Cascade Reactions of Nitrogen-Substituted Isocyanates: A New Tool in Heterocyclic Chemistry

Jean-François Vincent-Rocan, Ryan A. Ivanovich, Christian Clavette, Kyle Leckett, Julien Bejjani, André M. Beauchemin*

Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa. 10 Marie-Curie, Ottawa, ON, K1N 6N5, Canada.

Electronic Supplementary information

Table of Contents	
General Information	2
Materials	2
Substitution-Hydroamination Cascade (Tables 1-2)	2
Cascade Synthesis of <i>N</i> -Substituted Hydantoins (Tables 3-4)	3
Phenyl Carbazate Substitution (Table 5)	3
Procedures for Equations 5-7	7
Phthalazinones (Table 6)	8
Pyrazoles (Tables 7)	11
Other Attempts to form Pyrazoles (Not Shown in Table 7)	23
Azauracils (Tables 8-9)	25
References	40
Spectra	41

General Information

Purification of reaction products was carried out by flash column chromatography using Silicycle silica gel (40-63 μ m), unless otherwise noted. Analytical thin layer chromatography (TLC) was performed on aluminum, cut to size. Visualization was accomplished with UV light followed by staining with a potassium permanganate solution and heating.

¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE 300 MHz and 400 MHz spectrometers at ambient temperature, unless otherwise indicated. Spectral data was reported in ppm using solvent as the reference (CDCl₃ at 7.26 ppm, C₆D₆ at 7.15 ppm, or DMSO- d_6 at 2.50 ppm for ¹H NMR and CDCl₃ at 77.0 ppm or DMSO- d_6 at 39.43 for ¹³C NMR). ¹H NMR data was reported as: multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintet, sext. = sextuplet, sept. = septuplet, m = multiplet), integration, and coupling constant(s) in Hz. Infrared (IR) spectra were obtained with neat thin films on a sodium chloride disk and were recorded on a Bomem Michelson 100 Fourier transform infrared spectrometer (FTIR). High-resolution mass spectroscopy (HRMS) was performed on a Kratos Concept-11A mass spectrometer with an electron beam of 70 eV at the Ottawa-Carleton Mass Spectrometry Centre.

Materials

Unless otherwise noted, all commercially available materials were purchased from commercial sources and used without further purification.

Substitution-Hydroamination Cascade (Tables 1-2)

Detailed experimental procedures and characterization data has been published and can be obtained in the supporting information of a previous communication from our group.⁷ A representative procedure is included below.

N-(2-Methylpyrrolidin-1-yl)pyrrolidine-1-carboxamide (Table 1, 2a): An oven dried 5 mL microwave tube was charged with a stir bar, capped with a septum and purged with argon and an outlet for 5 minutes. Phenyl 2-(pent-4-en-1-yl)hydrazinecarboxylate (0.197 g, 0.894 mmol), pyrrolidine (0.0699 g, 0.984 mmol), and α,α,α -trifluorotoluene (3.0 mL) were added to the seal tube, while keeping it under an argon atmosphere. The septum was removed and the tube was then quickly sealed with a microwave cap and heated for six hours at 120 °C under microwave irradiation. The tube was cooled to ambient temperature, volatiles were removed under reduced pressure and the title compound was purified by column chromatography (4% MeOH/CH₂Cl₂)

and obtained as a white solid (0.155 g, 88% isolated yield, 88% NMR yield). TLC $R_f = 0.25$ in 4% MeOH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃) δ 4.90 (s, br, 1H), 3.39-3.25 (m, 5H), 2.67 (dquintet, J = 9.2, 6.4 Hz, 1H), 2.55 (q, J = 8.8 Hz, 1H), 1.96-1.64 (m, 7H), 1.44 (dddd, J = 12.1, 10.2, 9.4, 6.5 Hz, 1H), 1.11 (d, J = 6.1 Hz, 3H); ¹³C NMR (100 MHz; CDCl₃) 157.3, 62.1 (CH), 56.3 (CH₂), 46.1 (CH₂), 30.5 (CH₂), 25.5 (CH₂), 20.2 (CH₂), 18.3 (CH₃); IR (film) 3230, 2968, 2869, 1645, 1542, 1394 cm⁻¹. HRMS (ES): Exact mass calcd for C₁₀H₁₉N₃O [M]⁻: 196.1488; found [M]⁻: 196.0845.

Cascade Synthesis of N-Substituted Hydantoins (Tables 3-4)

Detailed experimental procedures and characterization data has been published and can be obtained in the supporting information of a previous communication from our group.⁸ a representative procedure is included below.

3-(Benzylamino)-1-methylimidazolidine-2,4-dione (Table 3, 5a): An oven dried microwave tube was charged with a stir bar, capped with a septum and purged with argon and an outlet for 5 minutes. The carbazate (1.0 equiv), amino-ester hydrochloride salt (1.1 equiv), *N*,*N*-diisopropylethylamine (1.2 equiv) and α,α,α -trifluorotoluene (MeCN and MeNO₂) (0.3 M) were added to the seal tube, while keeping it under an argon atmosphere. The septum was removed and the tube was then quickly sealed with a microwave cap and heated between three and six hours at 80-150 °C. The tube was cooled to ambient temperature, concentrated under reduced pressure and the title compound was purified by column chromatography (20% EtOAc/CH₂Cl₂) and was obtained as colorless amorphous solid (0.0610 g, 82 % yield). TLC R_r = 0.19 in 20% EtOAc/CH₂Cl₂ ¹H NMR (300 MHz; CDCl₃): δ 7.42-7.39 (m, 2H), 7.34-7.27 (m, 3H), 4.11 (s, 2H), 3.76 (s, 2H), 2.95 (s, 3H), ¹³C NMR (75 MHz; CDCl₃) δ 167.2 (C), 155.4 (C), 135.7 (C), 129.0 (CH), 128.3 (CH), 127.8 (CH), 54.5 (CH₂), 50.1 (CH₂), 29.8 (CH₂), IR (film) 2982, 1772, 1716, 1440,1260, 1085. HRMS (EI): Exact mass calcd for C₁₁H₁₃N₃O₂ [M]⁺: 219.1008. Found: 219.1003.

Phenyl Carbazate Substitution (Table 5)

General procedure 1: An oven-dried round bottom flask was charged with a stir bar, phenyl carbazate (1.00 equiv.), an amine (1.10 equiv.), DBU (20 mol%), and THF (0.3 M). The mixture was stirred overnight, concentrated under reduced pressure, and purified by flash column chromatography.

Table 5, entry 1: *N*-Hexylhydrazinecarboxamide (9a): Synthesized according to general procedure **1** using phenyl carbazate (0.152 g, 1.00 mmol), hexylamine (0.15 mL, 1.1 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound was purified by column chromatography (5% CH₃OH/CH₂Cl₂) to yield a white solid (0.132 g, 83%). TLC Rf = 0.33 in 5% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 6.88 (br s, 1H), 6.08 (br s, 1H), 3.66 (br s, 2H), 3.16 (dt, *J* = 7.1, 6.2 Hz, 2H), 1.47 (m, 2H), 1.26 (m, 6H), 0.85 (m, 3H). ¹³C NMR (100 MHz; CDCl₃): δ 160.8 (C), 39.5 (CH₂), 31.4 (CH₂), 30.1 (CH₂), 26.4 (CH₂), 22.4 (CH₂), 13.9 (CH₃). IR (film): 3340, 2926, 2860, 2359, 1661, 1622, 1548, 1463, 1375, 1160 cm⁻¹. HRMS (EI): Exact mass calcd for C₇H₁₇N₃O [M]⁺: 159.1372. Found: 159.13553.

Table 5, entry 2: *N***-Benzylhydrazinecarboxamide (9b):** Synthesized according to general procedure 1 using phenyl carbazate (0.152 g, 1.00 mmol), benzylamine (0.12 mL, 1.1 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound was purified by column chromatography (8% CH₃OH/CH₂Cl₂) to yield an amorphous white solid (0.127 g, 77%). TLC Rf = 0.40 in 8% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 7.29 (m, 5H), 6.96 (br s, 1H), 6.48 (br s, 1H), 4.40 (d, *J* = 6.1 Hz, 2H), 3.62 (br s, 2H). ¹³C NMR (100 MHz; CDCl₃): δ 160.7 (C), 139.4 (C), 128.4 (CH), 127.2 (CH), 127.0 (CH), 43.3 (CH₂). IR (film): 3339, 3300, 3194, 2357, 1618, 1555, 1468, 1452, 1265 cm⁻¹. HRMS (EI): Exact mass calcd for C₈H₁₁N₃O [M]⁺: 165.0902. Found: 165.09032.

Table 5, entry 3: *N*,*N*-**Dibenzylhydrazinecarboxamide (9c):** Synthesized according to general procedure **1** using phenyl carbazate (0.152 g, 1.00 mmol), *N*,*N*-dibenzylamine (0.21 mL, 1.1 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound was purified by column chromatography (3% CH₃OH/CH₂Cl₂) to yield an amorphous yellow solid (0.240 g, 94%). TLC Rf = 0.31 in 3% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 7.30 (m, 10H), 6.22 (br s, 1H), 4.47 (s, 4H), 3.83 (s, 2H). ¹³C NMR (100 MHz; CDCl₃): δ 160.7 (C), 140.1 (C), 136.9 (C), 128.7 (CH), 128.2 (CH), 127.9 (CH), 127.4 (CH), 127.0 (CH), 126.7 (CH), 52.9 (CH₂), 49.8 (CH₂). IR (film): 3317, 3028, 2359, 2336, 1616, 1494, 1452, 1400, 1364, 1261 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₅H₁₇N₃O [M]⁺: 255.1372. Found: 255.13965.

Table 5, entry 4: *N*,*N*-**Diisobutylhydrazinecarboxamide (9d):** Synthesized according to general procedure **1** using phenyl carbazate (0.152 g, 1.00 mmol), *N*,*N*-diisobutylamine (0.19 mL, 1.1 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound was purified by column chromatography (3% CH₃OH/CH₂Cl₂) to yield an amorphous yellow solid (0.142 g, 76%). TLC Rf = 0.15 in 5% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 5.75 (br s, 1 H), 3.80 (br s, 2H), 3.02 (d, *J* = 7.5 Hz, 4H), 1.95 (dquint., *J* = 13.8, 6.9 Hz, 2H), 0.88 (d, *J* = 6.7 Hz, 12H). ¹³C NMR (100 MHz; CDCl₃): δ 160.5 (C), 55.2 (CH₂), 27.4 (CH₃), 20.1 (CH). IR (film): 2962, 1713, 1666, 1652, 1616, 1599, 1491, 1265, 1202, 1130 cm⁻¹. HRMS (EI): Exact mass calcd for C₉H₂₁N₃O [M]⁺: 187.1685. Found: 187.1684.

Table 5, entry 5: *N***-Propargylhydrazinecarboxamide (9e):** Synthesized according to general procedure **1** using phenyl carbazate (0.152 g, 1.00 mmol), propargylamine (0.070 mL, 1.1 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound was purified by column chromatography (5% CH₃OH/CH₂Cl₂) to yield an amorphous white solid (0.0600 g, 54%). TLC Rf = 0.13 in 5% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 7.11 (br s, 1 H), 6.60 (br s, 1H), 4.11 (br s, 2H), 3.80 (dd, *J* = 7.1, 2.5 Hz, 2H), 3.01 (t, *J* = 2.5 Hz, 1H). ¹³C NMR (100 MHz; DMSO-*d*₆): δ 159.7 (C), 82.7 (C), 72.2 (CH), 28.5 (CH₂). IR (film): 2350, 1710, 1551, 1357, 1337, 1263, 1040 cm⁻¹. HRMS (EI): Exact mass calcd for C₄H₇N₃O [M]⁺: 113.0589. Not found. LRMS m/z (relative intensity): 57.1 (7.8%), 55.1(4.6 %), 39.0 (28.4%), 32.0 (73.6%), 32.0 (37.4%), 31.0 (8.1 %), 31.0 (5.3%), 28.0 (100%).

Table 5, entry 6: Pyrrolidine-1-carbohydrazide (9f): Synthesized according to general procedure **1** using phenyl carbazate (0.152 g, 1.00 mmol), pyrrolidine (0.090 mL, 1.1 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound was purified by column chromatography (8% CH₃OH/CH₂Cl₂) to yield a yellow oil (0.0940 g, 73%). TLC Rf = 0.37 in 8% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 5.94 (br s, 1H), 3.77 (br s, 2H), 3.28 (t, *J* = 6.7 Hz, 4H), 1.86 (m, 4H). ¹³C NMR (100 MHz; CDCl₃): δ 158.8 (C), 45.3 (CH₂), 25.3 (CH₂). IR (film): 3387, 2978, 2872, 2359, 1616, 1504, 1377 cm⁻¹. HRMS (EI): Exact mass calcd for C₅H₁₁N₃O [M]⁺: 129.0902. Found: 129.08920.

Table 5, entry 7: Morpholine-4-carbohydrazide (9g): Synthesized according to general procedure **1** using phenyl carbazate (0.152 g, 1.00 mmol), morpholine (0.095 mL, 1.1 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound was obtained by filtration of the solution to yield a white amorphous solid (0.122 g, 84%). TLC Rf = 0.27 in 8% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 6.49 (br s, 1H), 3.83 (br s, 2H), 3.64 (t, *J* = 4.7 Hz, 4H), 3.33 (t, *J* = 5.1 Hz, 4H). ¹³C NMR (100 MHz; CDCl₃): δ 160.0 (C), 66.3 (CH₂), 43.6 (CH₂). IR (film): 3344, 2862, 1612, 1506, 1398, 1305, 1269, 1113 cm⁻¹. HRMS (EI): Exact mass calcd for C₅H₁₁N₃O₂ [M]⁺: 145.0851. Found: 145.08383.

