Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

Supporting Experimental Information for

Magnesium-Catalysed Nitrile Hydroboration

Catherine Weetman, Mathew D. Anker, Merle Arrowsmith, Michael S. Hill,* Gabriele Kociok-Köhn, David J. Liptrot and Mary F. Mahon Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Experimental Data

General Experimental Procedures

All manipulations were carried out using standard Schlenk line and glovebox techniques under an inert atmosphere of argon. NMR experiments were conducted in Youngs tap NMR tubes made up and sealed in a Glovebox. NMR spectra were collected on a Bruker AV300 spectrometer operating at 300.2 MHz (¹H), 75.5 MHz (¹³C), 96.3 MHz (¹¹B). The spectra were referenced relative to residual solvent resonances or an external BF₃.OEt₂ standard (¹¹B). Solvents (Toluene, THF, hexane) were dried by passage through a commercially available (Innovative Technologies) solvent purification system, under nitrogen and stored in ampoules over molecular sieves. C₆D₆ and d₈-toluene were purchased from Fluorochem Ltd. and dried over molten potassium before distilling under nitrogen and storing over molecular sieves. Di-*n*-butyImagnesium (1.0 M solution in n-heptane) and pinacolborane were purchased from Sigma-Aldrich Ltd. and used without further purification. [HC{(Me)CN(2,6-iPr₂C₆H₃)]₂MgnBu] was synthesised by a literature procedure.¹

Stoichiometric Reactions

Scheme S1: Stacked ¹H NMR spectra in C_6D_6 recorded during the stoichiometric reduction of *t*-BuCN with HBpin. (i) Magnesium aldimide formation after addition of HBpin and *t*-BuCN to V; (ii) Magnesium aldimidoborate formation on addition of a further equivalent of HBpin; (iii) Intramolecular hydride transfer with formation of magnesium borylamide; (iv) Bis(boryl)amine formation after addition of a further equivalent of HBpin.

NMR Scale: LMgBu (**V**) (0.04 mmol, 20 mg) was dissolved in 0.5 ml of C_6D_6 along with HBpin (0.04 mmol, 5.8 µL). This was left at room temperature for 5 minutes to form LMgH in situ before adding ¹BuCN (0.04 mmol, 4.4 µL). This was heated at 60 °C overnight to yield the insertion product, LMgNCH^tBu. ¹H NMR (C_6D_6 , 300 MHz): 7.83 (1H, s, N=CH), 7.21 – 7.11 (6H, m, Ar-H), 4.85 (1H, s, NC(CH₃)CH), 3.32 (2H, sept, $J_{HH} = 6$ Hz, $CH(CH_3)_2$), 3.13 (2H, sept, $J_{HH} = 6$ Hz, $CH(CH_3)_2$), 1.66 (6H, s, NC(CH₃)CH), 1.43 (6H, d, $J_{HH} = 9$ Hz, $CH(CH_3)_2$), 1.23 (6H, d, $J_{HH} = 9$ Hz, $CH(CH_3)_2$), 1.20 (6H, d, $J_{HH} = 9$ Hz, $CH(CH_3)_2$), 1.12 (6H, d, $J_{HH} = 9$ Hz, $CH(CH_3)_2$), 1.03 (9H, s, $C(CH_3)_3$). ¹³C{¹H} NMR (C_6D_6 , 75 MHz): 174.5 (N=CH), 170.5 (NC(CH₃)), 147.0 (*ipso-C*-Ar), 142.8 (*ortho-C*-Ar), 142.5 (*ortho-C*-Ar), 126.2 (*para-C*-Ar), 124.6 (*meta-C*-Ar), 96.1 (NC(CH₃)CH), 37.5 (N=CHC(CH₃)₂), 27.2, 27.1, 26.1, 25.7, 25.0, 24.8.

Compound 4: NMR Scale: To the previous solution additional HBpin (0.04 mmol, 5.8 µL) was added and left overnight at room temperature to yield the borate intermediate. ¹H NMR (C_6D_6 , 300 MHz): 7.97 (1H, s, N=CH), 7.21 – 7.10 (6H, m, Ar-*H*), 4.84 (1H, s, NC(CH₃)C*H*), 3.34 (2H, sept, $J_{HH} = 6$ Hz, C*H*(CH₃)₂, 3.21 (2H, sept, $J_{HH} = 6$ Hz, C*H*(CH₃)₂), 1.63 (6H, s, NC(CH₃)CH), 1.40 (6H, d, $J_{HH} = 9$ Hz, CH(CH₃)₂), 1.37 (6H, d, $J_{HH} = 9$ Hz, CH(CH₃)₂), 1.23 (6H, d, $J_{HH} = 9$ Hz, CH(CH₃)₂), 1.21 (6H, d, $J_{HH} = 9$ Hz, CH(CH₃)₂), 1.07 (12H, s, OC(CH₃)₂), 1.00 (9H, s, C(CH₃)₃). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 178.4 (N=CH), 170.5 (NC(CH₃)), 145.7 (*ipso-C*-Ar), 143.3 (*ortho-C*-Ar), 142.6 (*ortho-C*-Ar), 126.1 (*para-C*-Ar), 124.7 (*meta-C*-Ar), 124.4 (*meta-C*-Ar), 96.0 (NC(CH₃)₂), 27.5, 27.2, 26.1, 25.9, 25.3 (OC(CH₃)₂), 25.1. ¹¹B NMR (C₆D₆, 96 MHz): 8.5 (d, $J_{HB} = 105.6$ Hz, NBH).

NMR Scale: Previous NMR sample was allowed to stand at room temperature for 48 hrs. ¹H NMR (C₆D₆, 300 MHz): 7.21 – 7.10 (6H, m, Ar-*H*), 4.83 (1H, s, NC(CH₃)C*H*), 3.46 (2H, sept, $J_{HH} = 6$ Hz, C*H*(CH₃)₂), 3.35 (2H, s, NC*H*₂), 3.31 (2H, sept, $J_{HH} = 6$ Hz, C*H*(CH₃)₂), 1.64 (6H, s, NC(CH₃)CH), 1.39 (12H, d, $J_{HH} = 6$ Hz, CH(CH₃)₂), 1.26 (12H, d, $J_{HH} = 6$ Hz, CH(CH₃)₂), 1.06 (24H, s, OC(CH₃)₂). ¹³C{¹H} NMR (C₆D₆, 75 MHz): 170.6 (NC(CH₃)CH), 145.8 (*ipso*-C-Ar), 143.1 (*ortho*-C-Ar), 125.8 (*para*-C-Ar), 124.4 (*meta*-C-Ar), 95.8 (NC(CH₃)CH), 83.1 (OC(CH₃)₂), 82.6 (OC(CH₃)₂), 58.5 (NCH₂), 34.3 (NCH₂C(CH₃)₃), 28.6, 28.4, 27.2, 26.2, 25.9, 25.3, 25.1, 14.7 (C(CH₃)₃). ¹¹B NMR (C₆D₆, 96 MHz): 7.05 (d, $J_{HB} = 105.6$ Hz, NBH).

Compound 2: NMR Scale: LMgBu (V) (0.06 mmol, 30 mg) was dissolved in 0.5 ml of C_6D_6 along with HBpin (0.06 mmol, 8.4 µL). This was left at room temperature for 5 minutes to form LMgH in situ before adding (3-MeO)PhCN (0.06 mmol, 7.3 µL). This was heated at 60 °C overnight to yield the insertion product, LMgNCHPh(3-MeO). ¹H NMR (C_6D_6 , 300 MHz): 8.63 (1H, s, NCH), 7.56 – 6.80 (10H, m, Ar-*H*), 4.89 (1H, s, NC(CH₃)C*H*), 3.42 (3H, s, OCH₃), 3.29 (4H, m, C*H*(CH₃)₂), 1.68 (6H, s, NC(CH₃)CH), 1.42 (6H, d, *J*_{HH} = 6Hz, CH(CH₃)₂), 1.24 (6H, d, *J*_{HH} = 6Hz, CH(CH₃)₂), 0.97 (6H, d, *J*_{HH} = 6Hz, CH(CH₃)₂), 0.90 (6H, d, *J*_{HH} = 6Hz, CH(CH₃)₂). ¹³C{¹H} NMR (C_6D_6 , 75 MHz): 172.5 (N=CH), 170.4 (NC(CH₃)CH), 165.0, 160.9, 147.7, 145.2, 144.1, 142.9, 139.4, 130.3, 126.2, 124.8, 95.2 (NC(CH₃)CH), 55.6 (OCH₃), 32.3 (CH(CH₃)₂), 29.6, 28.7, 28.2, 27.2, 24.7, 23.4.

