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Materials and instruments. Unless otherwise stated, all reagents were purchased
from commercial suppliers and used without further purification. Solvents used were
purified by standard methods prior to use. Twice-distilled water was used throughout
all experiments. Mass spectra were performed using an LCQ Advantage ion trap mass
spectrometer from Thermo Finnigan or Agilent 1100 HPLC/MSD spectrometer. NMR
spectra were recorded on an INOVA-400 spectrometer, using TMS as an internal
standard. Electronic absorption spectra were obtained on a Labtech UV Power PC
spectrometer. Photoluminescent spectra were recorded at 37°C with a HITACHI
F4600 fluorescence spectrophotometer. The fluorescence imaging of cells was
performed with OLYMPUS FV1000 (TY1318) confocal microscopy. The in vivo
(living mice) imaging was carried out using an IVIS Lumina XR (IS1241N6071) in
vivo imaging system. TLC analysis was performed on silica gel plates and column
chromatography was conducted over silica gel (mesh 200-300), both of which were

obtained from the Qingdao Ocean Chemicals.

Determination of the fluorescence quantum yield!-: Fluorescence quantum yields
for CHMC1, CHMC1-C, CHMC2, and CHMC2-C were determined by using ICG
(@,=0.13 in DMSO) as a fluorescence standard.! The quantum yield was calculated
using the following equation:
Dr(x)= Dps) (AsFy | AxFs) (ny /ng)?

Where ®r is the fluorescence quantum yield, 4 is the absorbance at the excitation
wavelength, F is the area under the corrected emission curve, and 7 is the refractive
index of the solvents used. Subscripts S and X refer to the standard and to the

unknown, respectively.

Calculation of pK, Values. pK, values of CHMC1 and CHMC?2 dye at acidic to
near-neutral pH regions were calculated by regression analysis of the fluorescence

data to fit equation (1)
pH — pK, = log (Fax = F)/(F = Fuin) (1)
Where F is the areca under the corrected emission curve, Fp .« and F,;, are maximum

and minimum limiting values of F, respectively.
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Synthesis of compound CHMC1-C.

POCI1; (2.0 mL) was added dropwisely by a separatory funnel to a flask containing
DMF (5 mL) with stirring at 0 °C over 30 min. Compound 1 (350 mg) in DMF (0.2
ml) was added slowly with stirring and the mixture was heated for 5 h at 90 °C. Then
the mixture was poured to ice water and the resulting precipitate was filtered off and
washed with cold water (100 ml) to afford the orange solid 2, which was utilized in
the next reaction without purification again. Indolium salt (600 mg, 2 mmol) and
0.345 g (440 mg, 2 mmol) of the compound 2 were dissolved in 70 ml of a mixture of
I-butanol and benzene (7:3) in a flask equipped with a Dean-Stark trap. The mixture
was heated at reflux with stirring and the water formed was collected in the trap.
After 5 h, the reaction was cooled to room temperature, and the solvents were
removed in vacuo. The red solid CHMC1-C was purified by column chromatography
on silica gel flash chromatography using CH,Cl,/EtOH (50: 0 to 30: 1). 'H NMR (400
MHz, (CD;),S0) 6 8.45 (d, /= 15.9 Hz, 1H), 7.93- 7.87 (m, 2H), 7.77 (d, J = 8.7 Hz,
1H), 7.67- 7.62 (m, 2H), 7.21 (d, /= 15.9 Hz, 1H), 7.03 (d, J = 2.3 Hz, 1H), 6.99 (dd,
J=28.7,2.5 Hz, 1H), 4.11 (s, 3H), 3.86 (s, 3H), 2.99 (dd, J = 8.1, 5.7 Hz, 2H), 2.92
(dd, J = 8.2, 5.5 Hz, 2H), 1.76 (s, 6H). 3C NMR (100 MHz, DMSO) & 181.17,
162.35, 147.56, 143.57, 142.23, 142.08, 141.61, 130.01, 129.64, 129.38, 129.26,
125.00, 123.18, 115.50, 113.94, 113.86, 113.28, 55.97, 52.14, 34.73, 26.93, 26.36,
23.68. MS (ESI) m/z = 378.2 [M]*; HRMS (ESI) Calcd for C,4H,sCINO* ([M]%):
378.1619, Found, 378.1617.