Table 5, entry 8: 1-Hydrazinocarbonyl-piperidine-4-carboxylic acid ethyl ester (9h): Synthesized according to general procedure 1 using phenyl carbazate (0.152 g, 1.00 mmol), ethyl isonipecotate (0.173 g, 1.10 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound was purified by column chromatography (5% CH₃OH/CH₂Cl₂) to yield a white amorphous solid (0.183 g, 85%). TLC Rf = 0.20 in 5% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 5.92 (br s, 1H), 4.19-4.09 (m, 2H), 3.93-3.77 (m, 2H), 3.67-3.32 (m, 2H), 2.98-2.85 (m, 2H), 2.55-2.41 (m, 1H), 1.96-1.84 (m, 2H), 1.74-1.59 (m, 2H), 1.28-1.18 (m, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 174.3 (C), 159.8 (C), 60.8 (CH₂), 43.2 (CH₂), 40.9 (CH), 27.8 (CH₂), 14.3 (CH₃). IR (film): 3330, 2952, 1718, 1623, 1606, 1448, 1379, 1313, 1265, 1186, 1164, 1145, 1114, 1095, 1080, 1039 cm⁻¹. HRMS (EI): Exact mass calcd for C₉H₁₇N₃O₃ [M]⁺: 215.1270. Found: 215.1264.

Table 5, entry 9: Piperazine-1,4-dicarbohydrazide (9i): Synthesized according to general procedure **1** using phenylcarbazate (0.152 g, 1.00 mmol), ethyl isonipecotate (0.0430 g, 0.500 mmol), DBU (0.0300 g, 0.200 mmol), and THF (3.3 mL). The title compound precipitated out of solution to afford the pure compound as an amorphous white solid (0.0930 g, 91%). ¹H NMR (300 MHz; DMSO-*d*₆): δ 7.38 (br s, 2H), 3.72 (br s, 4H), 3.24 (m, 8H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 159.6 (C), 43.0 (CH₂). IR (film): 3002, 1733, 1718, 1662, 1633, 1604, 1448, 1315, 1255, 1184, 1164, 1039 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₆H₁₂N₂O₂ [M]⁺: 202.1178. Found: 202.1204.

Procedures for Equations 5-7

Equation 5: 3-Amino-1-methylimidazolidine-2,4-dione (10a): To a solution of phenyl carbazate (1.04 g, 6.80 mmol) in MeCN (20 mL) was added sarcosine ethyl ester hydrochloride (1.14 g, 7.40 mmol) and DIPEA (1.4 mL, 8.0 mmol) and the solution was stirred in a microwave reactor for 6 hours at 120 °C. The solution was concentrated under reduced pressure and purified by silica gel column chromatography using 8% MeOH/CH₂Cl₂ to afford the pure compound as a white amorphous solid (0.800 g, 91%). TLC Rf = 0.29 in 8% MeOH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 3.89 (s, 2H), 3.73 (br s, 2H), 3.03 (s, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 167.9 (C), 155.9 (C), 50.2 (CH₂), 29.9 (CH₃). IR (film): 1782, 1717, 1479, 1448, 1418, 1391, 1265, 1242 cm⁻¹. HRMS (EI): Exact mass calcd for C₄H₇N₃O₂ [M]⁺: 129.0538. Found: 129.0536.

Equation 6: 3-(2,5-Dimethyl-1H-pyrrol-1-yl)-1-methylimidazolidine-2,4-dione (10b): To a solution of amino hydantoin 10a (0.130 g, 1.00 mmol) in PhMe (4.0 mL) was added hexanedione (0.114 g, 1.00 mmol) and PTSA monohydrate (0.0200 g, 8.00 mmol) and the solution was stirred in a microwave reactor for 1 hour at 150 °C. The solution was concentrated under reduced pressure and purified by silica gel column chromatography using 10% EtOAc/CH₂Cl₂ to afford the pure compound as a white amorphous solid (0.187 g, 90%). TLC Rf = 0.54 in 10% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 5.88 (s, 2H), 4.07 (s, 2H), 3.07 (s, 3H), 2.06 (s, 6H). ¹³C NMR (75 MHz; CDCl₃): δ 166.4 (C), 153.2 (C), 127.6 (C), 105.4 (CH), 50.2 (CH₂), 30.3 (CH₃), 10.9 (CH₃). IR (film): 2984, 1760, 1712, 1450, 1438, 1291, 1265, 1242. HRMS (EI): Exact mass calcd for C₁₀H₁₃N₃O₂ [M]⁺: 207.1008. Found: 207.1003.

Equation 7: Ethyl 2-(3-amino-1-benzyl-2-oxoimidazolidin-4-yl)acetate (10c): To a solution of phenyl carbazate (0.0910 g, 0.600 mmol) in MeCN (2.0 mL) was added ethyl (*E*)-4-(benzylamino)-2-butenoate (0.145 g, 0.660 mmol) and the solution was stirred in a microwave reactor for 6 hours at 120 °C. The solution was concentrated under reduced pressure and purified

by silica gel column chromatography using EtOAc to afford the pure compound as a white amorphous solid (0.135 g, 81%). TLC Rf = 0.16 in EtOAc. ¹H NMR (300 MHz; CDCl₃): δ 7.36-7.24 (m, 5H), 6.31 (br s, 1H), 4.61-4.49 (m, 2H), 4.15-4.05 (m, 3H), 3.58-3.46 (m, 1H), 3.29 (dd, J = 11.7, 4.4 Hz, 1H), 3.07 (dd, J = 11.7, 8.0 Hz, 1H), 2.53-2.36 (m, 2H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 170.4 (C), 155.6 (C), 137.1 (C), 128.46 (CH), 128.0 (CH), 127.4 (CH), 60.9 (CH₂), 50.5 (CH₂), 50.4 (CH₂), 49.7 (CH), 35.4 (CH₂), 14.0 (CH₃). IR (film): 3335, 1771, 1719, 1684, 1632, 1601, 1445, 1416, 1337 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₄H₁₉N₃O₃ [M]⁺: 277.1426. Found: 277.1427.

Phthalazinones (Table 6)

General procedure 2: An oven-dried round bottom flask was charged with a stir bar, a carbazone ester (1.0 equiv.), an amine (1.1 equiv.), and PhCF₃ (0.3 M). The mixture was stirred at 100 °C for 18 or 48 hours. The reaction was cooled to ambient temperature, concentrated under reduced pressure, and purified by silica gel column chromatography to give the corresponding products.

Table 6,: (*E*)-Phenyl-2-(2-(methoxycarbonyl)benzylidene)hydrazinecarboxylate (11): To a solution of phenyl carbazate (0.834 g, 5.48 mmol) in MeOH (30 mL) was added 2-methoxycarbonylbenzaldehyde (0.900 g, 5.48 mmol) and the solution was stirred at room temperature for 5 hours. The solution was condensed over reduced pressure to give a crude solid. Boiling ether was added to the solid and the pure product was collected by filtration as a white amorphous solid (1.45 g, 97%). TLC Rf = 0.12 in 10% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 11.90 (br s, 1H), 8.78 (br s, 1H), 7.97 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.87 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.65 (td, *J* = 7.6, 1.5 Hz, 1H), 7.56-7.51 (m, 1H), 7.46-7.41 (m, 2H), 7.29-7.21 (m, 3H), 3.88 (s, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 167.3 (C), 150.5 (C), 134.6 (C), 132.4 (CH), 130.5 (CH), 129.4 (CH), 129.3 (CH), 128.7 (CH), 127.7 (CH), 125.6 (CH), 125.0 (C), 121.4 (CH), 52.3 (CH₃). IR (film): 1715, 1684, 1564, 1489, 1477, 1435, 1266, 1202 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₆H₁₄N₂O₄ [M]⁺: 298.0954. Not found. Not found. Calcd for C₁₀H₉N₂O₃ [M]⁺: 205.0613 Found: 205.0523 (M – OPh).

Table 6, entry 1: 2-(Pyrrolidine-1-carbonyl)phthalazin-1(2H)-one (12a): Synthesized according to general procedure 2 using carbazone ester 11 (0.179 g, 0.600 mmol), pyrrolidine (0.0470 g, 0.660 mmol), and PhCF₃ (2.0 mL). The crude mixture was purified by silica gel column chromatography using 20% EtOAc/CH₂Cl₂ to afford the pure compound as an

amorphous white solid (0.115 g, 79%). TLC Rf = 0.24 in 20% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.44 (dt, *J* = 7.7, 0.8 Hz, 1H), 8.23 (d, *J* = 0.5 Hz, 1H), 7.92-7.72 (m, 3H), 3.74-3.70 (m, 2H), 3.41 (t, *J* = 6.6 Hz, 2H), 2.05-1.88 (m, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 157.5 (C), 151.7 (C), 139.1 (CH), 134.0 (CH), 132.2 (CH), 129.6 (CH), 128.0 (C), 126.9 (C), 126.4 (CH), 41.1 (CH₂), 41.1 (CH₂), 25.5 (CH₂), 24.7 (CH₂). IR (film): 2978, 2880, 1699, 1661, 1612, 1591, 1558, 1456, 1408, 1308, 1225 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₃H₁₃N₃O₂ [M]⁺: 243.1008. Found: 243.1013.

Table 6, entry 2: 2-(Morpholine-4-carbonyl)phthalazin-1(2H)-one (12b): Synthesized according to general procedure **2** using carbazone ester **11** (0.179 g, 0.600 mmol), morpholine (0.0580 g, 0.660 mmol), and PhCF₃ (2.0 mL). The crude mixture was purified by silica gel column chromatography using 20% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.135 g, 87%). TLC Rf = 0.18 in 20% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.44-8.41 (m, 1H), 8.25 (d, *J* = 0.5 Hz, 1H), 7.91-7.71 (m, 3H), 3.84 (s, 4H), 3.73-3.70 (m, 2H), 3.37-3.34 (m, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 158.1 (C), 152.5 (C), 139.5 (CH), 134.2 (CH), 132.4 (CH), 129.6 (C), 127.7 (C), 126.9 (CH), 126.6 (CH), 66.5 (CH₂), 66.3 (CH₂), 46.9 (CH₂), 44.4 (CH₂). IR (film): 2568, 1675, 1662, 1433, 1429, 1418, 1270, 1240, 1113 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₃H₁₃N₃O₃ [M]⁺: 259.0957. Found: 259.0963.

Table 6, entry 3: *N*,*N*-**Diallyl-1-oxophthalazine-2(1H)-carboxamide (12c):** Synthesized according to general procedure **2** using carbazone ester **11** (0.179 g, 0.600 mmol), diallylamine (0.0640 g, 0.660 mmol), and PhCF₃ (2.0 mL). The crude mixture was purified by silica gel column chromatography using 5% EtOAc/CH₂Cl₂ to afford the pure compound as a colorless oil (0.161 g, 97%). TLC Rf = 0.43 in 5% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.41-8.38 (m,1H), 8.22 (s, 1H), 7.87-7.71 (m, 3H), 5.96-5.83 (m, 1H), 5.81-5.70 (m, 1H), 5.40 (dd, *J* = 17.2, 1.3 Hz, 1H), 5.28 (dd, *J* = 10.1, 1.0 Hz, 1H), 5.13-5.06 (m, 2H), 4.17 (d, *J* = 5.5 Hz, 2H), 3.80 (d, *J* = 6.1 Hz, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 160.0 (C), 153.7 (C), 139.1 (CH), 134.0 (CH), 132.3 (CH), 131.2 (CH), 129.5 (C), 127.7 (C), 126.7 (CH), 126.5 (CH), 118.5 (CH₂), 118.1 (CH₂), 50.8 (CH₂), 50.0 (CH₂). IR (film): 1713, 1666, 1591, 1414, 1265, 1227, 1177 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₅H₁₅N₃O₂ [M]⁺: 269.1164. Found: 269.1153.

Table 6, entry 4: *N*-**Allyl-***N*-**methyl-1-oxophthalazine-2(1H)-carboxamide (12d):** Synthesized according to general procedure **2** using carbazone ester **11** (0.0900 g, 0.300 mmol), *N*-methyl allylamine (0.0240 g, 0.330 mmol), and PhCF₃ (1.0 mL). The crude mixture was purified by silica gel column chromatography using 6% EtOAc/CH₂Cl₂ to afford the pure compound as a slightly yellow oil (0.0730 g, 100%). TLC Rf = 0.22 in 6% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.42-8.38 (m, 1H), 8.24-8.21 (m, 1H), 7.88-7.70 (m, 3H), 5.96-5.72 (m, 1H), 5.44-5.14 (m, 2H), 4.19-4.16 (m, 1.2H), 3.81-3.78 (m, 0.8H), 3.14 (s, 1.2H), 2.89 (s, 1.8H). ¹³C NMR (75 MHz; CDCl₃): δ 160.0 (C), 157.7 (C), 153.8 (C), 153.7 (C), 139.3 (CH), 139.1 (CH), 134.0 (CH), 132.3 (CH), 132.2 (CH), 132.2 (CH), 131.1 (CH), 129.6 (C), 129.5 (C), 127.7 (C), 126.8 (CH), 126.7 (CH), 126.5 (CH), 126.5 (CH), 118.8 (CH₂), 118.1 (CH₂), 53.4 (CH₂), 51.7 (CH₂), 35.2 (CH₃), 34.3 (CH₃). IR (film): 1717, 1668, 1558, 1477, 1266, 1236, 1202 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₃H₁₃N₃O₂ [M]⁺: 243.1008. Found: 234.1029.