Compound 3: NMR Scale: LMgBu (V) (0.06 mmol, 30 mg) was dissolved in 0.5 ml of C_6D_6 along with HBpin (0.06 mmol, 8.4 µL). This was left at room temperature for 5 minutes to form LMgH in situ before adding (4-MeO)PhCN (0.06 mmol, 8.0 mg). This was heated at 60 °C overnight to yield the insertion product, LMgNCHPh(4-MeO). ¹H NMR (C_6D_6 , 300 MHz): 8.58 (1H, s, NCH), 7.80 – 6.81 (10H, m, Ar-H), 4.87 (1H, s, NC(CH₃)CH), , 3.66 (4H, m, CH(CH₃)₂), 2.99 (3H, s, OCH₃) 1.73 (6H, s, NC(CH₃)CH), 1.47 (6H, d, $J_{HH} = 6Hz$, CH(CH₃)₂), 1.32 (6H, d, $J_{HH} = 6Hz$, CH(CH₃)₂), 0.91 (6H, d, $J_{HH} = 6Hz$, CH(CH₃)₂), 0.89 (6H, d, $J_{HH} = 6Hz$, CH(CH₃)₂). ¹³C{¹H} NMR (C_6D_6 , 75 MHz): 171.7 (N=CH), 169.6 (NC(CH₃)CH), 162.3, 147.7, 146.7, 144.1, 142.9, 135.0, 126.2, 124.2, 94.7 (NC(CH₃)CH), 55.3 (OCH₃), 32.3 (CH(CH₃)₂), 29.8, 28.8, 27.2, 26.1, 25.8, 24.9, 24.6, 23.4.

Catalytic reactions

NMR scale: 10 mg (0.02 mmol, ie. 10 mol%) of LMgBu was dissolved in 0.5 ml of C_6D_6 , 60.9 µL (0.42 mmol) of pinacolborane was then added followed by 0.2 mmol of nitrile. This mixture was then transferred to a sealed Youngs tap NMR tube and the reaction was kept in an oil bath at 60 °C. These were regularly monitored by ¹H and ¹¹B NMR spectroscopy until complete conversion was observed.

Scale up: In a Schlenk flask 50mg (0.1 mmol, ie. 10 mol%) of LMgBu was dissolved in 5ml of toluene, 304.7 μ L (2.1 mmol) of pinacolborane was then added followed by 1 mmol of nitrile. This mixture was then transferred to an oil bath at 60°C, for the observed NMR reaction time. Toluene was then removed *in vacuo* and the remaining solid was redissolved in the minimum volume of hexane and left to crystallize in the freezer overnight.

N-{B(OCMe₂)₂} -propan-1-amine

NMR scale: 14.3 µL of propionitrile. ¹H NMR (C_6D_6 , 300 MHz): 3.42 (2H, t, $J_{HH} = 6$ Hz, NC H_2), 1.75 (2H, m, $J_{HH} = 6$ Hz, CH_2CH_3), 1.07 (24H, s, OCC H_3), 0.96 (3H, $J_{HH} = 9$ Hz, CH_2CH_3). ¹³C{¹H} NMR (75.5 MHz, C_6D_6 , 298 K): 82.6 (OC(CH₃)₂), 46.5 (NCH₂), 27.2 (CH₂CH₂CH₃), 25.1 (OC(CH₃)₂), 11.9 (CH₂CH₃). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.5 NB. **Scale up:** 71.3 µL of propionitrile, 60 °C for 1 hr. Isolated as yellow crystals (228 mg, 70% yield). Elemental analysis: calcd. (found) for $C_{15}H_{31}B_2NO_4$; C 57.92 (57.68); H 10.05 (10.14); N 4.50 (4.40).

N-{B(OCMe₂)₂} - 2-methylpropan-1-amine

NMR scale: 18.0 µL of isobutyronitrile, 60 °C for 1 hr. ¹H NMR (300 MHz, C_6D_6 , 298 K): 3.28 (2H, d, $J_{HH} = 6$ Hz, NC H_2), 2.05 (1H, m, $J_{HH} = 6$ Hz, C $H(CH_3)_2$), 1.07 (24H, s, OC(C $H_3)_2$), 1.01 (6H, d, $J_{HH} = 6$ Hz, CH(C $H_3)_2$)). ¹³C{¹H} NMR (75.5 MHz, C_6D_6 , 298 K): 82.6 (OC(C $H_3)_2$), 52.1 (NC H_2), 31.6 (CH(C $H_3)_2$), 25.1 (OC(C $H_3)_2$), 20.7 (CH(C $H_3)_2$)). ¹¹B NMR (96.3 MHz, C_6D_6 , 298 K): 29.6 NB. **Scale up:** 89.8 µL of isobutyronitrile. Isolated as a yellow oil (313 mg, 96% yield). An accurate microanalysis could not be obtained for this compound.

N-{B(OCMe₂)₂} - 2,2-dimethylpropan-1-amine

NMR scale: 22.1 μL trimethylacetonitrile, 60 °C for 5.5 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 3.30 (2H, s, NCH₂), 1.08 (24H, s, OC(CH₃)₂), 1.03 (9H, s, C(CH₃)₃). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 82.6 (OC(CH₃)₂), 55.3 (NCH₂), 34.0 (C(CH₃)₃), 28.4 (C(CH₃)₃), 25.1 (OC(CH₃)₂)). ¹¹B NMR (96.3MHz, C₆D₆, 298 K) δB(ppm): 29.5 NB. **Scale up:** 110.5 μL of trimethylacetonitrile. Isolated as colorless crystals (181 mg, 54% yield). Elemental analysis: calcd. (found) for C₁₇H₃₅B₂NO₄⁺C 60.22 (60.11); H 10.40 (10.55); N 4.13 (3.95).

N-{B(OCMe₂)₂} – cyclohexylmethanamine

NMR scale: 23.8 μL cyclohexanitrile, 60 °C for 1 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 3.31 (2H, d, $J_{\rm HH} = 6$ Hz, NCH₂), 1.92 (2H, m, NCH₂CH) 1.70 – 1.20 (10H, m, Cy-H), 1.07 (24H, s, OCCH₃). ¹³C{¹H} NMR (75.5MHz, C₆D₆, 298 K): 82.6 (OC(CH₃)₂), 50.8 (NCH₂), 41.3 (NCH₂CH), 31.5 (Cy-C), 27.6 (Cy-C), 27.0 (Cy-C), 25.1 (OC(CH₃)₂). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.7 NB. **Scale up:** 118.8 μL of cyclohexanitrile, 60 °C for 1 hr. Isolated as colorless crystals (265 mg, 75% yield). An accurate microanalysis could not be obtained for this compound. *N-{B(OCMe₂)₂}* – phenylmethanamine

NMR scale: 19.5 µL benzonitrile, 60 °C for 12 hr. ¹H NMR (300 MHz, C_6D_6 , 298 K): 7.57 (2H, m, *o*-H), 7.25 (2H, m, *m*-H), 7.11 (1H, m, *p*-H), 4.60 (2H, s, NCH₂), 1.02 (24H, s, OC(CH₃)₂). ¹³C{¹H} NMR (75.5 MHz, C_6D_6 , 298 K): 144.1 (*o*-C), 128.4 (*p*-C), 127.0 (*m*-C), 82.9 OC(CH₃)₂, 48.2 (NCH₂), 25.1 (OC(CH₃)₂). ¹¹B NMR (96.3 MHz, C_6D_6 , 298 K): 29.5 NB. **Scale up:** 103.12 µL of Benzonitrile, 60 °C for 15 hrs. Isolated as colorless crystals (202 mg, 56% yield). Elemental analysis: calcd. (found) for $C_{19}H_{31}B_2NO_4$ [±]C 63.55 (63.38); H 8.70 (8.82); N 3.90 (4.00).

N-{B(OCMe₂)₂} - o-tolylmethanamine

NMR scale: 23.7 μL o-tolunitrile, 60 °C for 15 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.64 (1H, d, $J_{\rm HH} = 6$ Hz, *o*-*H*), 7.24 (1H, m, *p*-H), 7.08 (1H, m, *m*-*H*), 7.00 (1H, m, *m*-*H*), 4.60 (2H, s, NC*H*₂), 2.12 (3H, s, *o*-C*H*₃), 1.03 (24H, s, OC(C*H*₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 141.5 (*o*-*C*), 135.7 (*o*-CCH₃), 130.5 (*p*-*C*), 126.3 (*m*-*C*), 125.9 (*m*-CHC(CH₃), 82.9 (OC(CH₃)₂), 45.8 (NCH₂), 25.0 (OC(CH₃)₂), 19.4 (*o*-CH₃). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.8 NB. **Scale up:** 118.5 μL of *o*-tolunitrile, 60 °C for 15 hrs. Isolated as colorless crystals (275 mg, 73% yield). Elemental Analysis for C₂₀H₃₃B₂NO₄: Calculated (found): C 64.38 (64.45); H 8.92 (8.85); N 3.75 (3.63).

