Direct α -Heteroarylation of Amides (α to Nitrogen) and Ethers through a Benzaldehyde-Mediated Photoredox Reaction

Yongqiang Zhang, Kevin B. Teuscher, Haitao Ji*

Department of Chemistry, Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112–0850, USA *Correspondence to: Professor Haitao Ji (E-mail: markji@chem.utah.edu)

Table of Contents

Figure S1	S2
Figure S2	S2
Figure S3	S3
Figure S4	S3
Scheme S1	S4
Scheme S2	S5
Scheme S3	S5
Experiment Procedures and Product Characterization	S6–S21
Supplementary References.	S22
Spectral Data for the Products	S23-S58

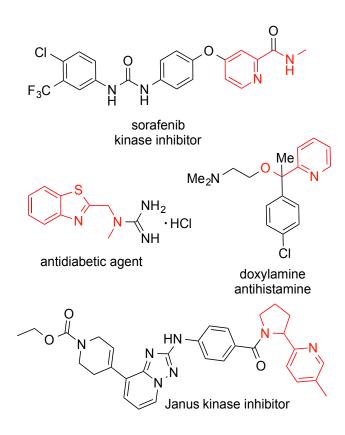


Figure S1. Bioactive compounds that contain a heteroaryl α -amine/ether functionality

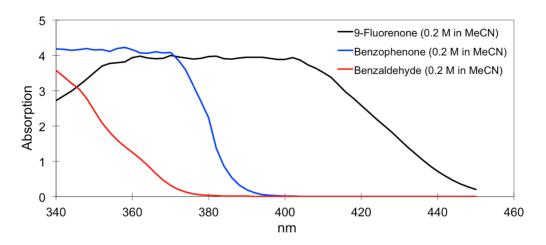


Figure S2. UV-Vis absorption spectra of photosensitizers

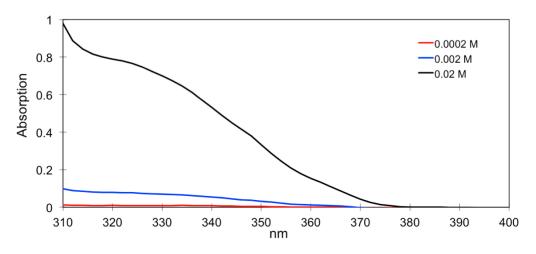


Figure S3. UV-Vis absorption spectra of different concentrations of benzaldehyde in the reaction solvent, $EtOAc:HCONH_2 = 1:1$.

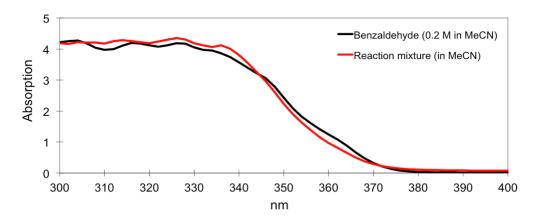
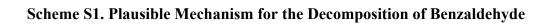
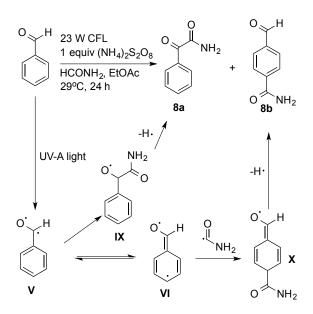
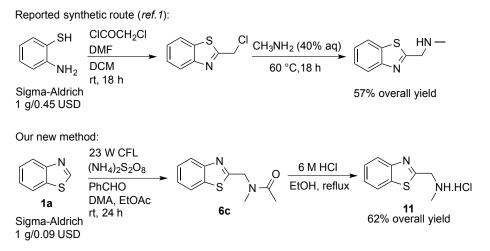
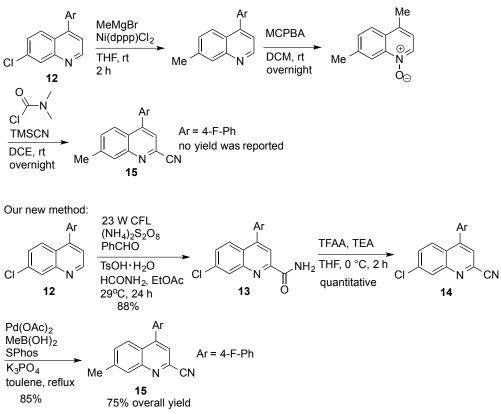





Figure S4. UV-Vis absorption spectra of benzaldehyde and the reaction mixture in acetonitrile.



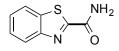
Scheme S2. Comparison of Two Routes towards the Synthesis of a Key Intermediate for an Antidiabetic Agent

Scheme S3. Comparison of Two Methods to Install a Cyan Group at Quinoline in the Synthesis of a Leukotriene Biosynthesis Inhibitor

Reported synthetic route (ref.2):

Experiment Procedures and Product Characterization

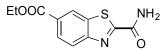
Commercial reagents and solvents were used as received, unless otherwise stated. Organic solution was concentrated under reduced pressure on a Büchi rotary evaporator using an isopropyl alcohol-dry ice bath. Analytical thin layer chromatography (TLC) was performed on 0.25 mm silica gel plates (SiliCycle Inc., Canada), and the compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine. Flash chromatography was performed on silica gel 230–400 mesh (SiliCycle Inc., Canada) with commercial solvents. The ¹H and ¹³C NMR spectra were recorded on a Varian Unity 300 Spectrometer (300 and 75 MHz for ¹H and ¹³C NMR, respectively) or a VXR 500 Spectrometer (500 and 125 MHz for ¹H and ¹³C NMR, respectively) and are internally referenced to residual solvent signals (note: d^6 -DMSO referenced at 2.50 and 39.52 ppm in ¹H and ¹³C NMR, respectively). Multiplicities were given as s (singlet), d (doublet), t (triplet), dd (double of doublet), and m (multiplets). Coupling constants were reported in Hertz (Hz). Data for ¹³C NMR are reported in terms of chemical shift. High-resolution mass spectrometry (HRMS) was recorded on Waters LCT Premier XE TOF with Acquity Classic UPLC ToF High Resolution Exact Mass.

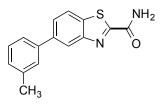

General procedure for the carbamoylation of heteroaromatics.

Method A (with TsOH•H₂O): To a 10 mL (or 20 mL) schlenk tube equipped with a magnetic stir bar was charged a heteroarene (0.22 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.15 g, 0.66 mmol, 3.0 equiv), TsOH•H₂O (0.042 g, 0.22 mmol, 1.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL formamide. The reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with argon. After the reaction mixture was thoroughly degassed, the vial was sealed and positioned approximately 10 cm away from the light source. Two household full-spectrum 23 W CFL bulbs were used to irradiate the reaction mixture. Water bath was used to keep the reaction temperature at 29 °C. After stirring for the indicated time, the resulting mixture was diluted with water (20 mL). The pH value was then adjusted to 9–10 with NaOH (1 M), extracted with ethyl acetate (15 mL × 3), dried over Na₂SO₄, and concentrated under vacuum. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

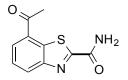
Method B (without TsOH•H₂O): To a 10 mL (or 20 mL) schlenk tube equipped with a magnetic stir bar was charged a heteroarene (0.22 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.15 g, 0.66 mmol, 3.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL formamide. The reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with argon. After the reaction mixture was thoroughly degassed, the vial was sealed and positioned approximately 10 cm away from the light source. Two household full-spectrum 23 W CFL bulbs were used to irradiate the reaction mixture. Water bath was used to keep the reaction temperature at 29 °C. After stirring for the indicated time, the resulting mixture was diluted with ethyl acetate (30 mL), washed with brine (10 mL × 3), dried over Na₂SO₄, and concentrated under vacuum. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

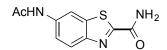
Method C: To a 10 mL (or 20 mL) schlenk tube equipped with a magnetic stir bar was charged a heteroarene (0.22 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.15 g, 0.66 mmol, 3.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL amide, and 1.5 mL ethyl acetate. The reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with argon. After the reaction mixture was thoroughly degassed, the vial was sealed and positioned approximately 10 cm away from the light source. Two household full-spectrum 23 W CFL bulbs were used to irradiate the reaction mixture. Water bath was used to keep the reaction temperature at 29 °C. After stirring for the indicated time, the resulting mixture was diluted with ethyl acetate (30 mL), washed with brine (10 mL × 3), dried over Na₂SO₄, and concentrated under vacuum. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

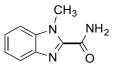

Method D: To a 10 mL (or 20 mL) schlenk tube equipped with a magnetic stir bar was charged a heteroarene (0.22 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.15 g, 0.66 mmol, 3.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL ether, and 1.5 mL water. The reaction mixture was degassed via freeze pump thaw (× 3 times) and refilled with argon. After the reaction mixture was thoroughly degassed, the vial was sealed and positioned approximately 10 cm away from the light source. Two household full spectrum 23 W CFL bulbs were used to irradiate the reaction mixture. Water bath was used to keep the reaction temperature at 29 °C. After stirring for the indicated time, the resulting mixture was diluted with ethyl acetate (30 mL), washed with brine (10 mL × 3), dried over Na₂SO₄, and concentrated under vacuum. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.


