Enantioselective Fluorination of α-Branched Aldehydes and Subsequent Conversion to α-Hydroxyacetals via Stereospecific C–F Bond Cleavage

Kazutaka Shibatomi,* Kazumasa Kitahara, Takuya Okimi, Yoshiyuki Abe, Seiji Iwasa

Department of Environmental and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Japan

shiba@ens.tut.ac.jp

Supplementary Information

Table of contents

General methods	2
Synthesis of chiral primary amine catalysts 1 (Scheme 2)	2
Highly enantioselective fluorination of α -branched aldehydes (Table 2)	6
Derivatization of α -fluoroaldehydes (Scheme 3)	. 16
Synthesis of α -hydroxyacetals 10 (Table 3).	. 18
¹ H NMR measurement of hemiacetal derived from 4a	. 25
Synthesis of (<i>R</i>)- α -hydroxyester 13 (Scheme 4)	. 25
References	. 26
NMR spectra and HPLC traces	27

General methods: All non-aqueous reactions were carried out in flame-dried glassware under argon atmosphere and stirred using magnetic stir-plates. Thin-layer chromatography analyses were performed using Merck pre-coated silica gel plates with 254 indicator. Visualization was accomplished by UV light (254 nm), potassium permanganate, phosphomolybdic acid, or anisaldehyde. Flash column chromatography was performed using silica gel 60 (mesh 230-400) supplied by Kanto Chemical Co., Inc. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a JEOL JNM-ECX400 (400 MHz ¹H, 100 MHz ¹³C, 376 MHz ¹⁹F) or a JEOL JNM-ECX500 (500 MHz ¹H, 126 MHz ¹³C, 470 MHz ¹⁹F). Chemical shift values (δ) are reported in ppm (tetramethylsilane δ 0.00 ppm, residual benzene δ 7.15 ppm or methanol δ 3.31 for ¹H; hexafluorobenzene δ –162.20 ppm for ¹⁹F; residual chloroform δ 77.0 ppm, benzene δ 128.0 or methanol δ 49.0 ppm for ¹³C). Optical rotations were measured on a JASCO P-1030 digital polarimeter. GC analysis was performed with a Shimadzu model 2014 instrument. Analytical HPLC was performed on a JASCO PU1586 with a UV-1575 UV/Vis detector using a chiral column. DART mass (positive mode) analyses were performed on a LC-TOF JMS-T100LP. We confirmed that the optical purity of selected products 5a and 10a did not change even after chromatographic purification using silica gel and subsequent solvent evaporation.¹

Materials: Commercial grade reagents and solvents were used without further purification unless otherwise noted. Anhydrous *t*-butyl methyl ether (TBME), ethyl acetate, dimethylformamide (DMF), methanol and ethylene glycol were purchased from Aldrich. Anhydrous acetonitrile and acetone were purchased from Wako Pure Chemical Industries, Ltd. Anhydrous toluene, dichloromethane, tetrahydrofurane (THF), and benzene were purchased from Kanto Chemical Co. Inc. and used after purification by GLASS-Contour Solvent Dispensing System, but benzene was used without purification. Chiral primary amine catalysts **1c** was synthesized from (*R*)-BINOL according to the reported procedure.²

Synthesis of chiral primary amine catalysts 1 (Scheme 2).

A solution of (*R*)-**14**³ (3 mmol), 3,5-di-*t*-Bu-phynylboronic acid (9 mmol, 3 equiv), Pd(OAc)₂ (67.4 mg, 0.3 mmol, 10 mol%), PPh₃ (173.1 mg, 0.66 mmol, 22 mol%), and K₃PO₄•nH₂O (150 wt%) in dry THF (30 mL) was degassed by bubbling argon through this solution for 30 min. The solution was refluxed for 15 h under argon atmosphere. The resulting mixture was poured into saturated aq.NH₄Cl, and the whole mixture was filtered to remove the catalyst, then extracted with ethyl acetate. The organic extracts were dried over Na₂SO₄ and concentrated. The crude mixture was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 5:1) to give 75% yield of (*R*)-**15** (white solid). ¹H NMR (400 MHz, CDCl₃): δ 8.14 (s, 2H), 7.99 (d, *J* = 7.9 Hz, 2H), 7.58–7.36 (m, 12H), 1.40 (s, 36H); ¹³C NMR (100 MHz, CDCl₃): δ 150.9, 144.3, 135.5, 135.3, 132.9, 132.5, 132.5, 128.3, 127.6, 127.4, 127.3, 125.5, 124.0, 122.2, 119.2, 116.0, 34.9, 31.3; ¹⁹F NMR (376MHz, CDCl₃): δ –75.8; $[\alpha]_D^{23}$ –194.3 (c = 6.4, CHCl₃); HRMS (DART): Anal. For C₅₀H₅₃F₆O₆S₂⁺¹ [M+H]⁺ Calcd.: 927.3188, Found: 927.3185.

To a solution of (*R*)-**15** (1.46 mmol) and NiCl₂(PPh₃)₂ (95.5 mg, 0.146 mmol, 10 mol%) in TBME (14.6 mL) was added 3M ethereal solution of MeMgI (2.92 mL, 8.76 mmol, 6 equiv) at 0 °C. The solution was refluxed for 16 h under argon atmosphere. This mixture was poured into ice-cooled 1M HCl, and the whole mixture was filtered to remove the catalyst. The filtrate was poured into saturated aq.NaHCO₃, and extracted with dichloromethane. The organic extracts were dried over Na₂SO₄ and concentrated. The crude mixture was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 10:1) to give 91% yield of (*R*)-**16** (white solid). ¹H NMR (500 MHz, CDCl₃): δ 7.94–7.87 (m, 4H), 7.48–7.45 (m, 2H), 7.41–7.38 (m, 2H), 7.36–7.34 (m, 4H), 7.25–7.18 (m, 4H), 2.03 (s, 6H), 1.40 (s, 36H); ¹³C NMR (126 MHz, CDCl₃): δ 150.2, 142.4, 141.4, 136.6, 132.9, 132.1, 132.0, 128.2, 127.9, 126.0, 125.8, 125.3, 123.9, 120.7, 35.0, 31.6, 18.4; [α]_D²¹ +51.5 (c = 9.5, CHCl₃); HRMS (DART): Anal. For C₅₀H₅₈⁺¹ [M+H]⁺ Calcd.: 659.4617, Found: 659.4616.

A solution of (*R*)-**16** (3.24 mmol), *N*-bromosuccinimide (NBS) (1.27 g, 7.13 mmol, 2.2 equiv), and 2,2'-azobis(isobutyronitrile) (AIBN) (53.2 mg, 0.324 mmol, 10 mol%) in benzene (16.2 mL) was refluxed for 3 h. After being cooled to room temperature, the mixture was poured into water and extracted with ethyl acetate. The organic extracts were dried over Na₂SO₄ and concentrated. The crude mixture was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 10:1) to give 97% yield of (*R*)-**2b** (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.98–7.88 (m, 4H), 7.50–7.46 (m, 8H), 7.29–7.18 (m, 4H), 4.29 (s, 4H), 1.40 (s, 36H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 142.2, 139.6, 136.5, 133.2, 132.5, 131.8, 130.1, 127.8, 127.4, 127.1, 126.2, 124.0, 121.2, 35.0, 32.7, 31.6; [α]_D²² +31.7 (c = 9.4, CHCl₃); HRMS (DART): Anal. For C₅₀H₅₇Br₂⁺¹ [M+H]⁺ Calcd.: 815.2827, Found: 815.2827.

To a suspension of (*R*)-2a³ or (*R*)-2b (5.25 mmol), tetrabutylammonium hydrogen sulfate (356.5 mg, 1.05 mmol, 20 mol%) and K₂CO₃ (7.26 g, 52.5 mmol, 10 equiv) in CH₃CN (105 mL) was added ethyl isocyanoacetate (688 μ L, 6.30 mmol, 1.2 equiv) at 0 °C. The solution was refluxed for 16 h under argon atmosphere. The resulting mixture was filtered and the filtrate was concentrated. The residue was purified by column chromatography on silica gel to afford (*R*)-17.

(*R*)-17a: The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 10 : 1) to give 69% of (*R*)-17a (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (s, 1H), 7.93 (dd, *J* = 22.9, 8.2 Hz, 2H), 7.82 (s, 1H), 7.51–7.20 (m, 16H), 3.88–3.80 (m, 1H), 3.77 (d, *J* = 13.7 Hz, 1H), 3.56–3.48 (m, 1H), 3.32 (d, *J* = 14.3 Hz, 1H), 3.09 (d, *J* = 14.3 Hz, 1H),

2.84 (d, J = 14.0 Hz, 1H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 159.8, 141.0, 140.6, 139.8, 136.0, 135.5, 131.2, 131.1, 130.6, 130.1, 130.1, 129.6, 129.4, 128.3, 128.2, 128.2, 128.1, 127.2, 127.2, 127.1, 127.0, 126.2, 126.1, 126.1, 126.1, 70.7, 62.6, 38.9, 34.8. 13.4; $[\alpha]_D{}^{30}$ +3.5 (c = 0.74, CHCl₃); HRMS (DART): Anal. For C₃₉H₃₀N₁O₂⁺¹ [M+H]⁺ Calcd.: 544.2277, Found: 544.2280.

(*R*)-17b: The crude mixture was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 3:1) to give 48% yield of (*R*)-17b (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.98–7.92 (m, 3H), 7.88 (s, 1H), 7.65–7.14 (m, 12H), 4.00 (d, *J* = 14.0 Hz, 1H), 3.76–3.68 (m, 1H), 3.37–3.27 (m, 2H), 3.06 (d, *J* = 14.3 Hz, 1H), 2.91 (d, *J* = 14.0 Hz, 1H), 1.37 (s, 36H), 0.82 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 160.2, 150.5, 142.2, 140.7, 139.8, 139.6, 136.3, 135.6, 133.0, 132.6, 131.1, 131.0, 130.5, 129.8, 129.5, 129.5, 128.2, 127.3, 127.1, 126.1, 126.0, 125.9, 125.8, 124.7, 121.2, 120.9, 70.6, 62.1, 39.0, 34.9, 34.6, 31.5; $[\alpha]_D^{23}$ +13.0 (c = 6.5, CHCl₃); HRMS (DART): Anal. For C₅₅H₆₂N₁O₂⁺¹ [M+H]⁺ Calcd.: 768.4781, Found: 768.4781.

To a solution of (*R*)-17 (2.3 mmol) in ethanol (230 mL) was added conc. HCl (6.1 mL) at 0 °C. The solution was stirred at room temperature for 1 h under argon atmosphere. The resulting mixture was poured into ice-cooled saturated aq.NaHCO₃ and extracted with CH₂Cl₂. The organic extracts were dried over Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel to afford (*R*)-1.