Synthesis of compound CHMCI.

To a solution of compound CHMC1-C (250mg, 0.5mmol) and BBr; (500 mg) in dry
dichloromethane (5 ml) were stirred under ice bath for 12 h at N, atmosphere. After
12 h, the mixture was poured onto 100 g of crushed iced and mixed carefully, and
then the aqueous phase was extracted with dichloromethane (3 % 100 mL). The
organic layers were collected, dried over Na,SO,, and evaporated under reduced
pressure. The red solid was purified by column chromatography on silica gel flash
chromatography using CH,CI,/EtOH (20:1). The desired product was obtained as a
red solid. '"H NMR (400 MHz, (CD;),SO) 6 10.54 (s, 1H), 8.44 (d, J= 15.8 Hz, 1H),
7.94-7.87 (m, 2H), 7.68 (d, J = 8.3 Hz, 1H), 7.65-7.60 (m, 2H), 7.18 (d, J = 15.8 Hz,
1H), 6.85 -6.80 (m, 2H), 4.12 (s, 3H), 2.90 (s, 4H), 1.75 (s, 6H). '*C NMR (100 MHz,
(CDs),S0O) 6 181.05, 161.53, 147.79, 143.51, 142.95, 142.24, 141.91, 129.70, 129.48,
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129.36, 129.17, 123.64, 123.18, 115.42, 115.25, 114.81, 113.32, 52.03, 34.69, 26.96,
26.48, 23.73. MS (ESI) m/z = 364.2[M]*; HRMS (ESI) Caled for Cp3Hy;CINO *
(IM]*): 364.1462, Found, 364.1461.

Synthesis of compound CHMC2-C.

POC1; (2.0 mL) was added dropwisely by a separatory funnel to a flask containing
DMF (5 mL) with stirring at 0°C over 30 min. Compound 1 (350 mg) in DMF (0.2
ml) was added slowly with stirring and the mixture was heated for 5 h at 90 °C. Then
the mixture was poured to ice water and the resulting precipitate was filtered off and
washed with cold water (100 ml). Then orange solid 2 was afforded which was
utilized in the next reaction without purification again. Benz[e]indolium salt (730 mg,
2 mmol) and 0.345 g (440 mg, 2 mmol) of the compound 2 were dissolved in 70 ml of
a mixture of 1-butanol and benzene (7:3) in a flask equipped with a Dean-Stark trap.
The mixture was heated at reflux with constant stirring and the water formed was
collected in the trap. After 5 h, the reaction was cooled to room temperature, and the
solvents were removed in vacuo. The red solid CHMC2-C was purified by column
chromatography on silica gel flash chromatography using CH,Cl,/EtOH (50: 0 to 30:
1). '"H NMR (400 MHz, (CD5),SO) 6 8.57 (d, J = 15.9 Hz, 1H), 8.46 (d, J = 8.4 Hz,
1H), 8.32 (d, /= 8.9 Hz, 1H), 8.23 (d, /= 8.1 Hz, 1H), 8.14 (d, /= 9.0 Hz, 1H), 7.79
(dd, J = 8.2, 3.7 Hz, 2H), 7.74 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 15.9 Hz, 1H), 7.05-
6.98 (m, 2H), 4.80 (q, J = 6.9 Hz, 2H), 3.87 (s, 3H), 3.05- 2.91 (m, 4H), 2.01 (s, 6H),
1.52 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, (CDj;),SO) & 181.19, 162.00, 146.86,
141.63, 141.26, 138.51, 138.19, 133.09, 131.12, 129.94, 129.75, 128.86, 128.38,
127.22, 126.65, 124.66, 123.02, 113.48, 113.06, 112.93, 112.31, 55.59, 53.46, 46.87,
42.45, 26.57, 25.99, 23.35, 13.69. MS (ESI) m/z = 442.2 [M]"; HRMS (ESI) Calcd
for Cy9H,9CINO™ ([M]): 442.1923, Found, 442.1925.