Benzo[d]thiazole-2-carboxamide (2a): According to the general procedure (method A), benzothiazole (0.030 g, 0.22 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.15 g, 0.66 mmol, 3.0 equiv), TsOH•H₂O (0.042 g, 0.22 mmol, 1.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–6:1) to provide the title compound as white solid (37 mg, 94%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.47 (brs, 1H), 8.19 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.07 (brs, 1H), 7.60 (t, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 165.57, 162.00, 153.52, 137.06, 127.69, 127.52, 124.68, 123.66; HRMS (ESI) Calcd. for C₈H₆N₂OS (M + Na)⁺ 201.0099, found 201.0099.

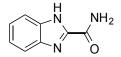
5-Bromobenzo[d]thiazole-2-carboxamide (2b): According to the general procedure (method A), 5-bromobenzothiazole (0.050 g, 0.23 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.16 g, 0.69 mmol, 3.0


equiv), TsOH•H₂O (0.044 g, 0.23 mmol, 1.0 equiv), benzaldehyde (0.024 g, 0.23 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–6:1) to provide the title compound as white solid (50 mg, 85%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.50 (brs, 1H), 8.25 (d, *J* = 2.0 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 8.13 (brs, 1H), 7.70 (dd, *J* = 2.0, 8.0 Hz, 1H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 167.74, 161.64, 154.66, 136.25, 130.30, 126.86, 125.55, 120.43; HRMS (ESI) Calcd. for C₈H₅BrN₂OS (M + Na)⁺ 278.9204, found 278.9204.

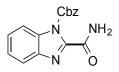

Ethyl 2-carbamoylbenzo[d]thiazole-6-carboxylate (2c): According to the general procedure (method A), ethyl benzo[d]thiazole-6-carboxylate (0.050 g, 0.24 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.17 g, 0.72 mmol, 3.0 equiv), TsOH•H₂O (0.045 g, 0.24 mmol, 1.0 equiv), benzaldehyde (0.025 g, 0.24 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–6:1) to provide the title compound as white solid (30 mg, 50%). ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.89 (s, 1H), 8.59 (brs, 1H), 8.22 (d, *J* = 8.0 Hz, 1H), 8.18 (brs, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 169.45, 165.87, 161.69, 156.33, 137.25, 128.50, 128.02, 125.77, 124.72, 61.89, 14.85; HRMS (ESI) Calcd. for C₁₁H₁₀N₂O₃S (M + Na)⁺ 273.0310, found 273.0310.


5-(*m***-tolyl)benzo[d]thiazole-2-carboxamide (2d):** According to the general procedure (method A), 5-(m-tolyl)benzo[d]thiazole (0.050 g, 0.22 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.15 g, 0.66 mmol, 3.0 equiv), TsOH•H₂O (0.042 g, 0.22 mmol, 1.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–6:1) to provide the title compound as white solid (46 mg, 78%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.46 (brs, 1H), 8.27 (d, *J* = 2.0 Hz, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 8.13 (brs, 1H), 7.81 (dd, *J* = 2.0, 8.5 Hz, 1H), 7.55 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.18 (d, *J* = 7.5 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 166.39, 161.95, 154.27, 140.25, 140.05, 138.94, 136.06, 129.63, 129.10, 128.45, 126.67, 124.89, 123.98, 122.11, 21.83; HRMS (ESI) Calcd. for C₁₅H₁₂N₂OS (M + Na)⁺ 291.0568, found 291.0573.

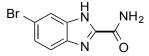
7-Acetylbenzo[d]thiazole-2-carboxamide (2e): According to the general procedure (method A), 1-(benzo[d]thiazol-7-yl)ethanone (0.050 g, 0.28 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.19 g, 0.84 mmol, 3.0 equiv), TsOH•H₂O (0.053 g, 0.28 mmol, 1.0 equiv), benzaldehyde (0.030 g, 0.28 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 6:1–4:1) to provide the title compound as white solid (41 mg, 66%). ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.50 (brs, 1H), 8.39 (d, *J* = 8.1 Hz, 1H), 8.37 (d, *J* = 8.1 Hz, 1H), 8.08 (brs, 1H), 7.80 (t, *J* = 8.1 Hz, 1H), 2.76 (s, 3H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 197.62, 169.20, 162.33, 154.55, 134.28, 131.63, 130.47, 129.94, 128.00, 26.87; HRMS (ESI) Calcd. for C₁₀H₈N₂O₂S (M + Na)⁺ 243.0204, found 243.0204.



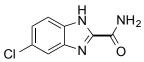
6-Acetamidobenzo[d]thiazole-2-carboxamide (2f): According to the general procedure (method A), *N*-(benzo[d]thiazol-6-yl)acetamide (0.040 g, 0.21 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.14 g, 0.63 mmol, 3.0 equiv), TsOH•H₂O (0.040 g, 0.21 mmol, 1.0 equiv), benzaldehyde (0.022 g, 0.21 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 3:1–1:1) to provide the title compound as white solid (15 mg, 30%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 10.26 (s, 1H), 8.54 (d, *J* = 2.0 Hz, 1H), 8.34 (brs, 1H), 8.00 (d, *J* = 8.5 Hz, 1H), 7.95 (brs, 1H), 7.60 (dd, *J* = 2.0, 9.0 Hz, 1H), 2.08 (s, 3H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 169.40, 163.84, 162.06, 149.30, 138.89, 137.99, 124.79, 120.10, 111.94, 24.77; HRMS (ESI) Calcd. for C₁₀H₉N₃O₂S (M + Na)⁺ 258.0313, found 258.0314.



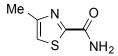
1-Methyl-1H-benzo[d]imidazole-2-carboxamide (2g): According to the general procedure (method A), 1-methyl-1H-benzo[d]imidazole (0.050 g, 0.38 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.26 g, 1.13 mmol, 3.0 equiv), TsOH•H₂O (0.072 g, 0.38 mmol, 1.0 equiv), benzaldehyde (0.040 g, 0.38 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1-3:1) to provide the title compound as white solid (42 mg, 64%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.26 (brs, 1H), 7.82 (brs, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.29 (t,


J = 8.0 Hz, 1H), 4.10 (s, 3H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 162.16, 144.57, 141.31, 137.34, 124.74, 123.51, 120.67, 111.91, 32.52; HRMS (ESI) Calcd. for C₉H₉N₃O (M + Na)⁺ 198.0643, found 198.0643.

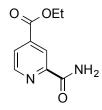
1H-benzo[d]imidazole-2-carboxamide (2h): According to the general procedure (method A), benzo[d]imidazole (0.050 g, 0.43 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.30 g, 1.30 mmol, 3.0 equiv), TsOH•H₂O (0.081 g, 0.43 mmol, 1.0 equiv), benzaldehyde (0.045 g, 0.43 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 3:1–2:1) to provide the title compound as white solid (46 mg, 67%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 13.17 (s, 1H), 8.24 (brs, 1H), 7.80 (brs, 1H), 7.69 (d, *J* = 7.0 Hz, 1H), 7.50 (d, *J* = 7.0 Hz, 1H), 7.28 – 7.24 (m, 2H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 161.37, 146.49, 143.28, 135.20, 124.73, 123.12, 120.61, 113.16; HRMS (ESI) Calcd. for C₈H₇N₃O (M + Na)⁺ 184.0487, found 184.0489.



Benzyl 2-carbamoyl-1H-benzo[d]imidazole-1-carboxylate (2i): According to the general procedure (method A), benzyl 1H-benzo[d]imidazole-1-carboxylate (0.050 g, 0.20 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.14 g, 0.60 mmol, 3.0 equiv), TsOH•H₂O (0.038 g, 0.20 mmol, 1.0 equiv), benzaldehyde (0.021 g, 0.20 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1–4:1) to provide the title compound as white solid (38 mg, 64%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 11.00 (brs, 1H), 7.80 – 7.50 (m, 2H), 7.47 (d, J = 7.0 Hz, 2H), 7.38 (t, J = 7.0 Hz, 2H), 7.34 – 7.31 (m, 3H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 157.99, 151.16, 144.56, 136.48, 129.06, 128.72, 128.38, 67.28; HRMS (ESI) Calcd. for C₁₆H₁₃N₃O₃ (M + Na)⁺ 318.0855, found 318.0855.

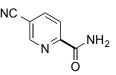


6-Bromo-1H-benzo[d]imidazole-2-carboxamide (2j): According to the general procedure (method A), 6-bromo-1H-benzo[d]imidazole (0.050 g, 0.25 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.17 g, 0.75 mmol, 3.0 equiv), TsOH•H₂O (0.048 g, 0.25 mmol, 1.0 equiv), benzaldehyde (0.027 g, 0.25 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 3:1–2:1) to provide the title compound as white solid (51 mg, 85%). Both the Z and E isomers were obtained (E:Z = 1:1). ¹H

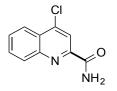

NMR (500 MHz, d⁶-DMSO) δ ppm 13.40 (s, 1H, rotamer A), 13.33 (s, 1H, rotamer B), 8.29 (brs, 2H), 7.89 (s, 1H), 7.87 (brs, 2H), 7.66 (d, J = 7.5 Hz, 1H), 7.65 (s, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.37 (d, J = 7.5 Hz, 1H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 161.51, 148.28, 147.96, 145.24, 142.92, 136.95, 134.83, 128.14, 126.79, 123.50, 123.04, 117.63, 116.29, 115.87, 115.61; HRMS (ESI) Calcd. for C₈H₆BrN₃O (M + Na)⁺ 261.9592, found 261.9598.