(*R*)-1a: The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 3 : 1) to afford 79% of (*R*)-1a (white solid). ¹H NMR (500 MHz, C₆D₆): δ 7.81 (d, *J* = 23.7 Hz, 2H), 7.74 (dd, *J* = 16.8, 8.0 Hz, 2H), 7.60 (dd, *J* = 8.4, 3.1 Hz, 2H), 7.39–7.09 (m, 12H), 7.05–6.99 (m, 2H), 3.66–3.60 (m, 1H), 3.46 (d, *J* = 13.8 Hz, 1H), 3.40–3.34 (m, 2H), 3.12 (d, *J* = 13.8 Hz, 1H), 2.51 (d, *J* = 13.4 Hz, 1H), 0.98 (s, 2H), 0.58 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, C₆D₆): δ 174.4, 142.5, 142.1, 142.0, 140.7, 136.2, 135.9, 134.0, 133.9, 133.0, 132.9, 132.0, 131.9, 130.7, 130.6, 129.5, 129.3, 128.7, 128.3, 128.2, 128.1, 127.8, 127.7, 127.6, 127.1, 126.9, 126.2, 126.2, 126.0, 125.9, 68.8, 60.6, 40.0, 36.6; [α]_D²⁸ –16.8 (c = 0.9, CHCl₃); HRMS (DART): Anal. For. C₃₈H₃₂N₁O₂⁺¹ [M+H]⁺ Calcd.: 534.2433, Found: 534.2431.

(*R*)-**1b**: The crude mixture was purified by silica gel column chromatography (hexane : CH₂Cl₂ = 1:1) to give 86% yield of (*R*)-**1b** (white solid). ¹H NMR (400 MHz, C₆D₆): δ 8.02 (s, 2H), 7.76 (dd, *J* = 8.4, 8.0 Hz, 2H), 7.63–7.51 (m, 8H), 7.24–7.18 (m, 2H), 7.01–6.94 (m, 2H), 3.83 (d, *J* = 13.4 Hz, 1H), 3.60–3.54 (m, 1H), 3.49 (d, *J* = 13.7 Hz, 1H), 3.36–3.28 (m, 1H), 3.24 (d, *J* = 13.7 Hz, 1H), 2.69 (d, *J* = 13.4 Hz, 1H), 1.31 (s, 36H), 0.55 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 174.2, 150.5, 143.0, 142.0, 141.6, 141.4, 136.5, 136.1, 134.3, 134.0, 133.2, 132.9, 132.0, 132.0, 129.9, 129.1, 128.6, 126.2, 126.1, 125.9, 125.9, 125.5, 125.4, 120.9, 120.6, 68.8, 60.4, 40.3, 36.6, 35.0, 31.6, 13.7; The enantiopurity was determined by HPLC (hexane : 2-propanol = 300 : 1; 0.5 mL/min; using a CHIRALPAK IB-3 column (0.46 cm $\varphi \times 25$ cm)): 8.7 min (minor) and 9.4 min (major); $[\alpha]_D^{27}$ –14.1 (c = 1.1, CHCl₃); HRMS (DART): Anal. For C₅₄H₆₄N₁O₂⁺¹ [M+H]⁺ Calcd.: 758.4937, Found: 758.4935.

Highly enantioselective fluorination of α-branched aldehydes 3 (Table 2).

General procedure for fluorination of α -branched aldehydes: All of aldehydes were purified before the reactions by flash column chromatography on silica gel or Kugelrohr distillation. To a solution of catalyst **1b** (20 mg, 0.026 mmol, 10 mol%) in toluene (0.54 mL) was added 3,5-dinitrobenzoic acid (5.5 mg, 0.026 mmol, 10 mol%), aldehydes **3** (0.39 mmol, 1.5 equiv), and N-fluorobenzenesulfonimide (NFSI) (0.26 mmol, 82 mg, 1 equiv) at 0 °C. The reaction mixture was stirred at room temperature or at 0 °C, then poured into MeOH/CH₂Cl₂ (1 : 4, 1.3 mL) at 0 °C. To this solution, NaBH₄ (1.6 mmol, 6 equiv) was added, and the mixture was stirred at room temperature for 1 h. The reaction was quenched with saturated aq.NH₄Cl, and the mixture was extracted with Et₂O. The organic layer was dried over Na₂SO₄, concentrated, and chromatographed on silica gel to give **5**.

(S)-2-fluoro-2-phenylpropan-1-ol [(S)-5a, 95% ee]

С

The reaction was carried out at 0 °C and stirred for 48 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 3:1) to give 86% yield of (*S*)-**5a** (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.27 (m, 5H), 3.88–3.69 (m, 2H), 2.50 (s,

1H), 1.69 (d, J = 23.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.5 (d, J = 21.1 Hz), 128.4, 127.8, 124.4 (d, J = 9.6 Hz), 97.8 (d, J = 172.5 Hz), 69.5 (d, J = 24.9 Hz), 23.1 (d, J = 24.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –157.6 (m); $[\alpha]_D^{22}$ +14.3 (c = 0.87, CHCl₃); HRMS (DART): Anal. For C₉H₁₁F₁O₁⁺¹ [M+NH₄]⁺ Calcd.: 172.1138, Found: 172.1135. The enantiopurity was determined after conversion into the corresponding benzoate (*S*)-**18a**. The absolute configuration of the major enantiomer was determined to be *S* by comparing the specific rotation with that in the literature. ⁴

General procedure for benzoylation of 5: A flame-dried flask under argon was charged with 5 (0.30 mmol) and CH_2Cl_2 (1.0 mL). Triethylamine (0.60 mmol), benzoyl chloride (0.45 mmol), and 4-dimethylaminopyridine (0.03 mmol) were added to this solution, and the mixture was stirred for 1 h at 0 °C. The mixture was diluted by saturated aq.NaHCO₃, and extracted with CH_2Cl_2 . The organic layer was dried over Na_2SO_4 and concentrated under reduced pressure. The crude mixture was purified by silica gel column chromatography to afford **18**.

(S)-2-fluoro-2-phenylpropyl benzoate [(S)-18a, 95% ee]

The crude mixture was purified by flash column chromatography on silica gel (hexane : ethylacetate = 20:1) to afford the desired benzoate (*S*)-**18a** in 85 % yield (white solid). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (dd, *J* = 8.2, 1.2 Hz, 2H), 7.58–7.54 (m, 1H), 7.46–7.38 (m, 6H), 7.36–7.32 (m, 1H), 4.63–4.50 (m, 2H), 1.81 (d, *J* = 22.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 141.1 (d, *J* = 22.0 Hz), 133.1, 129.7, 128.4, 128.4, 128.0, 124.5, 124.4, 95.6 (d, *J* = 176.4 Hz), 69.7 (d, *J* = 24.9 Hz), 23.6 (d, *J* = 24.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –153.8 (m); $[\alpha]_D^{20}$ +12.1 (c = 1.6, CHCl₃); HRMS (DART): Anal. For C₁₆H₁₅F₁O₂⁺¹ [M+NH₄]⁺ Calcd.: 276.1400, Found: 276.1400. The enantiopurity was determined by HPLC (hexane : 2-propanol = 99 : 1; 0.5 mL/min; using a CHIRALPAK ID column (0.46 cm $\phi \times 25$ cm)): 16.7 min (major) and 19.0 min (minor).

2-(4-bromophenyl)-2-fluoropropan-1-ol (5b, 92% ee)

The reaction was stirred for 20 h at 0 °C. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 98% yield of **5b** (white solid). ¹H NMR

(400 MHz, CDCl₃): δ 7.52 (d, J = 8.9 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 3.87–3.70 (m, 2H), 1.83 (t, J = 6.6 Hz, 1H), 1.68 (d, J = 22.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.6 (d, J = 22.0 Hz), 131.6, 126.3 (d, J = 9.6 Hz), 121.9, 97.5 (d, J = 172.5 Hz), 69.3 (d, J = 24.9 Hz), 23.1 (d, J = 24.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –157.8 (m); $[\alpha]_D^{20}$ +18.4 (c = 0.31, CHCl₃); HRMS (DART): Anal. For C₉H₁₀Br₁F₁O₁⁺¹ [M+NH₄]⁺ Calcd.: 250.0243, Found: 250.0245. The enantiopurity was determined after conversion into the corresponding benzoate **18b**.

2-(4-bromophenyl)-2-fluoropropyl benzoate (18b, 92% ee)

According to the general procedure, **5b** was converted into **18b**, the crude mixture was purified by flash column chromatography on silica gel (hexane : ethylacetate = 20:1) to afford the desired benzoate **18b** in 93 % yield (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 7.3 Hz, 2H), 7.58–7.51 (m, 3H), 7.45–7.41 (m, 2H), 7.32 (d, *J* = 8.5 Hz, 2H), 4.63–4.48 (m, 2H), 1.79 (d, *J* = 22.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 140.2 (d, *J* = 22.0 Hz), 133.3, 131.6, 129.7, 129.5, 128.4, 126.3 (d, *J* = 9.6 Hz), 122.2, 95.3 (d, *J* = 176.4 Hz), 69.3 (d, *J* = 25.9 Hz), 23.6 (d, *J* = 24.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –153.9 (m); $[\alpha]_D^{29}$ +19.0 (c = 1.6, CHCl₃); HRMS (DART): Anal. For C₁₆H₁₄Br₁F₁O₂⁺¹ [M+NH₄]⁺ Calcd.: 354.0505, Found: 354.0503. The enantiopurity was determined by HPLC (hexane : 2-propanol = 99 : 1; 0.5 mL/min; using a CHIRALPAK ID column (0.46 cm $\phi \times 25$ cm)): 17.8 min (major) and 21.2 min (minor).

2-fluoro-2-(4-fluorophenyl)propan-1-ol [5c, 90% ee]

The reaction was carried out at 0 °C and stirred for 48 h. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1–1:1) to give 76% yield of **5c** (white solid; including ca. 3% of an inseparable by-product). ¹H NMR (500 MHz, CDCl₃): δ 7.34–7.32 (m, 2H), 7.08–7.04 (m, 2H), 3.85–3.69 (m, 2H), 1.94 (bs, 1H), 1.68 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 162.3 (d, *J* = 247.1 Hz), 137.3 (dd, *J* = 22.2, 3.0 Hz), 126.3 (t, *J* = 8.4 Hz), 115.3 (d, *J* = 21.6 Hz), 97.6 (d, *J* = 171.5 Hz), 69.5 (d, *J* = 26.4 Hz), 23.2 (d, *J* = 25.2 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ –115.2 (s), –156.3 (m); $[\alpha]_D^{23}$ +10.9 (c = 0.80, CHCl₃); HRMS (DART): Anal. For C₉H₁₀F₂O₁⁺¹ [M+NH₄]⁺ Calcd.: 190.1044, Found: 190.1044. The enantiopurity was determined by HPLC (hexane : 2-propanol = 20 : 1; 1.0

mL/min; using a CHIRALPAK AD-H column (0.46 cm $\phi \times 25$ cm)): 11.5 min (minor) and 12.8 min (major).

