Supporting Information

Hyper-crosslinked β-Cyclodextrin Porous Polymer: An Adsorption-Facilitated Molecular Catalyst Support for Transformation of Water-Soluble Aromatic Molecules

Haiying Li,^{†,‡} Bo Meng,[§] Song-Hai Chai,^{*, §} Honglai Liu,^{*,†} Sheng Dai^{*,‡,§}

[†]State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China

[‡]Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States

[§]Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States

Figure S1. Adsorption amount of aromatic molecules for BnCD-HCP as a function of adsorption time. The initial concentration of 4-nitrophenol, 4-chlorophenol, phenol and methyl orange aqueous solution was 0.1mM.

Figure S2. The recycle adsorption tests of a 4-nitrophenol aqueous solution (0.1mM) for BnCD-HCPP. The percentage adsorbed is the adsorbed amount in each cycle divided by that in the first cycle.

Figure S3. XRD pattern of Au@BnCD-HCPP.

Figure S4. TEM images of Au@ BnCD-HCPP.

Material	Aromatic molecules	Initial concentration (mmol/L)	Equilibrium concentration (mmol/L)	q_e (mmol/g)	$K_{\rm d}({\rm mL/g})$	Ref.
BnCD-HCP	4-nitrophenol	3*10-3~0.2	3*10-5~0.1	0.02~0.47	4.6*10 ³ ~6.0*10 ⁵	Our work
	Phenol	5*10-3~1	1.5*10-3~0.8	0.02~0.65	7.4*10 ² ~1.3*10 ⁴	Our work
	4-chlorophenol	8*10-3~0.98	9*10-4~0.7	0.04~1.10	1.4*10 ³ ~3.9*10 ⁴	Our work
Fe ₃ O ₄ @SiO ₂ - PGMACD	bisphenol-A	0.2	-	0.13	2.0*10 ³	S 1
CD-HMS (8%)	4-nitrophenol	-	0-0.1 ^a	0.36	$1*10^3 \sim 1*10^4 a$	S2
	Phenol 4-chlorophenol	-	0-0.3 ^a 0-0.2 ^a	0.15 0.18	$1*10^{2.5} \sim 1*10^{3.9}$ a $1*10^{2.5} \sim 1*10^{3.5}$ a	S2 S2
SCD-ZnAl LDH	Hydroquinone (for 2 days)	0.5 (mg/mL)	0.19(mg/mL)	0.47	101	S3
	2,3- dimethylphenol (for 2days)	0.5 (mg/mL)	0.04(mg/mL)	0.49	18	S3
beta-CDP (max capacity)	bisphenol A	0.5		0.25	1000	S4
CD-zeolite	p-nitrophenol	0.72 (100mg/L)	-	0.002 (0.25mg/g)	-	S5

Table S1. Comparison of the adsorbed amount (q_e) and distribution coefficients (K_d) for aromatic molecules adsorption from water by different materials. (some K_d values are calculated based on the experimental conditions listed in the reference)

a) The data was directly read from the figures in this reference

REFERENCE

[S1] Kang, Yan. et al. β -Cyclodextrin-modified hybrid magnetic nanoparticles for catalysis and adsorption J. Mater. Chem., 2011, 21, 3704-3710

[S2] Bibby, A. & Mercier, L. Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica. Green. Chem., 2003, 5, 15-19.

[S3] Xue, X. et al. Nanocage Structure Derived from Sulfonated β -Cyclodextrin Intercalated Layered Double Hydroxides and Selective Adsorption for Phenol Compounds. Inorg. Chem. 2014, 53, 1521–1529

[S4] Hiroyuki Kono, Taichi Nakamura. Polymerization of β -cyclodextrin with 1,2,3,4butanetetracarboxylic dianhydride: Synthesis, structural characterization, and bisphenol A adsorption capacity. Reactive & Functional Polymers, 2013, 73, 1096–1102

[S5] Li, XH.; Zhu, K.; Hao, XK. Surface modification of zeolite with beta-cyclodextrin for removal of p-nitrophenol form aqueous solution. Water Science and Technology, 2009, 60, 329-337.