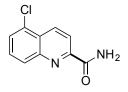
5-Chloro-1H-benzo[d]imidazole-2-carboxamide (2k): According to the general procedure (method A), 5-chloro-1H-benzo[d]imidazole (0.050 g, 0.33 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.23 g, 0.99 mmol, 3.0 equiv), TsOH•H₂O (0.063 g, 0.33 mmol, 1.0 equiv), benzaldehyde (0.035 g, 0.33 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 3:1–2:1) to provide the title compound as white solid (50 mg, 78%). Both the Z and E isomers were obtained (E:Z = 1:1). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 13.40 (s, 1H, rotamer A), 13.33 (s, 1H, rotamer B), 8.30 (brs, 1H), 8.28 (brs, 1H), 7.88 (brs, 2H), 7.54 (s, 1H), 7.71 (d, *J* = 8.5 Hz, 1H), 7.52 (d, *J* = 9.0 Hz, 1H), 7.51 (s, 1H), 7.31 (d, *J* = 8.5 Hz, 1H), 7.26 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 160.74, 147.71, 147.37, 143.88, 141.88, 135.66, 133.76, 128.87, 127.27, 124.82, 123.41, 121.86, 119.68, 114.39, 112.52; HRMS (ESI) Calcd. for C₈H₆ClN₃O (M + Na)⁺ 218.0097, found 218.0102.

4-Methylthiazole-2-carboxamide (2m): According to the general procedure (method A), 5-chloro-1H-benzo[d]imidazole (0.050 g, 0.50 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.34 g, 1.50 mmol, 3.0 equiv), TsOH•H₂O (0.095 g, 0.50 mmol, 1.0 equiv), benzaldehyde (0.053 g, 0.50 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–6:1) to provide the title compound as white solid (38 mg, 54%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.06 (brs, 1H), 7.76 (brs, 1H), 7.55 (s, 1H), 2.40 (s, 3H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 164.02, 161.64, 154.18, 121.05, 17.48; HRMS (ESI) Calcd. for C₅H₆N₂OS (M + Na)⁺ 165.0099, found 165.0101.



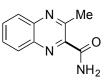
Ethyl isonicotinate (4a): According to the general procedure (method A), ethyl


9H-pyrido[3,4-b]indole-3-carboxylate (0.050 g, 0.33 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.23 g, 0.99 mmol, 3.0 equiv), TsOH•H₂O (0.063 g, 0.33 mmol, 1.0 equiv), benzaldehyde (0.035 g, 0.33 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1-3:1) to provide the title compound as white solid (43 mg, 67%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.81 (dd, *J* = 0.5, 5.0 Hz, 1H), 8.39 (dd, *J* = 0.5, 1.5 Hz, 1H), 8.23 (brs, 1H), 7.98 (dd, *J* = 1.5, 5.5 Hz, 1H), 7.81 (brs, 1H), 4.35 (q, *J* = 7.0 Hz, 2H), 1.33 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 165.88, 164.81, 152.16, 150.51, 139.22, 125.73, 121.21, 62.53, 14.65; HRMS (ESI) Calcd. for C₉H₁₀N₂O₃ (M + Na)⁺ 217.0589, found 217.0586.


4-Acetylpicolinamide (4b): According to the general procedure (method A), 4-acetylpyridine (0.050 g, 0.41 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.28 g, 1.24 mmol, 3.0 equiv), TsOH•H₂O (0.078 g, 0.41 mmol, 1.0 equiv), benzaldehyde (0.043 g, 0.41 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1–3:1) to provide the title compound as white solid (40 mg, 60%). ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.83 (d, *J* = 5.1 Hz, 1H), 8.36 (s, 1H), 8.23 (brs, 1H), 7.98 (dd, *J* = 1.5, 4.8 Hz, 1H), 7.81 (brs, 1H), 2.66 (s, 3H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 198.29, 166.12, 152.24, 150.53, 144.63, 124.55, 120.06, 17.71; HRMS (ESI) Calcd. for C₈H₈N₂O₂ (M + Na)⁺ 187.0483, found 187.0482.

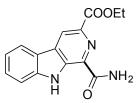
5-Cyanopicolinamide (4c): According to the general procedure (method A), 3-cyanopyridine (0.050 g, 0.48 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.40 g, 1.44 mmol, 3.0 equiv), TsOH•H₂O (0.091 g, 0.48 mmol, 1.0 equiv), benzaldehyde (0.051 g, 0.48 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1–3:1) to provide the title compound as white solid (46 mg, 65%). Regioselectivity ratio (r.r.), C-6:C-2:C-4 = 16.5:5.5:1. Major isomer (C-2): ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 9.08 (dd, *J* = 0.9, 2.1 Hz, 1H), 8.48 (dd, *J* = 2.1, 8.4 Hz, 1H), 8.31 (brs, 1H), 8.15 (dd, *J* = 0.9, 8.1 Hz, 1H), 7.92 (brs, 1H); Minor isomer (C-6): ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.85 (dd, J = 1.5, 4.8 Hz, 1H), 8.43 (dd, J = 1.5, 7.8 Hz, 1H), 8.31 (brs, 1H), 7.96 (brs, 1H), 7.77 (dd, J = 4.8, 8.1 Hz, 1H); isomers, C-6 and C-2, ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 165.35, 164.95, 153.51, 152.66, 152.26, 152.23, 144.31, 142.49, 126.79,

4-Chloroquinoline-2-carboxamide (4d): According to the general procedure (method B), 4-chloroquinoline (0.030 g, 0.18 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.12 g, 0.54 mmol, 3.0 equiv), benzaldehyde (0.019 g, 0.18 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL formamide were used. After 6 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 10:1–8:1) to provide the title compound as white solid (35 mg, 95%). ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.35 (brs, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 8.20 (s, 1H), 8.16 (d, *J* = 8.4 Hz, 1H), 7.95 (t, *J* = 8.4 Hz, 1H), 7.91 (brs, 1H), 7.84 (t, *J* = 8.4 Hz, 1H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 165.77, 151.28, 147.63, 143.47, 132.30, 130.64, 130.34, 126.89, 124.42, 119.42; HRMS (ESI) Calcd. for C₁₀H₇ClN₂O (M + Na)⁺ 229.0145, found 229.0142.

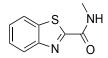


5-Chloroquinoline-2-carboxamide (4e): According to the general procedure (method B), 5-chloroquinoline (0.030 g, 0.18 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.12 g, 0.54 mmol, 3.0 equiv), benzaldehyde (0.019 g, 0.18 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL formamide were used. After 12 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 10:1–8:1) to provide the title compound as white solid (35 mg, 95%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.71 (d, *J* = 8.5 Hz, 1H), 8.33 (brs, 1H), 8.26 (d, *J* = 9.0 Hz, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 1H), 7.87 (brs, 1H), 7.84 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 166.36, 151.91, 147.50, 134.78, 131.25, 130.99, 129.67, 128.90, 127.03, 120.65; HRMS (ESI) Calcd. for C₁₀H₇ClN₂O (M + Na)⁺ 229.0145, found 229.0145.

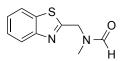
Isoquinoline-1-carboxamide (4f): According to the general procedure (method B), isoquinoline (0.050 g, 0.39 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.26 g, 1.16 mmol, 3.0 equiv), benzaldehyde (0.041 g, 0.39 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide were used. After 12 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–5:1) to provide the title compound as white solid (58 mg, 87%). ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.94 (d, *J* = 8.4


Hz, 1H), 8.50 (d, J = 5.7 Hz, 1H), 8.26 (brs, 1H), 8.00 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 5.4 Hz, 1H), 7.80 (brs, 1H), 7.78 (t, J = 8.4 Hz, 1H), 7.69 (t, J = 8.4 Hz, 1H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 169.16, 152.06, 141.51, 137.19, 131.24, 128.96, 127.75, 127.40, 126.12, 123.92; HRMS (ESI) Calcd. for C₁₀H₈N₂O (M + Na)⁺ 195.0534, found 195.0536.

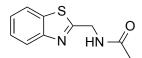
3-Methylquinoxaline-2-carboxamide (4g): According to the general procedure (method B), 2-methylquinoxaline (0.030 g, 0.21 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.14 g, 0.63 mmol, 3.0 equiv), benzaldehyde (0.022 g, 0.21 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL formamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–5:1) to provide the title compound as white solid (28 mg, 71%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.24 (brs, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.88 (brs, 1H), 7.87 (t, *J* = 8.0 Hz, 1H), 7.82 (t, *J* = 8.0 Hz, 1H), 2.81 (s, 3H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 189.54, 168.37, 152.87, 148.24, 142.23, 139.52, 131.83, 130.51, 129.55, 128.80; HRMS (ESI) Calcd. for C₁₀H₉N₃O (M + Na)⁺ 210.0643, found 210.0644.