N-{B(OCMe₂)₂} - m-tolylmethanamine

NMR scale: 22.0 μL m-tolunitrile, 60 °C for 15 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.43 (1H, d, $J_{\rm HH} = 6$ Hz, *o-H*), 7.38 (1H, s, *o-H*), 7.20 (1H, m, *p-H*), 6.95 (1H, m, *m-H*), 4.60 (2H, s, NCH₂), 2.19 (3H, s, *m-CH₃*), 1.04 (24H, s, OC(CH₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 144.0 (*o-C*), 137.8 (*o-C*HC(CH₃)), 129.3 (*p-C*), 128.7 (*i-C*) 127.7 (*m-C*CH₃), 125.4 (*m-C*), 82.9 (OC(CH₃)₂), 48.2 (NCH₂), 25.1 (OC(CH₃)₂), 21.9 (ArCH₃). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.9 NB. Scale up: 120.0 μL of *m*-tolunitrile, 60 °C for 15 hrs. Isolated colorless crystals (305 mg, 81% yield). An accurate microanalysis could not be obtained for this compound.

N-{B(OCMe₂)₂} - 3-(fluoro)phenylmethanamine

NMR scale: 21.4 µL 3-(fluoro)benzonitrile, 60 °C for 14 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.40 (1H, m, *o*-C*H*), 7.25 (1H, d, $J_{\text{HH}} = 7.3$ Hz, *o*-C*H*), 7.00 (2H, m, *m*-C*H*, *p*-C*H*), 4.51 (2H, s, NC*H*₂), 1.02 (24H, s, OC(C*H*₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 130.2 (*o*-C), 128.7 (*o*-C), 128.5 (*p*-C), 128.5 (*m*-C), 128.3 (*m*-C), 83.1 (OC(CH₃)₂), 47.8 (NCH₂), 25.0 (OC(CH₃)₂). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.5 NB. **Scale up:** 106.9 µL of 3-(fluoro)benzonitrile, 60 °C for 14 hrs. Isolated pale yellow crystals (215 mg, 59% yield). Elemental analysis: calcd. (found) for C₁₉H₃₀B₂FNO₄⁺ C 60.52 (60.55); H 8.02 (7.93); N 3.71 (3.85).

N-{B(OCMe₂)₂} - 3-(methoxy)phenylmethanamine

NMR scale: 24.5 μ L 3-(methoxy)benzonitrile, 60 °C for 15 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.26 (1H, m, *o*-C*H*), 7.25 (1H, m, *o*-C*H*), 6.78 (1H, m, *p*-C*H*), 6.64 (1H, m, *m*-C*H*), 4.64 (2H, s, NC*H*₂), 3.41 (3H, s, OC*H*₃), 1.05 (24H, s, OC(C*H*₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 129.7 (*o*-C), 128.7 (*o*-C), 128.5 (*p*-C), 128.3 (*m*-C, 82.9 (OC(CH₃)₂), 55.0 (OCH₃), 48.3 (NCH₂), 25.1 (OC(CH₃)₂). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 30.0 NB. Scale up: 122.3 μ L of 3-(methoxy)benzonitrile, 60 °C for 15 hrs. Isolated as pale yellow crystals (308 mg, 81% yield). An accurate microanalysis could not be obtained for this compound.

N-{*B*(*OCMe*₂)₂} - *p*-tolylmethanamine

NMR scale: 23.9 μ L *p*-tolunitrile, 60 °C for 13 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.50 (2H, d, $J_{\text{HH}} = 9$ Hz, *o*-*H*), 7.06 (2H, d, $J_{\text{HH}} = 9$ Hz, *m*-*H*), 4.58 (2H, s, NCH₂), 2.15 (3H, s, *p*-CH₃), 1.04 (24H, s, OC(CH₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 141.2 (*o*-*C*), 136.1 (*p*-*C*), 129.4 (*i*-*C*), 128.5 (*m*-*C*), 82.9 (OC(CH₃)₂), 47.9 (NCH₂), 25.1 (OC(CH₃)₂), 21.5 (*p*-CH₃). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.7 NB. **Scale up:** 119.4 μ L of *p*-tolunitrile, 60 °C for 15 hrs. Isolated as colorless crystals (270 mg, 72% yield). Elemental analysis: calcd. (found) for C₂₀H₃₃B₂NO₄⁻ C 64.38 (64.20); H 8.92 (8.80); N 3.75 (3.87).

 $N-\{B(OCMe_2)_2\} - 4-(fluoro)$ phenylmethanamine

NMR scale: 21.9 μL 4-(fluoro)benzonitrile, 60 °C for 12 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.40 (2H, m, *o*-*H*), 6.88 (2H, t, $J_{HH} = 9$ Hz, *m*-H), 4.45 (2H, s, NC*H*₂), 1.02 (24H, s, OC(*CH*₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 164.2 (*p*-*C*), 139.9 (*o*-*C*), 130.1 (*i*-*C*), 115.5 (*m*-*C*), 82.9 (OC(CH₃)₂), 47.5 (NCH₂), 25.1 (OC(CH₃)₂). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.7 NB. ¹⁹F NMR (376.5 MHz, C₆D₆, 298 K) δF (ppm): -116.89 4-*F*. **Scale up:** 109.4 µL of 4-(fluoro)benzonitrile, 60 °C for 15 hrs. Isolated as colorless crystals (230 mg, 61% yield). Elemental analysis: calcd. (found) for C₁₉H₃₀B₂FNO₄⁺C 60.52 (60.55); H 8.02 (7.93); N 3.74 (3.83).

 $N-\{B(OCMe_2)_2\} - 4-(Chloro)$ phenylmethanamine

NMR scale: 27.5 mg 4-(chloro)benzonitrile, 60 °C for 12 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.36 (2H, d, $J_{\text{HH}} = 7.3$ Hz, *o*-C*H*), 7.20 (2H, d, $J_{\text{HH}} = 7.3$ Hz, *m*-C*H*), 4.46 (2H, s, NC*H*₂), 1.02 (24H, s, OC(C*H*₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 129.9 (*o*-C), 128.9 (*p*-C), 128.7 (*m*-C), 83.0 (OC(CH₃)₂), 47.5 (NCH₂), 25.1 (OC(CH₃)₂). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.0 (N*B*). **Scale up:** 137.6 mg of 4-(chloro)benzonitrile, 60 °C for 12 hrs. Isolated as pale yellow crystals (231 mg, 59% yield). Elemental analysis: calcd. (found) for C₁₉H₃₀B₂ClNO₄⁺C 57.99 (57.47); H 7.68 (7.40); N 3.56 (3.52).

 $N-\{B(OCMe_2)_2\} - 4-(trifluoromethyl)phenylmethanamine$

NMR scale: 26.8 μ L 4-(trifluoromethyl)benzonitrile, 60 °C for 12.5 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.41 (4H, s, Ar-*H*), 4.46 (2H, s, NC*H*₂), 1.01 (24H, s, OC(C*H*₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 148.1 (*o*-*C*), 128.5 (*p*-C), 125.6 (*m*-*C*), 83.1 (OC(CH₃)₂), 47.8 (NCH₂), 25.0 (OC(CH₃)₂). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.6 NB. ¹⁹F NMR (376.5 MHz, C₆D₆, 298 K) δ F (ppm): -61.94 C*F*₃. **Scale up:** 133.9 μ L of 4-(trifluoromethyl)benzonitrile, 60 °C for 15 hrs. Isolated as colorless crystals (325 mg, 76% yield). An accurate microanalysis could not be obtained for this compound.

 $N-\{B(OCMe_2)_2\} - 4-(methoxy)$ phenylmethanamine

NMR scale: 26.6 mg 4-methoxybenzonitrile, 60 °C for 13.5 hr. ¹H NMR (300 MHz, C₆D₆, 298 K): 7.53 (2H, d, $J_{HH} = 6$ Hz, o-H), 6.85 (2H, d, $J_{HH} = 9$ Hz, m-H), 4.54 (2H, s, NCH₂), 3.36 (3H, s, OCH₃), 1.04 (24H, s, OC(CH₃)₂). ¹³C{¹H} NMR (75.5 MHz, C₆D₆, 298 K): 159.3 (p-C), 136.4 (o-C), 129.8 (i-C), 114.2 (m-C), 82.9 (OC(CH₃)₂), 55.1 (OCH₃), 47.6 (NCH₂), 25.1 (OC(CH₃)₂). ¹¹B NMR (96.3 MHz, C₆D₆, 298 K): 29.7 NB. **Scale up:** 133.2 mg of 4-methoxybenzonitrile, 60 °C for 15 hrs. Isolated as colorless crystals (225 mg, 58% yield). Elemental analysis: calcd. (found) for C₂₀H₃₃B₂NO₄ C 61.74 (61.60); H 8.55 (8.50); N 3.60 (3.50). *N-{B(OCMe₂)₂}* – diphenylacetoamine

NMR scale: 38.6 mg diphenylacetonitrile, 60 °C for 30 hr. ¹H NMR (300 MHz, C_6D_6 , 298 K): 7.43 (4H, d, $J_{HH} = 6$ Hz, o-H), 7.05 (4H, m, *m-H*), 6.94 (2H, m, *p-H*), 4.65 (1H, t, $J_{HH} = 6$ Hz, NCH₂CH), 4.10 (2H, d, $J_{HH} = 9$ Hz, NCH₂CH), 1.02 (24H, s, C(CH₃)₂). ¹³C{¹H} NMR (75.5 MHz, C_6D_6 , 298 K): 144.28 (*ipso-C*), 129.62 (*o-C*), 128.87 (*p-C*), 126.71 (*m-C*), 82.70 (*C*(CH₃)₂), 54.44 (NCH₂CH), 49.55 (NCH₂CH), 25.07 (C(CH₃)₂). ¹¹B NMR (96.3 MHz, C_6D_6 , 298 K): 29.6 NB. **Scale up:** 133.2 mg of diphenylacetonitrile, 60 °C for 30 hrs. Isolated as colorless crystals (199 mg, 43% yield). An accurate microanalysis could not be obtained for this compound.