2-fluoro-2-(p-tolyl)propan-1-ol [5d, 93% ee]

The reaction was carried out at 0 °C and stirred for 48 h. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1–1:1) to give 88% yield of **5d** (white solid). ¹H NMR (500 MHz, CDCl₃): δ 7.25 (d, *J* = 8.0 Hz, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 3.86–3.68 (m, 2H), 2.35 (s, 3H), 1.92 (t, *J* = 6.1 Hz, 1H), 1.68 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 138.5 (d, *J* = 21.6 Hz), 137.6, 129.1, 124.4 (d, *J* = 8.4 Hz), 97.8 (d, *J* = 171.5 Hz), 69.6 (d, *J* = 25.2 Hz), 23.1 (d, *J* = 24.0 Hz), 21.0; ¹⁹F NMR (470 MHz, CDCl₃): δ – 157.0 (m); $[\alpha]_D^{23}$ +14.4 (c = 1.25, CHCl₃); HRMS (DART): Anal. For C₁₀H₁₃F₁O₁⁺¹ [M+H]⁺ Calcd.: 169.1029, Found: 169.1029. The enantiopurity was determined by HPLC (hexane : 2-propanol = 20 : 1; 1.0 mL/min; using a CHIRALPAK AD-H column (0.46 cm ϕ × 25 cm)): 12.2 min (major) and 14.7 min (minor).

2-fluoro-2-(4-nitrophenyl)propan-1-ol (5e, 88% ee)

The reaction was stirred for 48 h at 0 °C. The crude mixture was purified by silica gel chromatography (hexane : diethyl ether = 1 : 1–1 : 2) to give 88% yield of **5e** (white solid; including small amount of inseparable by-product). ¹H NMR (500 MHz, CDCl₃): δ 8.25 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.8 Hz, 2H), 3.91–3.80 (m, 2H), 2.16 (s, 1H), 1.72 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 148.9 (d, *J* = 21.6 Hz), 147.4, 125.6 (d, *J* = 9.6 Hz), 123.6, 97.5 (d, *J* = 173.9 Hz), 69.0 (d, *J* = 25.2 Hz), 23.2 (d, *J* = 24.0 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ –158.0 (m); $[\alpha]_D^{28}$ +19.0 (c = 1.1, CHCl₃); HRMS (DART): Anal. For C₁₉H₁₀FNO₃⁺¹ [M+NH₄]⁺ Calcd.: 217.0988, Found: 217.0989. The enantiopurity was determined by HPLC (hexane : 2-propanol = 9 : 1; 1 mL/min; using a CHIRALCEL OD-H column (0.46 cm $\varphi \times 25$ cm)): 9.3 min (minor) and 10.4 min (major).

2-(3-bromophenyl)-2-fluoropropan-1-ol (5g, 93% ee)

The reaction was stirred for 48 h at 0 °C. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 77% yield of **5g** (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.53 (s, 1H), 7.48–7.41 (m, 1H), 7.32–7.20 (m, 2H), 3.87–3.70 (m, 2H), 1.92 (bs, 1H), 1.67 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.8 (d, *J* = 22.0 Hz), 130.9, 130.0, 127.7 (d, *J* = 10.5 Hz), 123.1 (d, *J* = 8.6 Hz), 122.7, 97.3 (d, *J* = 174.4 Hz), 69.3 (d, *J* = 24.9 Hz), 23.2 (d, *J* = 24.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –157.8 (m); $[\alpha]_D^{20}$ +12.3 (c = 0.32, CHCl₃); HRMS (DART): Anal. For C₉H₁₀BrFO⁺¹ [M+NH₄]⁺ Calcd.: 250.0245, Found: 250.0243. The enantiopurity was determined by HPLC (hexane : 2-propanol = 50 : 1; 1 mL/min; using a CHIRALPAK ID-3 column (0.46 cm $\phi \times 25$ cm)): 12.8 min (major) and 27.2 min (minor).

2-fluoro-2-(naphthalen-2-yl)propan-1-ol (5h, 92% ee)

The reaction was stirred for 21 h at 0 °C. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 98% yield of **5h** (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.86–7.82 (m, 4H), 7.52–7.47 (m, 2H), 7.42 (d, *J* = 8.8 Hz, 1H), 3.97–3.78 (m, 2H), 2.01 (bs, 1H), 1.77 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.8 (d, *J* = 21.1 Hz), 132.9, 132.7, 128.3, 128.2, 127.6, 126.4, 126.3, 123.5 (d, *J* = 10.5 Hz), 122.4 (d, *J* = 8.6 Hz), 98.0 (d, *J* = 172.5 Hz), 69.4 (d, *J* = 25.9 Hz), 23.2 (d, *J* = 24.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –157.2 (m); $[\alpha]_D^{20}$ +16.4 (c = 1.4, CHCl₃); HRMS (DART): Anal. For C₁₃H₁₃F₁O₁⁺¹ [M+NH₄]⁺ Calcd.: 222.1294, Found: 222.1294. The enantiopurity was determined by HPLC (hexane : 2-propanol = 99 : 1; 2 mL/min; using a CHIRALPAK ID column (0.46 cm ϕ × 25 cm)): 15.2 min (major) and 25.0 min (minor).

2-fluoro-2-(5,6,7,8-tetrahydronaphthalen-2-yl)propan-1-ol (5i, 92% ee)

The reaction was stirred for 20 h at 0 °C. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 95% yield of **5i** (white solid). ¹H NMR

(400 MHz, CDCl₃): δ 7.10–7.05 (m, 3H), 3.88–3.69 (m, 2H), 2.91–2.76 (m, 4H), 1.82–1.79 (m, 5H), 1.67 (d, J = 22.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 138.6 (d, J = 21.1 Hz), 137.2, 136.9, 129.2, 125.2 (d, J = 9.6 Hz), 121.5 (d, J = 8.6 Hz), 97.8 (d, J = 171.6 Hz), 69.6 (d, J = 24.9 Hz), 29.5, 29.0, 23.3, 23.1; ¹⁹F NMR (376 MHz, CDCl₃): δ –157.2 (m); $[\alpha]_D^{20}$ +17.3 (c = 0.63, CHCl₃); HRMS (DART): Anal. For C₁₃H₁₇F₁O₁⁺¹ [M+NH₄]⁺ Calcd.: 226.1607, Found: 226.1608. The enantiopurity was determined by HPLC (hexane : 2-propanol = 50 : 1; 1 mL/min; using a CHIRALPAK IC-3 column (0.46 cm $\varphi \times 25$ cm)): 18.1 min (major) and 21.3 min (minor).

2-fluoro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)propan-1-ol (5j, 92% ee)

The reaction was stirred for 24 h at 0 °C. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 98% yield of **5j** (white solid). ¹H NMR (500 MHz, CDCl₃): δ 7.56–7.53 (m, 2H), 7.48–7.41 (m, 3H), 7.39–7.36 (m, 1H), 7.22–7.16 (m, 2H), 3.92–3.76 (m, 2H), 1.97–1.94 (m, 1H), 1.72 (d, *J* = 22.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 159.6 (d, *J* = 248.3 Hz), 143.0 (dd, *J* = 22.8, 7.2 Hz), 135.2, 130.8 (d, *J* = 3.6 Hz), 128.9 (d, *J* = 3.6 Hz), 128.5, 127.8, 120.4 (dd, *J* = 9.6, 3.6 Hz), 112.8 (d, *J* = 10.8 Hz), 112.6 (d, *J* = 9.6 Hz), 97.3 (d, *J* = 172.7 Hz), 69.3 (d, *J* = 25.2 Hz), 23.2 (d, *J* = 25.2 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ –117.7 (m), –157.3 (m); $[\alpha]_D^{21}$ +20.5 (c = 1.1, CHCl₃); HRMS (DART): Anal. For C₁₅H₁₄F₂O₁⁺¹ [M+NH₄]⁺ Calcd.: 266.1357, Found: 266.1354. The enantiopurity was determined after conversion into the corresponding benzoate **18**j.

2-fluoro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)propyl benzoate (18j, 92% ee)

According to the general procedure, **5j** was converted into **18j**, the crude mixture was purified by flash column chromatography on silica gel (hexane : ethylacetate = 20:1) to afford the desired benzoate **18j** in 97 % yield (white solid). ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 7.3 Hz, 2H), 7.59–7.54 (m, 3H), 7.50–7.42 (m, 5H), 7.40–7.37 (m, 1H), 7.30–7.26 (m, 2H), 4.66–4.53 (m, 2H), 1.83 (d, *J* = 22.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 159.6 (d, *J* = 248.2 Hz), 142.6 (dd, *J* = 23.0, 7.7 Hz), 135.1, 133.3, 130.8 (d, *J* = 3.8 Hz), 129.7, 129.5, 129.0 (d, *J* = 2.9 Hz), 128.7 (d, *J* = 13.3 Hz), 128.5 (d, *J* = 3.8 Hz), 127.9, 120.5 (dd, *J* = 8.6, 2.9 Hz), 112.9 (d, *J* = 10.5 Hz), 112.7 (d, *J* = 9.6 Hz), 95.1 (d, *J* = 177.3 Hz), 69.4 (d, *J* = 24.9 Hz), 23.6

(d, J = 24.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃): $\delta -117.6$ (m), -153.3 (m); $[\alpha]_D^{20} +23.8$ (c = 0.74, CHCl₃); HRMS (DART): Anal. For C₂₂H₁₈F₂O₂⁺¹ [M+NH₄]⁺ Calcd.: 370.1619, Found: 370.1618. The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1; 0.5 mL/min; using a CHIRALPAK IB-3 column (0.46 cm $\varphi \times 25$ cm)): 18.2 min (minor) and 21.7 min (major).

1-fluoro-1,2,3,4-tetrahydronaphthalene-1-carbaldehyde (4k, 95% ee)

After completion of fluorination (stirred for 2 h at room temperature), the reaction mixture was added saturated aq.NaHCO₃ at 0 °C. The mixture was extracted with Et₂O, and the organic later was dried over Na₂SO₄, concentrated and purified by silica gel column chromatography (pantane : diethyl ether = 10 : 0 – 10 : 1) to afford 90% yield of **4k** (colorless oil; including small amount of impurities). ¹H NMR (400 MHz, CDCl₃): δ 9.80 (d, *J* = 6.1 Hz, 1H), 7.34–7.20 (m, 4H), 2.92–2.74 (m, 2H), 2.28–2.09 (m, 2H), 2.05–1.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 197.9 (d, *J* = 38.3 Hz), 138.9 (d, *J* = 3.8 Hz), 130.3 (d, *J* = 21.1 Hz), 129.7 (d, *J* = 3.8 Hz), 129.6, 128.6 (d, *J* = 3.8 Hz), 126.7 (d, *J* = 1.9 Hz), 95.5 (d, *J* = 181.2 Hz), 29.5 (d, *J* = 21.1 Hz), 28.9, 18.5 (d, *J* = 2.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –142.4 (t, *J* = 23.1 Hz); [α]_D²² – 18.5 (c = 0.49, CHCl₃); HRMS (DART): Anal. For C₁₁H₁₅F₁N₁O₁⁺¹ [M+NH₄]⁺ Calcd.: 196.1138, Found 196.1131; The enantiopurity was determined by GC (100–150 °C, 5 °C/min; using a β-DEX 120 column): 21.5 min (minor) and 21.8 min (major).