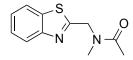


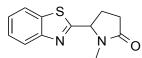
2-Chloroquinoline-4-carboxamide (4h): According to the general procedure (method B), 2-chloroquinoline (0.030 g, 0.18 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.12 g, 0.54 mmol, 3.0 equiv), benzaldehyde (0.019 g, 0.18 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL formamide were used. After 12 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1–3:1) to provide the title compound as white solid (6 mg, 15%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.32 (brs, 1H), 8.18 (d, *J* = 8.5 Hz, 1H), 8.02 (brs, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 7.85 (t, *J* = 8.5 Hz, 1H), 7.70 (t, *J* = 8.5 Hz, 1H), 7.62 (s, 1H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 167.71, 150.05, 148.33, 146.57, 131.88, 128.97, 128.57, 126.44, 123.89, 120.56; HRMS (ESI) Calcd. for C₁₀H₇ClN₂O (M + Na)⁺ 229.0145, found 229.0138.



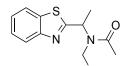
Ethyl 1-carbamoyl-9H-pyrido[3,4-b]indole-3-carboxylate (4i): According to the general procedure (method A), ethyl 9H-pyrido[3,4-b]indole-3-carboxylate (0.050 g, 0.21 mmol, 1.0 equiv), $(NH_4)_2S_2O_8(0.14 \text{ g}, 0.63 \text{ mmol}, 3.0 \text{ equiv})$, TsOH•H₂O (0.039 g, 0.21 mmol, 1.0 equiv), benzaldehyde (0.022 g, 0.21 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL formamide


were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (CH₂Cl₂:MeOH = 80:1–50:1) to provide the title compound as pale yellow solid (30 mg, 50%). Both the Z and E isomers were obtained. (E:Z = 1:1). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 12.48 (s, 1H, rotamer A), 12.07 (s, 1H, rotamer B), 11.29 (brs, 1H), 9.06 (s, 1H), 8.42 (d, *J* = 8.0 Hz, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.98 (d, J = 9.0 Hz, 2H), 7.90 (s, 1H), 7.85 (d, *J* = 8.5 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 4.40 (q, *J* = 7.0 Hz, 2H), 4.33 (q, *J* = 7.0 Hz, 2H), 1.39 (t, *J* = 7.0 Hz, 3H), 1.34 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 167.55, 165.30, 161.98, 155.19, 142.49, 139.82, 136.09, 135.67, 132.62, 131.53, 131.39, 129.69, 127.21, 125.31, 123.01, 122.63, 122.47, 122.05, 121.09, 120.74, 120.43, 113.89, 113.28, 106.57, 61.88, 61.38, 14.78, 14.60; HRMS (ESI) Calcd. for C₁₅H₁₃N₃O₃ (M + Na)⁺ 306.0855, found 306.0861.

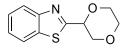

N-Methylbenzo[d]thiazole-2-carboxamide (5a): According to the general procedure (method C), benzothiazole (0.030 g, 0.22 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.15 g, 0.66 mmol, 3.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL *N*-methylformamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–6:1) to provide the title compound as colorless oil (37 mg, 88%). ¹H NMR (500 MHz, d⁶-Acetone) δ ppm 8.25 (brs, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 8.0 Hz, 1H), 3.03 (d, *J* = 5.0 Hz, 3H); ¹³C NMR (125 MHz, d⁶-Acetone) δ ppm 164.91, 160.24, 153.41, 136.97, 127.03, 126.89, 124.88, 122.82, 25.87; HRMS (ESI) Calcd. for C₉H₈N₂OS (M + Na)⁺ 215.0255, found 215.0255.


N-(Benzo[d]thiazol-2-ylmethyl)-*N*-methylformamide (6a): According to the general procedure (method C), benzothiazole (0.030 g, 0.22 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.15 g, 0.66 mmol, 3.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL *N*, *N*-dimethylformamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1–3:1) to provide the title compound as colorless oil (36 mg, 80%). Both the Z and E isomers were obtained. (E:Z = 1:1) ¹H NMR (500 MHz, d⁶-Acetone) δ ppm 8.38 (s, 1H, rotamer A), 8.22 (s, 1H, rotamer B), 8.05 (d, *J* = 8.5 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 7.54 (t, *J* = 8.5 Hz, 1H), 7.51 (t, *J* = 8.5 Hz, 1H), 7.43 (t, *J* = 8.5 Hz, 1H), 4.97 (s, 2H), 4.91 (s, 2H), 3.12 (s, 3H), 2.92 (s, 3H); ¹³C NMR (125 MHz, d⁶-Acetone) δ ppm 168.78, 167.56, 162.92, 162.65, 153.71, 153.40, 135.74, 135.50, 126.49, 126.29, 125.61, 125.45, 123.17, 123.02, 122.30, 122.17, 51.05, 45.84, 34.07, 29.52; HRMS (ESI) Calcd. for C₁₀H₁₀N₂OS (M + Na)⁺ 229.0412, found 229.0412.

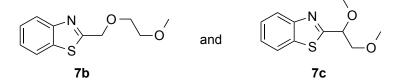
N-(Benzo[d]thiazol-2-ylmethyl)acetamide (6b): According to the general procedure (method C), benzothiazole (0.060 g, 0.44 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.30 g, 1.32 mmol, 3.0 equiv), benzaldehyde (0.046 g, 0.44 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL *N*-methylformamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 3:1–2:1) to provide the title compound as white solid (74 mg, 82%). ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.86 (t, *J* = 6.0 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.39 (t, *J* = 7.8 Hz, 1H), 4.63 (d, *J* = 6.0 Hz, 2H), 1.92 (s, 3H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 172.23, 170.51, 153.40, 135.23, 126.79, 125.65, 123.01, 122.91, 41.74, 23.08; HRMS (ESI) Calcd. for C₁₀H₁₀N₂OS (M + Na)⁺ 229.0412, found 229.0408.



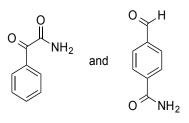
N-(benzo[d]thiazol-2-ylmethyl)-*N*-methylacetamide (6c): According to the general procedure (method C), benzothiazole (0.030 g, 0.22 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.15 g, 0.66 mmol, 3.0 equiv), benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL *N*, *N*-dimethylacetamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1-3:1) to provide the title compound as colorless oil (42 mg, 87%). Both the Z and E isomers were obtained (E:Z = 2.4:1). Major isomer, ¹H NMR (500 MHz, d⁶-Acetone) δ ppm 8.00 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 4.92 (s, 2H), 3.17 (s, 3H), 2.13 (s, 3H); ¹³C NMR (125 MHz, d⁶-Acetone) δ ppm 170.36, 169.05, 153.4, 135.78, 126.17, 125.29, 122.92, 122.12, 49.18, 36.04, 20.92; HRMS (ESI) Calcd. for C₁₁H₁₂N₂OS (M + Na)⁺ 243.0568, found 243.0566.



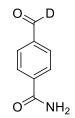
5-(Benzo[d]thiazol-2-yl)-1-methylpyrrolidin-2-one [(±)-6d]: According to the general procedure (method C), benzothiazole (0.030 g, 0.22 mmol, 1.0 equiv), $(NH_4)_2S_2O_8(0.15 \text{ g}, 0.66 \text{ mmol}, 3.0 equiv)$, benzaldehyde (0.023 g, 0.22 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL 1-methylpyrrolidin-2-one were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 5:1–3:1) to provide the title compound as colorless oil (45 mg, 89%). ¹H NMR (300 MHz, d⁶-Acetone) δ ppm 8.06 (d, *J* = 8.1 Hz, 1H), 8.00 (d, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 5.09 (dd, *J* = 3.9, 8.7 Hz, 1H), 2.80 (s, 3H), 2.74 – 2.05 (m, 4H); ¹³C NMR (75 MHz, d⁶-Acetone) δ ppm 174.32, 173.19, 153.61, 135.18, 126.53, 125.68, 123.27, 122.47, 62.28, 28.23, 26.61; HRMS (ESI) Calcd. for C₁₂H₁₂N₂OS (M + Na)⁺ 255.0568,


found 255.0564.

N-(1-(Benzo[d]thiazol-2-yl)ethyl)-*N*-ethylacetamide [(±)-6e]: According to the general procedure (method C), benzothiazole (0.060 g, 0.44 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.30 g, 1.32 mmol, 3.0 equiv), TsOH•H₂O (0.081 g, 0.44 mmol, 1.0 equiv), benzaldehyde (0.046 g, 0.44 mmol, 1.0 equiv), 2.5 mL ethyl acetate, and 2.5 mL *N*, *N*-dimethylacetamide were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 8:1–6:1) to provide the title compound as pale yellow oil (28 mg, 25%). Both the Z and E isomers were obtained (E:Z = 2.5:1). Major isomer, ¹H NMR (500 MHz, d⁶-Acetone) δ ppm 7.99 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 5.95 (q, *J* = 7.5 Hz, 1H), 3.51 (dt, *J* = 7.5, 23.0 Hz, 1H), 3.35 (dt, *J* = 7.5, 23.0 Hz, 1H), 2.15 (s, 3H), 1.74 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, d⁶-Acetone) δ ppm 173.32, 169.96, 153.24, 135.79, 126.07, 125.30, 122.99, 122.03, 51.87, 40.35, 21.21, 16.79, 15.67; HRMS (ESI) Calcd. for C₁₃H₁₆N₂OS (M + Na)⁺ 271.0881, found 271.0884.

