Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Location dependent coordination chemistry and MRI relaxivity, in *de novo* designed lanthanide coiled coils

Matthew R. Berwick[†], Louise N. Slope[†], Caitlin F. Smith[†], Siobhan M. King[†], Sarah L. Newton[†], Richard B. Gillis^{‡‡}, Gary G. Adams^{‡‡}, Arthur J. Rowe[‡], Stephen E. Harding[‡], Melanie M.

Britton[†], Anna F. A. Peacock[†]*

[†]School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK

*National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
* School of Health Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2HA, UK

*To whom correspondence should be addressed. E-mail: a.f.a.peacock@bham.ac.uk

Contents:

1. Methods

Figure S1 – RARE imaging pulse sequence

- 2. Table S1 Table of percentage folded values
- 3. Table S2 Sedimentation equilibrium results
- 4. Table S3 Relaxivity values upon addition of extra trimer equivalence
- 5. Figure S2 CD Gd(III) titration
- 6. Figure S3 CD chemical denaturation
- 7. Figure S4 CD thermal unfolding
- 8. Figure S5 CD Tb(III) titration
- 9. Figure S6 Excitation and absorption profiles
- 10. Figure S7 Tryptophan emission spectra
- 11. Figure S8 Luminescence titration of CS1-1
- 12. Figure S9 CD spectra of CS1-1, CS1-2 and CS1-4

- 13. Figure S10 Emission spectra in H_2O and D_2O
- 14. Figure S11– Magnetic resonance imaging of phantom samples
- 15. Figure S12 Relaxivity plots
- 16. Figure S13 HPLC and mass spectrum for MB1-1
- 17. Figure S14 HPLC and mass spectrum for MB1-2
- 18. Figure S15 HPLC and mass spectrum for MB1-3
- 19. Figure S16 HPLC and mass spectrum for MB1-4
- 20. Figure S17 HPLC and mass spectrum for CS1-1
- 21. Figure S18 HPLC and mass spectrum for CS1-2
- 22. Figure S19 HPLC and mass spectrum for CS1-4
- 23. References

1. Methods

Chemical Denaturation. Chemical unfolding data was recorded by monitoring the ellipticity at 222 nm of a 30 μ M solution of peptide monomer in 5 mM HEPES buffer pH 7.0 in the absence and presence of 10 μ M GdCl₃, as a function of urea concentration (from 0 \rightarrow 6.5 M).

Folded
$$(F) \leftrightarrow 3$$
 Unfolded (U) Eq. 1

The chemical denaturation data was fit to a two-state folded to three monomers equilibrium model (see equation 1) as outlined by B. Buer.¹

Diffusion Corrected T₂. When measuring the T₂ of a sample using a RARE imaging sequence (see Figure S1) the application of a gradient (g_R) in the read direction with duration (2α) leads to signal attenuation due to the effects of water self-diffusion.² Therefore, the T₂ observed (T_{2obs}) has a diffusion weighted component (T_{2d}). The correct T₂ value (T_{2corr}) can be determined using Equations 2 and 3, where γ is the proton gyromagnetic ratio, T_E is the experiment echo time and *D* is the diffusion coefficient of the water. The value of *D* was approximated to be the diffusion of water at 293 K.³ An analogous expression exists for the effect of the slice gradient on the relaxation time and was employed in the correction as well.

$$\frac{1}{T_{2obs}} = \frac{1}{T_{2corr}} + \frac{1}{T_{2d}}$$
 Eq. 2

$$\frac{1}{T_{2d}} = \gamma^2 g_R^2 \alpha^2 D\left(\frac{T_E - \frac{4}{3}\alpha}{T_E}\right) \qquad Eq. 3$$

Figure S1. RARE imaging pulse sequence.

	Monomer	Аро	Metallo
	Conc / µM	% Folded	% Folded
MB1-1	5	65 ± 4	66 ± 6
	30	80 ± 6	83 ± 7
	100	85 ± 3	90 ± 3
MB1-2	5	14 ± 2	22 ± 5
	30	21 ± 3	62 ± 3
	100	33 ± 9	69 ± 7
MB1-3	5	11 ± 1	13 ± 2
	30	15 ± 1	41 ± 4
	100	16 ± 2	56 ± 5
MB1-4	5	43 ± 2	48 ± 3
	30	55 ± 6	70 ± 5
	100	60 ± 6	76 ± 7

All samples recorded in 5 mM HEPES buffer pH 7.0 at 293 K, in the absence or presence of 1/3 equivalence of GdCl₃, and molar ellipticity at 222 nm converted to percentage folded. Average value taken from three repeats and reported with standard deviations. **3. Table S2.** Weighted average molar mass, and calculated proportion of trimer, based on sedimentation equilibrium experiments performed in the presence of 1 equiv. Gd(III) per three strands of peptide monomer.

