Stereoselective Synthesis of Protected L- and DDideoxysugars and Analogues via Prins Cyclisations

Ryan J. Beattie, Thomas W. Hornsby, Gemma Craig, M. Carmen Galan* and Christine L. Willis*

Supporting Information

1. General Information, 2
2. Preparation of Compounds, 3
3. Chiral SFC Data, 36
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra, 37
5. References, 75

General Procedures

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Anhydrous solvents were used which were dried using the Anhydrous Engineering Ltd. double alumina and alumina-copper catalysed drying columns. All moisture or air sensitive reactions were carried out in flame dried glassware under a positive pressure of N2 using standard syringe/septa techniques. Flash column chromatography was performed on silica gel (Merck Kieselgel 60, 230-400 mesh). Thin layer chromatography was carried out on Polygram 0.2 mm silica gel TLC plates visualising with 254 nm UV light and developing with either a KMnO_{4}, phosphomolybdic aicd or Vanillin dip, where appropriate. Optical rotations were determined with the sodium D line ($\lambda=589 \mathrm{~nm}$) using a Perkin Elmer 241 MC polarimeter. $[\alpha]^{22}$ values are quoted in units $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. Infrared (IR) spectroscopy was recorded on a Perkin Elmer Spectrum 100 FT-IR spectrometer with an ATR diamond cell irradiating between $4000 \mathrm{~cm}^{-1}$ and $600 \mathrm{~cm}^{-1}$. Melting points were determined using an electrothermal melting point apparatus and are uncorrected. Electron impact (EI) and chemical ionisation (Cl) mass spectra were recorded on a VG Analytical Autospec mass spectrometer. Methane was the ionization gas used for Cl . Electrospray ionisation (ESI) mass spectra were recorded on a Micromass LCT mass spectrometer or a VG Quattro mass spectrometer.

NMR spectra were recorded using either a Varian 400 MHz or JEOL ecp 400 MHz spectrometer. Chemical shifts $\left(\delta_{H}\right)$ are quoted in parts per million (ppm), J values are given in Hz and referenced to the appropriate residual solvent peak. Data reported as follows: chemical shift, integration, multiplicity $(s=$ singlet, $b r s=$ broad singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t, q i=$ quintet, $s x=$ sextet, hept $=$ heptet, $m=$ multiplet, $d d=$ doublet of doublet, etc.), coupling constants, assignment. Chemical shifts $\left(\delta_{C}\right)$ are quoted in parts per million (ppm), referenced to the appropriate residual solvent peak. DEPT ${ }^{135}$, COSY and HMQC were used for all new compounds in assigning NMR spectra. Chiral SFC was performed using Diacel Chiralpak IA, IB and IC columns ($4.6 \times 250 \mathrm{~mm} \times 5 \mu \mathrm{~m}$) or a Whelk $0-1$ column ($4.6 \times 250 \mathrm{~mm} \times 5 \mu \mathrm{~m}$) on a WatersTharSFC system and monitored by DAD (Diode Array Detector).

Preparation of compounds

Benzyl(1,3-dithiane)dimethylsilane 4

n-Butyllithium ($14 \mathrm{~mL}, 1.57 \mathrm{M}$ solution in hexanes, 22.0 mmol) was added dropwise to 1,3 dithiane ($2.2 \mathrm{~g}, 18.3 \mathrm{mmol}$) in dry THF (60 mL) at $-15{ }^{\circ} \mathrm{C}$ under N_{2}. This was stirred for 6 h , warming to RT slowly. The solution was then added dropwise via cannula to a solution of benzyl(dimethyl)chlorosilane ($3.7 \mathrm{~mL}, 20.2 \mathrm{mmol}$) in dry THF (30 mL) at $0{ }^{\circ} \mathrm{C}$ and the reaction allowed to warm to RT and stirred for 14 h . A saturated solution of ammonium chloride (25 mL) was added, the organic phase separated and aqueous layer extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to yield a dark brown oil. This was purified by column chromatography (Pet: EtOAc, 99:1) to afford a brown oil. Further purification by bulb to bulb distillation gave thioacetal 4 as a colourless oil ($4.4 \mathrm{~g}, 89 \%$); bp $235{ }^{\circ} \mathrm{C}$ at $8.0 \mathrm{mbar} ; \mathrm{v}_{\text {max }}(\mathrm{neat}) / \mathrm{cm}^{-1} 3059(\mathrm{ArCH}), 2953(\mathrm{CH}), 1599(\mathrm{ArC=C}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.14\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 1.99-2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.27\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.29(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 14.3,3.2$, SCH_{2}), $2.78\left(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 14.3,2.9, \mathrm{SCH}_{2}\right), 3.72(1 \mathrm{H}, \mathrm{s}, \mathrm{SCH}), 7.08-7.15(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.23-7.25(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.2\left(2 \times \mathrm{SiCH}{ }_{3}\right), 23.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 26.2\left(\mathrm{CH}_{2}\right), 31.0\left(2 \times \mathrm{SCH}_{2}\right), 32.9(\mathrm{CH})$, 124.3 (C-Ar), 128.1 (C-Ar), 128.3 (C-Ar), 138.9 (C-Ar); m/z (ESI) 291.0679 ($\mathrm{MNa}^{+}, 100 \%$, $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaS}_{2} \mathrm{Si}$ requires 291.0668).