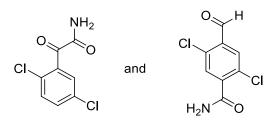


2-(1,4-Dioxan-2-yl)benzo[d]thiazole [(±)-7a]: According to the general procedure (method D), benzothiazole (0.060 g, 0.44 mmol, 1.0 equiv), (NH₄)₂S₂O₈ (0.30 g, 1.32 mmol, 3.0 equiv), benzaldehyde (0.046 g, 0.44 mmol, 1.0 equiv), 2.5 mL 1,4-dioxane, and 2.5 mL water were used. After 48 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:ethyl acetate = 30:1-20:1) to provide the title compound as colorless oil (60 mg, 62%). ¹H NMR (500 MHz, d⁶-Acetone) δ ppm 8.07 (d, *J* = 8.0 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 5.01 (dd, *J* = 3.0, 9.5 Hz, 1H), 4.21 (dd, *J* = 3.0, 11.5 Hz, 1H), 3.99 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.94 – 3.91 (m, 1H), 3.82 – 3.79 (m, 1H), 3.71 – 3.66 (m, 1H), 3.63 (dd, *J* = 9.5, 11.5 Hz, 1H); ¹³C NMR (125 MHz, d⁶-Acetone) δ ppm 169.65, 153.59, 134.84, 126.28, 125.33, 123.10, 122.22, 75.39, 70.25, 67.00, 66.33; HRMS (ESI) Calcd. for C₁₁H₁₁NO₂S (M + Na)⁺ 244.0408, found 244.0409.

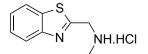


2-((2-Methoxyethoxy) methyl) benzo[d]thiazole (7b) and 2-(1,2-dimethoxyethyl) benzo[d]thiazole (7c): According to the general procedure (method D), benzothiazole (0.060 g, 0.44 mmol, 1.0 equiv), $(NH_4)_2S_2O_8(0.30 \text{ g}, 1.32 \text{ mmol}, 3.0 \text{ equiv})$, benzaldehyde (0.046 g, 0.44

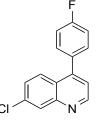
mmol, 1.0 equiv), 2.5 mL glycol dimethyl ether, and 2.5 mL water were used. After 48 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:ethyl acetate = 15:1, 10:1 to 4:1) to provide **7b** and **7c** as colorless oil (62 mg, 68%) with a ratio of 1:1 (regioselectivity ratio). **7b**: ¹H NMR (500 MHz, d⁶-Acetone) δ ppm 8.05 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 4.95 (s, 2H), 3.80 (t, J = 4.5 Hz, 2H), 3.60 (t, J = 4.5 Hz, 2H), 3.34 (s, 3H); ¹³C NMR (125 MHz, d⁶-Acetone) δ ppm 170.73, 153.57, 135.26, 126.16, 125.19, 122.98, 122.17, 71.93, 70.84, 70.57, 58.27; HRMS (ESI) Calcd for C₁₁H₁₃NO₂S (M+Na)⁺ 246.0565, found 246.0558. **7c**: ¹H NMR (500 MHz, d⁶-Acetone) δ ppm 8.06 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 4.83 (dd, J = 4.0, 6.5 Hz, 1H), 3.84 (dd, J = 4.0, 10.5 Hz, 1H), 3.75 (dd, J = 6.5, 10.5 Hz, 1H), 3.51 (s, 3H), 3.62 (s, 3H); ¹³C NMR (125 MHz, d⁶-Acetone) δ ppm 172.03, 153.61, 135.33, 126.15, 125.30, 123.09, 122.23, 81.19, 75.30, 58.63, 57.94; HRMS (ESI) Calcd for C₁₁H₁₃NO₂S (M+Na)⁺ 246.0565, found 246.0560.



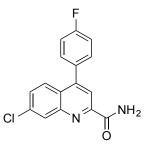
2-Oxo-2-phenylacetamide (8a) and 4-formylbenzamide (8b): According to the general procedure (method B), $(NH_4)_2S_2O_8$ (0.30 g, 1.32 mmol, 1.0 equiv), benzaldehyde (0.14 g, 1.32 mmol, 1.0 equiv), 1.5 mL ethyl acetate, and 1.5 mL formamide were mixed. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 10:1-5:1-3:1) to provide the title compounds **12** (8 mg, 4%) and **13** (5 mg, 2.5%) as white solid. Compound **8a**: ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.32 (brs, 1H), 8.01 (brs, 1H), 7.95 (d, J = 7.2 Hz, 2H), 7.72 (t, J = 7.2 Hz, 1H), 7.57 (t, J = 7.2 Hz, 2H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 191.52, 167.85, 135.16, 133.41, 130.30, 129.64; GCMS (EI) acquisition time, 15.86 min, m/z = 149.0 (5.23%), m/z = 104.9 (100%), m/z = 77.0 (53.85%). Compound **8b**: ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 10.06 (s, 1H), 8.18 (brs, 1H), 8.04 (d, J = 8.1 Hz, 2H), 7.97 (d, J = 8.1 Hz, 2H), 7.61 (brs, 1H); GCMS (EI) acquisition time, 148.9 (91.79%), m/z = 132.9 (100%), m/z = 77.0 (33.44%).



Deuterated-4-formylbenzamide (9). It was prepared by the same procedure as compound **8b**, white solid (4 mg, 2.0%). ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.16 (brs, 1H), 8.03 (d, J = 8.1 Hz, 2H), 7.97 (d, J = 8.1 Hz, 2H), 7.60 (brs, 1H); GCMS (EI) acquisition time, 18.19 min, m/z =


149.9 (89.73%), m/z = 133.9 (100%), m/z = 78.0 (26.41/%).

2-(2,5-Dichlorophenyl)-2-oxoacetamide (10a) and 2,5-dichloro-4-formylbenzamide (10b). These two compounds were prepared through the same procedure as compounds **8a** and **8b**. Compound **10a**, white solid (28.2 mg, 19%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.40 (brs, 1H), 8.05 (brs, 1H), 7.72 (d, *J* = 3.0 Hz, 1H), 7.66 (dd, *J* = 3.0, 8.5 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 190.23, 164.23, 136.97, 133.58, 132.61, 132.45, 130.97, 130.60; GCMS (EI) acquisition time, 19.82 min, m/z = 216.8 (1.81%), m/z = 104.9 (100%), m/z = 172.8 (100%). Compound **10b** (14.0 mg, 9% yield): ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 10.23 (s, 1H), 8.12 (brs, 1H), 7.87 (brs, 1H), 7.86 (s, 1H), 7.72 (s, 1H); GCMS (EI) acquisition time, 21.43 min, m/z = 216.8 (64.20%), m/z = 200.8 (100%).



1-(Benzo[*d***]thiazol-2-yl)-***N***-methylmethanamine hydrochloride (11): To a solution of compound 6c** (0.042 g, 0.19 mmol) in 5 mL of ethanol was added 5 mL HCl (6M). The resulting mixture was heated to gentle reflux overnight. Then the mixture was diluted with water (20 mL). The pH value of the solution was adjusted to 10–11, extracted with ethyl acetate (20 mL × 3), dried over Na₂SO₄, and concentrated to give the crude product. The crude product was then dissolved into dichloromethane (10 mL), treated with 1 mL HCl (4M in dioxane). The resulting mixture was further stirred for 10 min, and the solvent was removed under vacuum to give the crude product, which was further dissolved into deionized water (10 mL), washed with ethyl acetate (20 mL × 3), and lyophilized to give the product as white solid (30 mg, 74%). ¹H NMR (300 MHz, CD₃OD) δ ppm 8.06 (d, *J* = 7.2 Hz, 1H), 8.03 (d, *J* = 7.2 Hz, 1H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 1H), 4.87 (s, 2H), 2.91 (s, 3H); ¹³C NMR (75 MHz, CD₃OD) δ ppm 161.18, 152.62, 135.53, 126.67, 126.11, 123.07, 122.03, 49.06; HRMS (ESI) Calcd. for C₉H₁₁CIN₂S (M + H)⁺ 179.0643, found 179.0644.

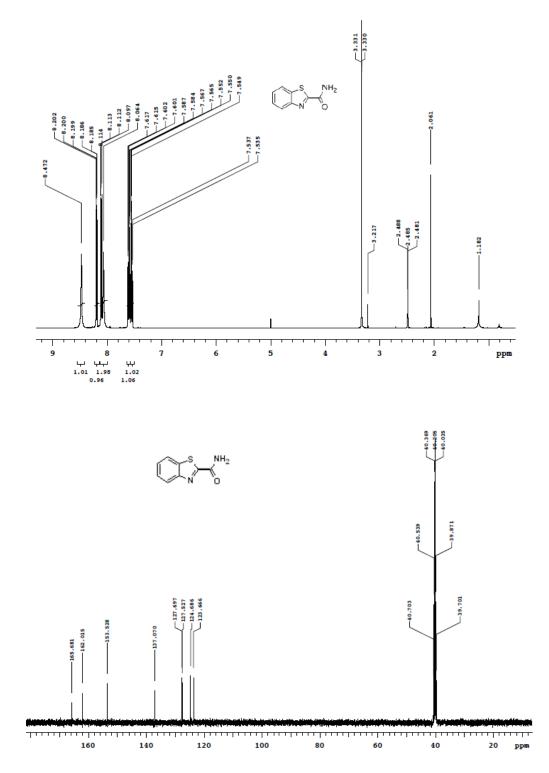
7-Chloro-4-(4-fluorophenyl)quinoline (12): It was prepared according to the reported procedure ^{2,3}. ¹H NMR (500 MHz, d⁶-Acetone) δ ppm 8.98 (d, *J* = 4.0 Hz, 1H), 8.13 (d, *J* = 2.5

Hz, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.65 – 7.62 (m, 2H), 7.59 (dd, J = 2.0, 9.0 Hz, 1H), 7.47 (d, J = 4.5 Hz, 1H), 7.40 – 7.36 (m, 2H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 163.12 (d, $J_{C-F} = 244.5$ Hz), 152.13, 149.21, 147.23, 134.81, 133.80, 132.30 (d, $J_{C-F} = 8.2$ Hz), 128.77, 128.29, 128.15, 125.25, 122.68, 116.50 (d, $J_{C-F} = 21.7$ Hz); HRMS (ESI) Calcd. for C₁₅H₉ClFN (M + H)⁺ 258.0486, found 258.0486.