Synthesis of compound CHMC2.

To a solution of compound CHMC2-C (569mg, Immol) and BBr; (600 mg) in dry
dichloromethane (5 ml) were stirred under ice bath for 12 h at N, atmosphere. After
12 h, the mixture was poured onto 100 g of crushed iced and mixed carefully, and
then the aqueous phase was extracted with dichloromethane (3 x 100 ml). The organic
layers were collected, dried over Na,SO,, and evaporated under reduced pressure. The

red solid was purified by column chromatography on silica gel flash chromatography
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using CH,CL,/EtOH (25:1). The desired product was obtained as a red solid. 'H NMR
(400 MHz, (CD3),S0) 6 10.57 (s, 1H), 8.58 (d, J = 15.8 Hz, 1H), 8.46 (d, J = 8.4 Hz,
1H), 8.31 (d, /= 9.0 Hz, 1H), 8.23 (d, /= 8.2 Hz, 1H), 8.14 (d, /= 9.0 Hz, 1H), 7.80
(t,J=17.3 Hz, 1H), 7.76-7.68 (m, 2H), 7.21 (d, J=15.9 Hz, 1H), 6.86 - 6.79 (m, 2H),
4.79 (q,J = 7.0 Hz, 2H), 2.94 (s, 4H), 2.00 (s, 6H), 1.57- 1.45 (m, 3H). '3C NMR (100
MHz, (CDs),SO) & 180.99, 161.13, 147.06, 142.50, 141.58, 138.31, 138.21, 133.01,
131.09, 129.94, 129.33, 128.88, 128.35, 127.13, 126.65, 123.29, 122.99, 114.86,
114.41, 113.03, 111.64, 53.34, 42.27, 26.56, 26.06, 23.32, 13.65. MS (ESI) m/z =
428.2[M]*; HRMS (ESI) Calcd for C,sHp;CINO * ([M]): 428.1775, Found,
428.1776.

Synthesis of compound CHMC-thiol.

A mixture of CHMC1 (490 mg, Immol) and 2,4-dinitrobenzene-1-sulfonyl chloride
(530mg, 2mmol) in dry dichloromethane was stirred at room temperature for Sh at N,
atmosphere under the basic conditions. Then, the solvent was evaporated under
reduced pressure to give the crude product, which was purified by column
chromatography on silica gel flash chromatography using CH,Cl,/EtOH (30:1). 'H
NMR (400 MHz, (CD5),SO) 6 9.15 (d, J = 2.0 Hz, 1H), 8.65 (dd, /= 8.7, 2.0 Hz, 1H),
8.55(d, J=1.9 Hz, 1H), 8.39 (s, 1H), 8.36 (s, 1H), 8.08 (d, /= 8.6 Hz, 1H), 7.95 (dd,
J=15.8,209 Hz, 1H), 7.91-7.88 (m, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.68-7.66 (m, 1H),
7.35 (s, 1H), 7.20 (dd, J = 8.5, 1.8 Hz, 1H), 4.15 (s, 3H), 3.03-3.01 (m, 2H), 2.96-2.93
(m, 2H), 1.76 (s, 6H). '*C NMR (100 MHz, (CD3),SO) 6 181.51, 151.85, 149.87,
148.35, 146.56, 143.82, 142.19, 141.62, 138.85, 133.85, 133.57, 131.78, 131.03,
128.87, 127.93, 125.91, 123.22, 121.56, 121.46, 120.89, 118.59, 116.34, 115.89,
56.72, 52.49, 35.07, 26.03, 23.39, 18.83. MS (ESI) m/z =594.1 [M]*; HRMS (ESI)
Calcd for Cy9H,5CIN;O7S* ([M]7): 594.1093, Found, 594.1096.

