(72) - H(72)	0.9500
C(72) = C(75)	1.370(11) 1 379(11)	C(72) = H(72) C(74) = H(74)	0.9500
C(75) - H(75)	0.9500	C(76) - C(79)	1 493(18)
C(76) - H(76A)	0.9800	C(76) - H(76B)	0.9800
C(76) - H(76C)	0.9800	C(77) - C(79)	1 510(17)
C(77) - H(77A)	0.9800	C(77) - H(77B)	0.9800
C(77) - H(77C)	0.9800	C(78) - C(79)	1 554(16)
C(78) - H(78A)	0.9800	C(78) - H(78B)	0.9800
C(78) - H(78C)	0.9800	C(79) - C(80)	1.536(10)
C(80) - C(81)	1.375(11)	C(80) - C(84)	1.378(11)
C(81) - C(82)	1.413(10)	C(81) - H(81)	0.9500
C(83) - C(84)	1.381(10)	C(83) - H(83)	0.9500
C(84) - H(84)	0.9500	C(85) - C(86)	1.501(14)
			Continued on next page

T 11 C 44	1	C	•	
Table S44.	 continued 	from	previous	page

atom – atom	distance	atom – atom	distance
C(85) - C(90)	1.508(15)	C(85) – H(85)	1.0000
C(86) – H(86A)	0.9800	C(86) - H(86B)	0.9800
C(86) – H(86C)	0.9800	C(87) - C(89)	1.451(14)
C(87) - C(88)	1.499(14)	C(87) - H(87)	1.0000
C(88) - H(88A)	0.9500	C(88) - H(88B)	0.9500
C(89) - H(89A)	0.9800	C(89) - H(89B)	0.9800
C(89) – H(89C)	0.9800	C(90) - H(90A)	0.9800
C(90) - H(90B)	0.9800	C(90) - H(90C)	0.9800
C(91) - C(121)	1.361(13)	C(91) - C(118)	1.368(12)
C(91) - H(91)	0.9500	C(92) - C(121)	1.371(12)
C(92) - C(120)	1.388(10)	C(92) - H(92)	0.9500
C(93) - C(118)	1.370(11)	C(93) - C(120)	1.408(10)
C(93) - H(93)	0.9500	C(94) - H(94)	0.9500
C(95) - H(95)	0.9500	C(96) - H(96)	0.9500
C(97) - C(124)	1.371(11)	C(97) - C(127)	1.407(10)
C(97) - H(97)	0.9500	C(98) - C(124)	1.367(11)
C(98) - C(125)	1.379(12)	C(98) - H(98)	0.9500
C(99) - C(127)	1.358(10)	C(99) - C(125)	1.399(12)
C(99) - H(99)	0.9500	C(103) - C(104)	1.482(11)
C(105) - C(106)	1.492(11)	C(107) - C(108)	1.481(17)
C(110) - C(111)	1.459(16)	C(112) - C(113)	1.487(9)
C(114) - C(115)	1.465(11)	C(118) - C(128)	1.504(12)
C(121) - C(122)	1.473(18)	C(123) - C(124)	1.519(12)
C(125) - C(126)	1.434(15)	C(150) - F(250)	1.274(19)
C(151) - C(152)	1.48(2)		

Table S45. Angles [°] for $[{PC(sp^3)(PMe_3)P}^{tBu}PdI][BAr_4^F]$ (12).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	atom – atom – atom	angle	atom – atom – atom	angle
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C - Pd - P(1)	85.6(2)	C - Pd - P(2)	86.13(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1) - Pd - P(2)	162.70(7)	C - Pd - I	177.58(19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1) - Pd - I	91.96(5)	P(2) - Pd - I	96.27(5)
$\begin{array}{cccccc} C(102)-B(1)-C(109) & 111.9(6) & C(203)-B(1)-C(117) & 111.0(6) \\ C(102)-B(1)-C(117) & 108.7(6) & C(109)-B(1)-C(117) & 111.0(6) \\ C(102)-B(1)-C(117) & 108.7(6) & C(10)-C(117) & 107.0(6) \\ C(21)-C-C(11) & 115.8(6) & C(21)-C-P(3) & 107.6(5) \\ C(11)-C-P4 & 113.8(5) & P(3)-C-P4 & 108.4(4) \\ C(101)-C+P4 & 113.8(5) & P(3)-C-P4 & 104.4(3) \\ C(101)-C(1)-C(37) & 104.0(4) & C(101)-P(1)-C(40) & 105.8(4) \\ C(37)-P(1)-C(40) & 107.7(4) & C(101)-C(11)-C & 120.8(6) \\ C(47)-C(11)-C & 122.0(6) & C(100)-P(2)-C(34) & 100.8(3) \\ C(100)-P(2)-C(31) & 108.9(4) & C(34)-P(2)-C(31) & 105.8(4) \\ C(100)-P(2)-C(31) & 108.9(4) & C(34)-P(2)-C(31) & 105.8(4) \\ C(100)-P(2)-Pd & 98.5(2) & C(34)-P(2)-Pd & 116.7(3) \\ C(31)-P(2)-Pd & 123.2(3) & C(56)-C(21)-C & 119.5(6) \\ C(55)-C(21)-C & 124.5(7) & C(100)-C(21)-C & 119.5(6) \\ C(15)-P(3)-C(13) & 101.9(4) & C(15)-P(3)-C(13) & 106.2(4) \\ C(14)-P(3)-C & 115.3(4) & C(13)-P(3)-C & 111.2(4) \\ C(14)-P(3)-C & 115.3(4) & C(13)-P(3)-C & 113.4(4) \\ P(3)-C(13)-H(13B) & 109.5 & P(3)-C(13)-H(13B) & 109.5 \\ P(3)-C(13)-H(13B) & 109.5 & P(3)-C(13)-H(13C) & 109.5 \\ P(3)-C(14)-H(14B) & 109.5 & P(3)-C(13)-H(13C) & 109.5 \\ P(3)-C(14)-H(14B) & 109.5 & P(3)-C(13)-H(13C) & 109.5 \\ P(3)-C(14)-H(14B) & 109.5 & P(3)-C(13)-H(13C) & 109.5 \\ P(3)-C(15)-P(15B) & 109.5 & P(3)-C(13)-H(13C) & 109.5 \\ P(3)-C(15)-H(15B) & 109.5 & P(3)-C(15)-H(15C) & 109.5 \\ P(14A)-C(14)-H(14B) & 109.5 & P(3)-C(15)-H(15B) & 109.5 \\ P(15)-C(20)-H(120) & 119.5 & C(152)-C(16)-H(16) & 122.1 \\ C(112)-C(017)-H(017) & 119.3 & C(205)-C(18)-H(18) & 109.5 \\ P(15)-C(20)-H(100) & 119.5 & C(152)-C(16)-H(16) & 122.1 \\ C(112)-C(017)-H(017) & 119.3 & C(205)-C(18)-H(18) & 109.5 \\ P(3)-C(10)-H(101) & 121.1 & C(104)-C(202)-P(203) & 123.0(7) \\ C(204)-C(202)-H(202) & 118.5 & C(203)-C(203)-H(203) & 118.5 \\ C(206)-C(203)-B(1) & 122.8(7) & C(85)-P(21)-C(85) & 105.9(4) \\ C(202)-C(203)-B(1) & 122.8(7) & $	C(203) - B(1) - C(102)	108.0(6)	C(203) - B(1) - C(109)	110.2(6)
