Supporting Information

Ultra large optical modulation of electrochromic porous WO₃ film and the

local monitoring of redox activity

Guofa Cai, Mengqi Cui, Vipin Kumar, Peter Darmawan, Jiangxin Wang, Xu Wang, Alice Eh,

Kai Qian, and Pooi See Lee*

Author Address: School of Materials Science and Engineering Nanyang Technological University 639798, Singapore

*Corresponding Author

E-mail: pslee@ntu.edu.sg

Fig. S1 SEM images of the WO₃ films prepared by pulsed deposition with different duty cycle length (a) 4 s, (b) 1 s, (c) 0.5 s.

Fig. S2 SEM images of the WO₃ films prepared by pulsed deposition with different interval time (a) 0.4 s, (b) 0.6 s, (c) 0.8 s.

Fig. S3 SEM images of the porous WO₃ films deposited on different substrates (a) FTO- coated glass, (b) ITO-coated PET.

Fig. S4 The cross-section morphologies of (a) compact and (b) porous WO₃ film.

Table S1 Chemical state and composition of W and O obtained by deconvolution of the corresponding region spectra of porous WO_3 film.

Elements	Peak Binding Energy (eV)	Composition (At%)
W4f WO ₃	35.9 38.0	25%
O1s O-W	531.0	75%
O/W	—	3.0

Fig. S5 Nyquist plots of compact and porous WO₃ film, the inset shows the magnified high-frequency region.

Fig. S6 The localized CVs and approach curves of Pt miroelectrodes recorded on the surface of WO₃ electrodes $[Ru(NH_3)_6]^{3+}/[Ru(NH_3)_6]^{2+}$ redox mediator: (a-b) compact WO₃ film electrode, (c-d) porous WO₃ film electrode.

Effective heterogeneous charge transfer rate constants k of WO₃ films were calculated using the relation $k_{eff} = \kappa D/r_T$, where κ is the normalized heterogeneous rate constant which is obtained from the normalized approach curves I_T vs. L were fitted to the analytical approximation of Cornut and Lefrou.¹ The κ value of compact and porous WO₃ films are 3.91 and 5.19 obtained from Figure S5b and d, respectively. r_T is the radius of microelectrode (12.5 µm). D is the diffusion coefficient for redox species (D = 8.4 x 10⁻⁶ cm²/s). The k_{eff} of porous WO₃ film is 3.49×10^{-2} cm s⁻¹, which is higher than that of the compact WO₃ film (2.63 × 10⁻² cm s⁻¹).

1. R. Cornut and C. Lefrou, J. Electroanal. Chem., 2008, 621, 178-184.