¹H and ¹³C{¹H} NMR spectra

$N-\{B(OCMe_2)_2\}$ -propan-1-amine

*N-{B(OCMe*₂)₂} - 2-methylpropan-1-amine

 $N-\{B(OCMe_2)_2\}$ – cyclohexylmethanamine

 $N-\{B(OCMe_2)_2\}$ – phenylmethanamine

 $N-\{B(OCMe_2)_2\} - o$ -tolylmethanamine

 $N-\{B(OCMe_2)_2\} - m$ -tolylmethanamine

 $N-\{B(OCMe_2)_2\}-p$ -tolylmethanamine

 $N-\{B(OCMe_2)_2\}$ -4-fluorophenylmethanamine

 $N-\{B(OCMe_2)_2\} - 4-(Methoxy) phenylmethanamine$

 $N-\{B(OCMe_2)_2\}$ – diphenylacetoamine

X-ray Structural Analyses

Diffraction data for compounds 1-5 were collected on a Nonius Kappa CCD with a low temperature device at 150 K, utilizing Mo-K α radiation monochromated with graphite ($\lambda = 0.71070$ Å). Processing utilized the Nonius software,² with structure solution and refinement using XSeed³ or WINGX-1.70⁴ suite of programs throughout and visualized utilizing ORTEP 3.⁵ The asymmetric unit of 2 comprises half of a dimer which straddles a crystallographic inversion center. Compound **5** co-crystallized with one molecule of toluene and a molecule of hexane which was half occupied. All bond lengths in the hexane molecule have been restrained. The phenyl group in the toluene molecule has been refined using constraints.

References

- 1. A. P. Dove, V. C. Gibson, P. Hormnirun, E. L. Marshall, J. A. Segal, A. J. P. White and D. J. Williams, *Dalton. Trans.* 2003, 3088.
- DENZO-SCALEPACK Z. Otwinowski and W. Minor, "Processing of X-ray Diffraction Data Collected in Oscillation Mode ", Methods in Enzymology, Volume 276: Macromolecular Crystallography, part A, p.307-326, 1997, C.W. Carter, Jr. & R. M. Sweet, Eds., Academic Press.
- 3. G. M. Sheldrick, *SHELXL97-2, Program for Crystal Structure Refinement*, Universität Göttingen, Göttingen, Germany, 1998.
- 4. L. J. Barbour, *X-Seed A Software Tool for Supramolecular Crystallography*, *J. Supramol. Chem.* 2001, **1**, 189.
- 5. C. Barnes, J. Appl. Cryst. 1997, 30, 568.

Kinetic Experiments

All NMR Data were recorded on a Bruker AV400 NMR operating at 400.13 MHz (¹H) and were recorded at 323 K unless stated otherwise. All data were processed using ACD/Labs group spectra common integral analysis software.

In a glovebox a stock solution of the precatalyst was made to the relevant concentration, 0.5 mL of the catalyst solution was transferred to a Youngs tap NMR tube followed by addition of the relevant quantity of HBpin, followed by the chosen substrate. The tube was sealed, removed from the glovebox, immediately frozen with liquid nitrogen and thawed just prior to loading into the NMR spectrometer which had been preheated to a chosen temperature (if required). ¹H NMR spectra were recorded at regular intervals. Reaction kinetics were monitored using the intensity changes in the substrate resonances over three or more half-lives on the basis of substrate consumption. Data was normalised against the initial substrate concentration [Substrate]_{t=0} so that:

$$Ct = \frac{[Substrate]_{t=0}}{[Substrate]_{t=0} + [Substrate]_{t}}$$

Reaction rates were derived from the plot of Ct vs time (or Ln(Ct), 1/Ct) by using linear trendlines generated by Microsoft Excel software. To obtain Arrhenius and Eyring plots, kinetic analyses were conducted at 4-5 different temperatures, each separated by approximately 5 K.

Propionitrile Hydroboration Kinetics

Determination of Catalyst order

	[Mg] 0.03	[Mg] 0.03206 M			[Mg] 0.0	0401 M		[Mg] 0.0	1202 M
	Value	Error			Value	Error		Value	Error
m ₁	0.296000	0.001437		m1	0.331970	0.001682	m1	0.317320	0.003780
m2	-0.008360	0.000094		m2	-0.001370	0.000018	m2	-0.004210	0.000097
Chisq	0.00020266	n/a		Chisq	0.001751	n/a	Chisq	0.001958	n/a
\mathbb{R}^2	0.99804	n/a		\mathbb{R}^2	0.99804	n/a	\mathbb{R}^2	0.99601	n/a

	[Mg] 0.01063 M				[Mg] 0.0	4008 M
	Value	Error			Value	Error
m1	0.321200	0.001232		m1	0.297150	0.001701
m ₂	-0.004340	0.000035		m_2	-0.011260	0.000144
Chisq	0.000804	n/a		Chisq	0.000197	n/a
\mathbf{R}^2	0.99951	n/a		\mathbb{R}^2	0.99854	n/a

Figure S3. 1/[EtCN] vs time; non-linear kinetics

Figure S4. [Mg] vs k_{obs} (from Fig. S1); shows first order dependence

Determination of reaction order with respect to [HBpin]

Varying concentrations of starting reagent HBpin whilst keeping constant [Mg] = 0.04 M and pseudo first order conditions in EtCN (8.0 M).

Figure S5. [EtCH₂N(Bpin)₂] vs time for varying [HBpin]

	[HBpin] =	= 0.8M	1		[HBpin] = 1.6M			[HBpin]	= 2.0M
	Value	Error			Value	Error		Value	Error
m1	0.027214	0.001114	Γ	m ₁	0.038840	0.000530	m ₁	0.022683	0.002139
m2	0.001908	0.000104		m ₂	0.002547	0.000020	m_2	0.003491	0.000054
Chisq	0.00267759	n/a		Chisq	8.696E-05	n/a	Chisq	0.0192224	n/a
\mathbb{R}^2	0.976633	n/a		\mathbb{R}^2	0.998720	n/a	\mathbb{R}^2	0.992143	n/a

	[HBpin]		[HBpin]	= 3.2M	
	Value	Error		Value	Error
m1	0.050577	0.002271	m1	0.094123	0.003163
m2	0.004265	0.000057	m ₂	0.004866	0.000118
Chisq	0.0013212	n/a	Chisq	0.044993949	n/a
\mathbb{R}^2	0.994052	n/a	\mathbb{R}^2	0.987265	n/a

Figure S6. $ln([EtCH_2N(Bpin)_2]_0/[EtCH_2N(Bpin)_2]_t)$ vs time; non-linear kinetics

Figure S8. [HBpin] vs k_{obs}; linear fit indicates 1st order dependence on [HBpin]

	Value	Error
m ₁	0.000806	0.000232
m ₂	0.001255	0.000103
Chisq	0.008197128	n/a
R²	0.980118	n/a

Determination of reaction order with respect to [EtCN]

Varying concentrations of starting reagent EtCN whilst keeping constant [Mg] = 0.04M and pseudo first order conditions of HBpin (8.0M).

Figure S9. [EtCH₂N(Bpin)₂] vs time; variable [EtCN]

	[EtCN] = 0.2M			[EtCN] = 0.4M			[EtCN] = 1.2M		
	Value	Error			Value	Error		Value	Error
m ₁	0.001066	0.000012		m1	0.001572	0.000035	m1	0.005545	0.000057
m2	0.000021	0.000001		m2	0.000041	0.000001	m2	0.000158	0.000002
Chisq	0.009468	n/a		Chisq	0.005337	n/a	Chisq	0.009731	n/a
\mathbb{R}^2	0.984067	n/a		\mathbb{R}^2	0.993577	n/a	\mathbb{R}^2	0.995669	n/a

[EtCN]			[EtCN]	= 4.0M	
Value	Error			Value	Error
0.020904	0.000144		m_1	0.028883	0.000179
0.000440	0.000007		m_2	0.000568	0.000006
0.00585	n/a		Chisq	7.38E-05	n/a
0.995901	n/a		\mathbb{R}^2	0.997399	n/a
	[EtCN] Value 0.020904 0.000440 0.00585 0.995901	[EtCN] = 3.2M Value Error 0.020904 0.000144 0.000440 0.000007 0.00585 n/a 0.995901 n/a	[EtCN] = 3.2M Value Error 0.020904 0.000144 0.000440 0.000007 0.00585 n/a 0.995901 n/a	$\begin{tabular}{ c c c c c c c } \hline [EtCN] = 3.2M \\ \hline Value & Error \\ \hline 0.020904 & 0.000144 & m_1 \\ \hline 0.000440 & 0.000007 & m_2 \\ \hline 0.00585 & n/a & Chisq \\ \hline 0.995901 & n/a & R^2 \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