Synthesis of compound 5.
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Compound CHMC1 (49.1 mg, 0.1 mmol) and methylamine (15 mg, 0.5 mmol) were
placed in a flask containing dry DMF (4.0 ml). After heating overnight at 90°C under
nitrogen, the solution was concentrated under reduced pressure. The resulting crude
product was purified by silica gel flash chromatography using ethyl CH,Cl,/MeOH
(30: 1) as eluent to give the compound 5 as a red solid. "H NMR (400 MHz, CDCls) 6
10.10 (s, 1H), 9.32 (s, 1H), 7.92 (d, J = 107.6 Hz, 1H), 7.65 (s, 2H), 7.46 (s, 2H), 7.20
(s, 2H), 7.00 (d, J = 6.3 Hz, 1H), 6.84 (s, 1H), 4.24 (s, 3H), 3.56-3.59 (m, 2H), 2.61-
2.64 (m, 2H), 1.65 (s, 3H), 0.89 (s, 6H). 3*C NMR (100 MHz, CDCl3) 8 172.19,
169.71, 168.92, 167.69, 164.44, 164.26, 163.38, 162.80, 160.46, 132.25, 130.88,
129.41, 128.79, 122.93, 122.45, 121.95, 120.40, 119.72, 115.57, 108.37, 93.54, 65.54,

30.53, 29.66, 28.80, 19.15. MS (ESI) m/z =359.1 [M]".

Synthesis of compound 6.

Cl

o
HO

CHMC1 6

Compound CHMCT1 (49.1 mg, 0.1 mmol) and thiophenol (33 mg, 0.3 mmol) were
placed in a flask containing dry DMF (4.0 ml), and then two drops of TEA was added.
After heating overnight at 90°C under nitrogen, the solution was concentrated under
reduced pressure. The resulting crude product was purified by silica gel flash
chromatography using ethyl CH,Cl,/MeOH (35: 1) as eluent to give the compound 6
as a red solid. '"H NMR (400 MHz, CDCl;) 6 8.96 (d, J = 15.5 Hz, 1H), 7.51 (d, J =
8.7 Hz, 1H), 7.43-7.39 (m, 3H), 7.20 (s, 1H), 7.15-7.00 (m, 6H), 6.88 (s, 1H), 6.65 (d,

J=6.9 Hz, 1H), 4.17 (s, 3H), 2.64-2.68 (m, 4H), 1.64 (s, 6H). *C NMR (100 MHz,
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CDCl;) 6 181.16, 162.00, 151.97, 149.64, 142.68, 142.16, 141.75, 138.79, 135.66,
132.28, 129.39, 128.79, 128.13, 126.58, 124.83, 122.33, 115.61, 115.29, 113.86,

110.99, 51.62, 35.07, 29.66, 27.66, 27.14, 25.56. MS (ESI) m/z =438.1 [M]*

HeLa cell and MCF-7 cell Culture and Imaging Using CHMC-thiol.

HeLa cell or MCF-7 were seeded in a 12-well plate in Dulbecco’s modified
Eagle’smedium (DMEM) supplemented with 10% fetal bovine serum for 24 h. HeLa
cell or MCF-7 cell were then incubated with or without N-ethylmaleimide (as a thiol
blocking agent) in the culture medium for 30 min at 37 °C. After washing with PBS
three times to remove the remaining N-ethylmaleimide, the cells were further
incubated with the probe CHMC-thiol (5 pM) for 30 min at 37 °C. After washing the
cells with PBS three times, the cells were imaged using OLYMPUS FV1000
(TY1318) confocal microscope with an excitation filter of 546 nm. For another
control experiment, HeLa cell or MCF-7 cell were then incubated with or without Cys
(100 uM) in the culture medium for 30 min at 37 °C. After washing with PBS three
times to remove the remaining Cys, the cells were further incubated with the probe
CHMC-thiol (5 uM) for 30 min at 37 °C. After washing the cells with PBS three
times, the cells were imaged using OLYMPUS FV1000 (TY1318) confocal

microscope with an excitation filter of 546 nm.