Table 6, 5: 3-(N-benzyl-1-oxo-1,2-dihydrophthalazine-2entry Ethyl carboxamido)propanoate (12e): Synthesized according to general procedure 2 using carbazone ester 11 (0.0900 g, 0.300 mmol), N-benzyl-3-aminopropionic acid ethyl ester (0.0670 g, 0.330 mmol), and $PhCF_3$ (1.0 mL). The crude mixture was purified by silica gel column chromatography using 6% EtOAc/CH₂Cl₂ to afford the pure compound as a slightly yellow oil (0.103 g, 90%). TLC Rf = 0.28 in 6% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.47-8.41 (m, 1H), 8.28-8.21 (m, 1H), 7.91-7.69 (m, 3H), 7.49-7.21 (m, 5H), 4.86 (s, 0.9H), 4.48 (s, 1.1H), 4.19-3.96 (m, 2H), 3.76-3.71 (m, 1H), 3.54-3.49 (m, 1H), 2.81-2.76 (m, 1H) 2.59-2.55 (m, 1H), 1.30-1.20 (m, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 171.6 (C), 170.8 (C), 158.2 (C), 154.6 (C), 153.9 (CH), 139.4 (CH), 139.3 (CH), 135.6 (C), 135.4 (C), 134.1 (CH), 134.1 (CH), 132.4 (CH), 132.3 (CH), 129.6 (C), 129.6 (C), 128.8 (CH), 128.7 (CH), 128.0 (CH), 127.9 (CH), 127.7 (CH), 126.8 (CH), 126.8 (CH), 126.6 (CH), 126.5 (CH), 60.7 (CH₂), 60.7 (CH₂), 53.2 (CH₂), 50.7 (CH₂), 43.7 (CH₂), 43.1 (CH₂), 33.3 (CH₂), 31.8 (CH₂), 14.1 (CH₄), 13.9 (CH₃). IR (film): 3335, 1771, 1723, 1654, 1632, 1616, 1601, 1265, 1171 cm⁻¹. HRMS (EI): Exact mass calcd for C₂₁H₂₁N₃O₄ [M]⁺: 379.1532. Found: 379.1556.

 Table 6, entry 6: (S)-2-(2-(Methoxymethyl)pyrrolidine-1-carbonyl)phthalazin-1(2H)-one (12f):

Synthesized according to general procedure **2** using carbazone ester **11** (0.0900 g, 0.300 mmol), (*S*)-(+)-2-(methoxymethyl)pyrrolidine (0.0380 g, 0.330 mmol), and PhCF₃ (1.0 mL). The crude mixture was purified by silica gel column chromatography using 30% EtOAc/CH₂Cl₂ to afford the pure compound as a colorless oil (0.0560 g, 65%). TLC Rf = 0.28 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.40 (d, *J* = 7.6 Hz, 1H), 8.22 (s, 1H), 7.88-7.71 (m, 3H), 4.39-4.32 (m, 0.75H), 4.07-3.99 (m, 0.125H), 3.83-3.58 (m, 2H), 3.46-3.09 (m, 5H), 2.11-1.78 (m, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 157.5 (C), 151.8 (C), 139.0 (CH), 138.8 (CH), 133.9 (CH), 132.2 (CH), 129.6 (C), 127.9 (C), 126.7 (CH), 126.4 (CH), 73.7 (CH₂), 71.4 (CH₂), 59.2 (CH), 58.9 (C), 58.0 (CH₃), 57.8 (CH₃), 47.7 (CH₂), 28.7 (CH₂), 27.8 (CH₂), 23.6 (CH₂), 22.5 (CH₃). IR (film): 1730, 1650, 1445, 1432, 1408, 1265, 1067 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₅H₁₇N₃O₃ [M]⁺: 287.1270. Found: 287.1274.

Pyrazoles (Tables 7)

General procedure 3 (substrate preparation): An oven-dried round bottomed flask was charged with a stir bar, phenylcarbazate (1.00 equiv.), a ketone (1.10 equiv.), acetic acid (0.150 equiv.), and MeOH (0.3 M). The contents were refluxed for 16 hours. The crude mixture was concentrated under reduced pressure and dissolved in a 99:1 THF:MeOH solution (0.1 M). TBAF (1.10 equiv.) was added dropwise at -78 °C, and the resulting solution was stirred for 15 minutes. The reaction was quenched with a saturated aqueous solution of NH₄Cl and the organic phase was extracted with CH₂Cl₂. The reaction was concentrated under reduced pressure and purification by silica gel column chromatography or recrystallization gave the corresponding hydrazones.

General procedure 4: An oven-dried round bottom flask was charged with a stir bar, hydrazone (1.00 equiv.), an amine (1.10 equiv.), PhCF₃ or THF (0.3 M), and DBU (0.200 equiv.). The reaction was conducted at room temperature or 50 °C. The reaction was concentrated under reduced pressure and purified by silica gel column chromatography to give the corresponding products.

(*E*)-Phenyl-2-(1-phenylprop-2-yn-1-ylidene)hydrazinecarboxylate (13a): Synthesized according to general procedure 3 using phenylcarbazate (1.90 g, 12.5 mmol), 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-one¹ (2.78 g, 13.8 mmol), acetic acid (0.113 g, 0.150 mmol), and CH₃OH (42 mL, 0.3 M). TBAF (13.8 mL of a 1 M solution in THF, 13.8 mmol) was added dropwise at -78 °C. The reaction was quenched after 15 minutes and the organic phase was extracted with CH₂Cl₂. The crude mixture was purified by silica gel column chromatography using 40% hexanes/CH₂Cl₂ to afford the pure compound as an amorphous pale yellow solid

(2.80 g, 85% over 2 steps). TLC Rf = 0.35 in 40% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 9.15 (br s, 1H), 8.00 (dt, J = 3.9, 2.8 Hz, 2H), 7.44-7.40 (m, 5H), 7.29-7.24 (m, 3H), 4.09 (s, 1H). ¹³C NMR (75 MHz; CDCl₃): δ 133.7 (C), 130.4 (CH), 129.6 (CH), 128.6 (CH), 126.8 (CH), 126.1 (CH), 121.6 (CH), 93.1 (C), 72.5 (CH). IR (film): 1770, 1737, 1683, 1481, 1455, 1423, 1363, 1348, 1257, 1249, 1191, 1114 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₆H₁₂N₂O₂ [M]⁺: 264.0899. Found: 264.0895.

Table 7, entry 14a: (3-Phenyl-1H-pyrazol-1-yl)(pyrrolidin-1-yl)methanone: Synthesized according to general procedure 4 using hydrazone 13a (0.159 g, 0.600 mmol), pyrrolidine (0.0470 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 16 hours. The crude mixture was purified by silica gel column chromatography using 10% hexanes/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.129 g, 89%). TLC Rf = 0.15 in 10% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.30 (d, *J* = 2.8 Hz, 1H), 7.88-7.84 (m, 2H), 7.47-7.34 (m, 4H), 6.69 (d, *J* = 2.8 Hz, 1H), 4.14 (br s, 2H), 3.72 (br s, 2H), 1.99 (br s, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 153.2 (C), 149.6 (C), 132.4 (C), 132.1 (CH), 128.5 (CH), 128.4 (CH) 125.8 (CH), 104.2 (CH), 50.2 (CH₂), 48.8 (CH₂), 26.7 (CH₂), 23.7 (CH₂). IR (film): 1717, 1670, 1558, 1423, 1265, 1202 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₄H₁₅N₃O [M]⁺: 241.1215. Found: 241.1230.

Table 7, entry 14b: Morpholino(3-phenyl-1H-pyrazol-1-yl)methanone: Synthesized according to general procedure **4** using carbazone **13a** (0.159 g, 0.600 mmol), morpholine (0.0871 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 16 hours. The crude mixture was purified by silica gel column chromatography using a gradient of CH₂Cl₂ to 5% EtOAc/CH₂Cl₂ to afford the pure compound as a crystalline white solid (0.139 g, 90%). TLC Rf = 0.60 in 10% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.18 (d, *J* = 2.8 Hz, 1H), 7.84-7.81 (m, 2H), 7.46-7.37 (m, 3H), 6.69 (d, *J* = 2.8 Hz, 1H), 3.99 (br s, 4H), 3.83 (m, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 154.0 (C), 151.6 (C), 133.6 (CH), 132.4 (C), 129.1 (CH), 129.0 (CH), 126.3 (CH), 105.2 (CH), 67.1 (CH₂), 47.8 (CH₂). IR (film): 3032, 1683, 1533, 1452, 1426, 1363, 1348, 1301, 1255, 1247, 1188, 1116, 1074, 1045, 1031 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₄H₁₅N₃O₂ [M]⁺: 257.1164. Found: 257.1136.

Table 7, entry 14c: (4-(4-Bromophenyl)piperazin-1-yl)(3-phenyl-1H-pyrazol-1yl)methanone: Synthesized according to general procedure 4 using carbazone 13a (0.0795 g, 0.300 mmol), 1-(4-bromophenyl)piperazine (0.0800 g, 0.330 mmol), DBU (0.0090 mL, 0.060 mmol), and THF (1.0 mL) at room temperature for 16 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 10% EtOAc/hexanes to afford the pure compound as an amorphous white solid (0.112 g, 91%). TLC Rf = 0.20 in 10% EtOAc/hexanes. ¹H NMR (300 MHz; CDCl₃): δ 8.20 (d, J = 2.8 Hz, 1H), 7.86-7.83 (m, 2H), 7.46-7.42 (m, 2H), 7.40-7.36 (m, 3H), 6.85-6.81 (m, 2H), 6.71 (d, J = 2.8 Hz, 1H), 4.12 (br s, 4H), 3.31 (t, J = 5.2Hz, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 153.9 (C), 151.1 (C), 150.1 (C), 133.5 (CH), 132.3 (C), 132.2 (CH), 129.0 (C), 128.9 (CH), 126.2 (CH), 118.3 (CH), 112.8 (C), 105.1 (CH), 49.3 (CH₂), 46.7 (CH₂). IR (film): 3880, 3768, 1733, 1687, 1662, 1456, 1265 cm⁻¹. HRMS (EI): Exact mass calcd for $C_{20}H_{19}BrN_4O[M]^+$: 410.0742. Found: 410.0753.

Table 7, entry 14d: 4-(3-Phenyl-1H-pyrazole-1-carbonyl)piperazin-2-one: Synthesized according to general procedure **4** using carbazone **13a** (0.159 g, 0.600 mmol), 2-oxopiperazine (0.0661 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 16 hours. The crude mixture was purified by silica gel column chromatography using 5% CH₃OH/CH₂Cl₂ to afford the pure compound as a crystalline white solid (0.151 g, 93%). TLC Rf = 0.20 in 5% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.20 (d, *J* = 2.8 Hz, 1H), 7.84-7.82 (m, 2H), 7.46-7.37 (m, 3H), 6.72 (d, *J* = 2.8 Hz, 1H), 6.69 (br s, 1H), 4.67 (br s, 2H), 4.15 (br s, 2H), 3.62 (br s, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 167.1 (C), 154.7 (C), 150.7 (C), 133.3 (CH), 131.8 (C), 129.1 (CH), 128.8 (CH), 126.2 (CH), 105.4 (CH). IR (film): 3267, 3060, 2900, 1710, 1654, 1537, 1452, 1427, 1352, 1332, 1315, 1249, 1105, 1061, 1034 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₄H₁₄N₄O₂ [M]⁺: 270.1117. Found: 270.1097.

Table 7, entry 14e: *N*,*N*-Diallyl-3-phenyl-1H-pyrazole-1-carboxamide: Synthesized according to general procedure 4 using hydrazone 13a (0.159 g, 0.600 mmol), diallylamine (0.0800 mL, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 16 hours. The crude mixture was purified by silica gel column chromatography using 20% hexanes/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.141 g, 88%). TLC Rf = 0.42 in 20% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.22 (d, *J* = 2.8 Hz, 1H), 7.87-7.83 (m, 2H), 7.47-7.34 (m, 4H), 6.70 (d, *J* = 2.8 Hz, 1H), 6.15-5.97 (m, 2H), 5.31-5.25 (m, 4H), 4.27 (s, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 153.4 (C), 151.6 (C), 133.0 (CH), 132.4 (C), 128.7 (CH), 128.6 (CH), 126.0 (CH), 118.2 (CH₂), 104.6 (CH), 116.9 (CH₂), 105.9 (CH), 51.0 (CH₂). IR (film): 1714, 1654, 1522, 1481, 1424, 1259, 1180 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₆H₁₇N₃O [M]⁺: 267.1372. Found: 267.1355.

Table 7, entry 14f: *N***-Allyl-3-phenyl-1H-pyrazole-1-carboxamide:** Synthesized according to general procedure **4** using hydrazone **13a** (0.159 g, 0.600 mmol), allylamine (0.050 mL, 0.66 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at 50 °C for 24 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 20% hexanes/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.100 g, 73%). TLC Rf = 0.31 in 20% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.27 (d, *J* = 2.8 Hz, 1H), 7.88-7.84 (m, 2H), 7.48-7.36 (m, 4H), 6.73 (d, *J* = 2.8 Hz, 1H), 5.96 (ddt, *J* = 17.2, 10.2, 5.6 Hz, 1H), 5.37-5.21 (m, 2H), 4.12-4.07 (m, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 154.0 (C), 133.5 (C), 132.0 (C), 129.9 (CH), 128.9 (CH), 128.7 (CH), 126.1 (CH), 116.9 (CH₂), 105.9 (CH), 42.7 (CH₂). IR (film): 1718, 1680, 1651, 1558, 1539, 1423, 1354, 1265 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₃H₁₃N₃O [M]⁺: 227.1059. Found: 227.1085.