$\begin{array}{cccccc} C(102) - B(1) - C(117) & 108.7(6) & C(109) - B(1) - C(117) & 107.0(6) \\ C(21) - C - C(11) & 115.8(6) & C(21) - C - P(3) & 107.6(5) \\ C(11) - C - P(3) & 105.9(5) & C(21) - C - P(3) & 108.4(4) \\ C(11) - C - P(3) & 103.9(5) & C(21) - C - P(4) & 108.4(4) \\ C(10) - P(1) - C(37) & 104.0(4) & C(101) - P(1) - C(40) & 105.8(4) \\ C(37) - P(1) - C(40) & 107.7(4) & C(101) - P(1) - P(4 & 103.0(3) \\ C(37) - P(1) - C(40) & 107.7(4) & C(101) - P(1) - P(4 & 103.0(3) \\ C(47) - C(11) - C & 122.0(6) & C(100) - P(2) - C(34) & 100.8(3) \\ C(100) - P(2) - C(31) & 108.9(4) & C(34) - P(2) - C(31) & 105.8(4) \\ C(100) - P(2) - C(31) & 108.9(4) & C(34) - P(2) - C(31) & 105.8(4) \\ C(100) - P(2) - P(4 & 98.5(2) & C(34) - P(2) - P(3 & 116.7(3) \\ C(56) - C(21) - C & 124.5(7) & C(100) - C(11) - C & 119.5(6) \\ C(56) - C(21) - C & 124.5(7) & C(100) - C(21) - C & 119.5(6) \\ C(15) - P(3) - C(14) & 108.0(5) & C(15) - P(3) - C & 111.2(4) \\ C(14) - P(3) - C(1 & 115.3(4) & C(13) - P(3) - C & 111.2(4) \\ C(14) - P(3) - C & 115.3(4) & C(13) - P(3) - C & 113.4(4) \\ P(3) - C(13) - H(13B) & 109.5 & P(3) - C(13) - H(13C) & 109.5 \\ H(13A) - C(13) - H(13B) & 109.5 & P(3) - C(13) - H(13C) & 109.5 \\ H(13A) - C(13) - H(13B) & 109.5 & P(3) - C(13) - H(13C) & 109.5 \\ H(14A) - C(14) - H(14B) & 109.5 & P(3) - C(14) - H(14C) & 109.5 \\ H(14A) - C(14) - H(14B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(14A) - C(14) - H(14C) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C(15) - H(15B) & 109.5 & P(3) - C(15) - H(15C) & 109.5 \\ H(15A) - C$	C(102) - B(1) - C(109)	111.9(6)	C(203) - B(1) - C(117)	111.0(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(102) - B(1) - C(117)	108.7(6)	C(109) - B(1) - C(117)	107.0(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21) - C - C(11)	115.8(6)	C(21) - C - P(3)	107.6(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11) - C - P(3)	105.9(5)	C(21) - C - Pd	108.4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11) - C - Pd	113.8(5)	P(3) - C - Pd	104.4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(101) - P(1) - C(37)	104.0(4)	C(101) - P(1) - C(40)	105.8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(37) - P(1) - C(40)	107.7(4)	C(101) - P(1) - Pd	103.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(37) - P(1) - Pd	125.9(3)	C(40) - P(1) - Pd	108.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(101) - C(11) - C(47)	116.9(7)	C(101) - C(11) - C	120.8(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(47) - C(11) - C	122.0(6)	C(100) - P(2) - C(34)	100.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(100) - P(2) - C(31)	108.9(4)	C(34) - P(2) - C(31)	105.8(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(100) - P(2) - Pd	98.5(2)	C(34) - P(2) - Pd	116.