2-fluoro-2-phenylbutan-1-ol (5l, 84% ee)

Ph Et F OH

The reaction was stirred for 12 h at room temperature. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 93% yield of **51** (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.40–7.29 (m, 5H), 3.90–3.78 (m, 2H), 2.21–2.09 (m, 1H), 1.98–1.80 (m, 2H), 0.81 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.7 (d, *J* = 21.1 Hz), 128.3, 127.6, 124.8 (d, *J* = 9.6 Hz), 100.3 (d, *J* = 175.4 Hz), 68.7 (d, *J* = 24.0 Hz), 28.8 (d, *J* = 23.0 Hz), 7.1 (d, *J* = 5.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –170.6 (m); [α]_D²³ +2.90 (c = 1.8, CHCl₃); HRMS (DART): Anal. For C₁₀H₁₃F₁O₁⁺¹ [M+NH₄]⁺ Calcd.: 186.1294, Found: 186.1294. The enantiopurity was determined after conversion into the corresponding benzoate **181**. 2-fluoro-2-phenylbutyl benzoate (18l, 84% ee)

Ph Et F OBz

According to the general procedure, **51** was converted into **181**. The crude mixture was purified by flash column chromatography on silica gel (hexane : ethylacetate = 20:1) to afford the desired benzoate **181** in 92 % yield (white solid). ¹H NMR (500 MHz, CDCl₃): δ 7.97 (d, *J* = 8.2 Hz, 2H), 7.57–7.53 (m, 1H), 7.43–7.37 (m, 6H), 7.35–7.30 (m, 1H), 4.68–4.53 (m, 2H), 2.30–2.18 (m, 1H), 2.11–1.94 (m, 1H), 0.86 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 139.4 (d, *J* = 22.0 Hz), 133.1, 129.7, 129.7, 128.4, 127.7, 124.9, 124.8, 98.1 (d, *J* = 179.2 Hz), 69.1 (d, *J* = 24.9 Hz), 29.3 (d, *J* = 24.0 Hz), 7.1 (d, *J* = 4.8Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –167.6 (m); $[\alpha]_D^{20}$ +8.90 (c = 0.61, CHCl₃); HRMS (DART): Anal. For C₁₇H₁₇F₁O₂⁺¹ [M+NH₄]⁺ Calcd.: 290.1556, Found: 290.1558. The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1; 0.5 mL/min; using a CHIRALCEL OJ-H column (0.46 cm $\phi \times 25$ cm)): 22.5 min (minor) and 25.8 min (major).

2-fluoro-2,3-diphenylpropan-1-ol (5m, 84% ee)

The reaction was stirred for 12 h at room temperature. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 99% yield of **5m** (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.16 (m, 8H), 7.01–6.99 (m, 2H), 3.99–3.84 (m, 2H), 3.35 (dd, *J* = 17.7, 14.0 Hz, 1H), 3.22 (dd, *J* = 26.1, 14.2 Hz, 1H), 1.86 (t, *J* = 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 139.6 (d, *J* = 21.1 Hz), 134.9 (d, *J* = 3.8 Hz), 130.5, 128.2, 127.9, 127.7, 126.6, 124.9, 124.8, 99.3 (d, *J* = 177.3 Hz), 67.5 (d, *J* = 24.0 Hz), 43.1 (d, *J* = 23.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –165.5 (m); $[\alpha]_D^{20}$ –35.1 (c = 1.1, CHCl₃); HRMS (DART): Anal. For C₁₅H₁₅F₁O₁⁺¹ [M+NH₄]⁺ Calcd.: 248.1451, Found: 248.1453. The enantiopurity was determined after conversion into the corresponding benzoate **18m.**

2-fluoro-2,3-diphenylpropyl benzoate (18m, 84% ee)

Ph Ph F OBz

According to the general procedure, **5m** was converted into **18m**. The crude mixture was purified by flash column chromatography on silica gel (hexane : ethylacetate = 20:1) to afford the desired benzoate **18m** in 95 % yield (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.56–7.52 (m, 1H), 7.42–7.39 (m, 2H), 7.35–7.26 (m, 5H), 7.22–7.16 (m, 3H), 7.06–7.04 (m, 2H), 4.72–4.59 (m, 2H), 3.44 (dd, *J* = 19.7, 14.2 Hz, 1H), 3.33 (dd, *J* = 25.2, 14.2

Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 139.4 (d, J = 21.1 Hz), 134.5 (d, J = 1.9 Hz), 133.1, 130.5, 129.6, 128.4, 128.2, 128.0 127.9, 126.8, 124.9, 124.8, 97.2 (d, J = 182.1 Hz), 68.5 (d, J = 24.9 Hz), 43.8 (d, J = 23.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –162.3 (m); $[\alpha]_D^{20}$ –16.5 (c = 1.3, CHCl₃); HRMS (DART): Anal. For C₂₂H₁₉F₁O₂⁺¹ [M+NH₄]⁺ Calcd.: 352.1713, Found: 352.1714. The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1; 0.7 mL/min; using a CHIRALPAK ID column (0.46 cm $\varphi \times 25$ cm)): 15.4 min (minor) and 17.5 min (major).

2-([1,1'-biphenyl]-4-yl)-2-fluoro-3-phenylpropan-1-ol (5n, 89% ee)

The reaction was stirred for 20 h at 0 °C using 20 mol% of **1b**. The crude mixture was purified by silica gel column chromatography (hexane : dethyl ether = 2:1) to give 91% yield of **5n** (89% *ee*) with a trace amount of impurity. Subsequent recrystallization from dichloromethane/hexane gave pure product with 93% *ee* (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.56–7.50 (m, 4H), 7.42–7.38 (m, 2H), 7.33–7.29 (m, 1H), 7.26 (d, *J* = 10.4 Hz, 2H), 7.17–7.16 (m, 3H), 7.03–7.01 (m, 2H), 3.95–3 .83 (m, 2H), 3.35 (dd, *J* = 18.0, 14.0 Hz, 1H), 3.22 (dd, *J* = 25.8, 14.2 Hz), 2.15 (bs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 140.3 (d, *J* = 4.7 Hz), 138.7 (d, *J* = 21.9 Hz), 134.9 (d, *J* = 2.9 Hz), 130.5, 128.7, 127.9, 127.4, 127.0, 126.8, 126.6, 125.4, 125.3, 99.2 (d, *J* = 176.4 Hz), 67.3 (d, *J* = 23.8 Hz), 43.0 (d, *J* = 23.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –164.9 (m); [α]_D²⁰ –51.9 (c = 2.0, CHCl₃); HRMS (DART): Anal. For C₂₁H₁₉F₁O₁ [M+NH₄]⁺ Calcd.: 324.1764, Found: 324.1761. The enantiopurity was determined by HPLC (hexane : 2-propanol = 30: 1; 1 mL/min; using a CHIRALPAK ID-3 column (0.46 cm $\phi \times 25$ cm)): 21.1 min (minor) and 24.6 min (major).

2-cyclohexyl-2-fluoropropan-1-ol [50, 83% ee]

The reaction was carried out at 0 °C and stirred for 48 h with 30 mol% catalyst **1b** in the absence of $3,5-(NO_2)_2C_6H_3CO_2H$. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 24% yield of **5o** (colorless oil, mixture of **5o** and 2-cyclohexylpropan-1-ol). ¹H NMR (500 MHz, CDCl₃): δ 3.69 (dd, J = 21.4, 12.2 Hz, 1H), 3.57 (dd, J = 23.0, 11.8 Hz, 1H), 1.84–1.62 (m, 7H), 1.28–1.20 (m, 1H), 1.24 (d, 3H), 1.18–1.07 (m, 2H), 1.02–0.94 (m, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 99.8 (d, J = 167.9 Hz),

66.8 (d, J = 24.0 Hz), 42.9 (d, J = 21.6 Hz), 27.6 (d, J = 7.2 Hz), 26.4–26.3 (3C), 17.6 (d, J = 25.2 Hz); ¹⁹F NMR (470 MHz, CDCl₃): δ –158.1; HRMS (DART): Anal. For C₉H₁₇FO₁⁺¹ [M+NH₄]⁺ Calcd.: 178.1605, Found: 178.1607. The enantiopurity was determined by GC (100 °C–130 °C, 8 °C/min, then 60 min at 130 °C) using a β-DEX 120 column: 20.0 (major) and 22.4 (minor).

2-fluoro-3-(4-isopropylphenyl)-2-methylpropan-1-ol (5p, 14% ee)

The reaction was stirred for 24 h at room temperature. The crude mixture was purified by silica gel column chromatography (hexane : diethyl ether = 2:1) to give 59% yield of **5p** (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.16 (s, 4H), 3.58 (dd, *J* = 19.5, 5.5 Hz, 2H), 3.01–2.82 (m, 3H), 1.88 (m, 1H), 1.30–1.23 (m, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 147.3, 133.2 (d, *J* = 5.8 Hz), 130.3, 126.3, 97.4 (d, *J* = 169.7 Hz), 67.5 (d, *J* = 24.0 Hz), 41.9 (d, *J* = 23.0 Hz), 33.7, 24.0, 20.9 (d, *J* = 24.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –154.7 (m); HRMS (DART): Anal. For C₁₃H₁₉F₁O₁⁺¹ [M+NH₄]⁺ Calcd.: 210.1420, Found: 210.1419. The enantiopurity was determined after conversion into the corresponding benzoate **18p**.

2-fluoro-3-(4-isopropylphenyl)-2-methylpropyl benzoate (18p, 14% ee)

According to the general procedure, **5p** was converted into **18p**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 10 : 1) to afford 91% of **18p** (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 8.09 (d, J = 8.2 Hz, 2H), 7.59 (t, J = 7.9 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.16 (s, 4H), 4.35 (dd, J = 37.0, 11.9 Hz, 1H), 4.30 (dd, J = 37.2, 11.9 Hz,1H), 3.06 (d, J = 19.5 Hz, 2H), 2.88 (sept, J = 7.0, 1H), 1.41 (d, J = 21.5 Hz, 3H), 1.24 (d, J = 7.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 166.1, 147.5, 133.2, 132.6 (d, J = 4.8 Hz), 130.2, 129.8, 129.7, 128.5, 126.4, 95.0 (d, J = 175.1 Hz), 68.1 (d, J = 25.2 Hz), 42.8 (d, J = 22.8 Hz), 33.7, 24.0, 21.7 (d, J = 24.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -151.6; HRMS (DART): Anal. For C₂₀H₂₄F₁O₂⁺¹ [M+H⁺] Calcd.: 315.1760, Found: 315.1763; The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1; 0.5 mL/min; using a CHIRALCEL OJ-H column (0.46 cm $\varphi \times 25$ cm)): 26.5 min (minor) and 27.9 min (major).