Peptide	Weight-average molar mass / kDa	Proportion of trimer complex / %*	
MB1-1	10.6 ± 0.6	81 ± 7	
MB1-2	9.0 ± 0.5	61 ± 6	
MB1-3	8.6 ± 0.4	56 ± 5	
MB1-4	10.9 ± 0.6	84 ± 8	
CS1-1	11.2 ± 0.6	88 ± 7	

*Assuming only presence of monomer and trimer

Peptide	(1/T ₁) / s ⁻¹	$(1/T_1)$ third equivalence / s ⁻¹	(1/T ₂) / s ⁻¹	$(1/T_2)$ third equivalence / s ⁻¹
MB1-1	0.44 ± 0.03	0.45 ± 0.02	1.31 ± 0.03	1.35 ± 0.14
MB1-2	0.41 ± 0.01	0.41 ± 0.01	0.95 ± 0.02	0.93 ± 0.03
MB1-3	0.40 ±0.01	0.40 ± 0.01	0.93 ± 0.05	0.96 ± 0.03
MB1-4	0.43 ± 0.02	0.40 ± 0.02	1.01 ± 0.08	0.98 ± 0.10

4. Table S3. Average 1/T1 and 1/T2 for 0.01 mM Gd(III) in the presence of two equivalence of peptide trimer, and on addition of a third equivalence.

Figure S2. GdCl₃ titration into 100 μ M A) MB1-1, B) MB1-2, C) MB1-3 and D) MB1-4 peptide monomer in 5 mM HEPES buffer pH 7.0, monitored by CD, going from 0 μ M to 100 μ M Gd(III).

6. Figure S3:

Figure S3. Urea chemical denaturation of 30 μ M monomer MB1-1 (blue triangles), MB1-2 (purple diamonds), MB1-3 (green squares) and MB1-4 (red circles) in the absence (light color) and presence (dark color) of 10 μ M Gd(III). Recorded in 5 mM HEPES buffer pH 7.0, monitored by CD at 222 nm, and fit to a trimer \leftrightarrow three monomer equilibrium using a nonlinear least-squares fitting (no fit was obtained for apo MB1-3).

Figure S4. CD thermal unfolding of 30 μ M MB1-1 (blue), MB1-2 (purple), MB1-3 (green) and MB1-4 (red) peptide monomer, in the absence (light color) and presence (dark color) of 10 μ M GdCl₃. Recorded in 5 mM HEPES buffer pH 7.0.

8. Figure S5:

Figure S5. TbCl₃ titration into 100 μ M A) MB1-1, B) MB1-2, C) MB1-3 and D) MB1-4 peptide monomer in 5 mM HEPES buffer pH 7.0 monitored by CD, going from 0 μ M to 100 μ M Tb(III).

Figure S6. Absorption (solid red) and excitation (dashed blue) spectra of a solution containing 10 μ M TbCl₃ and 30 μ M A) MB1-1, B) MB1-2, C) MB1-3 and D) MB1-4, at 293 K in 10 mM HEPES buffer pH 7.0, with λ_{em} = 545 nm. Excitation spectrum is corrected for lamp response.

Figure S7. Tryptophan emission spectra upon titration of Tb(III) into 30 μ M peptide monomer for A) MB1-1 (blue), B) MB1-2 (purple), C) MB1-3 (green) and D) MB1-4 (red). All samples recorded at 293 K in the presence of 10 mM HEPES buffer pH 7.0. λ_{exc} = 280 nm.

11. Figure S8:

Figure S8. Emission spectra of 30 μ M MB1-1 (orange), MB1-2 (blue), MB1-3 (red), MB1-4 (green) monomer peptide recorded in A) D₂O and B) H₂O, in the presence of 10 μ M EuCl₃, recorded at 293 K in 10 mM HEPES buffer pH 7.0. λ_{exc} = 280 nm.