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31) - P(2) - Pd	123.2(3)	C(56) - C(21) - C(100)	116.0(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(56) - C(21) - C	124.5(7)	C(100) - C(21) - C	119.5(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) - P(3) - C(14)	108.0(5)	C(15) - P(3) - C(13)	106 2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) - P(3) - C(13)	101.9(4)	C(15) - P(3) - C	111 2(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) - P(3) - C	101.9(1) 115 3(4)	C(13) - P(3) - C	111.2(1) 113.4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3) - C(13) - H(13A)	109 5	P(3) - C(13) - H(13B)	109 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(13A) = C(13) = H(13B)	109.5	P(3) = C(13) = H(13C)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(13A) = C(13) = H(13C)	109.5	H(13B) = C(13) = H(13C)	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3) = C(14) = H(14A)	109.5	P(3) = C(14) = H(14B)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(14A) = C(14) = H(14B)	109.5	P(3) = C(14) = H(14C)	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(14A) - C(14) - H(14C)	109.5	H(14R) = C(14) = H(14C)	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(3) - C(15) - H(15A)	109.5	P(3) = C(15) = H(15B)	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(15A) = C(15) = H(15B)	109.5	P(3) - C(15) - H(15C)	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(15A) - C(15) - H(15C)	109.5	H(15B) = C(15) = H(15C)	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(117) - C(200) - C(115)	121.0(6)	C(117) = C(200) = H(200)	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(115) - C(200) - H(200)	119 5	C(152) = C(16) = C(210)	115.7(16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(152) - C(16) - H(16)	122.1	C(210) = C(16) = H(16)	122.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(112) - C(017) - C(117)	121.5(6)	C(112) - C(017) - H(017)	119.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(112) = C(017) = H(017)	119 3	C(12) = C(17) = C(208)	121 5(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(152) - C(17) - H(17)	119.3	C(208) - C(17) - H(17)	119 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(205) - C(018) - C(204)	118.2(7)	C(205) = C(018) = H(018)	120.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(204) - C(018) - H(018)	120.9	C(208) - C(18) - C(210)	121.9(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(208) = C(18) = H(18)	119.0	C(210) = C(18) = H(18)	119.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(115) = C(201) = C(112)	117.8(7)	C(210) = C(201) = H(201)	121.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(112) = C(201) = C(112) C(112) = C(201) = H(201)	121.1	C(204) = C(202) = C(203)	121.1 123.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(204) = C(202) = H(202)	121.1	C(204) = C(202) = C(203)	118.5
$\begin{array}{c} C(200) = C(205) = C(205) = C(205) = C(205) = D(1) \\ C(202) = C(203) = B(1) \\ C(82) = P(21) = C(87) \\ C(82) = P(21) = C(87) \\ C(85) = C(20) = C($	$C(204) = C(202) = \Pi(202)$ C(206) = C(203) = C(202)	116.0(7)	C(205) = C(202) = H(202)	121 1(7)
$\begin{array}{c} C(252) = C(253) = D(1) \\ C(82) = P(21) - C(87) $	C(200) = C(203) = C(202)	$122 \ 8(7)$	C(200) = C(203) = D(1) C(82) = P(21) = C(85)	121.1(7) 105 9(4)
$C(02) = 1(21) - C(07) \qquad 103.7(4) \qquad C(03) = 1(21) - C(07) \qquad 104.0(4) \qquad 104.0(4)$	C(202) = C(203) = D(1) C(82) = P(21) = C(87)	122.0(7) 105 $4(4)$	C(85) = P(21) = C(87)	103.9(4) 107.8(4)
11/3/1 = P(1/1) = P(1/1) = 11/3/1 = 1/(3/1) = P(1/1) = P(1/1) = 1/(3/3)	C(82) = P(21) = C(87) C(82) = P(21) = Pd(2)	102.5(7)	C(85) = P(21) = C(67)	124 3(3)
$\begin{array}{c} C(02) = I(21) = I(02) \\ C(87) = P(21) = Pd(2) \\ 109 \ 0(A) \\ C(87) = G(21) = C(21) = I(12) \\ C(87) = G(21) = C(82) \\ 117 \ 2(6) \\ \end{array}$	C(87) = P(21) = Pd(2)	102.0(2) 109 0(4)	C(82) = G(21 - C(83))	117 2(6)
$\begin{array}{c} C(07) = C(21) =$	C(87) = C(21) = C(2)	120.7(6)	C(82) = G(21 - C(03))	121.2(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32) = O(21 - C(2)) C(73) = P(22) = C(64)	120.7(0) 101 2(4)	C(3) = O(21 - C(2)) C(73) = P(22) = C(61)	121.0(0) 108.0(3)
$C(73) = \Gamma(22) = C(04) \qquad 101.2(4) \qquad C(73) = \Gamma(22) = C(01) \qquad 108.0(3)$ $C(64) = P(22) = C(61) \qquad 107.5(4) \qquad C(73) = D(22) = D(2) \qquad 08.2(2)$	C(75) = I(22) = C(04) C(64) = P(22) = C(61)	101.2(+) 107 5(4)	C(73) = P(22) = C(01) C(73) = P(22) = Pd(2)	08.3(2)