Benzyl(diethoxymethyl)dimethylsilane 5

2-BDMS-1,3-dithiane $4(6.35 \mathrm{~g}, 23.6 \mathrm{mmol})$ in dry ethanol (50 mL) was added to a two-neck round bottomed-flask equipped with a condenser and placed under N_{2}. Mercury (II) chloride
($19.2 \mathrm{~g}, 70.8 \mathrm{mmol}$) and mercury (II) oxide ($1.63 \mathrm{~g}, 47.2 \mathrm{mmol}$) were added and the resulting suspension was stirred vigorously at reflux for 3 h . The reaction mixture was filtered through Celite ${ }^{\circledR}$, washing with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ and concentrated in vacuo to yield a white oily residue. Purification by column chromatography (Pentane: $\mathrm{Et}_{2} \mathrm{O}, 98: 2$) gave the silyl acetal 5 as a colourless oil ($5.05 \mathrm{~g}, 85 \%$); $\mathrm{v}_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3060$ (ArCH), 2958 (CH), 1601 (C=C), 1056 (C-O); δ_{H} (400 MHz; CDCl $)_{3}$) $0.06\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{SiCH}_{3}\right), 1.22\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{3}\right), 2.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.48(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ 7.1, $\left.\mathrm{CH}_{2}\right), 3.77\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.1, \mathrm{CH}_{2}\right), 4.38(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.04-7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.21-7.25(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.5\left(\mathrm{SiCH}_{3}\right), 15.6\left(2 \times \mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 65.7\left(\mathrm{OCH}_{2}\right), 106.5(\mathrm{CH}), 124.1(\mathrm{C}-$ Ar), 128.2 (C-Ar), 128.3 (C-Ar), 139.4 (C-Ar); m / z (ESI) $275.1427\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{NaSi}\right.$ requires 275.1438$)$.
(5E,3R)-1-Phenylhept-5-en-3-ol 6^{1}

Para-toluenesulfonic acid monohydrate $(0.21 \mathrm{~g}, 1.1 \mathrm{mmol})$ was added to a solution of dihydrocinnamaldehyde ($1.46 \mathrm{~mL}, 11.1 \mathrm{mmol}$) and alcohol (\boldsymbol{R})- $\mathbf{S I}-\mathbf{1}^{\mathbf{1}}(2.32 \mathrm{~g}, 11.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under N_{2}. The mixture was stirred for 24 h at RT , then aqueous saturated sodium hydrogen carbonate (35 mL) was added. Triethylamine was added until the $\mathrm{pH}>7$ and the mixture was stirred for 20 minutes. The resulting biphasic solution was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 30 \mathrm{~mL})$. The combined organic phases were washed with aqueous saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification using column chromatography (Pet: EtOAc, 95:5) gave alcohol 6 as a yellow oil (1.45 g, 69\%); [α] ${ }_{\mathrm{D}}^{22}+10.0\left(c 1.05, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{1}[\alpha]^{25}+14.0\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) ; \mathrm{v}_{\max }$ (neat)/cm-1 $3383(\mathrm{OH}), 3062(\mathrm{ArCH})$, 3026 (C=CH), 2917 (CH), 1603 ($\mathrm{ArC=C}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.70 (3H, dd, J 6.2, 1.0, 7- H_{3}), 1.75$1.82\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 2.09(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}), 2.25(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{HH}), 2.69(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.9,8.4,1-H \mathrm{H}), 2.82$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.9,7.7,1-\mathrm{HH}), 3.62(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.43(1 \mathrm{H}, \mathrm{dqt}, J 15.2,6.2,1.5,6-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{tq}, J$ 15.2, 6.2, 1.0, $5-\mathrm{H}), 7.18-7.23(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.28-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 18.3$ (C7), 32.3 (C-2), 38.6 (C-1), 41.0 (C-4), 70.5 (C-3), 125.5 (C-Ar), 126.8 (C-6), 128.1 (C-Ar), 128.2 (CAr), 128.6 (C-5), 142.0 (ArC). Spectroscopic data were in accordance with the literature. ${ }^{1}$
(1S,2R,3S,5R)-1-(Benzyldimethylsilane)-2-methyl-3-hydroxy-5-(2'-phenylethyl)tetrahydropyran 7