Fluorescent Imaging in Living Mice Using CHMC-thiol. The Kunming mice were

divided into three groups. One group was given saline (100 pL) in the peritoneal

cavity, followed by intraperitoneal (i.p.) injection with CHMC-thiol (20 uM, in

20 pL DMSO). The second group was given an i.p. injection of N-ethylmaleimide (1
mM, in 100 pL saline), and followed by i.p. injection with CHMC-thiol (20 uM, in
20 uL DMSO) as the negative control experiment. The third group was given an i.p.
injection of Cys (100 uM, in 100 pL saline), and followed by i.p. injection with
CHMC-thiol (20 pM, in 20 uL. DMSO). The mice were anesthetized, and the
abdominal fur was removed. After the probe injection, the mice were imaged using an
IVIS Lumina XR (IS1241N6071) in vivo imaging system. With an excitation filter of
550 nm and the orange and red channels are corresponding to the emission windows

of 580-640 nm, and 650-750 nm, respectively.
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Figure S1. (a) The normalized absorption spectra of compounds CHMC1 (e),
CHMCI1-C (m), CHMC2 (V) and CHMC2-C (A) in EtOH; (b) The fluorescence
emission spectra of compounds CHMC1 (e), CHMC1-C (m), CHMC2 (V) and
CHMC2-C (A) in EtOH; (c¢) The normalized absorption spectra of compounds
CHMC1 (o), CHMCI1-C (m), CHMC2 (V) and CHMC2-C (A) in PBS; (d) The
fluorescence emission spectra of compounds CHMC1 (o), CHMCI1-C (m), CHMC2
(V)and CHMC2-C (A) in PBS.

Table S1. Photophysical Properties of CHMC dyes in EtOH.

Compound Amax (MM) €00y (105) Ay (nm) @ Stokes
Shift (nm)
CHMC1 670 1.42 695 0.08 25
CHMC1-C 494 0.18 564 0.02 70
CHMC2 690 1.48 714 0.06 24
CHMC2-C 506 0.36 610 0.01 104
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Figure S2. pH-dependence of the absorption spectra of compound CHMC1 (5 uM)

with the arrows indicating the change of the absorption intensities with pH

enhancement from 3.0 to 10.0.
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Figure S3. pH-dependence of the absorption spectra of compound CHMC2 (5 uM)

with the arrows indicating the change of the absorption intensities with pH

enhancement from 3.0 to 10.0.
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Figure S6. The fluorescence enhancement of CHMC1 (a) and CHMC?2 (b) with pH
increase from 3.0 to 10.0, excitation at 630 nm, emission at 680 and 700 nm,

respectively. F/Frepresented the enhancement of the fluorescence intensity.
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Figure S7. Fluorescence spectra of the CHMC1 (5 pM) in PBS in the presence of

low concentration range of Cys (0-35 uM).
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Figure S8. Fluorescence spectra of the CHMC2 (5 uM) in PBS in the presence of

low concentration range of Cys (0-35 uM).
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Figure S9. Absorption spectra of CHMC1 (5 puM) in PBS in the presence of high

concentration range of Cys (35-500 uM) of Cys.
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Figure S10. Mass spectrum (ESI) of the reaction mixture of the CHMC1 with Cys.
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Figure S11. (a) Absorption spectra of the probe CHMC-thiol (5 uM) in the aqueous

buffer in the presence of low concentration range of Cys (0-50 uM); (b) Absorption