$\frac{C(07) - 1(22) - C(01)}{Continued on next page}$	$C(07)^{-1}(22)^{-}C(01)$	107.3(7)	C(13) = I(22) = I u(2)	Continued on next page

Table S45. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(64) - P(22) - Pd(2)	115.0(3)	C(61) - P(22) - Pd(2)	123.7(3)
C(73) - C(22) - C(74)	116.3(7)	C(73) - C(22) - C(2)	121.2(6)
C(74) - C(22) - C(2)	122.4(6)	C(25) - P(23) - C(24)	108.2(4)
C(25) - P(23) - C(23)	105.9(4)	C(24) - P(23) - C(23)	103.4(4)
C(25) - P(23) - C(2)	111.7(4)	C(24) - P(23) - C(2)	114.4(3)
C(23) - P(23) - C(2)	112.7(3)	P(23) - C(23) - H(23A)	109.5
P(23) - C(23) - H(23B)	109.5	H(23A) - C(23) - H(23B)	109.5
P(23) - C(23) - H(23C)	109.5	H(23A) - C(23) - H(23C)	109.5
H(23B) - C(23) - H(23C)	109.5	P(23) - C(24) - H(24A)	109.5
P(23) - C(24) - H(24B)	109.5	H(24A) - C(24) - H(24B)	109.5
P(23) - C(24) - H(24C)	109.5	H(24A) - C(24) - H(24C)	109.5
H(24B) - C(24) - H(24C)	109.5	P(23) - C(25) - H(25A)	109.5
P(23) - C(25) - H(25B)	109.5	H(25A) - C(25) - H(25B)	109.5
P(23) - C(25) - H(25C)	109.5	H(25A) - C(25) - H(25C)	109.5
H(25B) - C(25) - H(25C)	109.5	C(105) - C(27) - C(103)	119.5(7)
C(105) - C(27) - H(27)	120.3	C(103) - C(27) - H(27)	120.3
C(103) - C(26) - C(102)	121.9(7)	C(103) - C(26) - H(26)	119.1
C(102) - C(26) - H(26)	119.1	C(202) - C(204) - C(018)	120.6(7)
C(202) - C(204) - C(209)	120.2(10)	C(018) - C(204) - C(209)	119.2(10)
C(102) - C(28) - C(105)	119.4(7)	C(102) - C(28) - H(28)	120.3
C(105) - C(28) - H(28)	120.3	C(2) - Pd(2) - P(21)	85.69(19)
C(2) - Pd(2) - P(22)	85.98(19)	P(21) - Pd(2) - P(22)	163.48(7)
C(2) - Pd(2) - I(2)	177.6(2)	P(21) - Pd(2) - I(2)	92.28(5)
P(22) - Pd(2) - I(2)	96.29(5)	C(120) - B(2) - C(211)	111.0(6)
C(120) - B(2) - C(127)	110.0(6)	C(211) - B(2) - C(127)	107.4(6)
C(120) - B(2) - C(208)	108 9(9)	C(211) - B(2) - C(208)	109 9(9)
C(127) - B(2) - C(208)	109.6(8)	G(21 - C(2) - C(22))	116 9(6)
G(21 - C(2) - P(23))	105 8(5)	C(22) = C(2) = P(23)	109 5(5)
G(21 - C(2) - Pd(2))	114.0(4)	C(22) - C(2) - Pd(2)	106.6(4)
P(23) - C(2) - Pd(2)	103.2(3)	C(018) - C(205) - C(206)	120.9(7)
C(018) - C(205) - C(129)	121.8(10)	C(206) - C(205) - C(129)	117.3(10)
C(203) - C(206) - C(205)	121.1(7)	C(203) - C(206) - H(206)	119.4
C(205) - C(206) - H(206)	119.4	C(32) - C(31) - C(33)	111.4(7)
C(32) - C(31) - P(2)	112.9(7)	C(33) - C(31) - P(2)	114.7(6)
C(32) - C(31) - H(31)	105.6	C(33) - C(31) - H(31)	105.6
P(2) - C(31) - H(31)	105.6	C(31) - C(32) - H(32A)	109.5
C(31) - C(32) - H(32B)	109.5	H(32A) - C(32) - H(32B)	109.5
C(31) - C(32) - H(32C)	109.5	H(32A) - C(32) - H(32C)	109.5
H(32B) - C(32) - H(32C)	109.5	C(31) - C(33) - H(33A)	109.5
C(31) - C(33) - H(33B)	109.5	H(33A) - C(33) - H(33B)	109.5
C(31) - C(33) - H(33C)	109.5	H(33A) - C(33) - H(33C)	109.5
H(33B) - C(33) - H(33C)	109.5	C(35) - C(34) - C(36)	110.6(7)
C(35) - C(34) - P(2)	110.9(5)	C(36) - C(34) - P(2)	116.1(6)
C(35) - C(34) - H(34)	106.2	C(36) - C(34) - H(34)	106.2
P(2) - C(34) - H(34)	106.2	C(110) - C(207) - C(109)	121.3(8)
C(110) - C(207) - H(207)	119.4	C(109) - C(207) - H(207)	119.4
C(34) - C(36) - H(36A)	109.5	C(34) - C(36) - H(36B)	109.5
H(36A) - C(36) - H(36B)	109.5	C(34) - C(36) - H(36C)	109.5
H(36A) - C(36) - H(36C)	109.5	H(36B) - C(36) - H(36C)	109.5
C(34) - C(35) - H(35A)	109.5	C(34) - C(35) - H(35B)	109.5
H(35A) - C(35) - H(35B)	109.5	C(34) - C(35) - H(35C)	109.5
			Continued on next page

Table S45. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
H(35A) - C(35) - H(35C)	109.5	H(35B) - C(35) - H(35C)	109.5
C(38) - C(37) - C(39)	109.3(8)	C(38) - C(37) - P(1)	110.8(6)
C(39) - C(37) - P(1)	112.8(6)	C(38) - C(37) - H(37)	107.9
C(39) - C(37) - H(37)	107.9	P(1) - C(37) - H(37)	107.9
C(37) - C(38) - H(38A)	109.5	C(37) - C(38) - H(38B)	109.5
H(38A) - C(38) - H(38B)	109.5	C(37) - C(38) - H(38C)	109.5