Trifluoroacetic acid ($760 \mu \mathrm{l}, 7.8 \mathrm{mmol}$) was added dropwise to a solution of alcohol 6 (99 mg , $0.52 \mathrm{mmol})$ and silyl acetal $5(156 \mathrm{mg}, 0.62 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at RT under N_{2}. The reaction was stirred for 6 h , then aqueous saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added carefully. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The organic phases were combined, washed with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then concentrated in vacuo. The resulting crude residue was redissolved in methanol (10 mL), to which $\mathrm{K}_{2} \mathrm{CO}_{3}(430 \mathrm{mg}, 3.12 \mathrm{mmol})$ was added and stirred for 15 minutes. The methanol was removed under reduced pressure, water (10 mL) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude residue. Which was purified by column chromatography (Pet: EtOAc, 85:5) to give alcohol 7 as a yellow oil ($186 \mathrm{mg}, 97 \%$); $[\alpha]^{22}+28.0\left(c 1.01, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}$ (neat)/cm ${ }^{-1} 3327$ (OH), 3060 (ArCH), 3024 (ArCH), 2931 (CH), 1600 (ArC=C); $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,2-\mathrm{CH}_{3}\right), 1.29\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., J 11.3,4-\mathrm{H}_{\mathrm{ax}}\right)$, $1.52\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right), 1.73\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right), 1.87\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right), 1.94(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 11.3,4.9,2.0,4-$ $H_{\text {eq }}$), $2.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7, \mathrm{SiCHH}), 2.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7, \mathrm{SiCHH}), 2.68\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-H \mathrm{H}\right), 2.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 11.0, 1- H_{ax}), $2.81\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{HH}\right), 3.23-3.29(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $3-\mathrm{H}), 7.05-7.11(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.17-$ $7.31(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.7\left(\mathrm{SiCH}_{3}\right),-3.6\left(\mathrm{SiCH}_{3}\right), 13.4\left(2-\mathrm{CH}_{3}\right), 23.9\left(\mathrm{SiCH}_{2}\right), 31.8$ (C-2'), 38.0 (C-4), 41.2 (C-2), 41.5 (C-1'), 74.0 (C-1), 74.8 (C-3), 77.5 (C-5), 124.0 (C-Ar), 125.7 (CAr), 128.1 (C-Ar), 128.3 (C-Ar), 128.4 (C-Ar), 128.5 (C-Ar) 140.0 (C-Ar), 142.3 (C-Ar); m/z (ESI) 391.2051 ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{NaSi}$ requires 391.2069).

(1S,3S,5R)-1-(Benzyldimethylsilane)-3-hydroxy-5-(2'-phenylethyl)-tetrahydropyran 9