	[EtCN] = 1.6M							
	Value	Error						
m ₁	0.008134	0.000038						
m2	0.000227	0.000001						
Chisq	0.000912	n/a						
\mathbf{R}^2	0.999219	n/a						

Figure S10. ln([EtCH₂N(Bpin)₂]₀/[EtCH₂N(Bpin)₂]_t) vs time; non-linear kinetics

Figure S11. 1/[EtCH₂N(Bpin)₂] vs time; non-linear kinetics

0.000253

0.999109

n/a

n/a

Chisq

 \mathbf{R}^2

Figure S12. [EtCN] vs k_{obs} ; indicates a first order dependence on [EtCN] under *pseudo*-first order conditions in HBpin

Variable [Mg] under *pseudo*-first order in [HBpin]

Figure S13. $[EtCH_2N(Bpin)_2]$ vs time; variation in [Mg] whilst under *pseudo*-first order conditions in [HBpin] = 8.0M and keeping [EtCN] = 0.4M constant

	[Mg] = 0.020 M			[Mg] = 0.032 M			[Mg] = 0	0.040 M	
	Value	Error			Value	Error		Value	Error
m ₁	0.112321	0.000556		m1	0.108293	0.001005	m ₁	0.075126	0.000482
m2	0.001664	0.000016		m2	0.001914	0.000030	m_2	0.002078	0.000016
Chisq	0.001359	n/a		Chisq	0.001194	n/a	Chisq	1.94E-05	n/a
\mathbf{R}^2	0.997272	n/a		\mathbb{R}^2	0.993732	n/a	\mathbf{R}^2	0.999448	n/a

	[Mg] =		[Mg] = 0).060 M	
	Value	Error		Value	Error
m1	0.098833	0.000985	m1	0.090021	0.001977
m2	0.002352	0.000037	m ₂	0.002954	0.000075
Chisq	0.000583	n/a	Chisq	0.000654	n/a
\mathbb{R}^2	0.994673	n/a	\mathbf{R}^2	0.943791	n/a

Figure S14. ln([EtCH₂N(Bpin)₂]₀/[EtCH₂N(Bpin)₂]_t) vs time; non-linear kinetics

Figure S15. 1/[EtCH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S16. [Mg] vs k_{obs} ; non-linear

Figure S17. $[Mg]^2$ vs k_{obs}

	Value	Error
m_1	0.001481	0.000040
m ₂	0.397084	0.018813
Chisq	0.002838	n/a
\mathbf{R}^2	0.993311	n/a

Figure S18. $[Mg]^3$ vs k_{obs}

Variable [Mg] under *pseudo*-first order in [EtCN]

Figure S19. [EtCH₂N(Bpin)₂] vs time; variable [Mg] under *pseudo*-first order in [EtCN] (4.0M) whilst keeping [HBpin] (0.8 M) invariant

	[Mg] = 0.032M			[Mg] =	0.040M
	Value	Error		Value	Error
m1	0.020662	0.000261	m1	0.012806	0.000411
m2	0.001077	0.000044	m2	0.000985	0.000043
Chisq	0.007186	n/a	Chisq	3.5E-05	n/a
\mathbf{R}^2	0.985102	n/a	\mathbf{R}^2	0.986742	n/a
	[Mg] =	0.048M		[Mg] =	0.060M
	Value	Error		Value	Error
m ₁	0.032003	0.000238	m ₁	0.019622	0.000198
m ₂	0.000825	0.000034	m2	0.000684	0.000034
Chisq	3.97E-05	n/a	Chisq	0.019062	n/a
\mathbf{R}^2	0.981993	n/a	\mathbf{R}^2	0.978871	n/a

Figure S20. $ln([EtCH_2N(Bpin)_2]_0/[EtCH_2N(Bpin)_2]_t)$ vs time; non-linear kinetics

Figure S21. 1/[EtCH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S22. [Mg] vs k_{obs} ; indicates 1st order dependence on [Mg]

Variable [EtCN] approaching 2:1 reaction stoichiometry

Figure S23. $[EtCH_2N(Bpin)_2]$ vs time; variable [EtCN] whilst keeping [Mg] = 0.04M and [HBpin] = 0.84M

	[EtCN] =	= 0.2M		[EtCN] = 0.4M			[EtCN]	= 0.8M
	Value	Error		Value	Error		Value	Error
m ₁	0.070346	0.003208	m1	0.101748	0.001263	m ₁	0.108361	0.010890
m ₂	0.009723	0.000572	m2	0.011449	0.000118	m2	0.016036	0.000680
Chisq	0.00172655	n/a	Chisq	2.398E-06	n/a	Chisq	0.0031748	n/a
\mathbf{R}^2	0.993134	n/a	\mathbf{R}^2	0.999147	n/a	\mathbf{R}^2	0.995617	n/a
	[EtCN] =	= 1.2M		[EtCN]	= 1.6M		[EtCN]	= 2.0M
	Value	Error		Value	Error		Value	Error
m ₁	0.188108	0.000651	m ₁	0.094968	0.001308	m ₁	0.117474	0.003765
m ₂	0.017388	0.000133	m2	0.019539	0.000181	m ₂	0.017587	0.000522
Chisq	0.00023175	n/a	Chisq	9.846E-05	n/a	Chisq	0.0012035	n/a
\mathbf{R}^2	0.999825	n/a	\mathbf{R}^2	0.999569	n/a	\mathbf{R}^2	0.995613	n/a
	[EtCN] =	= 2.4M		[EtCN]	= 3.2M		[EtCN]	= 4.0M
	Value	Error		Value	Error		Value	Error
m ₁	0.146617	0.001870	m1	0.217298	0.000913	m_1	0.274767	0.001674
m ₂	0.016518	0.000309	m ₂	0.016029	0.000244	m ₂	0.015817	0.000448
Chisq	0.00276225	n/a	Chisq	7.272E-05	n/a	Chisq	0.0018655	n/a
\mathbf{R}^2	0.997931	n/a	\mathbf{R}^2	0.999536	n/a	\mathbf{R}^2	0.998402	n/a

Figure S24. $ln([EtCH_2N(Bpin)_2]_0/[EtCH_2N(Bpin)_2]_t)$ vs time; non-linear kinetics

Figure S25. 1/[EtCH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S26. [EtCN] vs k_{obs}; indicating variable dependence on [EtCN] upon rate of reaction

	[EtCN] = 0.	2 – 1.6M		[EtCN] = 1	1.6 – 2.4M		[EtCN] = 2	2.4 - 4.0M
	Value	Error		Value	Error		Value	Error
m1	0.008930	0.000868	m1	0.025434	0.001291	m ₁	0.017523	0.000326
m2	0.007020	0.000883	m2	-0.003776	0.000637	m2	-0.000438	0.000100
Chisq	0.02757781	n/a	Chisq	0.0137380	n/a	Chisq	0.0247721	n/a
\mathbb{R}^2	0.95470	n/a	\mathbb{R}^2	0.9592	n/a	\mathbb{R}^2	0.9262	n/a

Variable [HBpin] approaching 2:1 reaction stoichiometry

Figure S27. $[EtCH_2N(Bpin)_2]$ vs time for variable [HBpin] whilst keeping [Mg] = 0.04M and [EtCN] = 0.4M

	[HBpin] = 3.2M				
	Value Error				
m_1	0.136191	0.001343			
m_2	0.007001	0.000079			
Chisq	0.0039901	n/a			
\mathbf{R}^2	0.998473	n/a			

Chisq	0.0561306	n/a		
\mathbf{R}^2	0.989071	n/a		
	[HBpin] = 5.6M			
	Value	Error		
m1	0.091912	0.002417		
m2	0.001987	0.000074		
C1 ·				

0.986156

Value

 m_1

 m_2

 \mathbb{R}^2

0.090523

0.011946

[HBpin] = 1.6M

Error

0.004952

0.000419

n/a

	[HBpin] = 4.0M				
	Value Error				
m1	0.095307	0.098612			
m ₂	0.002462	0.000767			
Chisq	7.5365E-06	n/a			
\mathbf{R}^2	0.989688	n/a			

Value

 m_1

 m_2

Chisq R²

0.101748

0.011449

0.999147

2.3979E-06

[HBpin] = 0.8M

Error

0.001263

0.000118

n/a

n/a

	[HBpin] = 8.0M			
	Value	Error		
m1	0.076936	0.001491		
m_2	0.001976	0.000042		
Chisq	0.0020196	n/a		
\mathbb{R}^2	0.995011	n/a		

Figure S28. ln([EtCH₂N(Bpin)₂]₀/[EtCH₂N(Bpin)₂]_t) vs time; non-linear kinetics

Figure S29. 1/[EtCH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S30. [HBpin] vs k_{obs}; indicates a variable dependence upon rate of reaction with changing [HBpin]