H(38A) - C(38) - H(38C)	109.5	H(38B) - C(38) - H(38C)	109.5
C(37) - C(39) - H(39A)	109.5	C(37) - C(39) - H(39B)	109.5
H(39A) - C(39) - H(39B)	109.5	C(37) - C(39) - H(39C)	109.5
H(39A) - C(39) - H(39C)	109.5	H(39B) - C(39) - H(39C)	109.5
C(18) - C(208) - C(17)	116.2(16)	C(18) - C(208) - B(2)	124.3(15)
C(17) - C(208) - B(2)	119.5(14)	F(22) - C(209) - F(21)	118.4(14)
F(22) - C(209) - F(20)	94.3(12)	F(21) - C(209) - F(20)	95.4(13)
F(22) - C(209) - C(204)	117.3(13)	F(21) - C(209) - C(204)	115.4(13)
F(20) - C(209) - C(204)	110.4(14)	C(18) - C(210) - C(16)	121.3(18)
C(18) - C(210) - C(150)	121.3(17)	C(16) - C(210) - C(150)	117.2(15)
C(94) - C(211) - C(96)	115.3(8)	C(94) - C(211) - B(2)	124.2(7)
C(96) - C(211) - B(2)	120.5(7)	C(42) - C(40) - C(41)	110.1(8)
C(42) - C(40) - P(1)	109.7(6)	C(41) - C(40) - P(1)	114.8(6)
C(42) - C(40) - H(40)	107.3	C(41) - C(40) - H(40)	107.3
P(1) - C(40) - H(40)	107.3	C(94) - C(212) - C(95)	120.1(9)
C(94) - C(212) - C(154)	120.2(8)	C(95) - C(212) - C(154)	119.6(8)
C(40) - C(42) - H(42A)	120.0	C(40) - C(42) - H(42B)	120.0
H(42A) - C(42) - H(42B)	120.0	C(40) - C(41) - H(41A)	109.5
C(40) - C(41) - H(41B)	109.5	H(41A) - C(41) - H(41B)	109.5
C(40) - C(41) - H(41C)	109.5	H(41A) - C(41) - H(41C)	109.5
H(41B) - C(41) - H(41C)	109.5	C(45) - C(44) - C(101)	123.0(8)
C(45) - C(44) - H(44)	118.5	C(101) - C(44) - H(44)	118.5
C(44) - C(45) - C(46)	116.3(7)	C(44) - C(45) - C(48)	121.9(8)
C(46) - C(45) - C(48)	121.8(7)	C(47) - C(46) - C(45)	120.6(7)
C(47) - C(46) - H(46)	119.7	C(45) - C(46) - H(46)	119.7
C(150) - F(46) - F(47)	47.6(10)	C(107) - C(213) - C(109)	118.3(8)
C(107) - C(213) - H(213)	120.9	C(109) - C(213) - H(213)	120.9
C(46) - C(47) - C(11)	122.8(7)	C(46) - C(47) - H(47)	118.6
C(11) - C(47) - H(47)	118.6	C(150) - F(47) - F(46)	51.1(10)
C(51) - C(48) - C(45)	111.8(8)	C(51) - C(48) - C(50)	112.5(10)
C(45) - C(48) - C(50)	112.4(8)	C(51) - C(48) - C(49)	107.3(10)
C(45) - C(48) - C(49)	105.0(8)	C(50) - C(48) - C(49)	107.4(9)
C(48) - C(49) - H(49A)	109.5	C(48) - C(49) - H(49B)	109.5
H(49A) - C(49) - H(49B)	109.5	C(48) - C(49) - H(49C)	109.5
H(49A) - C(49) - H(49C)	109.5	H(49B) - C(49) - H(49C)	109.5
C(95) - C(214) - C(153)	117.2(13)	C(95) - C(214) - C(96)	123.0(10)
C(153) - C(214) - C(96)	119.7(13)	C(48) - C(50) - H(50A)	109.5
C(48) - C(50) - H(50B)	109.5	H(50A) - C(50) - H(50B)	109.5
C(48) - C(50) - H(50C)	109.5	H(50A) - C(50) - H(50C)	109.5
H(50B) - C(50) - H(50C)	109.5	C(48) - C(51) - H(51A)	109.5
C(48) - C(51) - H(51B)	109.5	H(51A) - C(51) - H(51B)	109.5
C(48) - C(51) - H(51C)	109.5	H(51A) - C(51) - H(51C)	109.5
H(51B) - C(51) - H(51C)	109.5	C(100) - C(53) - C(54)	121.7(7)
C(100) - C(53) - H(53)	119.1	C(54) - C(53) - H(53)	119.1
C(55) - C(54) - C(53)	116.5(7)	C(55) - C(54) - C(57)	123.7(7)
			Continued on next page

Table S45. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(53) - C(54) - C(57)	119.8(7)	C(55) - C(56) - C(21)	122.3(7)
C(55) - C(56) - H(56)	118.9	C(21) - C(56) - H(56)	118.9
C(56) - C(55) - C(54)	121.8(7)	C(56) - C(55) - H(55)	119.1
C(54) - C(55) - H(55)	119.1	C(60) - C(57) - C(59)	107.4(7)
C(60) - C(57) - C(58)	109.5(7)	C(59) - C(57) - C(58)	109.6(7)
C(60) - C(57) - C(54)	112.0(7)	C(59) - C(57) - C(54)	111.1(6)
C(58) - C(57) - C(54)	107.3(6)	C(57) - C(58) - H(58A)	109.5
C(57) - C(58) - H(58B)	109.5	H(58A) - C(58) - H(58B)	109.5
C(57) - C(58) - H(58C)	109.5	H(58A) - C(58) - H(58C)	109.5
H(58B) - C(58) - H(58C)	109.5	C(57) - C(59) - H(59A)	109.5
C(57) - C(59) - H(59B)	109.5	H(59A) - C(59) - H(59B)	109.5
C(57) - C(59) - H(59C)	109.5	H(59A) - C(59) - H(59C)	109.5
H(59B) - C(59) - H(59C)	109.5	C(107) - C(215) - C(110)	119.4(8)
C(107) - C(215) - H(215)	120.3	C(110) - C(215) - H(215)	120.3
C(57) - C(60) - H(60A)	109.5	C(57) = C(60) = H(60B)	109 5
H(60A) - C(60) - H(60B)	109.5	C(57) - C(60) - H(60C)	109.5