Table 7, entry 14g: *N*-Benzyl-3-phenyl-1H-pyrazole-1-carboxamide: Synthesized according to general procedure 4 using carbazone 13a (0.159 g, 0.600 mmol), benzylamine (0.0701 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 24 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 20% hexanes/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.130 g, 78%). TLC Rf = 0.60 in 20% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.27 (d, *J* = 2.8 Hz, 1H), 7.82-7.80 (m, 2H), 7.58 (br s, 1H), 7.43-7.28 (m, 3H), 6.71 (d, *J* = 2.8 Hz, 1H), 4.63 (d, *J* = 6.13 Hz, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 154.1 (C), 149.9 (C), 137.6 (C), 131.9 (CH), 130.0 (CH), 128.9 (CH), 128.8 (CH), 128.7 (CH), 127.7 (CH), 126.2 (CH), 106.1 (CH), 44.4 (CH₂). IR (film): 3357, 1716, 1689, 1543, 1500, 1456, 1353, 1284, 1257, 1238, 1080, 1043 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₇H₁₅N₃O [M]⁺: 277.1215. Found: 277.1217.

Table 7, entry 14h: 3-Phenyl-*N*-(prop-2-yn-1-yl)-1H-pyrazole-1-carboxamide: Synthesized according to general procedure 4 using carbazone 13a (0.159 g, 0.600 mmol), propargylamine (0.0363 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at 50 °C for 24 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 40% hexanes/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.100 g, 79%). TLC Rf = 0.35 in 40% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.26 (d, *J* = 2.8 Hz, 1H), 7.86-7.84 (m, 2H), 7.47-7.37 (m, 4H), 6.73 (d, *J* = 2.8 Hz, 1H), 4.26 (dd, *J* = 5.7, 2.6 Hz, 2H), 2.32 (t, *J* = 2.55, 1H). ¹³C NMR (75 MHz; CDCl₃): δ 154.5 (C), 149.6 (C), 132.0 (C), 130.1 (CH), 129.1 (CH), 128.9 (CH), 126.3 (CH), 106.4 (CH), 78.9 (C), 72.4 (CH), 30.1 (CH₂). IR (film): 3105, 1739, 1683, 1652, 1554, 1515, 1455, 1339, 1266 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₃H₁₁N₃O [M]⁺: 225.0902. Found: 225.0897.

Table 7, entry 14i: *N*-(2-(Dimethylamino)ethyl)-3-phenyl-1H-pyrazole-1-carboxamide: Synthesized according to general procedure **4** using carbazone **13a** (0.159 g, 0.600 mmol), *N*,*N*-dimethylenediamine (0.0582 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and PhCF₃ (2.0 mL) at 50 °C for 16 hours. The crude mixture was purified by silica gel column chromatography using a gradient of 10% EtOAc/CH₂Cl₂ to 50% CH₃OH/CH₂Cl₂ to afford the pure compound as a colorless oil (0.138 g, 89%). TLC Rf = 0.10 in 10% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.25 (d, *J* = 2.7 Hz, 1H), 7.86-7.84 (m, 2H), 7.57 (br s, 1H), 7.45-7.35 (m, 3H), 6.70 (d, *J* = 2.7 Hz, 1H), 3.54 (q, *J* = 6.0 Hz, 2H), 2.56 (t, *J* = 6.2 Hz, 1H), 2.31 (s, 6H). ¹³C NMR (75 MHz; CDCl₃): δ 154.0 (C), 150.1 (C), 132.2 (C), 129.9 (CH), 128.9 (CH), 128.8 (CH), 126.2 (CH), 105.8 (CH), 58.1 (CH₂), 45.4 (CH₃), 38.0 (CH₂). IR (film): 3023, 1733, 1716, 1683, 1662, 1526, 1455, 1353, 1262 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₄H₁₈N₄O [M]⁺: 258.1481. Found: 258.1400.

Table 7, entry 14j: *N*-(**Furan-2-ylmethyl**)-**3**-phenyl-1H-pyrazole-1-carboxamide: Synthesized according to general procedure **4** using carbazone **13a** (0.159 g, 0.600 mmol), furfurylamine (0.0641 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 18 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.137 g, 82%). TLC Rf = 0.60 in CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.25 (d, *J* = 2.8 Hz, 1H), 7.83-7.80 (m, 2H), 7.54 (br s, 1H), 7.44-7.36 (m, 4H), 6.70 (d, *J* = 2.8 Hz, 1H), 6.33 (m, 2H) 4.62 (d, *J* = 5.9 Hz, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 154.1 (C), 149.9 (C), 137.6 (C), 131.9 (CH), 130.0 (CH), 128.9 (CH), 128.8 (CH), 128.7 (CH), 127.7 (CH), 126.2 (CH), 106.1 (CH), 44.4 (CH₂). IR (film): 3111, 2989, 1716, 1683, 1647, 1444, 1353, 1262, 1238, 1161 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₅H₁₃N₃O₂ [M]⁺: 267.1008. Found: 267.1023.

N-(4-Methoxyphenyl)-3-phenyl-1H-pyrazole-1-carboxamide: Table entry 14k: 7, Synthesized according to general procedure 4 using carbazone 13a (0.159 g, 0.600 mmol), pmethoxyaniline (0.0813 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 16 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 40% hexanes/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.133 g, 76%). TLC Rf = 0.40 in 40% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 9.05 (br s, 1H) 8.34 (d, J = 2.8 Hz, 1H), 7.90-7.88 (m, 2H), 7.57-7.53 (m, 2H), 7.49-7.39 (m, 3H), 6.95-6.93 (m, 2H), 6.76 (d, J = 2.8 Hz, 1H), 3.82 (s, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 156.9 (C), 154.3 (C), 147.3 (C), 131.9 (C), 130.0 (CH), 129.7 (C), 129.2 (CH), 128.9 (CH), 126.4 (CH), 121.8 (CH), 114.5 (CH), 106.6 (CH), 55.6 (CH₃). IR (film): 3062, 1733, 1716, 1652, 1596, 1502, 1456, 1419, 1355, 1299, 1247, 1226, 1039 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₇H₁₅N₃O₂ [M]⁺: 293.1164. Found: 293.1213.

Table 7, entry 14I: *N*-(2-Aminobenzyl)-3-phenyl-1H-pyrazole-1-carboxamide: Synthesized according to general procedure **4** using carbazone **13a** (0.159 g, 0.600 mmol), 2-aminobenzylamine (0.0701 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 24 hours. The product precipitated out of solution as an amorphous white solid and was filtrated with Et₂O to give the desired pure product (0.157 g, 90%). TLC Rf = 0.10 in 10% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 8.67 (br s, 1H), 8.29 (m, 1H), 7.90 (m, 2H), 7.39 (m, 3H), 7.10 (m, 1H), 6.95 (m, 2H), 6.62 (m, 1H), 6.52 (br s, 1H), 4.99 (m, 2H), 4.34 (m, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 158.3 (C), 155.0 (C), 151.4 (C), 137.0 (C), 135.7 (C), 134.6 (CH), 134.1 (CH), 134.0 (CH), 133.3 (CH), 131.2 (CH), 126.6 (C), 121.0 (CH), 120.0 (CH), 111.3 (CH), 45.7 (CH₂). IR (film): 3002, 1670, 1515, 1455, 1348, 1249, 1184, 1114, 1072, 1031 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₇H₁₆N₄O [M]⁺: 292.1324. Found: 292.1324.

Carbazone 13b: (*Z*)-Phenyl-2-(but-3-yn-2-ylidene)hydrazinecarboxylate: Synthesized according to general procedure **3** using phenylcarbazate (1.52 g, 10.0 mmol), the corresponding ketone (1.40 g, 10.0 mmol), and CH₃OH (50 mL, 0.2 M). TBAF (10.0 mL of a 1M solution in THF, 10.0 mmol) was added dropwise at -78 °C. The reaction was quenched after 15 minutes and the organic phase was extracted with CH₂Cl₂. The crude mixture was purified by silica gel column chromatography using CH₂Cl₂ to afford the pure compound as an amorphous pale yellow solid (1.70 g, 84%). TLC Rf = 0.31 in CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 10.40 (br s, 1H), 7.46-7.39 (m, 2H), 7.29-7.23 (m, 1H), 7.21-7.17 (m, 2H), 5.13 (s, 1H), 2.10 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 151.7 (C), 150.4 (C), 129.5 (CH), 125.6 (CH), 121.8 (CH), 93.9 (C), 74.9 (CH), 22.6 (CH₃). IR (film): 2966, 1755, 1647, 1627, 1593, 1467, 1387, 1265, 1200, 1132, 1109 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₁H₁₀N₂O₂ [M]⁺: 202.0747. Found: 202.0754.

Table 7, entry 14m: (3-Methyl-1H-pyrazol-1-yl)(pyrrolidin-1-yl)methanone: Synthesized according to general procedure **4** using hydrazone **13b** (0.122 g, 0.600 mmol), pyrrolidine (0.0470 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at 50 °C for 24 hours. The crude mixture was purified by silica gel column chromatography using 3% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.0900 g, 85%). TLC Rf = 0.29 in 3% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.12 (d, *J* = 2.7 Hz, 1H), 6.13 (d, *J* = 2.7 Hz, 1H), 4.06-3.54 (m, 4H), 2.29 (s, 3H), 1.95-1.90 (m, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 151.3 (C), 131.7 (CH), 107.2 (CH), 13.8 (CH₃). IR (film): 1705, 1663, 1558, 1458, 1437, 1420, 1310, 1265, 1157 cm⁻¹. HRMS (EI): Exact mass calcd for C₉H₁₃N₃O [M]⁺: 179.1059. Found: 179.1053.

Carbazone 13c: (Z)-Phenyl-2-(1-cyclopropylprop-2-yn-1-ylidene)hydrazinecarboxylate: Synthesized according to general procedure 3 using phenyl carbazate (1.32 g, 8.70 mmol), 1-

cyclopropyl-3-(trimethylsilyl)prop-2-yn-1-one² (1.59 g, 9.57 mmol), acetic acid (0.113 g, 0.131 mmol), and CH₃OH (30 mL, 0.3 M). TBAF (9.6 mL of a 1 M solution in THF, 9.6 mmol) was added dropwise at -78 °C. The reaction was quenched after 15 minutes and the organic phase was extracted with CH₂Cl₂. The crude mixture was purified by silica gel column chromatography using a gradient of 100% CH₂Cl₂ to 2.5% CH₃OH/CH₂Cl₂ to afford the pure compound as an amorphous white solid (1.32 g, 66% over 3 steps). TLC Rf = 0.40 in 2.5% CH₃OH/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.77 (br s, 1H), 7.39 (t, *J* = 7.9 Hz, 2H), 7.24 (d, *J* = 7.5 Hz, 1H), 7.20 (d, 2H), 3.75 (s, 1H) 2.02-1.99 (m, 1H), 0.90 (ddd, *J* = 9.9, 3.3, 1.2 Hz, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 150.8 (C), 129.6 (CH), 126.0 (CH), 121.5 (CH), 91.3 (C), 71.0 (CH), 16.1 (CH), 6.2 (CH₂). IR (film): 3244, 2090, 1753, 1733, 1674, 1662, 1505, 1481, 1340, 1199, 1025, 1004 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₃H₁₂N₂O₂ [M]⁺: 228.0899. Found: 228.0887.

Table 7, entry 14n: (3-Cyclopropyl-1H-pyrazol-1-yl)(pyrrolidin-1-yl)methanone: Synthesized according to general procedure **4** using carbazone **13c** (0.137 g, 0.600 mmol), pyrrolidine (0.0470 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 16 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 2.5% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.111 g, 90%). TLC Rf = 0.20 in 2.5% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 8.10 (d, *J* = 2.7 Hz, 1H), 6.02 (d, *J* = 2.7 Hz, 1H), 3.95 (br s, 2H), 3.64 (br s, 2H), 1.96-1.90 (m, 5H), 0.96-0.91 (m, 2H), 0.79-0.75 (m, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 157.8 (C), 150.8 (C), 131.7 (CH), 104.3 (CH), 50.1 (CH₂), 48.8 (CH₂), 27.0 (CH₂), 24.2 (CH₂), 9.50 (CH₃), 8.3 (CH₂). IR (film): 3142, 1786, 1699, 1675, 1505,1461, 1331, 1299, 1111, 1009 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₁H₁₅N₃O [M]⁺: 205.1215. Found: 205.1248.

Carbazone 13d: (*E*)-Phenyl-2-(1-(furan-2-yl)prop-2-yn-1-ylidene)hydrazinecarboxylate: Synthesized according to general procedure **3** using phenyl carbazate (0.959 g, 6.31 mmol), 1-furan-3-(trimethylsilyl)prop-2-yn-1-one (1.33 g, 6.94 mmol), acetic acid (0.0570 g, 0.150 mmol), and CH₃OH (21 mL, 0.3 M). TBAF (6.9 mL of a 1 M solution in THF, 6.9 mmol) was added dropwise at -78 °C. The reaction was quenched after 15 minutes and the organic phase was extracted with CH₂Cl₂. The crude mixture was purified by silica gel column chromatography using a gradient of 60% hexanes/CH₂Cl₂ to 40% hexanes/CH₂Cl₂, followed by 100% CH₂Cl₂ to afford the pure compound as an amorphous pale yellow solid (1.39 g, 87% over 2 steps). TLC Rf = 0.30 in 40% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 9.15 (br s, 1H), 8.00 (dt, *J* = 3.9, 2.8 Hz, 2H), 7.44-7.40 (m, 5H), 7.29-7.24 (m, 3H), 4.09 (s, 1H). ¹³C NMR (75 MHz; CDCl₃): δ 133.7 (C), 130.4 (CH), 129.6 (CH), 128.6 (CH), 126.8 (CH), 126.1 (CH), 121.6 (CH), 93.1 (C), 72.5 (CH). IR (film): 3004, 2889, 1570, 1541, 1429, 1382, 1371, 1359, 1265, 1253, 1242, 1225, 1199, 1183, 1060, 1037, 1026 cm⁻¹. HRMS (EI): Exact mass calcd for $C_{14}H_{10}N_2O_3$ [M]⁺: 254.0691. Found: 254.0723.