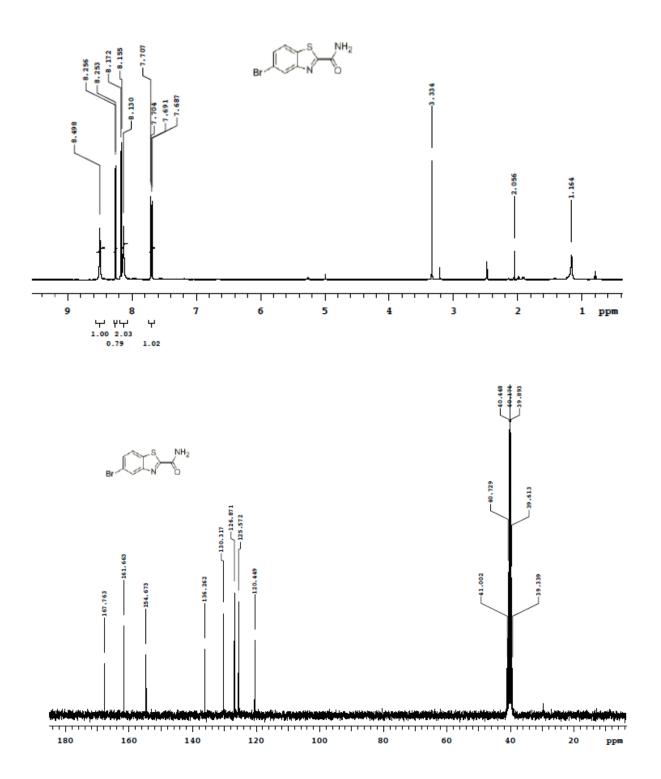
7-Chloro-4-(4-fluorophenyl)quinoline-2-carboxamide (13): According to the general procedure (method A), compound 12 (0.050 g, 0.19 mmol, 1.0 equiv), $(NH_4)_2S_2O_8$ (0.13 g, 0.58 mmol, 3.0 equiv), TsOH•H₂O (0.036 g, 0.19 mmol, 1.0 equiv), benzaldehyde (0.020 g, 0.19 mmol, 1.0 equiv), 2.5 mL formamide, and 2.5 mL water were used. After 24 h, the reaction mixture was subjected to the workup protocol outlined in the general procedure and purified through flash chromatography (hexanes:acetone = 10:1–8:1) to provide the title compound as white solid (50 mg, 88%). ¹H NMR (500 MHz, d⁶-DMSO) δ ppm 8.33 (brs, 1H), 8.19 (s, 1H), 8.00 (s, 1H), 7.90 (brs, 1H), 7.89 (d, *J* = 9.0 Hz, 1H), 7.71 (dd, *J* = 2.5, 9.0 Hz, 1H), 7.65 – 7.62 (m, 2H), 7.42 (t, *J* = 9.0 Hz, 2H); ¹³C NMR (125 MHz, d⁶-DMSO) δ ppm 166.36, 163.24 (d, *J*_{C-F} = 245.0 Hz), 151.77, 149.01, 147.87, 135.63, 133.65 (d, *J*_{C-F} = 3.1 Hz), 132.35 (d, *J*_{C-F} = 8.5 Hz), 129.69, 129.02, 128.21, 126.11, 119.75, 116.60 (d, *J*_{C-F} = 21.5 Hz); HRMS (ESI) Calcd. for C₁₆H₁₀CIFN₂O (M + Na)⁺ 323.0363, found 323.0368.

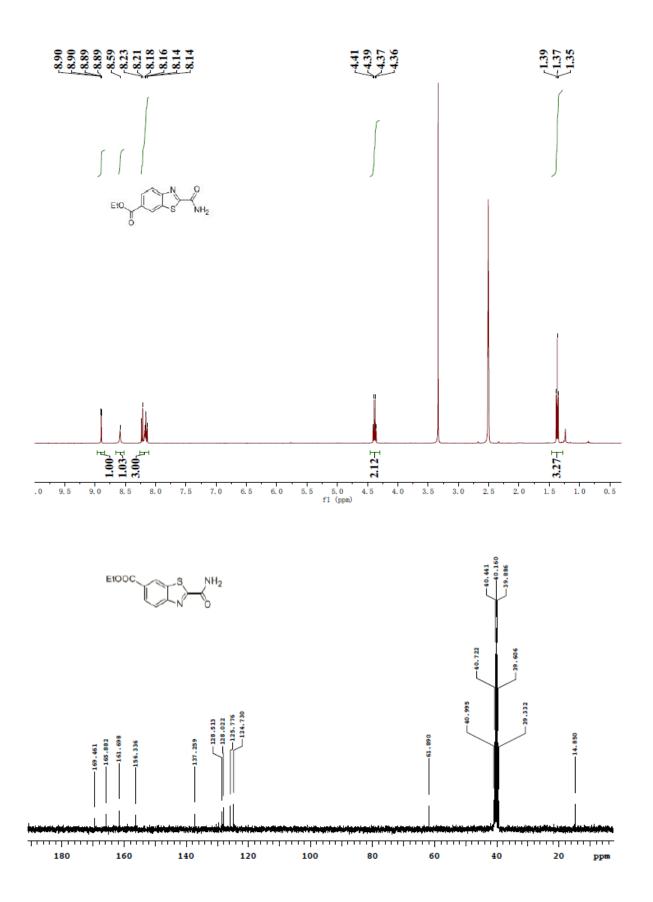
7-Chloro-4-(4-fluorophenyl)quinoline-2-carbonitrile (14): It was prepared according to the reported procedure.⁴ To a solution of compound **13** (0.030 g, 0.10 mmol, 1 equiv) and triethylamine (0.031 g, 0.15 mmol, 1.5 equiv) in 3 mL of tetrahydrofuran was added the solution of trifluoroacetic anhydride (0.020 g, 0.20 mmol, 2 equiv) in 2 mL tetrahydrofuran at 0–5 °C. The resulting mixture was stirred for another 2 h at the same temperature. Then, the solution was diluted with ethyl acetate (30 mL), washed with brine (15 mL × 3), dried over Na₂SO₄, and concentrated to give the pure product as white solid (28 mg, 100%). ¹H NMR (300 MHz, d⁶-DMSO) δ ppm 8.27 (d, J = 2.1 Hz, 1H), 8.04 (s, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.79 (dd, J = 2.1, 9.0 Hz, 1H), 7.68 – 7.63 (m, 2H), 7.44 (t, J = 8.7 Hz, 2H); ¹³C NMR (75 MHz, d⁶-DMSO) δ ppm 163.51 (d, *J*_{C-F} = 245.5 Hz),149.67, 148.95, 136.80, 134.57, 132.65 (d, *J*_{C-F} = 8.5 Hz), 132.33 (d, *J*_{C-F} = 3.2 Hz), 131.23, 128.95, 128.42, 126.12, 125.00, 117.94, 116.68 (d, *J*_{C-F} = 21.7

Hz); HRMS (ESI) Calcd. for $C_{16}H_8ClFN_2 (M + H)^+ 283.0438$, found 283.0438.

