Electronic Supplementary Information (ESI)

Effect of Order-Disorder Phase Transition and Band Gap Evolution on the Thermoelectric Properties of AgCuS Nanocrystals[†]

Satya N. Guin,^a Dirtha Sanyal^b and Kanishka Biswas*^a

^aNew Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore 560064, India ^bVariable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064, India * Email: kanishka@jncasr.ac.in

Fig. S1 Powder XRD pattern for AgCuS nanocrystals obtained after 12 hrs of reaction time measured at lab source (Cu K_{α}; λ = 1.5406 Å) with PXRD of bulk AgCuS.¹³

Fig. S2 XPS spectra of AgCuS nanocrystals (30 min reaction) (a) XPS survey scan (b) Ag 3d, (c) Cu 2p and (d) S 2p spectra. An additional peak (* marked) in Cu 2p was due to presence of small amount of Cu(II).

Fig. S3 FESEM image after sintering of AgCuS nanocrystals at 573 K for 3 hrs.

Fig. S4 Raman spectra of bulk and nanocrystalline AgCuS (30 min reaction), in the range of 350-600 cm⁻¹, indicating the absence of Cu-S bond vibration in nanocrystalline sample during orthorhombic (β) to hexagonal phase (α) transition.

Fig. S5 Temperature dependent electrical conductivity (σ) of nanocrystalline AgCuS compared with its bulk counterpart¹³.

Fig. S6 Temperature dependent two cycle heating cooling Seebeck coefficient data for nanocrystalline AgCuS (30 min reaction).

Fig. S7 Temperature dependent (a) thermal conductivity (κ_{total}) of AgCuS nanocrystals obtained after 30 min of reaction. (b) and (c) are comparative temperature dependent power factor (σ S²) and thermoelectric figure of merit (*ZT*) of bulk and nanocrystalline AgCuS, respectively.

Fig. S8 Schematic representation of changes of the band gap of bulk and nanocrystalline AgCuS during orthorhombic (β) to hexagonal (α) phase transition.