Table (3-(Furan-2-yl)-1H-pyrazol-1-yl)(pyrrolidin-1-yl)methanone: 7. entrv 140: Synthesized according to general procedure 4 using carbazone 14d (0.153 g, 0.600 mmol), pyrrolidine (0.0470 g, 0.660 mmol), DBU (0.020 mL, 0.12 mmol), and THF (2.0 mL) at room temperature for 16 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 2.5% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous pale yellow solid (0.131 g, 94%). TLC Rf = 0.20 in 2.5% EtOAc/ CH_2Cl_2 . ¹H NMR (300 MHz; CDCl₃): δ 8.23 (d, J = 2.8 Hz, 1H), 7.48 (dd, J = 1.8, 0.8 Hz, 1H), 6.74 (dd, J = 3.4, 0.8 Hz, 1H), 6.58 (d, J = 2.8 Hz, 1H), 6.48 (dd, J = 3.4, 1.8 Hz, 1H), 4.05 (br s, 2H), 3.68 (br s, 2H), 1.95 (brs.4H). ¹³C NMR (75 MHz; CDCl₃): δ 149.9 (C), 148.2 (C), 146.0 (C), 142.7 (CH), 132.2 (CH), 111.6 (CH), 107.4 (CH), 104.5 (CH), 50.3 (CH₂), 48.8 (CH₂), 26.9 (CH₂), 24.1 (CH₂). IR (film): 2989, 2883, 1674, 1544, 1430, 1386, 1359, 1348, 1267, 1211, 1039 cm⁻¹. HRMS (EI): Exact mass calcd for $C_{12}H_{13}N_3O_2$ [M]⁺: 231.1008. Found: 231.0999.

Carbazone 13e: (*Z*)-Phenyl 2-(1,3-diphenylprop-2-yn-1-ylidene)hydrazinecarboxylate: Synthesized according to general procedure **3** using phenyl carbazate (1.23 g, 8.12 mmol), 1,3diphenylprop-2-yn-1-one³ (1.84 g, 8.93 mmol), acetic acid (0.0730 g, 1.22 mmol), and CH₃OH (30 mL, 0.3 M). The crude mixture was purified by silica gel column chromatography using 5% EtOAc/hexanes to afford the pure compound as a crystalline pale yellow solid (0.911 g, 33%). TLC Rf = 0.20 in 10% EtOAc/hexanes. ¹H NMR (300 MHz; CDCl₃): δ 9.15 (br s, 1H), 8.07-8.05 (m, 2H), 7.66 (m, 2H), 7.48-7.39 (m, 8H), 7.26 (m, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 133.7 (C), 130.4 (CH), 129.6 (CH), 128.6 (CH), 126.8 (CH), 126.1 (CH), 121.6 (CH), 93.1 (C), 72.5 (CH). IR (film): 3336, 3085, 2198, 1762, 1733, 1716, 1704, 1593, 1506, 1473, 1434, 1357, 1334, 1315, 1307, 1266, 1161 1136, 1070, 1051, 1026, 1002 cm⁻¹. HRMS (EI): Exact mass calcd for C₂₂H₁₆N₂O₂ [M]⁺: 340.1212. Found: 340.1219.

Table 7, entry 14p: (3,5-Diphenyl-1H-pyrazol-1-yl)(pyrrolidin-1-yl)methanone: Synthesized according to general procedure **4** using carbazone **13e** (0.102 g, 0.300 mmol), pyrrolidine (0.0237 g, 0.330 mmol), DBU (0.0090 mL, 0.060 mmol), and THF (1.0 mL) at 50 °C for 16 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 2.5% EtOAc/CH₂Cl₂ to afford the pure compound as a colorless oil (0.100 g, 98%). TLC Rf = 0.30 in 2.5% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 7.90-7.87 (m, 2H), 7.53 (dq, *J* = 6.2, 2.0 Hz, 2H), 7.46-7.34 (m, 6H), 6.76 (s, 1H), 3.63 (t, *J* = 6.7, 2H), 3.56 (t, *J* = 6.5, 2H), 1.91 (m, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 152.3 (C), 150.9 (C), 146.0 (C), 132.6 (C), 130.1 (C), 128.8 (CH) 128.7 (CH) 128.6 (CH) 128.5 (CH) 127.9 (CH), 126.1 (CH), 104.8 (CH), 48.9 (CH₂), 47.5 (CH₂), 26.1 (CH₂), 24.5 (CH₂). IR (film): 2989, 1670, 1544, 1429, 1419, 1386, 1363, 1348, 1255, 1043, 987 cm⁻¹. HRMS (EI): Exact mass calcd for C₂₀H₁₉N₃O [M]⁺: 317.1528. Found: 317.1541.

Carbazone 13f: (*Z*)-Phenyl-2-(4-((tert-butoxycarbonyl)amino)-1-phenylbut-2-yn-1-ylidene) hydrazinecarboxylate: Synthesized according to general procedure **3** using phenyl carbazate (0.305 g, 2.00 mmol), *tert*-butyl-(4-oxo-4-phenylbut-2-yn-1-yl)carbamate³ (0.519 g, 2.00 mmol), and CH₃OH (10 mL, 0.3 M). The crude mixture was purified by silica gel column chromatography using CH₂Cl₂ to afford the pure compound as an amorphous red solid (0.386 g, 49%). TLC Rf = 0.35 in 40% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 9.51 (br s, 1H), 7.96 (ddd, *J* = 5.43, 2.85, 1.29 Hz, 2H), 7.42-7.37 (m, 6H), 7.24 (t, *J* = 7.4 Hz, 3H), 5.17 (s, 1H), 4.23 (d, *J* = 5.71 Hz, 2H), 1.47 (s, 9H). ¹³C NMR (75 MHz; CDCl₃): δ 155.5 (C), 134.0 (C) 130.0 (CH), 129.4 (CH), 128.4 (CH), 126.7 (CH), 125.8 (CH), 121.5 (CH), 102.0 (C), 80.7 (C), 72.2 (C), 31.4 (CH₂), 28.3 (CH₃). IR (film): 2332, 1689, 1652, 1558, 1508, 1436, 1265, 1195 cm⁻¹. HRMS (EI): Exact mass calcd for C₂₂H₂₃N₃O₄ [M]⁺: 393.1689. Found: 393.1680.

Table 7, entry 14q: *tert*-Butyl((3-phenyl-1-(pyrrolidine-1-carbonyl)-1H-pyrazol-5-yl)methyl) carbamate: Synthesized according to general procedure 4 using carbazone 13f (0.118 g, 0.300 mmol), pyrrolidine (0.0237 g, 0.330 mmol), DBU (0.0090 mL, 0.060 mmol), and THF (1.0 mL) at 50 °C for 16 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 2.5% EtOAc/CH₂Cl₂ to afford the pure compound as a colorless oil (0.093 g, 83%). TLC Rf = 0.15 in 2.5% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 7.82-7.79 (m, 2H), 7.41-7.34 (m, 3H), 6.66 (s, 1H), 5.81 (s, 1H), 4.51 (d, *J* = 6.5 Hz, 2H), 4.00-3.97 (m, 2H), 3.68-3.65 (m, 2H), 1.99-1.95 (m, 4H), 1.43 (s, 9H). ¹³C NMR (75 MHz; CDCl₃): δ 152.3 (C), 150.9 (C), 146.0 (C), 132.6 (C), 130.1 (C), 128.8 (CH), 128.7 (CH), 128.6 (CH), 128.5 (CH), 127.9 (CH), 126.1 (CH), 104.8 (CH), 48.9 (CH₂), 47.5 (CH₂), 26.1 (CH₂), 24.5 (CH₂). IR (film): 2989, 1683, 1558, 1444, 1393, 1367, 1353, 1255, 1238, 1195, 1154 cm⁻¹. HRMS (EI): Exact mass calcd for C₂₀H₂₆N₄O₃ [M]⁺: 370.2005. Found: 370.2253.

Carbazone 13g: (Z)-Phenyl-2-(3-(cyclohex-1-en-1-yl)-1-phenylprop-2-yn-1-ylidene) hydrazinecarboxylate: Synthesized according to general procedure 3 using phenyl carbazate (0.329 g, 2.16 mmol), 3-(cyclohex-1-en-1-yl)-1-phenylprop-2-yn-1-one⁴ (0.500 g, 2.38 mmol), acetic acid (0.0200 g, 0.150 mmol), and CH₃OH (7.2 mL, 0.3 M) refluxed at 65 °C. The crude mixture was purified by silica gel column chromatography using 50% hexanes/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.588 g, 79%). TLC Rf = 0.20 in 50% hexanes/CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 9.05 (br s, 1H), 7.98 (m, 2H), 7.43-7.38 (m, 5H), 7.28-7.24 (m, 3H), 6.50 (dt, *J* = 3.9, 2.0 Hz, 1H), 2.34-2.31 (m, 2H), 2.25-2.21 (m, 2H), 1.76-1.65 (m, 4H). ¹³C NMR (75 MHz; CDCl₃): δ 140.4 (C), 130.1 (C), 129.6 (CH), 128.5 (CH), 126.9 (CH), 125.9 (C), 121.7 (C), 119.3 (C), 75.5 (C), 29.0 (CH₂), 26.1 (CH₂), 22.2 (CH₂), 21.3 (CH₂). IR (film): 2952, 2204, 1766, 1762, 1730, 1718, 1647, 1554, 1506, 1475, 1265, 1186, 1161, 1139 cm⁻¹. HRMS (EI): Exact mass calcd for C₂₂H₂₀N₂O₂ [M]⁺: 344.1525. Found: 344.1512.

Table 7, entry 14r: (5-(Cyclohex-1-en-1-yl)-3-phenyl-1H-pyrazol-1-yl)(pyrrolidin-1-yl)methanone: Synthesized according to general procedure **4** using carbazone **13g** (0.103 g, 0.300 mmol), pyrrolidine (0.0237 g, 0.330 mmol), DBU (0.0090 mL, 0.060 mmol), and THF (1.0 mL) at 50 °C for 16 hours. The crude mixture was purified by Et₃N-treated silica gel column chromatography using 2.5% EtOAc/CH₂Cl₂ to afford the pure compound as a white solid (0.0783 g, 81%). TLC Rf = 0.15 in 100% CH₂Cl₂. ¹H NMR (300 MHz; CDCl₃): δ 7.82-7.79 (m, 2H), 7.41-7.30 (m, 3H), 6.48 (s, 1H), 6.02 (s, 1H), 3.66-3.59 (m, 4H), 2.35-2.31 (m, 2H), 2.21-2.17 (m, 2H), 1.99-1.91 (m, 4H), 1.75 (m, 2H) 1.67 (m, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 151.8 (C), 151.4 (C), 132.9 (C), 128.8 (C), 128.7 (C), 128.3 (CH), 127.9 (CH), 126.0 (CH), 103.2 (CH), 49.0 (CH₂), 47.5 (CH₂), 27.9 (CH₂), 26.25 (CH₂), 25.7 (CH₂), 24.6 (CH₂), 22.7 (CH₂), 21.9 (CH₂). IR (film): 3042, 2221, 1772, 1733, 1697, 1683, 1473, 1446, 1436, 1265, 1188 cm⁻¹. HRMS (EI): Exact mass calcd for C₂₀H₂₃N₃O [M]⁺: 321.1841. Found: 321.1920.

Other Attempts to form Pyrazoles (Not Shown in Table 7)

^aConditions: Alkynyl carbazone (1.00 equiv), amine (1.10 equiv) and DBU (0.20 equiv.) in PhCF₃ or THF (0.3 M) at room temperature or 50 °C for 16 to 24 hours in a closed vial. All reactions conducted at 0.1 mmol scale are NMR yields, taken using 1,3,5-trimethoxybenzene (TMB) as internal standard. ^bIsolated yield (0.6 mmol scale).

Table S2

^aConditions: Alkynyl carbazone (2.00 equiv), alcohol (1.00 equiv) and DBU (0.20 equiv.) in PhCF₃ (0.3 M) at room temperature for 1 - 5 minutes in a closed vial. All reactions conducted at 0.1 mmol scale are NMR yields, taken using 1,3,5-trimethoxybenzene (TMB) as internal standard.

Azauracils (Tables 8-9)

General procedure 5: An oven-dried microwave tube was charged with a stir bar, a carbazone ester (1.0 equiv.), an amine (1.1 equiv.), and MeCN (0.3 M). The septum was removed and the tube was then quickly sealed with a microwave cap and heated for 6 hours at 175 °C. The tube was cooled to ambient temperature, concentrated under reduced pressure and purified by silica gel column chromatography to give the corresponding products.

Carbazone 15a: (*Z*)-Phenyl 2-(1-methoxy-1-oxopropan-2-ylidene)hydrazinecarboxylate: To a solution of methyl pyruvate (1.53 g, 15.0 mmol) in MeOH (75 mL) was added phenyl carbazate (2.29 g, 15.0 mmol) and the solution was stirred overnight. The crude mixture was purified by filtration to afford the pure product as an amorphous white solid (2.72 g, 77%). TLC Rf = 0.75 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 11.07 (br s, 1H), 7.48-7.41 (m, 2H), 7.31-7.21 (m, 3H), 3.74 (s, 3H), 2.11 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 164.8 (C), 150.3 (C), 129.6 (CH), 125.8 (CH), 121.8 (CH), 52.3 (CH₃), 13.1 (CH₃). IR (film): 3223, 1769, 1740, 1709, 1533, 1495, 1437, 1219, 1196, 1155, 1136 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₁H₁₂N₂O₄ [M]⁺: 236.0797. Found: 236.0797.