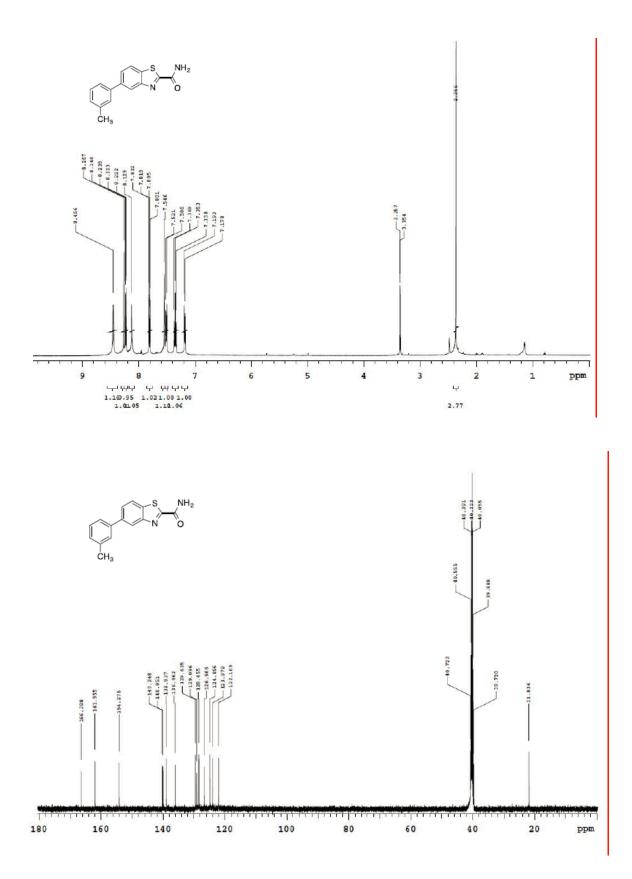


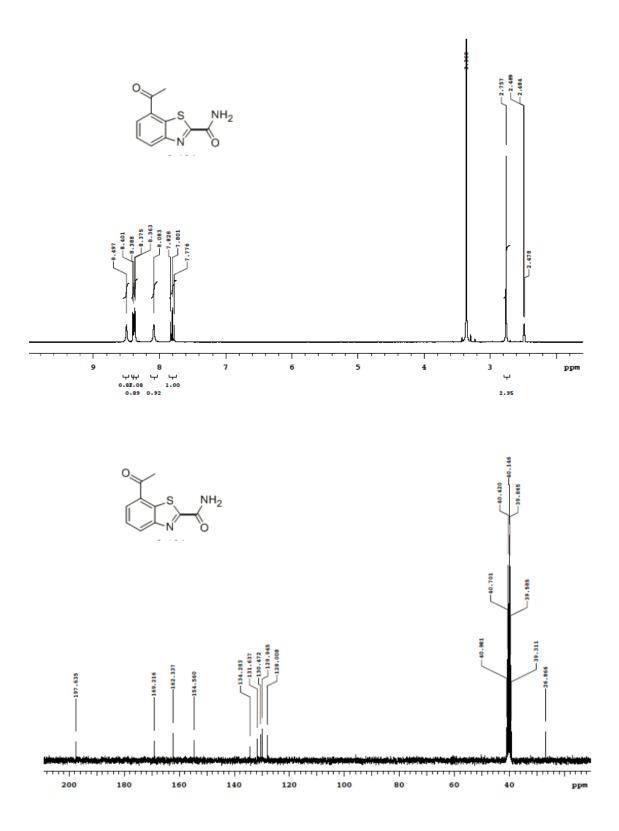
4-(4-Fluorophenyl)-7-methylquinoline-2-carbonitrile (15): It was prepared according to the reported procedure.⁵ To a solution of **14** (0.030 g, 0.10 mmol, 1 equiv), potassium phosphate (0.042 g, 0.20 mmol, 2 equiv), 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.010 g, 0.025 mmol, 0.25 equiv), methylboronic acid (0.018 mg, 0.30 mmol, 3 equiv) in 3 mL of toulene was added palladium acetate (2.00 mg, 0.010 mmol, 0.1 equiv). The resulting mixture was heated to gentle reflux for 24 h under argon. Then, the solution was cooled to room temperature and was diluted with ethyl acetate (30 mL), washed with brine (15 mL × 3), dried over Na₂SO₄, and concentrated to give the crude product. It was purified through flash chromatography (hexanes:ethyl acetate = 80:1–60:1) to provide the title compound as white solid (22 mg, 85%). ¹H NMR (500 MHz, d⁶-acetone) δ ppm 7.96 (s, 1H), 7.88 (d, *J* = 8.5 Hz, 1H), 7.78 (s, 1H), 7.69–7.66 (m, 2H), 7.62 (d, *J* = 8.5 Hz, 1H), 7.40 (t, *J* = 9.0 Hz, 2H), 2.60 (s, 3H); ¹³C NMR (125 MHz, d⁶-acetone) δ ppm 163.49 (d, *J*_{C-F} = 246.50 Hz),149.17, 149.06, 142.08, 133.52, 132.91 (d, *J*_{C-F} = 3.4 Hz), 132.23, 132.00 (d, *J*_{C-F} = 8.5 Hz), 129.12, 125.57, 125.46, 123.20, 117.82,116.80 (d, *J*_{C-F} = 21.7 Hz), 20.95; HRMS (ESI) Calcd. for C₁₇H₁₁FN₂ (M + H)⁺ 263.0979, found 263.0980.

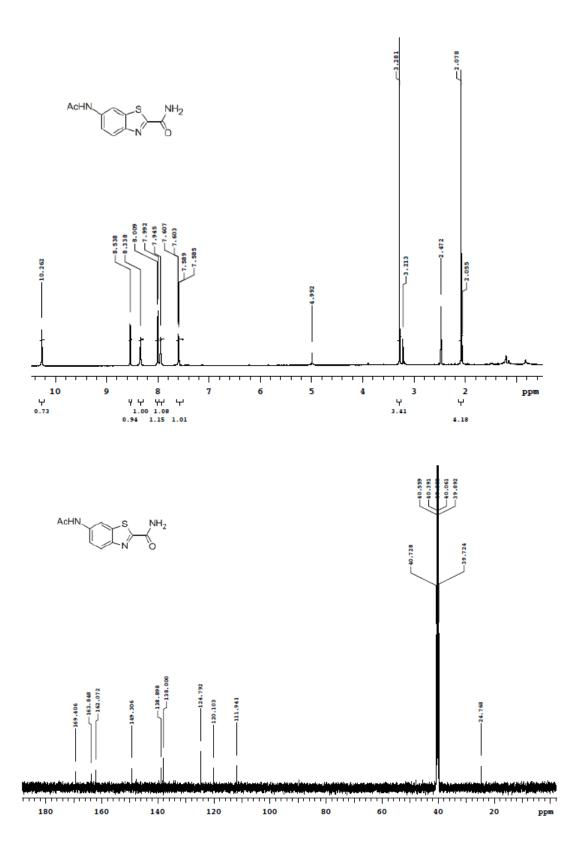

Supplementary References:

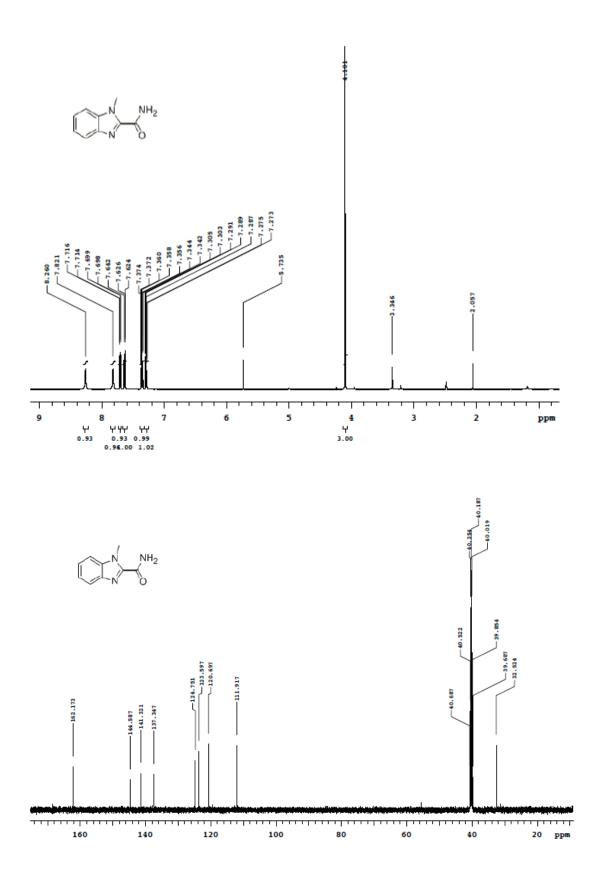

- 1. (a) Martin, I.; Anvelt, J.; Vares, L.; Kühn, I.; Claesson, A. *Acta. Chem. Scand.* **1995**, *49*, 230–232; (b) Moinet, G.; Cravo, D. U.S. Patent 7,491,733, February 17, 2009.
- 2. Ducharme, Y.; Wu, T. Y.-H.; Frenette, R. PCT Int. Appl. WO 2007038865 A1, 2007.
- 3. Friesen, R. W.; Trimble, L. A. Can. J. Chem. 2004, 82, 206-214.
- Wendt, M. D.; Rockway, T. W.; Geyer, A.; McClellan, W.; Weitzberg, M.; Zhao, X.; Mantei, R.; Nienaber, V. L.; Stewart, K.; Klinghofer, V.; Giranda, V. L. J. Med. Chem. 2004, 47, 303–324.
- Minutolo, F.; Bellini, R.; Bertini, S.; Carboni, I.; Lapucci, A.; Pistolesi, L.; Prota, G.; Rapposelli, S.; Solati, F.; Tuccinardi, T.; Martinelli, A.; Stossi, F.; Carlson, K. E.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A.; Macchia, M. J. Med. Chem. 2008, 51, 1344–1351.