Derivatization of α-fluoroaldehydes (Scheme 3).

Horner-Wadsworth-Emmons reaction of α-fluoroaldehydes.

To a solution of catalyst **1b** (20 mg, 0.026 mmol, 10 mol%) in toluene (0.54 mL) was added 3,5-dinitrobenzoic acid (5.5 mg, 0.026 mmol, 10 mol%), aldehydes **3** (0.39 mmol, 1.5 equiv), and NFSI (0.26 mmol, 82 mg, 1 equiv) at 0 °C. The mixture was stirred for 24 h at 0 °C, then poured into aq. NaHCO₃, and extracted by Et₂O. The organic layer was dried over Na₂SO₄ and concentrated under the reduced pressure gave **4** as the crude product. To a solution of (EtO)₂P(O)CH₂CO₂Et (1.35 mmol) in THF (0.7 mL) was added NaH (60%, 1.35 mmol) at 0 °C. After the mixture was stirred for 0.5 h at 0 °C, a solution of **4** in THF (1.0 mL) was added to the mixture, then stirred for another 1 h. The mixture was quenched with saturated aq.NH₄Cl and extracted with Et₂O. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The crude mixture was purified by flash column chromatography on silica gel to afford **8**.

ethyl (E)-4-(4-bromophenyl)-4-fluoropent-2-enoate (8b, 92% ee)

The crude mixture was purified by flash column chromatography on silica gel (hexane : ethyl acetate = 30 : 1) to afford 80% yield of **8b** (colorless oil). ¹H NMR (500 MHz, CDCl₃): δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.05 (dd, *J* = 18.7, 15.7 Hz, 1H), 6.09 (d, *J* = 15.7 Hz, 1H), 4.20 (q, *J* = 7.13 Hz, 2H), 1.80 (d, *J* = 21.8 Hz, 3H), 1.29, (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.0, 148.0 (d, *J* = 22.8 Hz), 140.5 (d, *J* = 22.8 Hz), 131.7, 126.4 (d, *J* = 8.4 Hz), 122.3, 119.8 (d, *J* = 10.8 Hz), 94.8 (d, *J* = 176.3 Hz), 60.8, 26.5 (d, *J* = 25.2 Hz), 14.2; ¹⁹F NMR (470 MHz, CDCl₃): δ -146.2 (m); $[\alpha]_D^{29}$ +17.1 (c = 1.2, CHCl₃); HRMS (DART): Anal. For C₁₃H₁₈Br₁F₁N₁O₂⁺¹ [M+NH₄]⁺ Calcd.: 318.0505, Found: 318.0504.

ethyl (E)-4-fluoro-4-(naphthalen-2-yl)pent-2-enoate (8h, 92% ee)

The crude mixture was purified by flash column chromatography on silica gel (hexane : ethyl acetate = 30 : 1) to afford 80% yield of **8h** (white solid). ¹H NMR (500 MHz, CDCl₃): δ 7.85–7.81 (m, 4H), 7.51–7.46 (m, 3H), 7.20 (dd, *J* = 18.7, 15.7 Hz, 1H), 6.16 (dd, *J* = 15.6, 0.8 Hz, 1H), 4.20 (q, *J* = 7.3 Hz, 2H), 1.92 (d, *J* = 22.2 Hz, 3H), 1.27 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.2, 148.7 (d, *J* = 24.0 Hz), 138.7 (d, *J* = 22.8 Hz), 132.9 (d, *J* = 10.8 Hz), 128.5, 128.3, 127.6, 126.5, 123.4 (d, *J* = 9.6 Hz), 122.6 (d, *J* = 6.0 Hz), 119.6 (d, *J* = 10.8 Hz), 95.3 (d, *J* = 175.1 Hz), 60.7, 26.5 (d, *J* = 25.2 Hz), 14.1; ¹⁹F NMR (470 MHz, CDCl₃): δ –145.5 (m); $[\alpha]_D^{29}$ +24.5 (c = 1.1, CHCl₃); HRMS (DART): Anal. For C₁₇H₂₁F₁N₁O⁺¹ [M+NH₄]⁺ Calcd.: 290.1556, Found: 290.1554.

Synthesis of fluorinated analogue of flurbiprofen 2-fluoro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid (9, 92% *ee*)

A solution of **5j** (0.106 mmol) in acetone (1.06 mL) was added to 2.5 M aq.H₂CrO₄ (3 mmol, 128 µL) at 0 °C. After the mixture was stirred for 4 h at room temperature, 2-propanol was added to this mixture. The mixture was filtered, extracted by CH₂Cl₂, and the organic layer was washed by 1.2N HCl twice and brine, dried over Na₂SO₄ and concentrated. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1 – 1 : 4) to afford 69% yield of **9** (white solid; including small amount of impurities). ¹H NMR (500 MHz, CD₃OD): δ 7.54–7.49 (m, 3H), 7.45–7.40 (m, 3H), 7.39–7.34 (m, 2H), 1.93 (d, *J* = 22.2 Hz, 3H); ¹³C NMR (126 MHz, CD₃OD): δ 173.7 (d, *J* = 27.6 Hz), 160.8 (d, *J* = 247.1 Hz), 142.7 (d, *J* = 7.2 Hz), 142.5 (d, *J* = 7.2 Hz), 136.4, 132.0 (d, *J* = 2.4 Hz), 130.5 (d, *J* = 13.2 Hz), 130.0 (d, *J* = 2.4 Hz), 129.0, 122.1 (d, *J* = 3.6 Hz), 122.0 (d, *J* = 3.6 Hz), 113.9 (d, *J* = 9.2 Hz), 113.7 (d, *J* = 9.2 Hz), 95.1 (d, *J* = 184.7 Hz), 25.0 (d, 24.0 Hz); ¹⁹F NMR (470 MHz, CD₃OD): δ –116.1, – 147.9 (q, *J* = 22.0 Hz); [α]_D²⁷ +28.6 (c = 0.84, CHCl₃); HRMS (DART): Anal. For C₁₅H₁₆F₂N₁O₂⁺¹ [M+NH₄]⁺ Calcd.: 280.1149, Found 280.1143.

Synthesis of α-hydroxyacetals 10 (Table 3).

General procedure: Enantioselective fluorination of **3** was carried out according to the procedure described in page S6. After completion of the reaction, MeOH (2.64 mL)/NaOMe (1.32 mmol, 5 equiv.) or ethylene glycol (2.64 mL)/NaH (1.32 mmol, 5 equiv) were added at 0 °C. The mixture was stirred at room temperature, then diluted by adding sat.NaHCO₃ aq., and extracted with Et₂O. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography to give α -hydroxylacetals **10–12**.

(R)-1,1-dimethoxy-2-phenylpropan-2-ol [(R)-10a, 94% ee]

The reaction was stirred for 10 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to give 66% yield of (*R*)-10a (pale yellow oil). ¹H NMR (400 MHz, C₆D₆): δ 7.70–7.67 (m, 2H), 7.26–7.22 (m, 2H), 7.14–7.10 (m, 1H), 3.98 (s, 1H), 3.04 (s, 3H), 2.95 (s, 3H), 2.50 (s, 1H), 1.59 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 145.1, 128.0, 127.1, 126.6, 111.1, 76.1, 57.4, 57.3, 23.8; $[\alpha]_D^{25}$ –7.6 (c = 1.00, CHCl₃); HRMS (DART): Anal. For C₁₁H₂₀N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 214.1443, Found: 214.1441; The enantiopurity was determined after conversion into methyl ether (*R*)-19a.

Methylation of 10.

General procedure: To a suspension of NaH (0.408 mmol, 2 equiv.) in DMF (1.0 mL), α -hydroxyacetal **10** (0.204 mmol) was added, and the mixture was stirred at 0 °C for 30 min. MeI (0.408 mmol, 2 equiv.) was added to the mixture, and stirred for 60 min at 0 °C. The reaction was quenched by adding sat. NH₄Cl aq. and extracted with Et₂O. The organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel chromatography to afford **19**.

(R)-(1,1,2-trimethoxypropan-2-yl)benzene [(R)-19a, 94% ee]

According to the general procedure, reaction was carried out with 0.204 mmol of (*R*)-10a. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 15 : 1) to afford 83% yield of (*R*)-19a (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.44–7.42 (m, 2H), 7.38–7.34 (m, 2H), 7.30–7.26 (m, 1H), 4.13 (s, 1H), 3.48 (s, 3H), 3.10 (s, 3H), 3.08 (s, 3H), 1.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.2, 127.9, 127.5, 127.2, 111.0, 81.7, 58.2, 57.3, 50.2, 15.5; [α]_D²³–53.2 (c = 1.00, CHCl₃); HRMS (DART): Anal. For C₁₂H₂₂N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 228.1600, Found: 228.1600; The enantiopurity was determined by HPLC (hexane : 2-propanol = 300 : 1, 1.0 mL/min, 220 nm) using a CHIRALPAK IC-3 column (0.46 cm φ x 25 cm): 10.6 min (major) and 12.9 min (minor).

2-(4-bromophenyl)-1,1-dimethoxypropan-2-ol (10b, 92% ee)

The reaction was stirred for 12 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to give 70% yield of **10b** (pale yellow oil). ¹H NMR (500 MHz, C₆D₆): δ 7.34 (s, 4H), 3.81 (s, 1H), 2.99 (s, 3H), 2.89 (s, 3H), 2.38 (s, 1H), 1.47 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 144.0, 131.1, 128.5, 121.3, 110.7, 75.7, 57.4, 57.3, 23.7; $[\alpha]_D^{21}$ –3.2 (c = 1.02, CHCl₃); HRMS (DART): Anal. For C₁₁H₁₉Br₁N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 292.0548, Found: 292.0548; The enantiopurity was determined after conversion into **19b**.

1-bromo-4-(1,1,2-trimethoxypropan-2-yl)benzene (19b, 92% ee)

According to the general procedure, reaction was carried out with 0.145 mmol of **10b**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 15 : 1) to give 76% yield of **19b** (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.49–7.47 (m, 2H), 7.31–7.28 (m, 2H), 4.08 (s, 1H), 3.48 (s, 3H), 3.16 (s, 3H), 3.09 (s, 3H), 1.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.4, 131.0, 129.4, 121.4, 110.6, 81.6, 58.2, 57.6, 50.2, 15.9; $[\alpha]_D^{23}$ – 41.0 (c = 1.01, CHCl₃); HRMS (DART): Anal. For C₁₂H₂₁N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 306.0705,

Found: 306.0705; The enantiopurity was determined by HPLC (hexane : 2-propanol = 300 : 1, 1.0 mL/min, 220 nm) using a CHIRALPAK IC-3 column (0.46 cm φ x 25 cm): 7.7 min (major) and 9.0 min (minor).