Table 8, entry 16a: 4-Allyl-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15a** (0.355 g, 1.50 mmol), allylamine (0.12 mL, 1.6 mmol), and MeCN (5 mL). The crude mixture was purified by silica gel column chromatography using 30% EtOAc/hexanes to afford the pure compound as an amorphous white solid (0.185 g, 74%). TLC Rf = 0.21 in 30% EtOAc/hexanes. ¹H NMR (300 MHz; CDCl₃): δ 9.53 (br s, 1H), 5.88 (ddt, *J* = 17.1, 10.2, 6.0 Hz, 1H), 5.36-5.24 (m, 2H), 4.54 (dt, *J* = 6.0, 1.3 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 156.1 (C), 150.2 (C), 143.7 (C), 130.1 (CH), 119.3 (CH₂), 42.2 (CH₂), 16.7 (CH₃). IR (film): 3205, 3086,307, 2928, 1717, 1647, 1728, 1616, 1448, 1379, 1348, 1277, 1209, 1173 cm⁻¹. HRMS (EI): Exact mass calcd for C₇H₉N₃O₂ [M]⁺: 167.0695. Found: 167.0674.

Table 8, entry 16b: 6-Methyl-4-(prop-2-yn-1-yl)-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure 5 using carbazone ester 15a (0.177 g, 0.750 mmol), propargylamine (0.0460 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 30% EtOAc/hexanes to afford the pure compound as an amorphous beige solid (0.105 g, 85%). TLC Rf = 0.12 in 30% EtOAc/hexanes. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.38 (br s, 1H), 4.49 (d, *J* = 2.5 Hz, 2H). 3.17 (t, *J* = 2.4 Hz, 1H), 2.10 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 155.6 (C), 148.7 (C), 78.0 (C), 74.6 (CH), 28.6 (CH₂), 16.5 (CH₃). IR (film): 3246, 2955, 2924, 2116, 1720, 1655, 1647, 1612, 1448, 1410, 1379, 1348, 1275, 1209 cm⁻¹. HRMS (EI): Exact mass calcd for C₇H₇N₃O₂ [M]⁺: 165.0538. Found: 165.0546.

Table 8, entry 16c: 4-Benzyl-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure 5 using carbazone ester **15a** (0.177 g, 0.750 mmol), benzylamine (0.0890 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by recrystallization using EtOAc/hexanes to afford the pure compound as an amorphous beige solid

(0.105 g, 85%). TLC Rf = 0.28 in 30% EtOAc/hexanes. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.34 (br s, 1H), 7.35-7.22 (m, 5H). 4.94 (s, 2H), 2.10 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 156.4 (C), 149.5 (C), 142.1 (C), 136.2 (C), 128.4 (CH), 127.8 (CH), 127.4 (CH), 42.5 (CH₂), 16.6 (CH₃). IR (film): 3227, 3096, 2922, 1717, 1647, 1612, 1448, 1352, 1280. 1201. HRMS (EI): Exact mass calcd for C₁₁H₁₁N₃O₂ [M]⁺: 217.0851. Found: 217.0860.

Table 8, entry 16d: 4-(4-Methoxybenzyl)-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure 5 using carbazone ester 15a (0.177 g, 0.750 mmol), 4-methoxybenzylamine (0.114 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 30% EtOAc/hexanes to afford the pure compound as an amorphous white solid (0.131 g, 75%). TLC Rf = 0.24 in 30% EtOAc/hexanes. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.31 (br s, 1H), 7.29-7.24 (m, 2H), 6.88-6.83 (m, 2H) 4.86 (s, 2H), 3.71 (s, 3H), 2.08 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 158.6 (C), 156.4 (C), 149.5 (C), 129.7 (CH), 128.2 (C), 113.7 (CH), 55.1 (CH₃), 42.0 (CH₂), 16.6 (CH₃). IR (film): 3292, 2958, 2927, 1717, 1655, 1647, 1610, 1512, 1445, 1352, 1302, 1246, 1202, 1175 cm⁻¹. HRMS (EI): Exact mass calcd for $C_{12}H_{13}N_3O_3$ [M]⁺: 247.0957. Found: 247.0958.

Table 8, entry 16e: 4-(2,5-Difluorobenzyl)-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15a** (0.177 g, 0.750 mmol), 2,5-difluorobenzylamine (0.119 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by recrystallization using CH₂Cl₂ to afford the pure compound as an amorphous off-white solid (0.160 g, 84%). TLC Rf = 0.17 in 30% EtOAc/hexanes. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.34 (br s, 1H), 7.29-7.21 (m, 1H), 7.19-7.11 (m, 2H) 4.96 (s, 2H), 2.11 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 156.9 (C), 149.9 (C), 142.6 (C), 125.6 (125.5, 125.4, 125.3, coupling with fluorine) (C), 117.3 (117.2, 117.0, 116.9, coupling with fluorine) (CH), 116.2 (116.0, 116.0, 115.8, 115.7, 115.6, coupling with fluorine) (CH), 37.1 (37.0, coupling with fluorine) (CH₂), 17.0 (CH₃). IR (film): 3267, 2924, 2851, 2368, 1717, 1645, 1632, 1489, 1437, 1369, 1348, 1273, 1182 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₁H₉F₂N₃O₂ [M]⁺: 253.0663 Found: 253.0694.

Table 8, entry 16f: 4-(3,5-dimethoxyphenyl)-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15a** (0.177 g, 0.750 mmol), 3,5-dimethoxyaniline (0.127 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by filtration to afford the pure compound as an amorphous white solid (0.120 g, 61%). TLC Rf = 0.58 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.28 (br s, 1H), 6.58-6.56 (m, 1H), 6.51 (t, *J* = 2.2 Hz, 2H), 3.73 (s, 6H), 2.11 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 160.6 (C), 156.4 (C), 149.2 (C), 142.5 (C), 135.4 (C), 106.8 (CH), 100.5 (CH), 55.4 (CH₃), 16.6 (CH₃). IR (film): 3205, 3117, 2916, 1718, 1653, 1610, 1597, 1558, 1477, 1429, 1213, 1161 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₂H₁₃N₃O₄ [M]⁺: 263.0906. Found: 263.0897.

Table 8, entry 16g: 4-Cyclohexyl-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15a** (0.177 g, 0.750 mmol), cyclohexylamine (0.0820g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by filtration to afford the pure compound as an amorphous white solid (0.0700 g, 51%). TLC Rf = 0.48 in 30% EtOac/hexanes. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.04 (br s, 1H), 4.52 (t, *J* = 11.6 Hz, 1H), 2.31-2.17 (m, 2H), 2.05 (s, 3H), 1.84-1.69 (m, 2H), 1.66-1.45 (m, 4H), 1.35-0.95 (m, 4H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 52.3 (CH), 33.3 (CH₂), 27.8 (CH₂), 25.7 (CH₂), 25.0 (CH₂), 24.5 (CH₂), 16.6 (CH₃). IR (film): 3259, 3248, 2930, 2858, 1728, 1639, 1616, 1558, 1435, 1217 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₀H₁₅N₃O₂ [M]⁺: 209.1164. Not found. LRMS m/z (relative intensity): 162.0 (3.8%), 143.1 (24.6%), 99.1 (24.6%), 56.1 (100%).

Table 8, entry 16h: 4-(2-hydroxyethyl)-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure 5 using carbazone ester 15a (0.177 g, 0.750 mmol), ethanolamine (0.0510 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 85% EtOAc/hexanes to afford the pure compound as an amorphous white solid (0.610 g, 48%). TLC Rf = 0.30 in 85% EtOAc/hexanes. ¹H NMR (300 MHz; DMSO-*d*₆): δ 3.84 (t, *J* = 6.3 Hz, 2H), 3.52 (t, *J* = 6.3 Hz, 2H) 2.07 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 156.6 (C), 149.6 (C), 141.8 (C), 57.1 (CH₂), 41.5 (CH₂) 16.6 (CH₃). IR (film): 3242, 2918, 2851, 2355, 1734, 1726, 1684, 1674, 1506, 1450, 1207 cm⁻¹. HRMS (EI): Exact mass calcd for $C_6H_9N_3O_3$ [M]⁺: 171.0644. Found: 128.1 ($-C_2H_5O$).

Table 8, entry 16i: 2-(6-Methyl-3,5-dioxo-2,3-dihydro-1,2,4-triazin-4(5H)-yl)acetonitrile: Synthesized according to general procedure 5 using carbazone ester 15a (0.177 g, 0.750 mmol), aminoacetonitrile hydrochloride (0.0770g, 0.830 mmol), DIPEA (0.160 mL, 0.900 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 10% EtOAC/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.105 g, 84%). TLC Rf = 0.50 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.49 (br s, 1H), 4.79 (s, 2H), 2.11 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 155.6 (C), 148.5 (C), 142.0 (C), 115.0 (C), 27.1 (CH₂), 16.5 (CH₃). IR (film): 2922, 2853, 1734, 1647, 1635, 1607, 1445, 1379, 1331, 1277, 1213, 1175 cm⁻¹. HRMS (EI): Exact mass calcd for C₆H₈N₄O₃ [M]⁺: 166.0491. Found: 166.0498.

Table 8, entry 16j: 4-(2-(1H-Indol-3-yl)ethyl)-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure 5 using carbazone ester 15a (0.177 g, 0.750 mmol), tryptamine (0.133 g, 0.830 mmol), and MeCN (2.5 mL). The product was purified by filtration to afford the pure compound as an amorphous white solid (0.125 g, 61%). TLC Rf = 0.85 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.26 (br s, 1H), 10.86 (br s, 1H), 7.63 (d, *J* = 8.1 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.21 (d, *J* = 2.2 Hz, 1H), 7.11-6.98 (m, 2H), 4.04-3.98 (m, 2H), 2.97-2.92 (m, 2H), 2.10 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 156.4 (C), 149.4 (C), 141.9 (C), 136.4 (C), 127.1 (C), 122.9 (CH), 121.0 (CH), 118.4 (CH), 118.1 (CH), 111.4 (CH), 110.6 (CH), 39.9 (CH₂), 22.8 (CH₂), 16.6 (CH₃). IR (film): 3344, 1715, 1649, 1636, 1448, 1348, 1285, 1229, 1159 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₄H₁₄N₄O₂ [M]⁺: 270.1117. Found: 270.1100.

Table 8, entry 16k: 2-(6-Methyl-3,5-dioxo-2,3-dihydro-1,2,4-triazin-4(5H)-yl)acetamide: Synthesized according to general procedure **5** using carbazone ester **15a** (0.177 g, 0.750 mmol), glycinamide hydrochloride (0.0920 g, 0.830 mmol), DIPEA (0.16 mL, 0.90 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using EtOAc to afford the pure compound as an amorphous white solid (0.0550 g, 35%). TLC Rf = 0.14 in EtOAc. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.31 (br s, 1H), 7.60 (br s, 1H), 7.18 (br s, 1H) 4.30 (s, 2H), 2.10 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 167.6 (C), 156.2 (C), 149.3 (C), 141.8 (C), 41.5 (CH₂), 16.5 (CH₃). IR (film): 3205, 3194, 3159, 2957, 1772, 1701, 1647, 1628, 1445, 1398, 1375, 1290, 1205, 1178, 1165 cm⁻¹. HRMS (EI): Exact mass calcd for C₆H₈N₄O₃ [M]⁺: 184.0596. No mass found: 162.0, 142.1, 128.1, 100.0, 83.0, 72.0, 56.0.

Table 8, entry 161: 6-Methyl-4-(phenylamino)-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15a** (0.177 g, 0.750 mmol), phenylhydrazine (0.082 mL, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 15% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.0980 g, 60%). TLC Rf = 0.45 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.42 (br s, 1H), 8.53 (s, 1H) 7.17-7.14 (m, 2H). 6.78-6.69 (m, 3H), 2.14 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 156.4 (C), 149.8 (C), 146.9 (C), 142.9 (C), 128.9 (CH), 119.9 (CH), 112.7 (CH), 16.9 (CH₃). IR (film): 3263, 2968, 2926, 1728, 1662, 1647, 1601, 1497, 1447, 1418, 1379, 1246, 1221, 1182 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₀H₁₀N₄O₂ [M]⁺: 218.0804 Found: 218.0816.

Table 8, entry 16m: 4-(Benzyloxy)-6-methyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15a** (0.177 g, 0.750 mmol), *O*-benzyl hydroxylamine (0.102 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was condensed *in vacuo* and the impurities were dissolved in CH₂Cl₂ before the product was purified by filtration to afford the pure compound as an amorphous white solid (0.105 g, 60%). TLC Rf = 0.71 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.42 (br s, 1H), 7.55-7.52 (m, 2H), 7.45-7.36 (m, 3H), 5.07 (s, 2H), 2.12 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 153.9 (C),

148.1 (C), 143.3 (C), 134.1 (C), 129.5 (CH), 129.0 (CH), 128.4 (CH), 77.6 (CH₂), 16.5 (CH₃). IR (film): 3182, 3126, 2937, 1715, 1682, 1641, 1454, 1420, 1379, 1286, 1236, 1211, 1171 cm⁻¹. HRMS (EI): Exact mass calcd for $C_{11}H_{11}N_3O_3$ [M]⁺: 233.0800. Not found. Calcd for $C_4H_5N_3O_2$ [M+H]⁺: 128.0460 Found: 128.0468 (M – OBn).