Trifluoroacetic acid ($3.32 \mathrm{~mL}, 34.1 \mathrm{mmol}$) was added dropwise to a solution of alcohol 8 (200 $\mathrm{mg}, 1.14 \mathrm{mmol}$) and silyl acetal $\mathbf{5}(315 \mathrm{mg}, 1.25 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ at RT under N_{2}. This was stirred for 3 h at RT, then aqueous saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added carefully. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The organic phases were combined, washed with aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and then concentrated in vacuo. The resulting crude residue was redissolved in methanol (10 mL), to which $\mathrm{K}_{2} \mathrm{CO}_{3}(1.13 \mathrm{~g}, 8.19 \mathrm{mmol})$ was added and left to stir for 30 minutes. The methanol was removed under reduced pressure, water (25 mL) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude residue. Which was purified by column chromatography (Pet: EtOAc, 85:5) to give alcohol 9 as a yellow oil ($374 \mathrm{mg}, 93 \%$); $[\alpha]^{22}+34.0$ (c $1.00, \mathrm{CHCl}_{3}$); $\mathrm{v}_{\max }(\mathrm{neat}) / \mathrm{cm}^{-1} 3323(\mathrm{OH}), 3062$ (ArCH), 3021 (ArCH), 2934 (CH), 1601 ($\mathrm{ArC=C}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.05(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiCH}_{3}\right), 1.20\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., J 11.0,4-\mathrm{H}_{\mathrm{ax}}\right), 1.52\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q}, \mathrm{J} 12.8,2-\mathrm{H}_{\mathrm{ax}}\right), 1.51(1 \mathrm{H}, \mathrm{br} . \mathrm{s} ., \mathrm{OH})$, $1.71\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right), 1.79\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right), 1.88\left(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\text {eq }}\right), 1.93(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 11.0,5.0,2.0,4-$ $H_{\text {eq }}$), $2.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.6, \mathrm{SiCHH}), 2.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.6, \mathrm{SiCHH}), 2.71\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{HH}\right), 2.81\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ HH), $3.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.8,2.0,1-\mathrm{H}), 3.23(1 \mathrm{H}, \mathrm{tdd}, \mathrm{J} 11.0,3.9,2.0,5-\mathrm{H}), 3.71(1 \mathrm{H}, \mathrm{br} . \mathrm{ddt}, \mathrm{J} 12.8$, 11.0, 5.0, 3-H), 7.04-7.11 (3H, m, ArH), 7.20-7.31 (7H, m, ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.0\left(\mathrm{SiCH}_{3}\right),-$ $5.8\left(\mathrm{SiCH}_{3}\right), 23.0\left(\mathrm{SiCH}_{2}\right), 31.8\left(\mathrm{C}-2^{\prime}\right), 36.4(\mathrm{C}-4), 38.0(\mathrm{C}-2), 41.8\left(\mathrm{C}-1^{\prime}\right), 68.1(\mathrm{C}-1), 69.3(\mathrm{C}-3), 77.1$ (C-5), 124.0 (C-Ar), 125.7 (C-Ar), 128.2 (C-Ar), 128.2 (C-Ar), 128.5 (C-Ar), 128.8 (C-Ar) 139.8 (CAr), 142.3 (C-Ar); m / z (ESI) 377.1907 ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{NaSi}$ requires 377.1913).

1-(Benzyl(dimethyl)silyl)but-3-en-1-ol 10

Lithium tetrafluoroborate ($58 \mathrm{mg}, 0.62 \mathrm{mmol}$) was added in one portion to silyl acetal 5 (142 $\mathrm{mg}, 0.56 \mathrm{mmol})$ and allyltributylstannane ($350 \mu \mathrm{l}, 1.13 \mathrm{mmol}$) in $\mathrm{MeCN}(2.8 \mathrm{ml})$ with $\mathrm{H}_{2} \mathrm{O}(20 \mu \mathrm{l})$ at $-15{ }^{\circ} \mathrm{C}$. This was left to slowly warm to RT over 2 h . Saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{ml})$ was then added and the organics were extracted with EtOAc ($3 \times 10 \mathrm{ml}$). The combined organic phases were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography (Pet: Et $2 \mathrm{O}, 91: 9$) afforded the title compound 10 as a colorless oil ($75 \mathrm{mg}, 61 \%$); $V_{\max }($ neat $) / \mathrm{cm}-13319(\mathrm{OH}), 3061$ (ArCH), 3032 (ArCH), 1601 ($\mathrm{ArC=C}$); $\delta_{\text {н (}} 400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) 0.01 $\left(\mathrm{SiCH}_{3}\right), 0.06\left(\mathrm{SiCH}_{3}\right), 2.15(1 \mathrm{H}, \mathrm{m}, \mathrm{SiCHHPh}), 2.18(1 \mathrm{H}, \mathrm{d}, J 13.6, \mathrm{SiCHHPh}), 2.25(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH})$, $2.34(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}), 3.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.2,3.1,1-\mathrm{H}), 5.11-5.19\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 5.77(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, 7.04-7.26 (5H, m, Ar-H); סc (100 MHz; CDCl3) -6.0 (SiCH3), -5.7 (SiCH3), $23.2\left(\mathrm{SiCH}_{2} \mathrm{Ph}\right), 38.0(\mathrm{C}-2)$, 62.3 (C-1), 118.1 (C-4), 124.1 (C-Ar), 128.2 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 (2 x C-Ar), 135.8 (C-3), 139.6 (C-Ar); m / z (ESI) $243.1253\left(\mathrm{MNa}+100 \%, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{ONaSi}\right.$ requires 243.1283).
(1S*,3S*,5R*)-1-(Benzyl(dimethyl)silyl)-3-hydroxy-5-methyl-tetrahydropyran 11