Variable Temperature Studies

Figure S31. [EtCN] vs time; variable temperature

	T = 3	T = 310 K			T = 3	15 K
	Value	Error			Value	Error
m1	0.293231	0.006892		m1	0.391690	0.003811
m2	-0.001765	0.000097		m2	-0.004048	0.000078
Chisq	0.007775	n/a		Chisq	0.005843	n/a
\mathbb{R}^2	0.995548	n/a		\mathbb{R}^2	0.995542	n/a
	T = 3	20 K			T = 3	325 k
	Value	Error			Value	Error
m1	0.305263	0.001915		m ₁	0.256095	0.003864
m2	-0.008599	0.000116		m ₂	-0.014385	0.000462
Chisq	0.000411	n/a		Chisq	0.010242	n/a
\mathbf{R}^2	0.997624	n/a		\mathbf{R}^2	0.993854	n/a

Figure S32. ln([EtCN]₀/[EtCN]_t) vs time; non-linear kinetics

Figure S33. 1/[EtCN] vs time; non-linear kinetics

Figure S34. Eyring Plot – Ln(k/T) vs 1/T

	Value	Error
m1	23.537	1.790
m2	-12354	572.60
Chisq	0.00398094	n/a
\mathbb{R}^2	0.9957	n/a

This graph was used to calculate the following Activation Energy Parameters, least square error analysis was also carried to provide accurate error information.

	Value	Error
ΔH	102.71 kJ mol ⁻¹	± 4.76
ΔS	-1.85 J k ⁻¹ mol ⁻¹	± 14.88

Figure S35. Arrhenius Plot - Ln(k) vs 1/T

	Value	Error
m1	30.304	1.785
m2	-12673	570.876
Chisq	0.004023456	n/a
R ²	0.9960	n/a

This graph was used to calculate the following Activation Energy Parameter; least square error analysis was also carried to provide accurate error information.

	Value	Error
Ea	105.36 kJ mol ⁻¹	± 4.75

Aryl Nitrile Kinetics

Hammett plot

Standard reaction used of 10 mg (0.02 mmol, ie. 10 mol%) of LMgBu was dissolved in 0.5 ml of C_6D_6 , 60.9 µL (0.42 mmol) of pinacolborane was then added followed by 0.2 mmol of Nitrile. ¹H NMR spectra were collected at consistent intervals until reaction reached the desired 3 half-lives (80 % product conversion). Reaction was carried out with 8 different aryl substituted nitriles: 4-methoxybenzonitrile, para-tolunitrile, meta-tolunitrile, 3-methoxybenzonitrile, 3-Fluorobenzonitrile, 4-Chlorobenzonitrile, 4-(trifluoromethyl)benzonitrile, and benzonitrile. All reactions were carried out at 323 K.

Figure S36. [ArCN] vs time; non-linear kinetics

Figure S37. $ln([ArCN]_0/[ArCN]_t)$ vs time for a series of different aryl nitriles

	p-Me			p-C	2F ₃		p-MeO		
	Value	Error			Value	Error		Value	Error
m ₁	0.021810	0.002473		m1	0.027300	0.011683	m1	0.035330	0.005828
m2	0.001560	0.000006		m2	0.002080	0.000028	m_2	0.002190	0.000015
Chisq	0.004459	n/a		Chisq	0.003583	n/a	Chisq	0.006753	n/a
\mathbb{R}^2	0.99949	n/a		\mathbb{R}^2	0.99699	n/a	\mathbb{R}^2	0.99846	n/a

	BnCN			m-	·F		p-Cl	
	Value	Error		Value	Error		Value	Error
m ₁	0.029425	0.006618	m_1	0.019040	0.002459	m1	-0.097600	0.005398
m2	0.000949	0.000012	m2	0.001360	0.000005	m2	0.048200	0.000011
Chisq	0.011518	n/a	Chisq	0.002541	n/a	Chisq	0.064175	n/a
\mathbb{R}^2	0.996445	n/a	\mathbb{R}^2	0.99975	n/a	\mathbf{R}^2	0.99890	n/a

	m-N		m-l	Me	
	Value	Error		Value	Error
m ₁	0.054630	0.006236	m ₁	0.032360	0.006857
m2	0.001090	0.000013	m_2	0.001060	0.000015
Chisq	0.042573	n/a	Chisq	0.015722	n/a
\mathbf{R}^2	0.99717	n/a	\mathbf{R}^2	0.99640	n/a

Figure S38. 1/[ArCN] vs time; non-linear kinetics

Figure S39. Hammett Plot; k_{obs} taken from 1st order plots

	Electron Don (ED	ating Groups G)		Electron W Groups	ithdrawing (EWG)
	Value	Error		Value	Error
m1	-0.021180	0.020524	m1	0.004090	0.017839
m2	-1.395670	0.125666	m ₂	0.650020	0.057909
Chisq	0.021751	n/a	Chisq	0.001125	n/a
\mathbb{R}^2	0.98404 n/a		\mathbb{R}^2	0.97674	n/a

	ρ value
Electron donating group (EDG)	-1.40
Electron withdrawing group (EWG)	+0.65

Electron Donating Aryl nitrile (*p*-MeOC₆H₄CN)

Determination of Catalyst order

Figure S40. [p-MeOC₆H₄CN] vs time; non-linear kinetics for 1:2 p-MeOC₆H₄CN:HBpin

	[Mg] 0.0	0802 M		[Mg] 0.0	02004 M
	Value	Error		Value	Error
m1	0.002229	0.003687	m1	-0.071470	0.010574
m2	0.000957	0.000007	m2	0.002100	0.000024
Chisq	7.7E-05	n/a	Chisq	0.021781	n/a
\mathbf{R}^2	0.998821	n/a	\mathbf{R}^2	0.99769	n/a

	[Mg] 0.0	0481 M		[Mg] 0.0721 M		
	Value	Error		Value	Error	
m1	-0.110970	0.031377	m1	-0.095350	0.034113	
m ₂	0.003820	0.000121	m ₂	0.004950	0.000179	
Chisq	0.043733	n/a	Chisq	0.034514	n/a	
R^2	0.99012	n/a	\mathbf{R}^2	0.99090	n/a	

Figure S42. 1/[p-MeOC₆H₄CN] vs time; non-linear kinetics for 1:2 p-MeOC₆H₄CN:HBpin

Figure S43. [Mg] vs k_{obs}; indicating a first order dependence on [Mg]

	Value	Error
m1	0.000688	0.000239
m2	0.061193	0.005354
Chisq	0.020769	n/a
\mathbf{R}^2	0.984918	n/a

Determination of order in [*p*-MeOC₆H₄CN]

Figure S44. [*p*-MeOC₆H₄CH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S45. ln([p-MeOC₆H₄CH₂N(Bpin)₂]₀/[p-MeOC₆H₄CH₂N(Bpin)₂]_t) vs time; non-linear kinetics

Figure S47. $[p-MeOC_6H_4CH_2N(Bpin)_2]^2$ vs time

	[EDG] = 0.4M			[EDG] = 0.8M			[EDG]	= 1.6M
	Value	Error		Value	Error		Value	Error
m ₁	8.0000E-08	4.89E-07	m1	0.000102	3.018E-05	m1	0.000094	6.287E-06
m ₂	2.0000E-08	6.78E-10	m2	0.000000	6.790E-08	m_2	0.000001	1.414E-08
Chisq	0.01609483	n/a	Chisq	0.746088	n/a	Chisq	0.007088	n/a
\mathbf{R}^2	0.961347	n/a	\mathbf{R}^2	0.985122	n/a	\mathbb{R}^2	0.997887	n/a

	[EDG]	= 2.4M		[EDG]	= 3.2M
	Value	Error		Value	Error
m ₁	0.000401	3.360E-05	m ₁	0.000235	8.774E-05
m ₂	0.000004	7.185E-08	m_2	0.000008	1.788E-07
Chisq	0.01585	n/a	Chisq	0.001265	n/a
\mathbb{R}^2	0.993990	n/a	\mathbb{R}^2	0.98930136	n/a

Figure S48. [p-MeOC₆H₄CN] vs k_{obs}; non-linear fit

Figure S49. $[p-\text{MeOC}_6\text{H}_4\text{CN}]^{-1}$ vs k_{obs}; non-linear fit

Figure S50. $[p-MeOC_6H_4CN]^{-1}$ vs k_{obs}

Determination of order in [HBpin]

Figure S51. [*p*-MeOC₆H₄CH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S52. ln([p-MeOC₆H₄CH₂N(Bpin)₂]₀/[p-MeOC₆H₄CH₂N(Bpin)₂]_t) vs time; non-linear kinetics

Figure S53. 1/[p-MeOC₆H₄CH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S54. $[p-\text{MeOC}_6\text{H}_4\text{CH}_2\text{N}(\text{Bpin})_2]^2$ vs time; induction period of 120 mins observed

Figure S55. $[p-MeOC_6H_4CH_2N(Bpin)_2]^2$ vs time; induction period of 120 minutes removed