Carbazone 15b: (*Z*)-Phenyl-2-(2-methoxy-2-oxo-1-phenylethylidene)hydrazinecarboxylate: To a solution of methyl benzolyformate (0.821g, 5.00 mmol) in MeOH (25 mL) was added phenyl carbazate (0.761 g, 5.00 mmol) and the solution was stirred overnight at 60 °C. The crude mixture was purified by recrystalisation with ether to afford the pure product as an amorphous white solid (1.25 g, 84%). TLC Rf =0.25 in 20% EtOAc/hexanes. ¹H NMR (300 MHz; DMSO d_6): δ 11.67 (br s, 1H), 7.64-7.58 (m, 2H), 7.48-7.42 (m, 5H), 7.32-7.24 (m, 3H) 3.94 (s, 3H). ¹³C NMR (75 MHz; DMSO- d_6): δ 163.1 (C), 151.9 (C), 150.3 (C), 130.1 (C), 130.0 (CH), 129.6 (CH), 128.7 (CH), 126.7 (CH), 125.8 (CH), 121.8 (CH), 53.0 (CH₃). IR (film): 1770, 1734, 1719, 1628, 1475, 1458, 1437, 1325, 1265, 1231, 1134 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₆H₁₄N₂O₄ [M]⁺: 298.0954. Found: 298.0927.

Table 8, entry 16n: 4-(Benzyloxy)-6-phenyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15b** (0.224 g, 0.750 mmol), *O*-benzyl hydroxylamine (0.102 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was condensed *in vacuo* and the impurities were dissolved in CH₂Cl₂ before the product was purified by filtration to afford the pure compound as an amorphous white solid (0.155 g, 70%). TLC Rf = 0.85 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.93 (br s, 1H), 7.90-7.84 (m, 2H), 7.61-7.53 (m, 2H), 7.49-7.38 (m, 6H), 5.14 (s, 2H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 153.4 (C), 147.8 (C), 134.1 (C), 132.3 (C), 129.6 (CH), 129.6 (CH), 129.0 (CH), 128.4 (CH), 128.1 (CH), 128.0 (CH), 77.6 (CH₂). IR (film): 3242, 3182, 2918, 1755, 1747, 1734, 1680, 1553, 1493, 1445, 1404, 1238, 1176 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₆H₁₃N₃O₃ [M]⁺: 295.0957. Found: 295.0962.

Table 8, entry 160: 4-Allyl-6-phenyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15b** (0.224 g, 0.750 mmol), allylamine (0.060 mL, 0.83 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 20% EtOAc/hexanes to afford the pure compound as an amorphous yellow solid (0.100 g, 58%). TLC Rf = 0.22 in 20% EtOAc/hexanes. ¹H NMR (300 MHz; CDCl₃): δ 9.42 (br s, 1H), 7.99-7.93 (m, 2H), 7.48-7.41 (m, 3H), 5.94 (ddt, *J* = 17.1, 10.2, 6.1 Hz, 1H), 5.42-5.27 (m, 2H), 4.62 (dt, *J* = 6.1, 1.4 Hz, 2H). ¹³C NMR (75 MHz; CDCl₃): δ 155.2 (C), 149.8 (C), 142.3 (C), 131.7 (C), 130.2 (CH), 130.1 (C), 128.3 (C), 128.3 (C), 119.6 (CH₂), 42.6 (CH₂). IR (film): 3242, 3207, 3105, 3091, 2988, 1713, 1651, 1643, 1558, 1495, 1441, 1297, 1223, 1178, 1124 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₂H₁₁N₃O₂ [M]⁺: 229.0851. Found: 229.0839.

Table 8, entry 16p: 4-(4-Bromophenyl)-6-phenyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15b** (0.224 g, 0.750 mmol), 3-bromoaniline (0.143 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by filtration to afford the pure compound as an amorphous white solid (0.200 g, 77%). TLC Rf = 0.85 in EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.84 (br s, 1H), 7.90-7.84 (m, 2H), 7.75-7.70 (m, 2H), 7.48-7.43 (m, 3H), 7.39-7.34 (m, 2H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 155.7 (C), 148.9 (C), 141.3 (C), 133.2 (C), 132.6 (C), 132.0 (CH), 130.9 (CH), 129.5 (CH), 128.1 (CH), 121.9 (C). IR (film): 2920, 2862, 1724, 1647, 1632, 1558, 1489, 1445, 1302, 1232, 1186, 1068 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₅H₁₀Br₁N₃O₂ [M]⁺: 342.9956.

Table 8, entry 16q: 4-(3,5-Dimethoxyphenyl)-6-phenyl-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15b** (0.224 g, 0.750 mmol), 3,5-dimethoxyaniline (0.127 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by filtration to afford the pure compound as an amorphous white solid (0.220 g, 90%). TLC Rf = 0.85 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.79 (br s, 1H), 7.88 (br s, 2H), 7.45 (br s, 3H), 6.60 (br s, 3H), 3.75 (br s, 6H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 160.6 (C), 155.7 (C), 148.9 (C), 141.3 (CH), 135.6 (C), 132.7 (C), 129.4 (CH), 128.1 (CH), 109.6 (CH), 100.5 (CH), 55.4 (CH₃). IR (film): 1715, 1564, 1444, 1370, 1290, 1265, 1118, 1065 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₇H₁₅N₃O₄ [M]⁺: 325.1063. Found: 325.1075.

Table 8, entry 16r: 4-(3,5-Bis(trifluoromethyl)phenyl)-6-methyl-1,2,4-triazine-3,5(2H,4H)dione: Synthesized according to general procedure 5 using carbazone ester 15b (0.224 g, 0.750 mmol), 3,5-bistrifluoromethylaniline (0.190 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by filtration to afford the pure compound as an amorphous white solid (0.250 g, 83%). TLC Rf = 0.9 in 30 % EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 13.03 (br s, 1H), 8.31-8.27 (m, 3H), 7.93-7.87 (m, 2H), 7.50-7.45 (m, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 155.7 (C), 148.8 (C), 141.4 (C), 136.0 (C), 132.4 (C), 131.3 (C), 130.9 (C), 130.4 (CH), 130.3 (CH), 129.7 (CH), 128.2 (CH), 128.1 (CH). IR (film): 1770, 1718, 1684, 1558, 1472, 1437, 1373, 1265, 1225, 1177, 1136 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₇H₉₁N₃O₂ [M]⁺: 401.0599. Found: 400.9956.

Adaptation of a known literature preparation⁶: Tetrahydro-2-furoic acid (1.16 g, 10.0 mmol) was dissolved in CH₂Cl₂ (100 mL). HBTU (4.18 g, 11.0 mmol), DIPEA (5.29 mL, 30.0 mmol), and 1- (cyanomethyl)tetrahydro-1H-thiophenium bromide salt (2.29 g, 13.0 mmol) were added and the reaction was stirred at room temperature for 3 hours. The reaction was poured into saturated aqueous NH₄Cl (100 mL) and the aqueous layer was extracted with CH₂Cl₂ (3 x 100 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated. The crude oil was purified over silica gel by flash column chromatography using a gradient of 1:1 EtOAc:acetone to acetone to yield a white solid (2.10 g, 91%). TLC Rf = 0.32 in acetone. ¹H NMR (300 MHz; DMSO-*d*₆): δ 4.41-4.37 (m, 1H), 3.86-3.77 (m, 1H), 3.75-3.68 (m, 1H). 3.60-3.51 (m, 2H), 3.14-3.01 (m, 2H) 2.37-2.21 (m, 2H), 2.07-1.97 (m, 3H), 1.87-1.73 (m, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 189.8 (C), 119.9 (C), 79.7 (CH), 68.3 (CH₂), 45.5 (CH₂), 45.2 (CH₂), 29.8 (CH₂), 28.0 (CH₂), 28.0 (CH₂), 25.4 (CH₂).

The ylide (0.225 g, 1.00 mmol) was dissolved in MeOH (10 mL). A solution of oxone in acetone (0.1 M, 20 mL, 2 mmol) was added slowly and the solution was stirred for 1 hour. An additional 5 mL were added and the solution was stirred for another hour. The solution was condensed under reduced pressure and the crude oil was dissolved in MeOH (5 mL) and phenyl carbazate (0.152 g, 1.00 mmol) was added. The solution was stirred at reflux overnight. The solution was concentrated and purified by silica gel flash column chromatography with 5% EtOAc:CH₂Cl₂ to afford the impure semi-carbazone **15c** as a colorless oil (0.215 g, 74%, overestimated since material is not pure).

Table 8, entry 16s: 4-Allyl-6-(tetrahydrofuran-2-yl)-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using impure carbazone ester **15c** (0.190 g, 0.650 mmol), allylamine (0.050 mL, 0.72 mmol), and MeCN (2.0 mL). The crude mixture was purified by silica gel column chromatography using 20% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.0600 g, 42%). TLC Rf = 0.18 in 20% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.46 (br s, 1H), 5.81 (ddt, *J* = 17.5, 10.1, 5.3 Hz, 1H), 5.15 (q, *J* = 1.4 Hz, 1H), 5.10 (dq, *J* = 4.8, 1.4 Hz, 1H), 4.87 (t, *J* = 6.8 Hz, 1H), 4.35 (dt, *J* = 5.3, 1.5 Hz, 2H), 3.86-3.72 (m, 2H), 2.11-1.82 (m, 4H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 149.0 (C), 143.6 (C), 131.5 (CH), 117.2 (CH₂), 75.0 (CH), 68.0 (CH₂), 41.2 (CH₂), 28.6 (CH₂), 25.4 (CH₂). IR (film): 3225, 2988, 2870, 1717, 1659, 1645, 1558, 1456, 1425, 1406, 1337, 1225, 1173, 1065 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₀H₁₃N₃O₃ [M]⁺: 223.0957. Found: 223.0960.

Table 8, entry 16t: 4-(3,5-Dimethoxyphenyl)-6-(tetrahydrofuran-2-yl)-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure 5 using impure carbazone ester 15c (0.175 g, 0.600 mmol), 3,5-dimethoxyaniline (0.102 g, 0.660 mmol), and MeCN (2.0 mL). The crude mixture was purified by silica gel column chromatography using 20% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.110 g, 57%). TLC Rf = 0.21 in 20% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.48 (br s, 1H), 6.56-6.57 (m, 1H), 6.546.43 (m, 2H), 4.90 (t, J = 6.7 Hz, 1H), 4.35 (dt, J = 5.3, 1.5 Hz, 2H), 3.88-3.74 (m, 8H), 2.13-1.80 (m, 4H). ¹³C NMR (75 MHz; DMSO- d_6): δ 160.6 (C), 155.4 (C), 149.0 (C), 144.2 (C), 135.2 (C), 106.8 (CH), 100.6 (CH), 75.0 (CH), 68.0 (CH₂), 55.4 (CH₃), 28.7 (CH₂), 25.4 (CH₂). IR (film): 3286, 3246, 2959, 1734, 1670, 1610, 1597, 1558, 1474, 1429, 1346, 1205, 1155 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₅H₁₇N₃O₅ [M]⁺: 319.1168. Found: 319.1159.

Table 8, entry 16u: 4-(Prop-2-yn-1-yl)-6-(tetrahydrofuran-2-yl)-1,2,4-triazine-3,5(2H,4H)dione: Synthesized according to general procedure 5 using impure carbazone ester 15c (0.175 g, 0.600 mmol), propargylamine (0.0360 g, 0.660 mmol), and MeCN (2.0 mL). The crude mixture was purified by silica gel column chromatography using 20% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.0700 g, 42%). TLC Rf = 0.20 in 20% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.59 (br s, 1H), 4.87 (t, *J* = 6.7 Hz, 1H), 4.48 (d, *J* = 2.2 Hz, 2H), 3.86-3.72 (m, 2H), 3.19 (s, 1H) 2.10-1.82 (m, 4H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 154.5 (C), 148.5 (C), 143.6 (C), 78.0 (C), 75.1 (CH), 73.7 (CH), 28.6 (CH₂), 28.5 (CH₂), 25.4 (CH₂). IR (film): 3244, 2924, 1713, 1655, 1620, 1531, 1452, 1425, 1346, 1242, 1223, 1167, 1055 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₀H₁₁N₃O₃ [M]⁺: 221.0800. Found: 221.0784.

Carbazone 15d: Diethyl 2-(2-(phenoxycarbonyl)hydrazono)malonate: To a solution of diethylketomalonate (0.46 mL, 3.0 mmol) in MeOH (15 mL) was added phenyl carbazate (0.456 g, 3.00 mmol) and the solution was stirred overnight at 60 °C. The crude mixture was purified by silica gel column chromatography using 30% EtOAc/hexanes to afford the pure product as an amorphous white solid (0.404 g, 44%). TLC Rf = 0.52 in 30% EtOAc/hexanes. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.06 (br s, 1H), 7.47-7.41 (m, 2H), 7.32-7.22 (m, 3H), 4.36-4.22 (m, 4H) 1.29-1.21 (m, 6H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 161.4 (C), 160.7 (C), 151.6 (C), 150.2 (C), 134.0 (C), 130.0 (CH), 126.5 (CH), 121.9 (CH), 62.7 (CH₂), 62.3 (CH₂), 14.1 (CH₃), 13.9 (CH₃). IR (film): 3252, 2984, 2355, 1784, 1732, 1697, 1558, 1474, 1369, 1256, 1140, 1090 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₄H₁₆N₂O₆ [M]⁺: 308.1008. Found: 308.1039.