H(60A) - C(60) - H(60C)	109.5	H(60B) = C(60) = H(60C)	109.5
C(63) - C(61) - C(62)	110.9(6)	C(63) = C(61) = P(22)	117 2(6)
C(62) - C(61) - P(22)	110.9(0) 110.4(5)	C(63) = C(61) = H(61)	105.9
C(62) - C(61) - H(61)	105.9	P(22) = C(61) = H(61)	105.9
C(62) = C(61) = H(61) C(61) = C(62) = H(62A)	100.5	C(61) = C(62) = H(62B)	109.5
U(62A) = C(62) = H(62B)	109.5	C(61) = C(62) = H(62C)	109.5
H(62A) - C(62) - H(62B)	109.5	U(62R) = C(62) = H(62C)	109.5
$\Gamma(02A) - C(02) - \Pi(02C)$ $C(61) - C(62) - \Pi(62A)$	109.5	H(02B) - C(02) - H(02C) C(61) - C(62) - H(62P)	109.5
U(62A) = C(63) = H(63A)	109.5	C(61) - C(63) - H(63C)	109.5
H(03A) - C(03) - H(03B) H(63A) - C(63) - H(63C)	109.5	U(62P) = C(62) = H(63C)	109.5
$\Gamma(05A) - C(05) - \Pi(05C)$	109.5	H(03B) = C(03) = H(03C)	116 0(6)
C(05) = C(04) = C(00) C(66) = C(64) = D(22)	110.7(6)	C(05) = C(04) = F(22) C(65) = C(64) = H(64)	106.2
C(66) - C(64) - P(22)	110.9(0)	C(03) - C(04) - H(04) P(22) - C(64) - H(64)	106.2
C(60) - C(64) - H(64)	100.2	P(22) = C(64) = H(64)	100.2
U(65A) - U(65) - H(65A)	109.5	C(64) = C(65) = H(65B)	109.5
H(05A) - C(05) - H(05B) H(65A) - C(65) - H(65C)	109.5	U(65P) = C(65) = H(65C)	109.5
H(03A) - C(03) - H(03C)	109.5	H(03B) = C(03) = H(03C)	109.5
C(64) - C(66) - H(66A)	109.5	C(64) - C(66) - H(66B)	109.5
H(60A) - C(60) - H(60B)	109.5	C(64) = C(66) = H(66C)	109.5
H(66A) - C(66) - H(66C)	109.5	H(66B) - C(66) - H(66C)	109.5
C(70) - C(67) - H(67A)	109.5	C(70) - C(67) - H(67B)	109.5
H(6/A) - C(6/) - H(6/B)	109.5	C(70) - C(67) - H(67C)	109.5
H(6/A) - C(6/) - H(6/C)	109.5	H(6/B) - C(6/) - H(6/C)	109.5
C(70) - C(68) - H(68A)	109.5	C(70) - C(68) - H(68B)	109.5
H(68A) - C(68) - H(68B)	109.5	C(70) - C(68) - H(68C)	109.5
H(68A) - C(68) - H(68C)	109.5	H(68B) - C(68) - H(68C)	109.5
C(70) - C(69) - H(69A)	109.5	C(70) - C(69) - H(69B)	109.5
H(69A) - C(69) - H(69B)	109.5	C(70) - C(69) - H(69C)	109.5
H(69A) - C(69) - H(69C)	109.5	H(69B) - C(69) - H(69C)	109.5
C(69) - C(70) - C(71)	115.1(8)	C(69) - C(70) - C(68)	115.4(12)
C(71) - C(70) - C(68)	109.6(8)	C(69) - C(70) - C(67)	104.8(11)
C(71) - C(70) - C(67)	107.4(7)	C(68) - C(70) - C(67)	103.5(8)
C(72) - C(71) - C(75)	116.1(7)	C(72) - C(71) - C(70)	123.6(7)
C(75) - C(71) - C(70)	120.2(7)	C(71) - C(72) - C(73)	122.5(7)
C(71) - C(72) - H(72)	118.8	C(73) - C(72) - H(72)	118.8
C(72) - C(73) - C(22)	121.9(7)	C(72) - C(73) - P(22)	121.4(6)
			Continued on next page

Table S45. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(22) - C(73) - P(22)	115.9(6)	C(75) - C(74) - C(22)	122.5(7)
C(75) - C(74) - H(74)	118.8	C(22) - C(74) - H(74)	118.8
C(74) - C(75) - C(71)	120.1(7)	C(74) - C(75) - H(75)	119.9
C(71) - C(75) - H(75)	119.9	C(79) - C(76) - H(76A)	109.5
C(79) - C(76) - H(76B)	109.5	H(76A) - C(76) - H(76B)	109.5
C(79) - C(76) - H(76C)	109.5	H(76A) - C(76) - H(76C)	109.5
H(76B) - C(76) - H(76C)	109.5	C(79) - C(77) - H(77A)	109.5
C(79) - C(77) - H(77B)	109.5	H(77A) - C(77) - H(77B)	109.5
C(79) - C(77) - H(77C)	109.5	H(77A) - C(77) - H(77C)	109.5
H(77B) - C(77) - H(77C)	109.5	C(79) - C(78) - H(78A)	109.5
C(79) - C(78) - H(78B)	109.5	H(78A) - C(78) - H(78B)	109.5
C(79) - C(78) - H(78C)	109.5	H(78A) - C(78) - H(78C)	109.5
H(78B) - C(78) - H(78C)	109.5	C(76) - C(79) - C(77)	115.7(10)
C(76) - C(79) - C(80)	108.0(8)	C(77) - C(79) - C(80)	108.7(8)
C(76) - C(79) - C(78)	107.3(10)	C(77) - C(79) - C(78)	106.3(10)
C(80) - C(79) - C(78)	110.9(8)	C(81) - C(80) - C(84)	116.6(6)
C(81) - C(80) - C(79)	121.9(7)	C(84) - C(80) - C(79)	121.6(7)
C(80) - C(81) - C(82)	121.2(7)	C(80) - C(81) - H(81)	119.4
C(82) - C(81) - H(81)	119.4	G(21 - C(82) - C(81))	121.3(7)
G(21 - C(82) - P(21))	116.5(5)	C(81) - C(82) - P(21)	122.3(5)
C(84) - C(83) - G(21)	120.0(7)	C(84) - C(83) - H(83)	120.0
G(21 - C(83) - H(83))	120.0	C(80) - C(84) - C(83)	123.7(7)
C(80) - C(84) - H(84)	118.2	C(83) - C(84) - H(84)	118.2