Trifluoroacetic acid ($185 \mu \mathrm{l}, 1.91 \mathrm{mmol}$) was added dropwise to a solution of alcohol $\mathbf{1 0}$ (21 mg , 0.10 mmol) and acetaldehyde ($32 \mu \mathrm{l}, 0.60 \mathrm{mmol}$) in $\mathrm{dry}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ at room temperature. This was stirred for 50 minutes at room temperature, then aqueous saturated $\mathrm{NaHCO}_{3}(3 \mathrm{ml})$ and triethylamine was added until $\mathrm{pH}>7$. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic phase was then concentrated in vacuo and the resulting crude residue was redissolved in methanol (4 ml), to which $\mathrm{K}_{2} \mathrm{CO}_{3}(80 \mathrm{mg}, 0.6$ mmol) was added and left to stir for 30 minutes. The methanol was removed under reduced pressure, water (5 ml) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude residue. This was further
purified by column chromatography (Pet: EtOAc, 80:20) to afford alcohol 11 as a colorless oil (22 mg, 89\%); $v_{\max }(n e a t) / \mathrm{cm}-13321$ (OH), 3063 (ArCH), 3021 (ArCH), 2934 (CH), 1600 (ArC=C); סн ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) -0.04 (3H, s, SiCH3), $0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.14\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q}, \mathrm{J} 11.0,4-\mathrm{H}_{\mathrm{ax}}\right), 1.20(3 \mathrm{H}$, d, J 6.1, 1'-H3), 1.30 (1H, app. q, J 11.0, 2-Hax), 1.58 (1 H, br. s, OH), 1.76 (1H, ddd, J 11.0, 6.6, 2.0, 2-Heq), 1.94 (1H, ddd, J 11.0, 6.6, 2.0, 4-Heq), 2.12 (1H, d, J 13.5, SiCHHPh), 2.23 (1H, d, J 13.5, SiCHHPh), 3.01 (1 H, dd, J 11.0, 2.0, 1-Hax) , 3.33 (1H, app. sext. of d., J 6.6, 2.0, 5-Hax), 3.71 (1H, ttd, J 11.0, 6.6, 2.0, 3-Hax), 7.02-7.10 (3H, m, Ar-H), 7.19-7.23 (2H, m, Ar-H); סc ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) -6.1 (SiCH_{3}), -5.9 (SiCH_{3}), 22.1 ($\left.\mathrm{C}-1^{\prime}\right), 23.0\left(\mathrm{SiCH}_{2} \mathrm{Ph}\right), 36.1(\mathrm{C}-2), 43.5(\mathrm{C}-4), 68.0(\mathrm{C}-1), 69.3$ (C-3), 74.4 (C-5), 124.0 (C-Ar), 128.1 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.2 ($2 \times \mathrm{C}-\mathrm{Ar}$), 139.9 (C-Ar); m/z (ESI) 287.1439 ($\mathrm{MNa}+, 100 \%, \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O} 2 \mathrm{NaSi}$ requires 287.1438).
(1S*,3S*,5R*)-1-(Benzyl(dimethyl)silyl)-3-hydroxy-5-(2'-(benzyloxy)ethyl)-tetrahydropyran 12