2-(4-fluorophenyl)-1,1-dimethoxypropan-2-ol [10c, 93% ee]

The reaction was stirred for 10 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1–2 : 1) to give 64% yield of **10c** (colorless oil). ¹H NMR (500 MHz, C₆D₆): δ 7.50–7.46 (m, 2H), 6.90–6.86 (m, 2H), 3.85 (s, 1H), 3.03 (s, 3H), 2.91 (s, 3H), 2.42 (s, 1H), 1.52 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 162.4 (d, *J* = 244.7 Hz), 140.6, 128.4 (d, *J* = 7.2 Hz), 114.6 (d, *J* = 21.6 Hz), 111.0, 75.7, 57.5, 57.3, 23.7; ¹⁹F NMR (470 MHz, CDCl₃): δ –115.8; [α]_D²⁵ –7.6 (c = 0.33, CHCl₃); HRMS (DART): Anal. For C₁₁H₁₅FO₃⁺¹ [M+NH₄]⁺ Calcd.: 232.1347, Found: 232.1349. The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1; 1.0 mL/min; using a CHIRALPAK IA-3 column (0.46 cm ϕ × 25 cm)): 12.2 min (minor) and 14.2 min (major).

1,1-dimethoxy-2-(p-tolyl)propan-2-ol [10d, 93% ee]

The reaction was stirred for 10 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1–2 : 1) to give 50% yield of **10d** (colorless oil). ¹H NMR (500 MHz, CDCl₃): δ 7.62 (d, *J* = 8.4 Hz, 2H), 7.08 (*J* = 8.0 Hz, 2H), 4.01 (s, 1H), 3.06 (s, 3H), 2.98 (s, 3H), 2.50 (s, 1H), 2.14 (s, 3H), 1.65 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 142.2, 136.3, 128.7, 126.6, 111.2, 75.9, 57.4, 57.2, 23.8, 21.0; $[\alpha]_D^{25}$ –8.5 (c = 0.90, CHCl₃); HRMS (DART): Anal. For C₁₂H₁₈O₃⁺¹ [M+NH₄]⁺ Calcd.: 228.1597, Found: 228.1600. The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1; 1.0 mL/min; using a CHIRALPAK IA-3 column (0.46 cm $\phi \times 25$ cm)): 17.0 min (minor) and 19.8 min (major).

1,1-dimethoxy-2-(naphthalen-2-yl)propan-2-ol (10h, 92% ee)

The reaction was stirred for 12 h. The crude mixture was purified by silica gel column

chromatography (hexane : ethyl acetate = 4 : 1) to give 82% yield of **10h** (pale yellow oil). ¹H NMR (400 MHz, C_6D_6): δ 8.25 (s, 1H), 7.81–7.65 (m, 4H), 7.28–7.25 (m, 2H), 4.08 (s, 1H), 3.06 (s, 3H), 2.94 (s, 3H), 2.64 (s, 1H), 1.72 (s, 3H); ¹³C NMR (100 MHz, C_6D_6): δ 142.6, 133.7, 133.1, 128.6, 127.8, 127.6, 126.1, 125.9, 125.4, 125.2, 111.0, 76.2, 57.4, 57.2, 23.9; $[\alpha]_D^{23}$ –1.0 (c = 1.00, CHCl₃); HRMS (DART): Anal. For $C_{15}H_{22}N_1O_3^{+1}$ [M+NH₄⁺] Calcd.: 264.1600, Found: 264.1603; The enantiopurity was determined after conversion into **19h**.

2-(1,1,2-trimethoxypropan-2-yl)naphthalene (19h, 92% ee)

According to the general procedure, reaction was carried out with 0.162 mmol of **10h**. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 10 : 1) to give 84% yield of **19h** (white solid). ¹H NMR (400 MHz, CDCl₃): δ 7.88–7.86 (m, 4H), 7.62–7.59 (m, 1H), 7.50–7.46 (m, 2H), 4.25 (s, 1H), 3.52 (s, 3H), 3.13 (s, 3H), 3.07 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 139.0, 133.0, 132.6, 128.2, 127.44, 127.40, 126.8, 125.9, 125.8, 125.5, 110.9, 81.9, 58.2, 57.5, 50.3, 15.7; $[\alpha]_D^{23}$ –55.2 (c = 1.00, CHCl₃); HRMS (DART): Anal. For C₁₆H₂₄N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 278.1756, Found: 278.1757; The enantiopurity was determined by HPLC (hexane : 2-propanol = 300 : 1, 1.0 mL/min, 254 nm) using a CHIRALPAK IC-3 column (0.46 cm φ x 25 cm): 14.1 min (major) and 17.6 min (minor).

1,1-dimethoxy-2-(5,6,7,8-tetrahydronaphthalen-2-yl)propan-2-ol [10i, 91% ee]

The reaction was stirred for 12 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1–2 : 1) to give 57% yield of **10i** (colorless oil). ¹H NMR (500 MHz, CDCl₃): δ 7.51 (s, 1H), 7.46 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 1H), 4.09 (s, 1H), 3.10 (s, 3H), 3.03 (s, 3H), 2.68–2.66 (m, 2H), 2.61–2.59 (m, 2H), 2.58 (s, 1H), 1.68 (s, 3H), 1.60–1.54 (m, 4H); ¹³C NMR (126 MHz, CDCl₃): δ 142.3, 136.3, 135.5, 128.8, 127.1, 123.9, 111.1, 76.0, 57.3, 57.2, 26.9, 26.3, 24.0, 23.7, 23.6; $[\alpha]_D^{25}$ –4.2 (c = 0.98, CHCl₃); HRMS (DART): Anal. For C₁₅H₂₂O₃⁺¹ [M+H]⁺ Calcd.: 251.1650, Found: 251.1647. The enantiopurity was determined by HPLC (hexane : 2-propanol = 50 : 1; 1.0 mL/min; using a CHIRALPAK IC-3 column (0.46 cm $\phi \times 25$ cm)): 25.3 min (minor) and 32.7 min (major).

2-(2-fluoro-[1,1'-biphenyl]-4-yl)-1,1-dimethoxypropan-2-ol [10j, 90% ee]

The reaction was stirred for 10 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1–2 : 1) to give 71% yield of **10j** (colorless oil). ¹H NMR (500 MHz, CDCl₃): δ 7.61 (dd, J = 12.6, 1.9 Hz, 1H), 7.55–7.52 (m, 2H), 7.44 (dd, J = 8.0, 1.9 Hz, 1H), 7.30 (t, J = 8.4 Hz, 1H), 7.21–7.18 (m, 2H), 7.12–7.09 (m, 1H), 3.95 (s, 1H), 3.06 (s, 3H), 2.98 (s, 3H), 2.54 (s, 1H), 1.56 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 160.0 (d, J = 245.9 Hz), 147.0 (d, J = 7.2 Hz), 136.2, 130.3 (d, J = 3.6 Hz), 129.4 (d, J = 2.4 Hz), 128.7, 128.3, 127.9, 122.6 (d, J = 3.6 Hz), 114.7 (d, J = 25.2 Hz), 110.7, 75.8, 57.5, 57.4, 23.9; ¹⁹F NMR (470 MHz, CDCl₃): δ –117.8 (J = 14.7 Hz); $[\alpha]_D^{24}$ –3.5 (c = 1.65, CHCl₃); HRMS (DART): Anal. For C₁₇H₁₉FO₃⁺¹ [M+NH₄]⁺ Calcd.: 308.1664, Found: 308.1662. The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1; 1.0 mL/min; using a CHIRALPAK IA-3 column (0.46 cm $\varphi \times 25$ cm)): 16.7 min (major) and 18.0 min (minor).

1-(dimethoxymethyl)-1,2,3,4-tetrahydronaphthalen-1-ol (10k, 94% ee)

The reaction was carried out with 10 equiv. of NaOMe and stirred for 8 h at room temperature. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to give 55% yield of **10k** (pale yellow oil). ¹H NMR (400 MHz, C₆D₆): δ 7.70–7.68 (m, 1H), 7.16–7.13 (m, 1H), 7.10–7.06 (m, 1H), 6.97–6.95 (m, 1H), 4.30 (s, 1H), 3.19 (s, 3H), 2.91 (s, 3H), 2.60–2.56 (m, 2H), 2.46–2.37 (m, 2H), 1.94–1.85 (m, 2H), 1.78–1.69 (m, 1H); ¹³C NMR (100 MHz, C₆D₆): δ 139.1, 138.9, 129.0, 127.9, 127.3, 126.0, 73.8, 57.6, 57.4, 32.5, 30.4, 19.8; $[\alpha]_D^{21}$ –3.7 (c = 1.00, CHCl₃); HRMS (DART): Anal. For C₁₃H₂₂N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 240.1600, Found: 240.1597; The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1, 1.0 mL/min, 220 nm) using a CHIRALPAK IE-3 column (0.46 cm φ x 25 cm): 41.1 min (major) and 36.6 min (minor).

1,1-dimethoxy-2-phenylbutan-2-ol (10l, 82% ee)

CH(OMe)₂

The reaction was stirred for 24 h under reflux condition. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 6 : 1) to give 71% yield of **10**l (colorless oil). ¹H NMR (400 MHz, C₆D₆): δ 7.67–7.65 (m, 2H), 7.27–7.23 (m, 2H), 7.14–7.10 (m, 1H), 4.02 (s, 1H), 3.00 (s, 6H), 2.41 (s, 1H), 2.09–1.97 (m, 2H), 0.869 (t, 3H, *J* = 7.6 Hz); ¹³C NMR (100 MHz, C₆D₆): δ 142.9, 128.0, 127.0, 126.8, 110.9, 78.7, 57.20, 57.15, 28.9, 7.4; [α]_D²¹ +12.2 (c = 0.99, CHCl₃); HRMS (DART): Anal. For C₁₂H₂₂N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 228.1600, Found: 228.1590. The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1, 1.0 mL/min, 220 nm) using a CHIRALPAK IC-3 column (0.46 cm φ x 25 cm): major isomer 12.3 min and minor isomer 11.4 min.

1,1-diethoxy-2-phenylpropan-2-ol [11, 79% ee]

Fluorination was carried out at room temperature and stirred for 1.5 h. The reaction was stirred for 17 h in ethanol under reflux condition. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 15 : 1-10 : 1) to give 43% yield of **11** (yellow oil, including ca. 10% of an inseparable by-product). ¹H NMR (500 MHz, CDCl₃): δ 7.75–7.72 (m, 2H), 7.26–7.23 (m, 2H), 7.15–7.11 (m, 1H), 4.19 (s, 1H), 3.47 (qd, J = 9.4, 7.1 Hz, 1H), 3.36 (qd, J = 9.2, 6.9 Hz, 1H), 3.13 (qd, J = 9.4, 7.1 Hz, 1H), 2.95 (qd, J = 9.2, 6.9 Hz, 1H), 2.68 (s, 1H), 1.68 (s, 3H), 0.94 (t, J = 6.9 Hz, 3H), 0.92 (t, J = 5.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 145.2, 127.9, 127.0, 126.7, 108.7, 75.9, 65.7, 65.4, 23.6, 15.4, 15.3; $[\alpha]_D^{25}$ –9.9 (c = 1.20, CHCl₃); HRMS (DART): Anal. For C₁₃H₂₀O₃⁺¹ [M+NH₄]⁺ Calcd.: 242.1759, Found: 242.1756. The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1; 1.0 mL/min; using a CHIRALPAK IA-3 column (0.46 cm $\varphi \times 25$ cm)): 6.5 min (minor) and 7.1 min (major).