spectra of the probe CHMC-thiol (5 uM) in the aqueous buffer in the presence of

high concentration range of Cys (50-500 uM); (c) Absorption spectra of the probe

CHMC-thiol (5 uM) in the aqueous buffer in the presence of low to high

concentration ranges of Cys (0-500 uM). All spectra were obtained after adding the

analyte for 1 hour.
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Figure S12. (a) Fluorescence spectra of the probe CHMC-thiol (10 uM) in the
aqueous buffer in the presence of low concentration range of Cys (0-50 uM),
excitation at 550 nm; (b) Fluorescence spectra of the probe CHMC-thiol (10 uM) in
the aqueous buffer in the presence of high concentration range of Cys (50-500 uM),
excitation at 550 nm; (c) Fluorescence spectra of the probe CHMC-thiol (10 uM) in
the aqueous buffer in the presence of low to high concentration range s of Cys (0-500
uM), excitation at 550 nm.
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Figure S13. Mass spectrum (ESI) of the reaction mixture of probe CHMC-thiol with
low concentration range of Cys.
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PBS.
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Figure S16. Mass spectrum (ESI) of the reaction mixture of the probe CHMC-thiol

with high concentration range of Cys.
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Figure S17. Partial 'H NMR spectra of the probe CHMC-thiol with high

concentration range of Cys.
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Figure S18. Normalized emission of compound 5 (m), compound 6 (A), and 5 uM
probe CHMC-thiol reaction with high concentration range of Cys (®) in PBS.
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Figure S19. Fluorescence spectra of the probe CHMC-thiol (5 uM) in the aqueous
buffer in the presence of low to high concentration ranges of Hcy (0-500 uM),

excitation at 550 nm.
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Figure S20. Fluorescence spectra of the probe CHMC-thiol (10 uM) in the aqueous
buffer in the presence of low concentration range of GSH (0-50 uM), excitation at 550
nm; (b) Fluorescence spectra of the probe CHMC-thiol (10 uM) in the aqueous
buffer in the presence of high concentration range of GSH (50-500 uM), excitation at
550 nm; (c) Fluorescence spectra of the probe CHMC-thiol (10 uM) in the aqueous
buffer in the presence of low to high concentration ranges of GSH (0-500 uM),

excitation at 550 nm.
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Scheme S2. The proposed reaction mechanism of CHMC-thiol with GSH.
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Figure S21. Brightfield and fluorescence images of MCF-7 cells stained with the
probe CHMC-thiol: (a—d) Brightfield and fluorescence images of the cells incubated
with N-ethylmaleimide (1 mM) for 30 min, and then co-incubated with CHMC-thiol
(5 uM) for 30 min: (a) Brighfield image; (b) Fluorescence image from the orange
channel; (c) Fluorescence image from the red channel, and (d) Overlay of (b) and (c);
(e—h) Brightfield and fluorescence images of the cells only incubated with the probe
(5 uM) for 30 min: (e) Brightfield image; (f) Fluorescence image from the orange
channel; (g) Fluorescence image from the red channel; and (h) Overlay of (f) and (g);
(i-1) Brightfield and fluorescence images of the cells incubated with Cys (100 pM) for
30 min, and then treated with the probe (5 uM) for another 30 min: (i) Brightfield
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image; (j) Fluorescence image from the orange channel; (k) Fluorescence image from
the red channel, and (1) Overlay of (j) and (k). The orange and red channels are
corresponding to the emission windows of 580-640, and 650-750 nm, respectively.

Scale bar =10 pm.
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Figure S22. '"H NMR spectrum of CHMC1-C ((CDs),S0O).
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Figure S25. 3C NMR spectrum of CHMC1 ((CDs),SO).
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Figure S31. 3C NMR spectrum of CHMC-thiol ((CD3),SO).
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Figure S35. 3C NMR spectrum of 6 (CDCl;).
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