Trifluoroacetic acid ($0.56 \mathrm{~mL}, 7.26 \mathrm{mmol}$) was added dropwise to a solution of alcohol 10 (80 $\mathrm{mg}, 0.36 \mathrm{mmol}$) and 3-benzyloxypropanal ($120 \mathrm{mg}, 0.73 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at RT . This was stirred for 50 minutes then aqueous saturated $\mathrm{NaHCO}_{3}(3 \mathrm{ml})$ and triethylamine was added until $\mathrm{pH}>7$. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ 10 mL). The combined organic phases were concentrated in vacuo and the resulting crude residue was redissolved in methanol (12 mL), to which $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{mg}, 0.73 \mathrm{mmol}$) was added and left to stir for 30 minutes. The methanol was removed under reduced pressure, water (10 $\mathrm{mL})$ added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried (MgSO_{4}) and concentrated in vacuo to afford the crude residue which was purified by column chromatography (Pet: EtOAc, 90:10) to afford alcohol 12 as a colorless oil ($114 \mathrm{mg}, 82 \%$); $\mathrm{V}_{\text {max }}$ (neat)/cm-1 3370 (OH), 3065 (ArCH), 3025 (ArCH), 2927 (CH), 1600 (ArC=C), 1028 (C-O); סн (400 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.0\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.19\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., \mathrm{J} 12.0,2-\mathrm{H}_{\mathrm{ax}}\right), 1.43(1 \mathrm{H}$, app. td, J 12.5, 10.5, 4- H_{ax}), 1.74-1.85 ($3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}$ and $4-\mathrm{H}_{\text {eq }}$), 1.97 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.0,4.5,2.0,2-\mathrm{H}_{\text {eq }}$), $2.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{SiCHH}), 2.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{SiCH}), 3.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.0,2.0,1-\mathrm{H}), 3.43(1 \mathrm{H}$, dddd, J 10.5, 8.5, 4.5, 2.0, 5-H), 3.59-3.75 (3H, m, 2'- H_{2} and $3-\mathrm{H}$), $4.54\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.04(2 \mathrm{H}, \mathrm{J}$ 7.5, Ar-H), 7.09 (1H, t, J 7.5, Ar-H), 7.21 (2H, t, J 7.5, Ar-H) 7.30 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.34-7.37 (4H, m,

ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.1\left(\mathrm{SiCH}_{3}\right),-5.8\left(\mathrm{SiCH}_{3}\right), 23.1\left(\mathrm{SiCH}_{2}\right), 36.4(\mathrm{C}-4), 36.7\left(\mathrm{C}-1^{\prime}\right), 42.0(\mathrm{C}-$ 2), 67.0 ($\mathrm{C}-2^{\prime}$) , 68.0 (C-1), 69.3 (C-3), 73.1 ($\mathrm{CH}_{2} \mathrm{Ph}$), 75.2 (C-5), 124.1 (C-Ar), 127.6 (C-Ar), 127.7 (2 x C-Ar), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.4 ($2 \times \mathrm{C}-\mathrm{Ar}$), 138.6 (C-Ar), 139.9 (C-Ar),); m/z (ESI) $407.1994\left(\mathrm{MNa}+, 100 \%, \mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{NaSi}\right.$ requires 407.2018).
(15*,3S*,5R*)-3-O-Acetyl-1-(benzyldimethylsilyl)-5-methyl-tetrahydropyran 13

To a solution of alcohol 10 ($80 \mathrm{mg}, 0.36 \mathrm{mmol}$), acetaldehyde ($41 \mu \mathrm{~L}, 0.73 \mathrm{mmol}$) and trimethylsilyl acetate ($54 \mu \mathrm{l}, 0.36 \mathrm{mmol}$) in acetic acid (0.35 mL) was added triethylsilyl trifluoromethanesulfonate ($246 \mu \mathrm{l}, 1.09 \mathrm{mmol}$). This was stirred for 5 minutes, then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, combined, washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude residue was then purified by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 90: 10$) to give acetate 13 as a yellow oil ($81 \mathrm{mg}, 73 \%$); $\mathrm{V}_{\text {max }}$ (neat)/cm-1 3065 (ArCH), 3020 (ArCH), 2937 (CH), 1739 (C=O), 1600 ($\mathrm{ArC=C}$), 1027 (C-O); $\delta \mathrm{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.05(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH} 3), 0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.19(3 \mathrm{H}$, d, J 6.3, 1'- H3), $1.26(1 \mathrm{H}, ~ a p p . ~ q, ~ J ~ 11.5, ~ 4-H a x), ~ 1.41(1 H, ~ a p p . ~ q, ~ J ~ 12.5, ~ 2-H a x), ~ 1.80 ~(1 H, ~ d d d, ~ J ~$ $12.5,4.5,2.0,2-\mathrm{H}_{\text {eq }}$), 1.95 ($1 \mathrm{H}, \mathrm{ddd}, J 11.5,4.5,2.0,4-\mathrm{H}_{\text {eq }}$), $2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 13.5, SiCHHPh), $2.23(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{SiCHHPh}), 3.01\left(1 \mathrm{H}, \mathrm{dd}, J 12.5,2.0,1-\mathrm{H}_{\mathrm{ax}}\right), 3.40(1 \mathrm{H}, \mathrm{app}$. sext. of d., J 6.3, 2.0, 5-Hax), $4.82\left(1 \mathrm{H}, \mathrm{tt}, J 11.0,5.0,3-\mathrm{Hax}^{2}\right), 7.02(2 \mathrm{H}, J 8.0, \mathrm{Ar}-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5$, ArH), $7.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5, \mathrm{Ar}-\mathrm{H}) ; \delta \mathrm{C}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.1\left(\mathrm{SiCH}_{3}\right),-5.7(\mathrm{SiCH} 3), 21.5\left(\mathrm{COCH}_{3}\right), 22.1(\mathrm{C}-$ 1'), 23.1 (SiCH 2 Ph), 32.5 (C-2), 39.7 (C-4), 68.1 (C-1), 71.8 (C-3), 74.5 (C-5), 124.2 (C-Ar), 128.3 (2 x C-Ar), 128.4 ($2 \times \mathrm{C}-\mathrm{Ar}$), 139.8 (C-Ar), 170.7 (CO); m/z (ESI) 329.1543 ($\mathrm{MNa}+, 100 \%, \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{CO}_{3} \mathrm{NaSi}$ requires 329.1549).