1-(1,3-dioxolan-2-yl)-1-phenylethan-1-ol (12a, 94% ee)

According to the typical procedure, reaction was carried out using ethyleneglycole and NaH instead of MeOH and NaOMe and stirred for 5 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 4 : 1) to give 63% yield of **12a** (colorless oil). ¹H NMR (400 MHz, C₆D₆): δ 7.64–7.62 (m, 2H), 7.24–7.20 (m, 2H), 7.13–7.08 (m, 1H), 4.90 (s, 1H), 3.30–3.18 (m, 4H), 2.49 (bs, 1H), 1.55 (s, 3H); ¹³C NMR (100 MHz, C₆D₆): δ 144.5, 128.1,

127.1, 126.3, 107.9, 75.0, 65.6, 65.3, 24.7; $[\alpha]_D{}^{19}$ -3.4 (c = 1.00, CHCl₃); HRMS (DART): Anal. For C₁₁H₁₈N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 212.1287, Found: 212.1284; The enantiopurity was determined by HPLC (hexane : 2-propanol = 100 : 1, 1.0 mL/min, 220 nm) using a CHIRALPAK IB-3 column (0.46 cm φ x 25 cm): 20.3 min (major) and 22.3 min (minor).

1-(1,3-dioxolan-2-yl)-1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethan-1-ol [12j, 90% ee]

The reaction was stirred for 10 h. The crude mixture was purified by silica gel column chromatography (hexane : ethyl acetate = 2 : 1–1 : 1) to give 76% yield of **12j** (colorless oil). ¹H NMR (500 MHz, CDCl₃): δ 7.55–7.51 (m, 3H), 7.37 (dd, *J* = 8.0, 1.5 Hz, 1H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.21–7.17 (m, 2H), 7.12–7.09 (m, 1H), 4.82 (s, 1H), 3.32–3.18 (m, 4H), 2.32 (s, 1H), 1.49 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 160.1 (d, *J* = 245.9 Hz), 146.4 (d, *J* = 8.4 Hz), 136.2, 130.4 (d, *J* = 3.6 Hz), 129.4 (d, *J* = 2.4 Hz), 128.7, 128.3, 127.8, 122.3 (d, *J* = 3.6 Hz), 114.5 (d, *J* = 25.2 Hz), 107.5, 74.7, 65.6, 65.4, 24.6; ¹⁹F NMR (470 MHz, CDCl₃): δ –117.7 (*J* = 22.0 Hz); [α]_D²⁴ –4.8 (c = 1.97, CHCl₃); HRMS (DART): Anal. For C₁₇H₁₇FO₃⁺¹ [M+H]⁺ Calcd.: 289.1242, Found: 289.1249. The enantiopurity was determined by HPLC (hexane : 2-propanol = 50 : 1; 1.0 mL/min; using a CHIRALPAK IA-3 column (0.46 cm $\phi \times 25$ cm)): 28.1 min (minor) and 31.6 min (major).

¹H NMR measurement of hemiacetal derived from 4.

After fluorination of **3a**, NaHCO₃ aq. was added to the mixture, and extracted with Et₂O. The organic layer was dried over Na₂CO₃ and concentrated to give the crude mixture of **4a**. ¹H NMR measurement of **4a** in CD₃OD clearly showed the generation of hemiacetal as a diastereomeric mixture (dr = 6 : 4).

Synthesis of α-hydroxyester (Scheme 4)

methyl (R)-2-hydroxy-2-phenylpropanoate [(R)-13, 91% ee]

The reaction was carried out according to the reported procedure.⁵ To a solution of α -hydroxyacetal (*R*)-**10a** (0.335 mmol, 91% *ee*) in acetone (4.8 mL) was added 3N HCl (2.1 mL) at 0 °C. The mixture was stirred for 1 d at 30 °C. After being quenched with K₂CO₃ aq., acetone was removed under reduced pressure. The mixture was extracted with ethyl acetate, and the organic layer was dried over Na₂SO₄, and concentrated. The residue was dissolved in MeOH (11.2 mL) and cooled to 0 °C. To this solution were added KOH (0.872 mmol, 2.6 equiv.) and I₂ (0.436 mmol, 1.3 equiv.) successively. The mixture was stirred for 1 h and quenched by adding 1.2N HCl. Sat. Na₂S₂O₃ aq. was added until the mixture turned colorless. MeOH was removed under reduced pressure and the mixture was extracted with ethyl acetate. The organic layer was

dried over Na₂SO₄ and concentrated. The residue was purified silica gel column chromatography (hexane : MTBE = 9 : 1–2 : 1) to give 60% yield of (*R*)-13 (colorless oil). ¹H NMR (400 MHz, CDCl₃): δ 7.56–7.54 (m, 2H), 7.38–7.34 (m, 2H), 7.31–7.28 (m, 1H), 3.78 (s, 3H), 3.75 (s, 1H), 1.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 176.1, 142.6, 128.3, 127.8, 125.1, 75.7, 53.2, 26.6; $[\alpha]_D^{21}$ –51.9 (c = 0.98, CHCl₃); HRMS (DART): Anal. For C₁₀H₁₆N₁O₃⁺¹ [M+NH₄⁺] Calcd.: 198.1130, Found: 198.1130; The enantiopurity was determined by HPLC (hexane : 2-propanol = 50 : 1, 1.0 mL/min) using a CHIRALPAK AD-3 column (0.46 cm φ x 25 cm): major isomer 10.2 min and minor isomer 8.9 min. The absolute configuration of the major enantiomer was determined to be *R* by comparing the specific rotation with that in the literature.⁶

References

- (a) V. A. Soloshonok, C. Roussel, O. Kitagawa, A. E. Sorochinsky, *Chem. Soc. Rev.* 2012, 41, 4180. (b) J. Han, D. J. Nelson, A. E. Sorochinsky, V. A. Soloshonok, *Curr. Org. Synth.* 2011, 8, 310. (c) H. Ueki, M. Yasumoto, V. A. Soloshonok, *Tetrahedron: Asymmetry* 2010, 21, 1396. (d) V. A. Soloshonok, H. Ueki, M. Yasumoto, S. Mekala, J. S. Hirschi, D. A. Singleton, *J. Am. Chem. Soc.* 2007, 129, 12112. (e) V. A. Soloshonok, *Angew. Chem. Int. Ed.* 2006, 45, 766.
- 2. T. Ooi, M. Kameda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 5139.
- 3. K. Shibatomi, T. Muto, Y. Sumikawa, A. Narayama, S. Iwasa, Synlett 2009, 241.
- 4. S. Brandes, B. Niess, M. Bella, A. Prieto, J. Overgaard, K. A. Jørgensen, *Chem. Eur. J.* 2006, **12**, 6039.
- 5. S.-K. Tian, R. Hong, L. Deng, J. Am. Chem. Soc. 2003, 125, 9900.
- L. C. Wieland, H. Deng, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 15453.

<u>NMR spectra and HPLC traces</u>

¹³C NMR spectrum [(*R*)-15]

¹⁹F NMR spectrum [(*R*)-**15**]

¹H NMR spectrum [(R)-16]

 13 C NMR spectrum [(*R*)-16]

¹H NMR spectrum [(R)-2b]

¹³C NMR spectrum [(R)-2b]

¹H NMR spectrum [(R)-17a]

¹³C NMR spectrum [(R)-17a]

¹H NMR spectrum [(R)-17b]

¹³C NMR spectrum [(*R*)-17b]

¹H NMR spectrum [(R)-1a]

¹³C NMR spectrum [(*R*)-1a]

HPLC *optically active* [(*R*)-1b]

HPLC *racemic* (1b)

¹H NMR spectrum [(S)-5a]

¹³C NMR spectrum [(S)-5a]

¹⁹F NMR spectrum [(S)-5a]

¹H NMR spectrum [(S)-18a]

¹³C NMR spectrum [(S)-18a]

¹⁹F NMR spectrum [(*S*)-18a]

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積影	訪高	定量值	NTP	分離度	シンメトリー係数	警告	1	# ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	防富	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknawn	1	16.725	6385238	237257	97.416	97.657	N/A	9007	3.113	1.969			1Unknown	1	16.592	462277	21958	49.826	54.137	N/A	14441	2.807	1.191	
2	Unknown	1	19.017	169374	5692	2.584	2.343	N/A	9729	N/A	1.454		Γ	2Unknown	1	18.275	465498	18602	50.174	45.863	N/A	12639	N/A	1.311	

¹H NMR spectrum (5b)

¹³C NMR spectrum (**5b**)

¹⁹F NMR spectrum (**5b**)

¹H NMR spectrum (18b)

¹³C NMR spectrum (**18b**)

¹⁹F NMR spectrum (**18b**)

HPLC optically active (18b)

HPLC racemic (18b)

	# ビーウ名	CH	tR [min]	面積 [µV-sec]	高さ[µV]	酮	志高	定量值	NTP	分離度	シンメトリー係数	통습	10	ť-!	洺	CH	tR [min]	面積 [µV-sec]	<u></u> 敲[W]	翻	蔚	定量值	NTP	分離度	シッパリー係数	警告
Γ	1 Unknown	1	16.642	22204070	726475	96.166	95.319	N/A	7557	4.005	3.359		10	Unkno	wn	6	17.840	2780841	104997	50,783	60,688	N/A	11834	3.520	2,469	
	2Unknown	1	19,817	885275	27760	3.834	3.681	N/A	9267	N/A	1.888] [2Unkno	wn:	6	20.725	2695071	68015	49,217	39.312	N/A	7044	N/A	3.316	

¹³C NMR spectrum (**5c**)

andanave 0 01 02 03 04 05 06 07 08 09 10								
abundance 0 0	180.0 170.0 160.0 150.0 X : parts per Million : Carbon13	140.0 130.0 120.0	110.0 100.0 9	0.0 80.0 70.0	60.0 50.0 40.0	30.0 20.0 1	0.0 0 -10.0	

¹⁹F NMR spectrum (**5c**)

¹³C NMR spectrum (**5d**)

¹⁹F NMR spectrum (**5d**)

¹H NMR spectrum (5e)

¹³C NMR spectrum (5e)

¹⁹F NMR spectrum (5e)

¹H NMR spectrum (**5**g)

HPLC *racemic* (5g)

# Ľ-	り名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さ	定量值	NTP	分離度	シンメトリー係数	警告	#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積(高さ	定量值	NTP	分離度	シンメトリー係数	警告
1 Unkn	own	1	12.842	1384953	67909	96.705	98.407	N/A	9345	17.224	2.019			Unknown	1	14,408	677931	34626	50.762	76.566	N/A	13134	12.710	2.124	
2Unkn	own	1	27.183	47195	1099	3.295	1.593	N/A	9123	N/A	1.369			2 Unknown	1	28.058	657569	10598	49.238	23.434	N/A	4623	N/A	2.369	