Figure S9. CD spectra of 30 μ M A) CS1-1, B) CS1-2 and C) CS1-4 peptide monomer, in the absence (solid blue line) and presence of 10 μ M TbCl₃ (dashed red line), recorded at 293 K in 5 mM HEPES buffer pH 7.0.

Figure S10. Luminescence titration of TbCl₃ into 30 μ M CS1-1 peptide monomer in 10 mM HEPES buffer pH 7.0, at 293 K. Data fit to M + 3L \rightarrow ML₃ model using DynaFit. λ_{exc} = 280 nm.

Figure S11. *T*1 (a) and *T*2 (b) NMR relaxation maps for MB1-1 to MB1-4 recorded in 10 mM HEPES buffer pH 7.0, at 293 K. Images recorded using 5 mm NMR tubes containing 10 mM HEPES buffer pH 7.0 (1), 0.1 mM GdCl₃ (2), 0.01, 0.02, 0.03, 0.04 and 0.05 mM Gd(III) + 2 equivalences of trimer (3-7), and 0.01 mM Gd(III) + 3 equivalences of trimer (8). Images analysed using PROSPA.

Figure S12. Relaxivity plot showing reciprocal of relaxation time as a function of Gd(III) concentration, for A) *T*1 and B) *T*2 relaxation rates Gd(MB1-1)₃ (blue), Gd(MB1-2)₃ (purple), Gd(MB1-3)₃ (green) and Gd(MB1-4)₃ (red). All samples recorded at 293 K in the presence of 10 mM HEPES buffer pH 7.0, with 2 equivalences of peptide trimer to GdCl₃. All samples recorded on a 300 MHz NMR spectrometer.

Figure S13. (A) C18-analytical HPLC trace of pure MB1-1 using a linear 0 to 100% MeCN + 0.05% TFA gradient in H_2O + 0.05% TFA over 40 minutes. (B) Electrospray mass spectrum of pure MB1-1 with inset showing isotope distribution from $[M+4H]^{4+}$ peak.

Figure S14. (A) C18-analytical HPLC trace of pure MB1-2 using a linear 0 to 100% MeCN + 0.05% TFA gradient in H_2O + 0.05% TFA over 40 minutes. (B) Electrospray mass spectrum of pure MB1-2 with inset showing isotope distribution from $[M+4H]^{4+}$ peak.

Figure S15. (A) C18-analytical HPLC trace of pure MB1-3 using a linear 0 to 100% MeCN + 0.05% TFA gradient in H_2O + 0.05% TFA over 40 minutes. (B) Electrospray mass spectrum of pure MB1-3 with inset showing isotope distribution from $[M+4H]^{4+}$ peak.

B)

Figure S16. (A) C18-analytical HPLC trace of pure MB1-4 using a linear 0 to 100% MeCN + 0.05% TFA gradient in H_2O + 0.05% TFA over 40 minutes. (B) Electrospray mass spectrum of pure MB1-4 with inset showing isotope distribution from $[M+4H]^{4+}$ peak.

Figure S17. (A) C18-analytical HPLC trace of pure CS1-1 using a linear 0 to 100% MeCN + 0.05% TFA gradient in H_2O + 0.05% TFA over 40 minutes. (B) Electrospray mass spectrum of pure CS1-1 with inset showing isotope distribution from $[M+4H]^{4+}$ peak.

Figure S18. (A) C18-analytical HPLC trace of pure CS1-2 using a linear 0 to 100% MeCN + 0.05% TFA gradient in H_2O + 0.05% TFA over 40 minutes. (B) Electrospray mass spectrum of pure CS1-2 with inset showing isotope distribution from $[M+4H]^{4+}$ peak.

Figure S19. (A) C18-analytical HPLC trace of pure CS1-4 using a linear 0 to 100% MeCN + 0.05% TFA gradient in H_2O + 0.05% TFA over 40 minutes. (B) Electrospray mass spectrum of pure CS1-4 with inset showing isotope distribution from $[M+4H]^{4+}$ peak.

- B. Buer, in *Protein Design: Methods and Applications*, ed. V. Köhler, Humana Press, New York, 2nd edn, 2014, Design, Synthesis, and Study of Fluorinated Proteins, pp 89-116.
- 2) H. T. Edzes, D. V. Dusschoten and H. van As, Magn. Reson. Imaging, 1998, 16, 185.
- 3) M. Holz, S. R. Heil, A. Sacco, Phys. Chem. Chem. Phys., 2000, 2, 4740.