(1S,3S,5S)-3-O-Acetyl-1-(benzyldimethylsilyl)-5-(2'-(benzyloxy)ethyl)-tetrahydropyran 14

To a solution of alcohol 10 ($80 \mathrm{mg}, 0.36 \mathrm{mmol}$), 3-benzyloxypropanal ($120 \mathrm{mg}, 0.73 \mathrm{mmol}$) and trimethylsilyl acetate ($54 \mathrm{\mu l}, 0.36 \mathrm{mmol}$) in acetic acid (0.35 mL) was added triethylsilyl trifluoromethanesulfonate ($246 \mu \mathrm{l}, 1.09 \mathrm{mmol}$). This was stirred for 5 minutes, then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, combined, washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude residue was then purified by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 90: 10$) to give acetate 14 as a yellow oil ($110 \mathrm{mg}, 71 \%$); $\mathrm{v}_{\max }($ neat $) / \mathrm{cm}^{-1} 3059(\mathrm{CH}), 2951$ (CH), 1738 ($\mathrm{C}=\mathrm{O}$), 1599 ($\mathrm{C}=\mathrm{C}$), 1026 (C-O); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.32(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., \mathrm{J} 12.0$, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.43\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., J 12.0,4-\mathrm{H}_{\mathrm{ax}}\right), 1.75-1.83\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right) 1.83\left(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{\mathrm{eq}}\right), 1.97$ (1H, ddt, J 12.0, 4.5, 2.0, $2-\mathrm{H}_{\mathrm{eq}}$), $2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{SiCHH}), 2.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5$, $\mathrm{SiCHH}), 3.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.0,1.5,1-\mathrm{H}), 3.49(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.55-3.68\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 4.52(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.85(1 \mathrm{H}, \mathrm{app} . \mathrm{tt}, \mathrm{J} 11.0,4.7,3-\mathrm{H}), 7.02(2 \mathrm{H}, J 7.5, \mathrm{Ar}-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Ar}-\mathrm{H}), 7.02$ (2H, t, J 7.5, Ar-H) 7.29 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.32-7.37 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.1\left(\mathrm{SiCH}_{3}\right),-$ $5.9\left(\mathrm{SiCH}_{3}\right), 21.5\left(\mathrm{COCH}_{3}\right), 23.0\left(\mathrm{SiCH}_{2}\right), 32.7(\mathrm{C}-4), 36.7\left(\mathrm{C}-1^{\prime}\right), 38.1(\mathrm{C}-2), 66.8\left(\mathrm{C}-2^{\prime}\right), 67.9(\mathrm{C}-1)$, 71.7 (C-3), 73.1 ($\mathrm{CH}_{2} \mathrm{Ph}$), 75.2 (C-5), 124.2 (C-Ar), 127.6 ($2 \times \mathrm{C}-\mathrm{Ar}$), 127.7 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-$ Ar), 128.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 138.6 (C-Ar), 139.9 (C-Ar), 170.6 (CO); m/z (ESI) 449.2116 ($\mathrm{MNa}^{+}, 100 \%$, $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{NaSi}$ requires 449.2124).

