Multi-luminescent Switching of Metal-Free Organic Phosphors for Luminometric Detection of Organic Solvents

Min Sang Kwon,¹ Jake H. Jordahl,¹ Andrew W. Phillips,² Kyeongwoon Chung,² Sunjong Lee,⁶ Johannes Gierschner,⁷ Joerge Lahann,^{1,2,3,5} Jinsang Kim^{1,2,3,4,5,*}

¹Department of Materials Science and Engineering, ²Macromolecular Science and Engineering, ³Department of Chemical Engineering, ⁴Department of Chemistry, ⁵Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States

⁶Green Materials and Process R&BD Group, Korea Institute of Industrial Technology (KITECH), South Korea

⁷Madrid Institute for Advanced Studies - IMDEA Nanoscience, Calle Faraday 9, Ciudad Universitaria de Cantoblanco 28049, Madrid, Spain

Methods

1. Sample preparations

1.1. Chemicals

Unless otherwise specified, all chemicals were purchased commercially, and used without further purification. Isotactic poly (methyl methacrylate) (iPMMA, $M_w = 120,000$ g/mol, Aldrich), poly (vinyl alcohol) (PVA80, $M_w = 9,000 - 10,000$ g/mol, 80% hydrolyzed, Aldrich), and poly (vinyl alcohol) (PVA100, $M_w = 89,000 - 98,000$ g/mol, 99+% hydrolyzed, Aldrich) were used without further purification. Br6A and G1 were synthesized following previously reported synthetic routes.^{1,2}

1.2. Preparation of electrospun fiber mats of Br6A-iPMMA, G1-PVA80, and G1-PVA100

Electrospun fiber mats were fabricated from three different polymer solutions: (1) 4 w/v% iPMMA in dichloromethane (DCM) with a 1 w/w iPMMA% addition of organic phosphor, Br6A; (2) 35 w/v%

PVA80 in distilled water with a 1 w/w PVA80% addition of organic phosphor, G1; (3) 10 w/v% PVA100 in water with a 1 w/w PVA100% addition of organic phosphor, G1. Polymer solution 1 was pumped at 0.45 mL/hr through a 26G needle charged to 6-7 kV. Polymer solution 2 was pumped at 0.15 mL/hr through a 26G needle charged to 15 kV. Polymer solution 3 was pumped at 0.15 mL/hrthrough a 26G needle charged to 21 kV. All resultant fibers were collected on a high speed rotating drum collector (NanoNC, Korea) spinning at 1000 rpm (4.5 m/s) located 15 cm below the capillary tip.

2. Sample measurements

UV-visible absorption spectra were measured on a Varian Cary50 UV/Vis spectrophotometer. Photoluminescence spectra were obtained using a Photon Technologies International (PTI) QuantaMaster spectrofluorometer.

3. Supplementary references

- 1. O, Bolton, K. Lee, H. J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205
- 2. M. S. Kwon, D. Lee, S. Seo, J. Jung, Angew. Chem. Int. Ed. 2014, 53, 11177

Figure S1. UV-Vis spectra of chloroform (blue line) and methanol (red line) solution of Br6A

sample ^b	conditions	$arPhi_{ m P}$ (%) ^c	$ au_{\mathrm{P}}(\mathrm{ms})^{\mathrm{c,d}}$	
Br6A-doepd <i>i</i> PMMA	under air	7.0	1.90	
	R.T.	(0.60)	(0.06)	
G1 danad DVA 80	under air	21.0	5.84	
OI-doped F V A80	R.T.	(0.59)	(0.42)	
G1 deped BVA 100	under air	26.5	6.66	
	R.T.	(1.03)	(0.64)	

Table S1. Phosphorescence properties of phosphors-doped polymer films^a

^aWe measured quantum efficiency (Φ_P) and phosphorescence lifetime (τ_P) of the drop-cast phosphor-doped polymer films. ^bThe phosphor-doped drop-casted polymers were prepared by following procedures;1.0 wt% of iPMMA, PVA80, and PVA100 were dissolved in chloroform (CHCl₃) or distilled water mixed with the phosphor (1.0 wt% of Br6A or G1 for polymers, respectively). The mixed solutions were drop-cast on a precleaned glass substrate and kept at RT for 10 minutes. The resulting drop-cast films were thermally annealed at 120°C for 20 minutes and kept in a vacuum chamber for 30 minutes to completely remove residual solvent. All processes from drop-cast to packaging were done in a nitrogen filled glove box. The measurements of the resulting samples were carried out under air at R.T. ^cPreparation of the polymer films and measurements are fully optimized so that the results are somewhat different from previously published data.^{1,2} dPhosphorescence lifetimes were obtained by fitting only the long-component of phosphorescence profiles through a monoexponential function.

Table S2. TD-DFT calculated singlet and triplet states of Br6A: energy (E), oscillator strength (f),

solvent	state	E / eV	f	main CI	nature
		(λ / nm)		configuration	
Vacuu m	T ₁	2.76 (450)		H→L (94%)	ππ*
	T_2	3.15 (394)		H-1→L (92%)	nπ*
	T ₃	3.49 (355)		H-2→L (71%)	ππ*
	\mathbf{S}_1	3.66 (339)	0.00	H-1→L (96%)	nπ*
	S_2	3.77 (329)	0.13	H→L (94%)	ππ*
МеОН	T ₁	2.68 (463)		H→L (96%)	ππ*
	T_2	3.28 (378)		H-2→L (93%)	nπ*
	T ₃	3.45 (359)		H-1→L (33%)	ππ*
	\mathbf{S}_1	3.61 (343)	0.16	H→L (96%)	ππ*

configuration interaction (CI) description (H = HOMO, L= LUMO)