C(86) - C(85) - C(90)	112.7(9)	C(86) - C(85) - P(21)	114.6(7)
C(90) - C(85) - P(21)	110.6(6)	C(86) - C(85) - H(85)	106.0
C(90) - C(85) - H(85)	106.0	P(21) - C(85) - H(85)	106.0
C(85) - C(86) - H(86A)	109.5	C(85) - C(86) - H(86B)	109.5
H(86A) - C(86) - H(86B)	109.5	C(85) - C(86) - H(86C)	109.5
H(86A) - C(86) - H(86C)	109.5	H(86B) - C(86) - H(86C)	109.5
C(89) - C(87) - C(88)	109.8(8)	C(89) - C(87) - P(21)	119.6(9)
C(88) - C(87) - P(21)	108.9(6)	C(89) - C(87) - H(87)	105.9
C(88) - C(87) - H(87)	105.9	P(21) - C(87) - H(87)	105.9
C(87) - C(88) - H(88A)	120.0	C(87) - C(88) - H(88B)	120.0
H(88A) - C(88) - H(88B)	120.0	C(87) - C(89) - H(89A)	109.5
C(87) - C(89) - H(89B)	109.5	H(89A) - C(89) - H(89B)	109.5
C(87) - C(89) - H(89C)	109.5	H(89A) - C(89) - H(89C)	109.5
H(89B) - C(89) - H(89C)	109.5	C(85) - C(90) - H(90A)	109.5
C(85) - C(90) - H(90B)	109.5	H(90A) - C(90) - H(90B)	109.5
C(85) - C(90) - H(90C)	109.5	H(90A) - C(90) - H(90C)	109.5
H(90B) - C(90) - H(90C)	109.5	C(121) - C(91) - C(118)	119.5(8)
C(121) - C(91) - H(91)	120.3	C(118) - C(91) - H(91)	120.3
C(121) - C(92) - C(120)	124.9(7)	C(121) - C(92) - H(92)	117.6
C(120) - C(92) - H(92)	117.6	C(118) - C(93) - C(120)	123.1(7)
C(118) - C(93) - H(93)	118.4	C(120) - C(93) - H(93)	118.4
C(211) - C(94) - C(212)	122.8(8)	C(211) - C(94) - H(94)	118.6
C(212) - C(94) - H(94)	118.6	C(214) - C(95) - C(212)	117.1(9)
C(214) - C(95) - H(95)	121.5	C(212) - C(95) - H(95)	121.5
C(211) - C(96) - C(214)	121.5(9)	C(211) - C(96) - H(96)	119.2
C(214) - C(96) - H(96)	119.2	C(124) - C(97) - C(127)	122.5(7)
C(124) - C(97) - H(97)	118.8	C(127) - C(97) - H(97)	118.8
C(124) - C(98) - C(125)	116.4(8)	C(124) - C(98) - H(98)	121.8
			Continued on next page

Table S45. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
C(125) - C(98) - H(98)	121.8	C(127) - C(99) - C(125)	122.5(7)
C(127) - C(99) - H(99)	118.7	C(125) - C(99) - H(99)	118.7
C(53) - C(100) - C(21)	120.8(6)	C(53) - C(100) - P(2)	122.0(5)
C(21) - C(100) - P(2)	116.5(5)	C(11) - C(101) - C(44)	120.3(7)
C(11) - C(101) - P(1)	116.4(6)	C(44) - C(101) - P(1)	123.1(6)
C(26) - C(102) - C(28)	117.2(7)	C(26) - C(102) - B(1)	121.4(6)
C(28) - C(102) - B(1)	121.3(6)	C(27) - C(103) - C(26)	120.4(7)
C(27) - C(103) - C(104)	121.6(7)	C(26) - C(103) - C(104)	118.0(7)
F(7) - C(104) - F(9)	109.1(7)	F(7) - C(104) - F(8)	103.8(7)
F(9) - C(104) - F(8)	103.9(6)	F(7) - C(104) - C(103)	114.4(7)
F(9) - C(104) - C(103)	114.2(7)	F(8) - C(104) - C(103)	110.5(7)
C(27) - C(105) - C(28)	121.6(7)	C(27) - C(105) - C(106)	121.6(7)
C(28) - C(105) - C(106)	116.6(7)	F(11) - C(106) - F(13)	107.3(8)
F(11) - C(106) - F(12)	102.1(8)	F(13) - C(106) - F(12)	106.3(8)
F(11) - C(106) - C(105)	115.5(8)	F(13) - C(106) - C(105)	112.5(7)
F(12) - C(106) - C(105)	112.2(8)	C(215) - C(107) - C(213)	122.4(9)
C(215) - C(107) - C(108)	122.2(9)	C(213) - C(107) - C(108)	115.3(10)
F(2) - C(108) - F(1)	105.6(10)	F(2) - C(108) - F(3)	104.4(14)
F(1) - C(108) - F(3)	105.1(12)	F(2) - C(108) - C(107)	113.5(12)
F(1) - C(108) - C(107)	111.6(13)	F(3) - C(108) - C(107)	115.7(11)
C(207) - C(109) - C(213)	117.9(7)	C(207) - C(109) - B(1)	122.9(7)
C(213) - C(109) - B(1)	119 1(7)	C(207) - C(110) - C(215)	120.6(9)
C(207) - C(110) - C(111)	119 5(10)	C(215) - C(110) - C(111)	119 6(9)
F(4) - C(111) - F(6)	106 1(10)	F(4) - C(111) - F(5)	100 3(9)
F(6) - C(111) - F(5)	107.7(11)	F(4) - C(111) - C(110)	116 3(11)
F(6) - C(111) - C(110)	113 5(10)	F(5) - C(111) - C(110)	111 8(10)
C(017) - C(112) - C(201)	120.9(6)	C(017) = C(112) = C(113)	121.0(6)
C(201) - C(112) - C(113)	118 0(6)	F(19) - C(113) - F(17)	107 7(6)
F(19) - C(113) - F(18)	104 9(5)	F(17) - C(113) - F(18)	105.1(6)
F(19) - C(113) - C(112)	114 4(6)	F(17) = C(113) = C(112)	112 4(6)
F(18) - C(113) - C(112)	111.6(6)	F(14) - C(114) - F(16)	105 6(9)
F(14) - C(114) - F(15)	105 9(8)	F(16) = C(114) = F(15)	102.9(8)
