Effects of reagent rotation on interferences in the product angular distributions of chemical reactions

P. G. Jambrina,^a J. Aldegunde^b, F. J. Aoiz^{*a}, M. Sneha^c, R. N. Zare^{*c}

^aDepartamento de Química Física I, Facultad de Química, Universidad Complutense de Madrid, 28040, Spain. e-mail: aoiz@quim.ucm.es

^bDepartamento de Química Física. Universidad de Salamanca. Salamanca. Spain.

^cDepartment of Chemistry, Stanford University, Stanford, California 94305-5080, USA. e-mail: zare@stanford.edu

Figure S1: QCT *J*- θ deflection function resolved in Ω , $(2J + 1) P_r(J, \theta; \Omega)$ sin θ for the H + D₂ (ν =0, j=2) \rightarrow D + HD (ν =1, j=0) reaction at $E_{coll} = 1.97$ eV. Sketches of the most characteristic quasiclassical mechanisms are labelled in the figure as 1 (ear), 2, 3, 3' and 4 (the last three form the spiral). ^{1, 2} Sketches displaying these mechanisms are also displayed. The mechanism labelled as (3) and (3') are similar; the former with slightly smaller impact parameters and attacking angles somewhat closer to linearity.

Figure S2: Origin of the multiple peaks in backward scattering for j=1. The top panels show the joint QCT J- θ deflection function resolved in Ω , $(2J + 1) P_r(J, \theta; \Omega) \sin \theta$. The bottom panels show the decomposition of the QM angular distributions from the contributions of various sets of J. The notation DCS (J_1-J_2) means that the DCS is constructed by including partial waves in the range $[J_1, J_2]$ and the corresponding cross terms. In each case, the shaded curve corresponds to the global DCS $|v, j, \Omega\rangle$ state.

References:

- 1. S. J. Greaves, D. Murdock and E. Wrede, J. Chem. Phys., 2008, 128, 164307.
- 2. S. J. Greaves, D. Murdock, E. Wrede and S. C. Althorpe, J. Chem. Phys., 2008, 128, 164306.