Table 8, entry 16v: Ethyl 4-allyl-3,5-dioxo-2,3,4,5-tetrahydro-1,2,4-triazine-6-carboxylate: Synthesized according to general procedure 5 using carbazone ester 15d (0.231 g, 0.750 mmol), allylamine (0.060 mL, 0.83 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 30% EtOAc/hexanes to afford the pure compound as an amorphous yellow solid (0.108 g, 64%). TLC Rf = 0.17 in 30% EtOAC/hexanes. ¹H NMR (300 MHz; CDCl₃): δ 10.68 (br s, 1H), 5.86 (ddt, *J* = 16.9, 10.3, 6.2 Hz, 1H), 5.39-5.26 (m, 2H), 4.54 (d, *J* = 6.1 Hz, 2H), 4.44 (q, *J* = 7.2 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3 H). ¹³C NMR (75 MHz; CDCl₃): δ 160.3 (C), 152.6 (C), 148.8 (C), 134.9 (C), 129.4 (CH), 120.2 (CH₂), 62.7 (CH₂), 42.7 (CH₂), 14.0 (CH₃). IR (film): 3267, 3001, 1717, 1670, 1647, 1578, 1431, 1408, 1317, 1242, 1136, 1014 cm⁻¹. HRMS (EI): Exact mass calcd for C₉H₁₁N₃O₄ [M]⁺: 225.0750. Found: 225.0781.

Carbazone 15e' (**Z**)-**2-(2-(Phenoxycarbonyl)hydrazono)acetic acid:** To a solution of glycoxylic acid monohydrate (0.460 g, 5.00 mmol) in MeOH (25 mL) was added phenyl carbazate (0.761 g, 5.00 mmol) and the solution was stirred overnight. The crude mixture was purified by recrystalisation with ether to afford the pure product as an amorphous white solid (0.953 g, 92%). TLC Rf = 0.64 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 13.12 (br s, 1H), 12.13 (br s, 1H), 7.46-7.40 (m, 3H), 7.30-7.20 (m, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 164.3 (C), 129.6 (CH), 125.9 (CH), 121.8 (CH). IR (film): 3410, 3005, 2991, 1759, 1724, 1653, 1636, 1558, 1495, 1474, 1423 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₆H₁₄N₂O₄ [M]⁺: 208.0489. Not found. LRMS m/z (relative intensity) 181.0 (24.6%), 162.0 (2.3%), 112.0 (1.5%), 94.0 (69.2%), 69.0 (100%).

Carbazone 15: (*Z*)-Phenyl 2-(2-methoxy-2-oxoethylidene)hydrazinecarboxylate: To a solution of carbazone 15e' (0.208 g, 1.00 mmol) in CH₂Cl₂ (2.5 mL) was added *N*,*N'*-dicyclohexylcarbodiimide (0.206 g, 1.00 mmol), 4-dimethylaminopyridine (0.0120 g, 0.100 mmol), and MeOH (0.080 mL, 2.0 mmol) and the solution was stirred overnight. The crude mixture was purified by silica gel column chromatography using 6% EtOAc/CH₂Cl₂ to afford the pure product as an amorphous white solid (0.185 g, 83%). TLC Rf = 0.20 in 6% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.23 (br s, 1H), 7.51-7.37 (m, 3H), 7.31-7.18 (m, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 163.0 (C), 129.6 (CH), 125.9 (CH), 121.7 (CH), 52.0 (CH₂). IR (film): 1713, 1597, 1555, 1537, 1493, 1437, 1350, 1196, 1132, 1047 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₀H₁₀N₂O₄ [M]⁺: 222.0641. Found: 222.0624.

Table 8, entry 16w: 4-(Prop-2-yn-1-yl)-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure 5 using carbazone ester 15e (0.167 g, 0.750 mmol), propargylamine (0.0460 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 30% EtOAc/hexanes to afford the pure compound as an amorphous white solid (0.0700 g, 62%). TLC Rf = 0.14 in 30% EtOAc/hexanes. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.71 (br s, 1H), 7.56 (s, 1H), 4.47 (d, *J* = 2.5 Hz, 2H). 3.19 (t, *J* = 2.5 Hz, 1H),). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 154.8 (C), 148.8 (C), 135.2 (CH), 74.1 (CH), 28.9 (CH₂). IR (film): 3285, 3246, 2912, 1730, 1655, 1593, 1558, 1429, 1342, 1209, 1151, 1107 cm⁻¹. HRMS (EI): Exact mass calcd for C₆H₅N₃O₂ [M]⁺: 151.0382. Found: 151.0391.

Carbazone 15f: (*E*)-Phenyl-2-(2-methoxy-2-oxo-1-(thiophen-2-yl)ethylidene)hydrazine carboxylate: Synthesized according to a known procedure⁵ using 2-oxo-2-(2-thienyl)acetic acid (0.500 g, 3.20 mmol). The crude product was directly reacted with phenyl carbazate (0.442 g, 2.91 mmol) in CH₃OH (15 mL) at 65 °C for 16 hours. The crude mixture was purified by silica gel flash column chromatography using 20% EtOAc/pet. ether. TLC Rf = 0.35 in 20% EtOAc/pet. ether. ¹H NMR (300 MHz; CDCl₃): δ 11.9 (br s, 1H), 7.61 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.41-7.33 (m, 3H), 7.24-7.21 (m, 3H), 7.02 (dd, *J* = 5.1, 3.8 Hz, 1H), 3.99 (s, 3H). ¹³C NMR (75 MHz; CDCl₃): δ 161.9 (C), 150.7 (C), 130.1 (C), 129.6 (CH), 129.2 (CH), 128.5 (CH), 127.5 (CH), 126.0 (CH), 121.5 (CH), 53.1 (CH₃). IR (film): 3269, 1772, 1733, 1701, 1647, 1515, 1455, 1318, 1266, 1164, 1137, 1029 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₄H₁₂N₂O₄S [M]⁺: 304.0518. Found: 304.0506.

Table 8, entry 16x: 4-(3,5-Dimethoxyphenyl)-6-(thiophen-2-yl)-1,2,4-triazine-3,5(2H,4H)-dione: Synthesized according to general procedure **5** using carbazone ester **15f** (0.091 g, 0.300 mmol), 3,5-dimethoxyaniline (0.051 g, 0.330 mmol), and MeCN (1.0 mL). The crude mixture was purified by filtration to afford the pure compound as an amorphous white solid (0.220 g,

90%). TLC Rf = 0.30 in 10% EtOAc/CH₂Cl₂.. ¹H NMR (300 MHz; DMSO-*d*₆): δ 12.70 (s, 1H), 7.89 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.65 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.12 (dd, *J* = 5.1, 3.7 Hz, 1H), 6.56 (s, 3H), 3.71 (s, 6H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 160.6 (C), 154.9 (C), 148.7 (C), 137.1 (C), 135.4 (C), 135.2 (C), 128.9 (CH), 128.1 (CH), 127.7 (CH), 106.8 (CH), 100.6 (CH), 55.4 (CH₃). IR (film): 1772, 1733, 1716, 1668, 1647, 1558, 1455, 1265, 1188, 1141 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₅H₁₃N₃O₄S [M]⁺: 331.0627. Found: 331.0647.

Table 9, entry 1: 4-Methylbenzo[4,5]imidazo[1,2-d][1,2,4]triazin-1(2H)-one: Synthesized according to general procedure **5** using carbazone ester 15a (0.177 g, 0.750 mmol), 1,2-phenylenediamine (0.0900 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by filtration to afford the pure compound as an amorphous white solid (0.100 g, 67%). TLC Rf = 0.80 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 8.33-8.27 (m, 1H), 7.96-7.90 (m, 1H) 7.60-7.51 (m, 2H), 2.53 (s, 3H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 146.1 (C), 143.0 (C), 139.4 (C), 129.3 (C), 126.2 (CH), 125.3 (CH), 120.5 (CH), 115.0 (CH), 108.7 (C), 16.8 (CH₃). IR (film): 2920, 2854, 2372, 1716, 1705, 1653, 1569, 1366, 1151 cm⁻¹. HRMS (EI): Exact mass calcd for C₁₀H₈N₄O [M]⁺: 200.0698. Found: 200.0668.

Table 9, entry 2: 4-Phenylbenzo[4,5]imidazo[1,2-d][1,2,4]triazin-1(2H)-one: Synthesized according to general procedure **5** using carbazone ester **15b** (0.224 g, 0.750 mmol), 1,2-phenylenediamine (0.0900 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by filtration to afford the pure compound as an amorphous white solid (0.150 g, 76%). TLC Rf = 0.80 in 30% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 13.17 (br s, 1H), 8.44-8.36 (m, 3H), 8.03-7.98 (m, 1H) 7.63-7.50 (m, 5H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 146.6 (C), 143.0 (C), 141.8 (C), 138.1 (C), 132.6 (C), 129.9 (CH), 128.9 (C), 128.4 (CH), 128.0 (C), 126.2 (CH), 125.3 (CH), 120.4 (CH), 115.0 (CH). IR (film): 2941, 1742, 1707, 1647, 1558, 1522, 1441, 1373, 1277, 1211. HRMS (EI): Exact mass calcd for C₁₅H₁₀N₄O [M]⁺: 262.0855. Found: 262.0840.

Table 9, entry 3: 9-Methyl-3,4-dihydro-2H-pyrimido[1,2-d][1,2,4]triazin-6(7H)-one: Synthesized according to general procedure 5 using carbazone ester 15a (0.177 g, 0.750 mmol), diaminopropane (0.070 mL, 0.83 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 50% EtOAc/CH₂Cl₂ to pure EtOAc to afford the pure compound as an amorphous white solid (0.0800 g, 64%). TLC Rf = 0.08 in 50% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 11.27 (br s, 1H), 3.63 (t, *J* = 5.9 Hz, 2H) 3.42 (t, *J* = 5.3 Hz, 2H), 1.97 (s, 3H), 1.75 (quint., *J* = 5.7 Hz, 2 H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 148.4 (C), 142.8 (C), 142.0 (C), 43.4 (CH₂), 36.6 (CH₂), 19.0 (CH₂), 17.3 (CH₃). IR (film): 1684, 1626, 1551, 1433, 1373, 1315, 1265, 1194. HRMS (EI): Exact mass calcd for C₇H₁₀N₄O [M]⁺: 166.0855. Found: 166.0847.

Table 9, entry 4: 3,3,9-Trimethyl-3,4-dihydro-2H-pyrimido[1,2-d][1,2,4]triazin-6(7H)-one: Synthesized according to general procedure 5 using carbazone ester 15a (0.177 g, 0.750 mmol), 2,2-dimethyl-1,3-diaminopropane (0.850 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by silica gel column chromatography using 50% EtOAc/CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.105 g, 72%). TLC Rf = 0.21 in 50% EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO-*d*₆): δ 11.32 (br s, 1H), 3.33 (s, 2H) 3.15 (s, 2H), 2.00 (s, 3H), 0.89 (s, 6H). ¹³C NMR (75 MHz; DMSO-*d*₆): δ 148.6 (C), 142.6 (C), 141.0 (C), 55.6 (CH₂), 48.7 (CH₂), 25.8 (C), 24.1 (CH₃) 17.4 (CH₃). IR (film): 3225, 3082, 2964, 1684, 1676, 1622, 1558, 1475, 1437, 1375, 1300, 1265, 1155. HRMS (EI): Exact mass calcd for C₉H₁₄N₄O [M]⁺: 194.1168. Found: 194.1183.

Table 9, entry 5: 3-Hydroxy-9-methyl-3,4-dihydro-2H-pyrimido[1,2-d][1,2,4]triazin-6(7H)one: Synthesized according to general procedure 5 using carbazone ester 15a (0.177 g, 0.750 mmol), 1,3-diamino-2-propanol (0.750 g, 0.830 mmol), and MeCN (2.5 mL). The crude mixture was purified by removing soluble by-products in CH₂Cl₂ to afford the pure compound as an amorphous white solid (0.0750 g, 55%). TLC Rf = 0.03 in 50 % EtOAc/CH₂Cl₂. ¹H NMR (300 MHz; DMSO- d_6): δ 11.27 (br s, 1H), 5.16-5.08 (m, 1H) 3.98 (br s, 1H), 3.71-3.62 (m, 1H), 3.543.43 (m, 2H), 3.38-3.27 (m, 2H), 1.99 (s, 3H).¹³C NMR (75 MHz; DMSO- d_6): δ 148.8 (C), 142.6 (C), 141.5 (C), 58.7 (CH), 50.0 (CH₂), 44.2 (CH₂), 17.3 (CH₃). IR (film): 1716, 1662, 1617, 1558, 1434, 1427, 1418, 1265, 1236, 1225, 1177. HRMS (EI): Exact mass calcd for C₇H₁₀N₄O₂ [M]⁺: 182.0804. Found: 182.0821.

References

- 1. Ketone synthesized according to: D. Arnold, M. LaPorte, S. Anderson and P. Wipf, *Tetrahedron*, 2013, **69**, 7731.
- 2. Ketone synthesized according to: B. Willy, F. Rominger and T. Muller, *Synthesis*, 2008, **2**, 303.
- 3. Ketone synthesized according to: R. Cox, D. Ritson, T. Dane, J. Berge, J. Charmant and A. Kantacha, *Chem. Commun.*, 2005, 1039.
- 4. Ketone synthesized according to: J. Waldo and R. Larock, Org. Lett., 2005, 7, 5205.
- 5. Monsanto Technology LLC Patent: US6359156 B1, 2002; Location in patent: Page column 11-12.
- 6. L. Ju, A. L. Lippert and J. W. Bode, J. Am. Chem. Soc., 2008, 130, 4253-4255.
- 7. C. Clavette, J.-F. Vincent-Rocan, and A. M. Beauchemin, *Angew. Chem. Int. Ed.*, 2013, **52**, 12705
- 8. J.-F Vincent-Rocan, C. Clavette, K. Leckett and A. M. Beauchemin, *Chem. Eur. J.*, 2015, **21**, 3886.

S62

S107