¹³C NMR spectrum (**5h**)

¹⁹F NMR spectrum (**5h**)

HPLC optically active (5h) HPLC *racemic* (5h) KK253 FNp 2 OH 19 - OH1 -Optic- - CH1 10.0 25.0 30.0 0.0 # ビーク名 CH tR [min] 面積 [µV sec] 高さ [µV] 面積% 高さ% 定量値 NTP 分離度 シンメトリー係数 警告 * ビーウ名 CH tR[min] 面積(J/V.sec] 高さ(J/V) 面積% 高さ% 定量値 NTP 分離度 ジンメドリー係数 警告 1 Unknown 1 14.325 42104 1225 2.695 2.742 N/A N/A N/A N/A 15.200 2802883 88711 96.194 97.434 N/A 5520 9.561 1.990 2)Un 2)Un wn 1 14.858 65.410 1.519 7689 29227 49.221 N/A 7952 8.66 2337 3.806 2.566 N/A 1.630 2Unknown 24.958 110884 N/A 6605

1 23.608

751197

14230 48.084 31.848

N/A 4834 N/A 2.434

¹H NMR spectrum (5i)

¹³C NMR spectrum (5i)

¹⁹F NMR spectrum (5i)

HPLC optically active (5i)

HPLC *racemic* (5i)

rac-H4-Np - CH1

	1.1			ketenbor	r rume în	nnj		1000	12.000	1000		0455498		200	10-01-01-01-01-01-01-01-01-01-01-01-01-0	09380	Retention	n Time (r	nio]	5.02			
CH	tR [min]	置積 [µV-sec]	高さ[JV]	翻	高高	定量值	NTP	分離度	シンメトリー係数	警告		# ビーク名	CH	tR [min]	面積 [µV-sec]	高さ[uV]	面撒	高高	定量值	NTP	分離度	シンメトリー係数	警告
1	18.058	427388	21238	95.893	96.481	N/A	18855	5.643	1.223		[1 Unknown	1	17.050	1195402	57928	48.324	53.755	N/A	16506	4,776	1.532	
1	91 917	19907	175	/ 107	1510	N/8	10000	81/8	10/2		1 [2 loknown	1	19,892	1278300	49836	51.676	45.245	N/A	14432	N/A	1,497	

ピーク名 1 Unknown 2 Unknown

¹³C NMR spectrum (5j)

6.0											
08											
0.0											
5 06											
0.4											
03											
02											
100 0.1			1 1	Li.							
abunda 0	180.0 170.0 160.0 150.0 X : parts per Million : Carbon13	140.0 130.0	120.0 110.0	<u> </u>	90.0 80.0	70.0	60.0 50.0	40.0	30.0	20.0 1	6.0 0

¹⁹F NMR spectrum (5j)

¹H NMR spectrum (18j)

¹³C NMR spectrum (18j)

¹⁹F NMR spectrum (**18j**)

HPLC *optically active* (18j)

HPLC *racemic* (18j)

¹H NMR spectrum (4k)

¹³C NMR spectrum (4k)

¹⁹F NMR spectrum (4k)

¹H NMR spectrum (5l)

¹⁹F NMR spectrum (5l)

40.0		
		I
30.0		
50		
0.01		
abundance 0		l
	100 0 100 -200 -300 -400 -500 -600 -700 -800 -900 -1000 -1100 -1200 -1300 -1400 -1300 -600 -600 -600 -600 -600 -600 -600 -	0 -170.0 -180.0

¹H NMR spectrum (181)

¹³C NMR spectrum (181)

¹⁹F NMR spectrum (181)

HPLC optically active (181)

1	# ビーク名	CH	tR [min]	面積 [µV-sec]	高さ[uV]	面称	務高	定量值	NTP	分離度	シンメトリー係数	警告	#	ピーク名	CH	tR [min]	面積 [µV-sec]	高さ[µV]	面積	高高	定量值	NTP	分離度	シンメトリー係数	警告
[1 Unknown	6	22.440	7164149	184308	92.237	91.627	N/A	8031	3.615	2.486			Unknown	6	23.455	3927946	111122	50.246	53.397	N/A	10633	2.968	2.068	
	2Unknown	6	25.918	602979	16842	7,763	8.373	N/A	12488	N/A	1.263			Unknown	6	26.330	3889555	96984	49.754	46.603	N/A	10399	N/A	1.806	

¹H NMR spectrum (5m)

¹³C NMR spectrum (5m)

Muldates 0 01 02 03 04 05 06 07 08 09 10 11 040000000000000000000000000000000																
abund 0	80.0 170.0 160.0 150.0	140.0 130.0	120.0	110.0	100.0	90.0	80.0	70.0	60.0	50.0	40.0	30.0	20.0	10.0	····	-10.

¹⁹F NMR spectrum (**5m**)

¹H NMR spectrum (**18m**)

¹³C NMR spectrum (18m)

¹⁹F NMR spectrum (**18m**)

HPLC *optically active* (18m)

HPLC *racemic* (18m)

¹³C NMR spectrum (**5n**)

¹⁹F NMR spectrum (**5n**)

HPLC *optically active* (**5n**)

HPLC *racemic* (5n)

+	ビージを	UH	tH [min]	面積 [JuV-sec]	尚さ[µV]	面積为	菌でも	正重强	NIP	万曜度	ソンストリー係数	言言	1	ビー7名	CH	tR [min]	面積 [µV-sec]	高さいの	重積5	高さ(定量值	NTP	分離度	シンメトリー係数	물송
1	Unknown	1	21.142	189586	4956	3.358	3.531	N/A	7276	3.527	1.330		Γ	Unknown	1	21.192	11963810	177645	50.698	53,809	N/A	2560	1.822	2.228	
2	Unknown	1	24.692	5456613	135403	96.642	96.469	N/A	9250	N/A	1.725			2Unknown	1	24.417	11634478	152493	49.302	46,191	N/A	2717	N/A	2.247	

¹H NMR spectrum (**50**)

¹⁹F NMR spectrum (**50**)

¹³C NMR spectrum (**5p**)

¹⁹F NMR spectrum (**5p**)

¹H NMR spectrum (18p)

¹³C NMR spectrum (18p)

¹⁹F NMR spectrum (**18p**)

HPLC optically active (18p)

HPLC racemic (18p)

¹H NMR spectrum (8b)

¹³C NMR spectrum (8b)

¹⁹F NMR spectrum (8b)

¹H NMR spectrum (8h)

¹³C NMR spectrum (8h)

¹⁹F NMR spectrum (8h)

¹H NMR spectrum (9)

¹⁹F NMR spectrum (9)

¹H NMR spectrum [(R)-10a]

¹³C NMR spectrum [(R)-10a]

¹H NMR spectrum [(R)-19a]

¹³C NMR spectrum [(*R*)-19a]

¹H NMR spectrum (10b)

¹³C NMR spectrum (10b)

¹H NMR spectrum (19b)

¹H NMR spectrum (**10c**)

¹³C NMR spectrum (10c)

¹⁹F NMR spectrum (10c)

HPLC optically active (10c)

HPLC *racemic* (10c)

#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高超	定量值	NTP	分離度	シンメトリー係数	警告	#	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積影	高胡	定量值	NTP	分離度	シンメトリー係数	警告
1	Unknown	5	12.203	46374	3602	3.595	5.853	N/A	23119	4.620	1.310		1	Unknown	1	12.500	3511165	174524	49.482	52.769	N/A	9392	3.914	2.069	
2	Unknown	5	14.205	1243498	57939	96.405	94.147	N/A	10756	N/A	2.359		2	Unknown	1	14.675	3584666	156207	50.518	47.231	N/A	9624	N/A	2.058	

¹H NMR spectrum (10d)

60		
-		
81		
° 1		
°:		
~		
0		
•		1
° :		
•		
		1
° 1		1
2		
	La come a ser en trata de la desta come en	
	120.0 110.0 100.0 90.0 80.0 70.0 60.0	0 500 400 300 200 100 0 -100 -200
X : parts per Million : Carbon13	120.0 110.0 100.0 90.0 80.0 70.0 80.0	7 50.0 40.0 50.0 20.0 10.0 0 -10.0 -20.0

HPLC *racemic* (10d)

HPLC optically active (10d)

795500 49.832 52.942

N/A 6465 N/A

2.244

¹H NMR spectrum (10h)

2Unknown 1

19.808

30013068

¹³C NMR spectrum (10h)

¹H NMR spectrum (19h)

¹H NMR spectrum (**10i**)

¹³C NMR spectrum (10i)

HPLC optically active (10i)

HPLC racemic (10i)

¹H NMR spectrum (**10j**)

¹⁹F NMR spectrum (10j)

¹H NMR spectrum (10k)

HPLC optically active (10k)

¹H NMR spectrum (10l)

HPLC optically active (101)

HPLC racemic (101)

	# ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さ	定量值	NTP	分離度	シンメトリー係数	警告	=	ピーク名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積%	高さ	定量值	NTP	分離度	シンメトリー係数	警告
Γ	1 Unknown	6	11.405	191326	14358	9.116	9.630	N/A	17519	2.615	1.190		3	1 Unknown	6	11.355	1026054	77875	50.285	50.857	N/A	17660	2.865	1.295	
E	2Unknown	6	12.335	1907501	134732	90.884	90.370	N/A	17920	N/A	1.261			2Unknown	6	12.348	1014421	75251	49.715	49.143	N/A	19529	N/A	1.193	1

¹H NMR spectrum (11)

HPLC racemic (11)

HPLC optically active (12a)

HPLC *racemic* (12a)

[# t	7名	CH	tR [min]	面積 [µV·sec]	高さ[µV]	面積5	高さ	定量值	NTP	分離度	シンメトリー係数	警告		ピーク名	CH	tR [min]	面積 [µV-sec]	高さ[µV]	面積%	高部	定量值	NTP	分離度	シンメトリー係数	警告
[1Un	known	1	20.308	10567621	307717	96.905	96.151	N/A	9006	2.605	2.121			1 Unknown	1	20.642	3128643	112697	50.834	54.073	N/A	14938	2.049	1.683	1
I	2Un	known	1	22.300	337564	12318	3.095	3,849	N/A	17352	N/A	N/A		_ C	2Unknown	1	22.100	3025978	95721	49.166	45.927	N/A	13818	N/A	1.717	1

¹H NMR spectrum (**12j**)

5	1
81	
21	
5	
51 51	
~	
°]	
iano i	
	When have been a fear and a second
180.0 170.0 160.0 150.0 140.0 130 X : parts per Million : Carbon13	0.0 120.0 110.0 100.0 90.0 80.0 70.0 66.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -

¹⁹F NMR spectrum (**12j**)

HPLC optically active (12j)

¹H NMR spectrum [(R)-13]

¹³C NMR spectrum [(*R*)-13]