Spectral Data for the Products

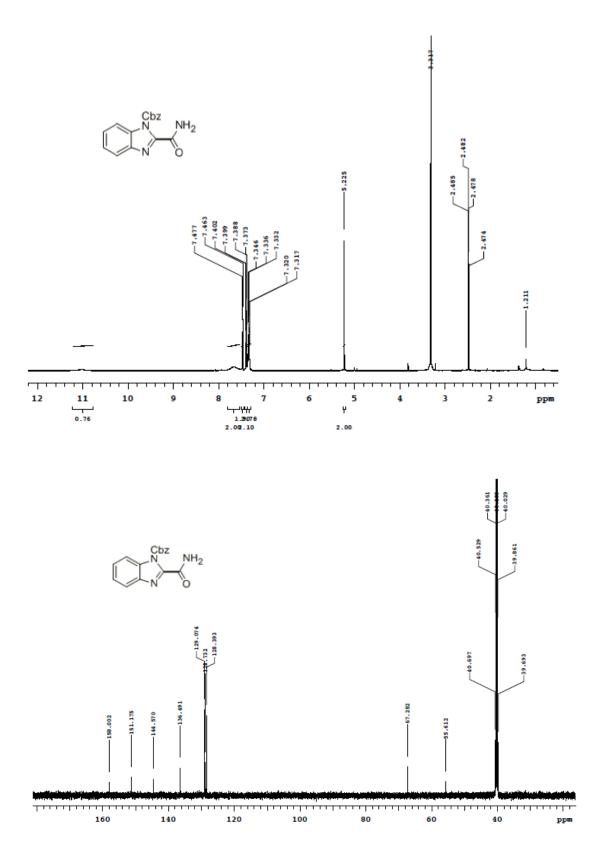


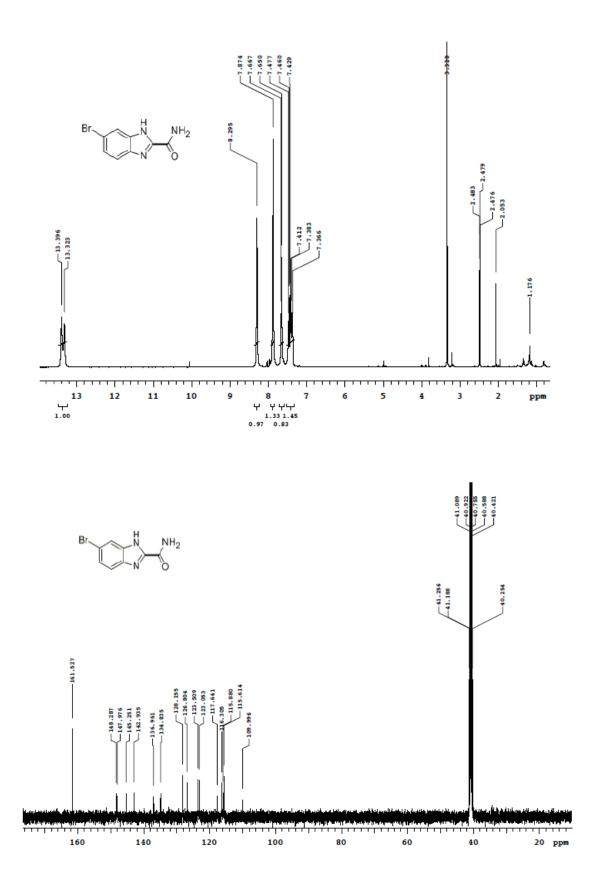

S23

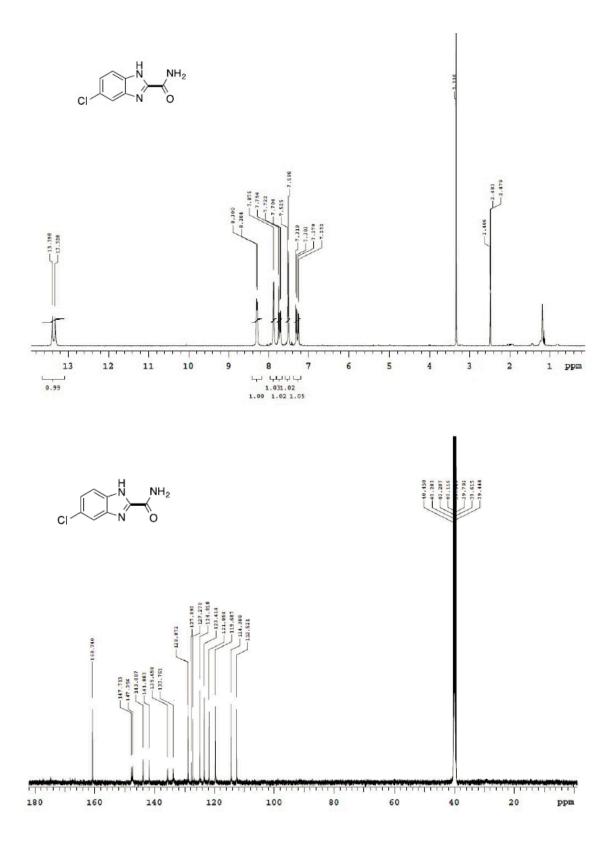


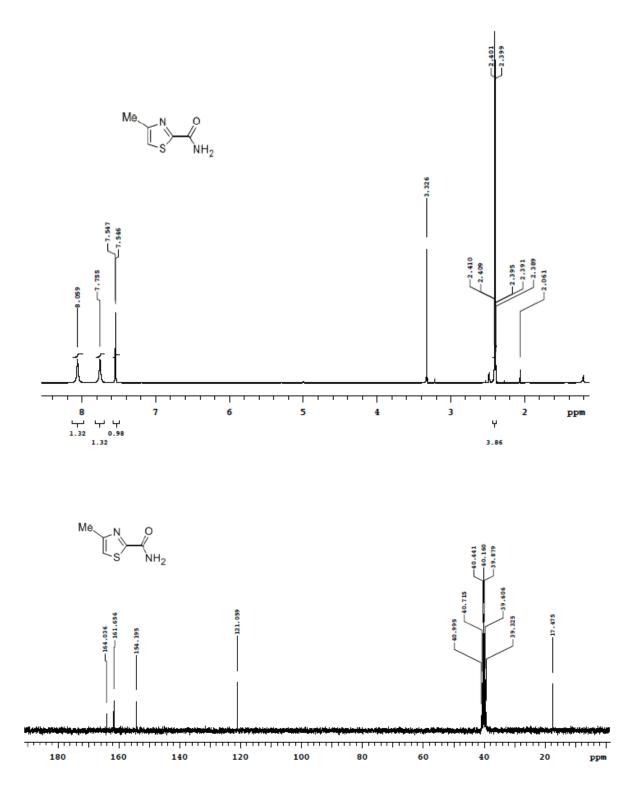


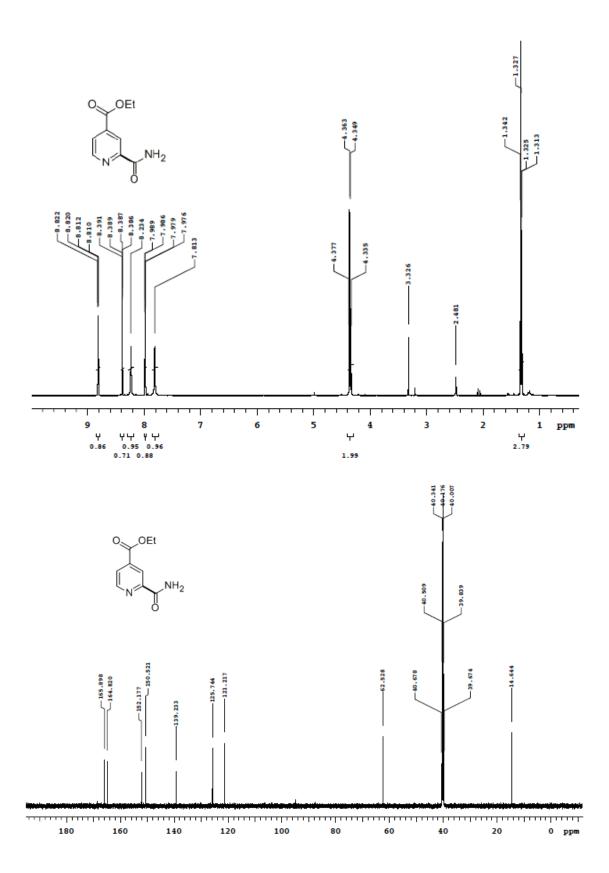
S25

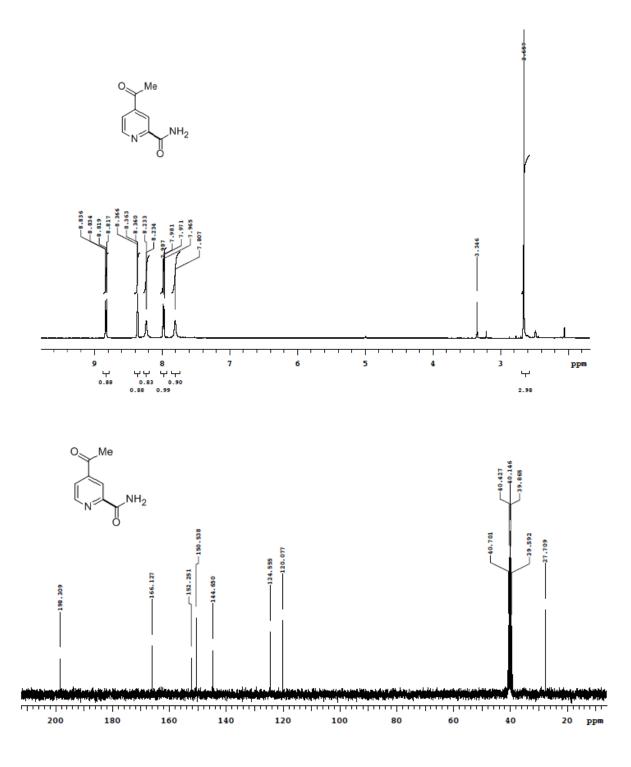











S31