	[HBpin] = 0.57M			[HBpin] = 1.14M			[HBpin] = 1.71M	
	Value	Error		Value	Error		Value	Error
m ₁	-0.000048	0.000004	m1	-0.001327	0.000074	m ₁	-0.002571	0.000544
m2	0.000001	0.000000	m ₂	0.000016	0.000000	m2	0.000063	0.000001
Chisq	0.011388	n/a	Chisq	0.001187	n/a	Chisq	0.002314	n/a
\mathbb{R}^2	0.9967516	n/a	\mathbf{R}^2	0.998651	n/a	\mathbb{R}^2	0.995136	n/a

	[HBpin] = 2.0M			[HBpin]	= 2.29M
	Value	Error		Value	Error
m1	-0.009919	0.000752	m1	-0.011227	0.000939
m2	0.000104	0.000001	m2	0.000135	0.000002
Chisq	0.014046	n/a	Chisq	0.001852	n/a
\mathbf{R}^2	0.996698	n/a	\mathbb{R}^2	0.997134	n/a

Figure S56. [HBpin] vs k_{oba} ; non-linear fit

Figure S57. $[HBpin]^2$ vs k_{obs} ; linear fit indicates a second order dependence on [HBpin]

m ₂	0.000028	0.000002
Chisq	0.015630413	n/a
\mathbf{R}^2	0.98985985	n/a

Figure S58. [HBpin]³ vs k_{obs}

Variable [Mg] under *pseudo*-first order conditions in [HBpin]

Figure S59. [p-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S60. $\ln([p-MeOC_6H_4CN]_0/[p-MeOC_6H_4CN]_t)$ vs time; variable [Mg] under *pseudo*-first order conditions in [HBpin] (8.0 M) whilst keeping [p-MeOC_6H_4CN] (0.4 M) invariant

	[Mg] = 0	.020M	Γ		[Mg] =	0.040M		[Mg] = 0).032M
	Value	Error			Value	Error		Value	Error
m ₁	0.043055	0.007416		m ₁	0.057696	0.016640	m ₁	0.018183	0.016640
m2	0.000386	0.000017		m_2	0.002037	0.000070	m_2	0.001376	0.000070
Chisq	0.225892	n/a		Chisq	0.049623	n/a	Chisq	0.004929	n/a
\mathbf{R}^2	0.967518	n/a		\mathbb{R}^2	0.989386	n/a	\mathbb{R}^2	0.993879	n/a

	[Mg] = 0.048M			[Mg] = 0).064M
	Value	Error		Value	Error
m1	0.068100	0.023870	m_1	0.021445	0.014694
m2	0.003433	0.000125	m_2	0.007113	0.000121
Chisq	0.036552	n/a	Chisq	0.001945	n/a
\mathbf{R}^2	0.990754	n/a	\mathbb{R}^2	0.998838	n/a

Figure S62. [Mg] vs k_{obs} ; non-linear fit. k_{obs} values taken from 1^{st} order plot

Figure S63. $[Mg]^2$ vs k_{obs}

	Value	Error
m_1	-0.000585	0.000225
m ₂	1.832664	0.099105
Chisq	0.010325	n/a
\mathbb{R}^2	0.991303	n/a

Figure S64. $[Mg]^3$ vs k_{obs}

	Value	Error
m_1	0.000391	0.000119
m ₂	25.944599	0.904880
Chisq	0.008239727	n/a
\mathbf{R}^2	0.996364	n/a

Variable [HBpin] under near stoichiometric reaction conditions

Figure S65. [*p*-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S66. $\ln([p-MeOC_6H_4CN]_0/[p-MeOC_6H_4CN]_t)$ vs time

	[HBpin] =	= 0.8M		[HBpin]	= 1.6M		[HBpin]	= 2.4M
	Value	Error		Value	Error		Value	Error
m1	-0.095968	0.028964	m ₁	-0.075344	0.021288	m ₁	-0.042223	0.015034
m2	0.003711	0.000122	m2	0.004009	0.000100	m2	0.004969	0.000079
Chisq	0.041384	n/a	Chisq	0.026625	n/a	Chisq	0.006756	n/a
\mathbb{R}^2	0.990307	n/a	\mathbb{R}^2	0.995078	n/a	\mathbb{R}^2	0.998236	n/a

	[HBpin] = 4.0M			[HBpin]	= 5.6M
	Value	Error		Value	Error
m1	0.039869	0.019001	m ₁	0.086297	0.020508
m2	0.003409	0.000132	m_2	0.002142	0.000067
Chisq	0.021209	n/a	Chisq	0.061684	n/a
\mathbb{R}^2	0.992589	n/a	\mathbb{R}^2	0.988388	n/a

Figure S67. 1/[p-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S68. [HBpin] vs k_{obs} ; indicates a variable dependence upon [HBpin] with respect to rate of reaction

	[HBpin] 0.8 – 2.4M			[HBpin] = 1	2.4 – 5.6M
	Value	Error		Value	Error
m1	0.002957	0.000413	m1	0.007081	0.000222
m ₂	0.000794	0.000239	m_2	-0.000897	0.000053
Chisq	0.048987	n/a	Chisq	0.001245	n/a
\mathbf{R}^2	0.919695	n/a	\mathbf{R}^2	0.997477	n/a

Figure S69. $[HBpin]^2$ vs k_{obs}; increased linearity for 0.8-2.4M

Figure S70. [HBpin]³ vs k_{obs}; increased linearity for 0.8 - 2.4M

	[HBpin] 0.8 – 2.4M			[HBpin] =	2.4 – 5.6M
	Value	Error		Value	Error
m ₁	0.003644	0.000027	m1	0.004897	0.000503
m2	0.000095	0.000003	m2	-0.000016	0.000005
Chisq	0.00117	n/a	Chisq	0.064303	n/a
\mathbf{R}^2	0.998807	n/a	\mathbf{R}^2	0.925949	n/a

Variable Temperature Studies

Figure S71. [*p*-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S72. $\ln([p-MeOC_6H_4CN]_0/[p-MeOC_6H_4CN]_t)$ vs time

	313 K					
	Value	Error				
m1	-0.036570	0.004240				
m2	0.001210	0.000008				
Chisq	0.011917	n/a				
\mathbb{R}^2	0.99906	n/a				

	323	K		
	Value	Error		
m_1	-0.074960	0.010727		
m_2	0.002110	0.000023		
Chisq	0.021446	n/a		
\mathbb{R}^2	0.99776	n/a		

	318 K	
	Value	Error
m ₁	-0.058620	0.008199
m2	0.001750	0.000017
Chisq	0.017399	n/a
\mathbb{R}^2	0.99818	n/a

	328 K	
	Value	Error
m1	-0.056910	0.010357
m ₂	0.002930	0.000031
Chisq	0.012625	n/a
\mathbf{R}^2	0.99850	n/a

Figure S73. 1/[p-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S74. Eyring Plot; 1/T vs Ln(k/T)

	Value	Error	
m_1	2.551282	2.627555	
m ₂	-5999.875772	843.654844	
Chisq	0.038217588	n/a	
R ²	0.961961	n/a	

The graph shown as Fig. S74 was used to calculate the following Activation Energy Parameters, least square error analysis was also carried to provide accurate error information.

	Value	Error	
ΔH	49.88 kJ mol ⁻¹	± 7.01	
ΔS	-176.33 J k ⁻¹ mol ⁻¹	± 21.85	

	Value Error			
m1	9.324641	2.625809		
m ₂	-6321.450699	843.094344		
Chisq	0.034447917	n/a		
R^2	0.965647	n/a		

This graph was used to calculate the following Activation Energy Parameter; least square error analysis was also carried to provide accurate error information.

	Value	Error	
Ea	52.56 kJ mol ⁻¹	± 7.01	

Electron Withdrawing aryl nitrile - m-MeOC₆H₄CN

Determination of order in [Mg]

Figure S76. [*m*-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S77. $\ln([m-MeOC_6H_4CN]_0/[m-MeOC_6H_4CN]_t)$ vs time

	[Mg] 0.01202 M			[Mg] 0.0	2806 M	
	Value	Error		Value	Error	
m_1	0.004713	0.001563	m ₁	0.054630	0.006236	
m_2	0.000702	0.000003	m2	0.001090	0.000013	
Chisq	0.0005	n/a	Chisq	0.042573	n/a	
\mathbb{R}^2	0.999650	n/a	\mathbf{R}^2	0.99717	n/a	
	[Mg] 0.05611 M			[Mg] 0.0.	[Mg] 0.0.07214 M	
	Value	Error		Value	Error	
m1	0.061530	0.011542	m	0.046350	0.024226	
m ₂	0.002670	0.000035	m ₂	0.004300	0.000127	
Chisa	0.017716	n/a	Chisq	0.010818	n/a	
Cinoq			2 -			
R^2	0.99776	n/a	R ²	0.99392	n/a	

Figure S78. 1/[*m*-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S79. [Mg] vs k_{obs} ; non-linear fit

Figure S80. [Mg]² vs k_{obs}; indicating a second order dependence upon [Mg]