F(14) = C(114) = C(115)	105.9(0) 115 4(9)	F(16) = C(114) = C(115)	112 9(8)
F(15) = C(114) = C(115)	113.4(9) 113.0(9)	C(201) = C(115) = C(200)	121.3(6)
C(201) = C(115) = C(114)	113.0(9) 118 7(8)	C(200) = C(115) = C(114)	121.3(0) 119 9(7)
C(201) = C(117) = C(017)	117 5(6)	C(200) = C(117) = B(1)	122 1(6)
C(017) = C(117) = B(1)	120.4(6)	C(200) = C(118) = C(93)	120.3(8)
C(01) = C(118) = C(128)	120.4(0) 121.2(8)	C(91) = C(118) = C(93)	120.3(0) 118 A(7)
C(91) = C(110) = C(120) C(02) = C(120) = C(02)	121.2(0) 113 0(7)	C(93) = C(110) = C(120) C(02) = C(120) = B(2)	124.7(7)
C(92) = C(120) = C(93) C(03) = C(120) = B(2)	113.0(7) 122.1(6)	C(92) = C(120) = B(2) C(01) = C(121) = C(02)	124.7(7) 110.2(7)
C(93) - C(120) - B(2) C(91) - C(121) - C(122)	122.1(0) 120.5(12)	C(91) = C(121) = C(92) C(92) = C(121) = C(122)	119.2(7) 120 3(12)
E(91) = C(121) = C(122) E(38) = C(122) = E(37)	120.3(12) 100.0(18)	E(32) = C(121) = C(122) E(38) = C(122) = E(36)	120.3(12) 00.0(13)
F(38) = C(122) = F(37) F(37) = C(122) = F(36)	109.0(18) 106.3(15)	F(38) = C(122) = F(30) F(38) = C(122) = C(121)	$\frac{99.9(13)}{114.8(14)}$
F(37) = C(122) = F(30) F(37) = C(122) = C(121)	100.3(13) 112.0(12)	F(36) = C(122) = C(121) F(36) = C(122) = C(121)	114.0(14) 112.8(17)
F(37) = C(122) = C(121) F(32) = C(122) = F(30)	112.9(13) 110.6(0)	F(30) = C(122) = C(121) F(32) = C(122) = F(31)	112.0(17) 106.7(8)
$\Gamma(32) = C(123) = \Gamma(30)$ E(20) $C(123) = E(21)$	10.0(9)	F(32) = C(123) = F(31) F(32) = C(123) = C(124)	100.7(0)
F(30) = C(123) = F(31) F(30) = C(123) = C(124)	102.3(0) 112.8(8)	F(32) = C(123) = C(124) F(31) = C(123) = C(124)	113.0(0)
$\Gamma(30) = C(123) = C(124)$ C(08) = C(124) = C(07)	112.0(0) 122.0(7)	C(08) = C(124) = C(124)	109.0(0)
C(90) = C(124) = C(97) C(07) = C(124) = C(122)	122.0(7) 110.2(7)	C(98) = C(124) = C(123) C(98) = C(125) = C(90)	110.0(7) 121 6(7)
C(97) = C(124) = C(125) C(08) = C(125) = C(125)	119.2(7) 117 1(11)	C(90) = C(125) = C(195)	121.0(7) 121.2(11)
E(50) = C(120) = C(120) E(63) = C(126) = E(65)	117.1(11) 100 5(15)	E(33) = C(123) = C(120) E(63) = C(126) = E(64)	121.3(11) 105 7(14)
$\Gamma(03) = C(120) = \Gamma(03)$	100.3(13)	$\Gamma(05) = C(120) = \Gamma(04)$	Continued on next react
			Continued on next page

Table S45. – continued from previous page

atom – atom – atom	angle	atom – atom – atom	angle
F(65) - C(126) - F(64)	101.4(14)	F(63) - C(126) - C(125)	118.5(15)
F(65) - C(126) - C(125)	114.4(15)	F(64) - C(126) - C(125)	114.2(15)
C(99) - C(127) - C(97)	115.0(6)	C(99) - C(127) - B(2)	123.5(6)
C(97) - C(127) - B(2)	121.4(6)	F(34) - C(128) - F(33)	106.1(7)
F(34) - C(128) - F(35)	110.0(8)	F(33) - C(128) - F(35)	102.3(9)
F(34) - C(128) - C(118)	111.2(9)	F(33) - C(128) - C(118)	114.4(7)
F(35) - C(128) - C(118)	112.4(7)	F(24) - C(129) - F(26)	120.9(16)
F(24) - C(129) - F(25)	99.3(14)	F(26) - C(129) - F(25)	89.8(12)
F(24) - C(129) - C(205)	118.6(14)	F(26) - C(129) - C(205)	111.7(14)
F(25) - C(129) - C(205)	110.8(15)	F(250) - C(150) - F(47)	94.0(17)
F(250) - C(150) - F(46)	131.3(15)	F(47) - C(150) - F(46)	81.3(13)
F(250) - C(150) - C(210)	113.0(16)	F(47) - C(150) - C(210)	108.4(16)
F(46) - C(150) - C(210)	114.5(16)	F(43) - C(151) - F(45)	115.3(16)
F(43) - C(151) - C(152)	120.2(15)	F(45) - C(151) - C(152)	120.9(16)
F(43) - C(151) - F(44)	90.9(15)	F(45) - C(151) - F(44)	91.7(14)
C(152) - C(151) - F(44)	105.9(16)	C(16) - C(152) - C(17)	123.4(18)
C(16) - C(152) - C(151)	115.0(15)	C(17) - C(152) - C(151)	121.6(17)
F(41) - C(153) - F(39)	100(2)	F(41) - C(153) - F(40)	104(2)
F(39) - C(153) - F(40)	101.0(19)	F(41) - C(153) - C(214)	115(2)
F(39) - C(153) - C(214)	119(2)	F(40) - C(153) - C(214)	116(2)
F(28) - C(154) - F(27)	106.2(9)	F(28) - C(154) - F(29)	114.5(10)
F(27) - C(154) - F(29)	104.1(9)	F(28) - C(154) - C(212)	110.9(8)
F(27) - C(154) - C(212)	109.0(9)	F(29) - C(154) - C(212)	111.7(9)