	Value	Error
m1	0.000545	0.000074
m ₂	0.708969	0.024210
Chisq	0.001466	n/a
\mathbf{R}^2	0.997673	n/a

Figure S81. $[Mg]^{1/2}$ vs k_{obs} ; non-linear fit

Determination of order in [Ar(EWG)CN]

Figure S82. [m-MeOC₆H₄CN] vs time; non-linear fit

Figure S83. $\ln([m-MeOC_6H_4CN]_0/[m-MeOC_6H_4CN]_t)$ vs time; linear fit with induction period 0-160 min

Figure S84. $\ln([m-MeOC_6H_4CN]_0/[m-MeOC_6H_4CN]_t)$ vs time; induction period omitted for k_{obs} values

	[EWG]	0.4M		[EWG	0.8M
	Value	Error		Value	Error
m1	0.137358	0.024792	m1	0.188078	0.006876
m2	0.001540	0.000050	m2	0.000816	0.000013
Chisq	0.006875	n/a	Chisq	0.03394	n/a
\mathbf{R}^2	0.985440	n/a	\mathbf{R}^2	0.996050	n/a
	[EWG]	1.6M		[EWG] 2.4M
	Value	Error		Value	Error
m ₁	0.104483	0.001651	m1	0.088384	0.002056
m2	0.000385	0.000003	m ₂	0.000264	0.000004
Chisq	0.003903	n/a	Chisq	0.003444	n/a
R^2	0.998953	n/a	\mathbf{R}^2	0.996701	n/a

Figure S85. 1/[*m*-MeOC₆H₄CN] vs time; non-linear fit

Figure S86. [*m*-MeOC₆H₄CN] vs k_{obs}; non-linear kinetics

Figure S87. $[m-MeOC_6H_4CN]^{-1}$ vs k_{obs}; indicating a -1 order dependence upon [Ar(EWG)CN]

	Value	Error
m_1	0.000015	0.000024
m ₂	0.000615	0.000017
Chisq	0.000626	n/a
\mathbb{R}^2	0.998542	n/a

Variable [Mg] under *pseudo*-first order in [HBpin]

Figure S88. [*m*-MeOC₆H₄CN] vs time; non-linear fit

Figure S891. $\ln([m-MeOC_6H_4CN]_0/[m-MeOC_6H_4CN]_t)$ vs time; induction period observed at lower [Mg]

Figure S90. $\ln([m-MeOC_6H_4CN]_0/[m-MeOC_6H_4CN]_t)$ vs time; induction period of 120 min removed for 2 lowest [Mg]

	[Mg] 0.0	012M		[Mg] 0.040M			[Mg] 0	.048M
	Value	Error		Value	Error		Value	Error
m ₁	0.179299	0.024145	m ₁	0.137358	0.024792	m1	0.068124	0.014779
m2	0.000892	0.000049	m_2	0.001540	0.000050	m_2	0.002520	0.000048
Chisq	0.072735	n/a	Chisq	0.006875	n/a	Chisq	0.027985	n/a
\mathbf{R}^2	0.959934	n/a	\mathbf{R}^2	0.985440	n/a	\mathbf{R}^2	0.995610	n/a

	[Mg] 0	.064M	[[Mg] 0.	.068M
	Value	Error			Value	Error
m1	0.059523	0.036864		m1	-0.020818	0.028766
m2	0.004084	0.000220		m ₂	0.005130	0.000172
Chisq	0.024854	n/a		Chisq	0.001947	n/a
R ²	0.982841	n/a		\mathbb{R}^2	0.993308	n/a

Figure S91. 1/[*m*-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S92. [Mg] vs kobs; non-linear fit

Figure S93. $[Mg]^2$ vs k_{obs} ; non-linear fit

Figure S94. $[Mg]^3$ vs k_{obs} ; indicated 3rd order dependence upon [Mg] under *pseudo*-first order conditions in [HBpin]

	Value	Error
m1	0.000879	0.000143
m ₂	12.949454	0.746753
Chisq	0.008512641	n/a
\mathbf{R}^2	0.990122	n/a

Variable [Mg] under *pseudo*-first order in [*m*-MeOC₆H₄CN]

Figure S95. [m-MeOC₆H₄CH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S96. $\ln([m-MeOC_6H_4CH_2N(Bpin)_2]_0/[m-MeOC_6H_4CH_2N(Bpin)_2]_t)$ vs time; non-linear kinetics

Figure S97. 1/[*m*-MeOC₆H₄CH₂N(Bpin)₂] vs time; non-linear kinetics

Figure S98. $[m-MeOC_6H_4CH_2N(Bpin)_2]^2$ vs time; variable [Mg] under *pseudo*-first order conditions in $[m-MeOC_6H_4CN]$ (4.0M) whilst keeping [HBpin] (0.8M) invariant

	[Mg] 0.0)20M		[Mg] 0.032M			[Mg] 0	.048M
	Value	Error		Value	Error		Value	Error
m ₁	-2.68E-06	5.97E-07	m ₁	2.17E-05	2.23E-06	m ₁	-1.53E-05	4.56E-06
m2	2.90E-08	1.34E-09	m2	1.50E-07	4.64E-09	m_2	5.90E-07	1.75E-08
Chisq	0.192125	n/a	Chisq	0.038156	n/a	Chisq	0.04374	n/a
\mathbb{R}^2	0.962262	n/a	\mathbb{R}^2	0.983011	n/a	\mathbb{R}^2	0.991255	n/a

Figure S99. [Mg] vs k_{obs} ; non-linear fit

Figure S100. $[Mg]^2$ vs k_{obs} ; non-linear fit

Figure S101. $[Mg]^3$ vs k_{obs}; indicating 3rd order dependence on [Mg] under *pseudo*-first order conditions in [*m*-MeOC₆H₄CN]

	Value	Error
m_1	-2.20E-08	9.96E-09
m ₂	0.005513	0.000149
Chisq	0.000819	n/a
\mathbf{R}^2	0.999268	n/a

Variable Temperature Studies

Figure S102. [*m*-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S103. $\ln([m-MeOC_6H_4CN]_0/[m-MeOC_6H_4CN]_t)$ vs time; variable temperature under standard reaction conditions

Figure S104. 1/ *m*-MeOC₆H₄CN] vs time; non-linear kinetics

Figure S105. Eyring Plot; 1/T vs Ln(k/T)

	\mathbb{R}^2	0.988773	n/a	
vas used to calculate	the follow	ving Activation	Energy Para	meters least s

0.007110758

n/a

Chisq

This graph was used to calculate the following Activation Energy Parameters, least square error analysis was also carried to provide accurate error information.

		Value	Error
Δ	Η	45.75 kJ mol ⁻¹	± 3.44
Δ	S	-190.84 J k ⁻¹ mol ⁻¹	± 10.61

Figure S106. Arrhenius Plot; 1/T vs Ln(k)

	Value	Error
m1	7.585536	1.272382
m2	-5826.648141	413.118121
Chisq	0.006290611	n/a
\mathbf{R}^2	0.990046	n/a

This graph was used to calculate the following Activation Energy Parameter; least square error analysis was also carried to provide accurate error information.

	Value	Error
Ea	48.44 kJ mol ⁻¹	± 3.43

Kinetic Isotope Effect - EtCN

Using the standard reaction: LMgBu (10 mg, 0.02 mmol ie. 10 mol%) was dissolved in 0.5 ml of C_6D_6 , 110.5 μ L (0.42 mmol) of deuterated pinacolborane was then added followed by 0.2 mmol of propionitrile. ¹H NMR spectra were collected at consistent intervals until the reaction reached the desired 3 half-lives (80 % product conversion). All reactions were carried out at 323 K.

Figure S107: Determination of KIE for propionitrile dihydroboration

 $K_{\rm H}\!/k_{\rm D}=0.0109\!/0.0039=2.79$

Kinetic Isotope Effect – p-MeOC₆H₄CN

Using the standard reaction: LMgBu (10 mg, 0.02 mmol ie. 10 mol%) was dissolved in 0.5 ml of C_6D_6 , 110.5 μ L (0.42 mmol) of deuterated pinacolborane was then added followed by 0.2 mmol of 4-methoxybenzonitrile. ¹H NMR spectra were collected at consistent intervals until the reaction reached the desired 3 half-lives (80 % product conversion). All reactions were carried out at 323 K.

Figure S108: Determination of KIE for (4-methoxy)benzonitrile dihydroboration.

Kinetic Isotope Effect - m-MeOC₆H₄CN

Using the standard reaction: LMgBu (10 mg, 0.02 mmol ie. 10 mol%) was dissolved in 0.5 ml of C_6D_6 , 110.5 μ L (0.42 mmol) of deuterated pinacolborane was then added followed by 0.2 mmol of 3-methoxybenzonitrile. ¹H NMR spectra were collected at consistent intervals until the reaction reached the desired 3 half-lives (80 % product conversion). All reactions were carried out at 323 K.

Figure S109: Determination of KIE for (3-methoxy)benzonitrile dihydroboration.

KIE = 1