(1S,2R,3S,5R)-3-O-Acetyl-1-(Benzyldimethylsilane)-2-methyl-5-(2'-phenylethyl)tetrahydropyran 18

Acetic anhydride ($1.52 \mathrm{~mL}, 2.28 \mathrm{mmol}$), triethylamine ($1.52 \mathrm{~mL}, 3.80 \mathrm{mmol}$) and a single crystal of DMAP were added to a solution of alcohol $7(270 \mathrm{mg}, 0.73 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and stirred at RT under N_{2} for 1 h . The reaction was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with saturated aqueous NaHCO_{3} solution ($1 \times 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography (Pet: EtOAc, 98:2) gave acetate 18 as a colourless oil (298 mg, 99\%); [$\alpha]^{20}+$ 17.6 (c 0.97, CHCl_{3}); $\mathrm{v}_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3061$ (ArCH), 3025 (ArCH), 2928 (CH), 1731 (C=O), 1600 ($\mathrm{ArC=C}$), $1238(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.83(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6$, $\left.2-\mathrm{CH}_{3}\right), 1.27-1.31\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right), 1.32\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., J 11.2,4-\mathrm{H}_{\mathrm{ax}}\right), 1.67-1.89\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{ax}}\right.$ and $1^{\prime}-$ HH), 2.01 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 11.2,4.6,1.7,4-\mathrm{H}_{\text {eq }}$), $2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.6, \mathrm{SiCHH}), 2.30$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.6, \mathrm{SiCHH}), 2.67\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-H \mathrm{H}\right), 2.80\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{HH}\right), 2.83(1 \mathrm{H}, \mathrm{d}, J 11.4,1-\mathrm{H}), 3.30(1 \mathrm{H}$, tdd, J 11.2, 4.0, 1.7, 5-H), 4.54 (1 H , td, J 11.2, 4.6, 3-H), 7.04-7.32 (10H, m, ArH); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$-4.8 $\left(\mathrm{SiCH}_{3}\right),-3.7\left(\mathrm{SiCH}_{3}\right), 13.5\left(2-\mathrm{CH}_{3}\right), 21.2\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 23.8\left(\mathrm{SiCH}_{2}\right), 31.8\left(\mathrm{C}-2^{\prime}\right), 37.8(\mathrm{C}-4)$, 37.9 (C-2), 38.0 (C-1'), 74.1 (C-1), 76.9 (C-3), 77.1 (C-5), 124.1 (C-Ar), 125.7 (C-Ar), 128.2 (C-Ar), 128.3 (C-Ar), 128.4 (C-Ar), 128.5 (C-Ar), 139.8 (C-Ar), 142.2 (C-Ar), 170.9 (CO); m/z (ESI) 433.2170 ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NaSiO}_{3}$ requires 433.2169).
(1S,3S,5R)-3-O-Acetyl-1-(Benzyldimethylsilane)-5-(2'-phenylethyl)-tetrahydropyran 19

Acetic anhydride ($507 \mu \mathrm{l}, 0.76 \mathrm{mmol}$), triethylamine ($605 \mu \mathrm{l}, 1.25 \mathrm{mmol}$) and a single crystal of DMAP were added to a solution of alcohol $9(90 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and stirred
at RT under N_{2} for 1 h . The reaction was diluted with water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic phases were washed with saturated aqueous NaHCO_{3} solution (1 $\times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Purification by column chromatography (Pet: EtOAc, 95:5) gave acetate 19 as a colourless oil (96 mg, 97\%); $[\alpha]^{21}+19\left(c 1.00, \mathrm{CHCl}_{3}\right)$; $v_{\max }$ (neat)/cm ${ }^{-1} 3061$ (ArCH), 2923 (CH), 1728 (C=O), 1601 ($\mathrm{ArC=C}$), 1238 (C-O); δ_{H} (400 MHz ; $\left.\mathrm{CDCl}_{3}\right) 0.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.33\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., \mathrm{J} 11.3,4-\mathrm{H}_{\mathrm{ax}}\right), 1.47(1 \mathrm{H}, \mathrm{app} . q ., J$ 11.3, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.72\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right), 1.82-1.90\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{\mathrm{eq}}\right.$ and $\left.1^{\prime}-\mathrm{HH}\right), 1.96(1 \mathrm{H}, \mathrm{ddd}, J 11.3,6.4$, 2.0, 4- $\mathrm{H}_{\text {eq }}$), $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.17(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{SiCHH}), 2.25(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{SiCHH}), 2.71(1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-H \mathrm{H}\right), 2.82\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{HH}\right), 3.11(1 \mathrm{H}, \mathrm{dd}, J 11.3,2.0,1-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{tdd}, J 11.3,3.9,2.0,5-\mathrm{H})$, 4.83 (1H, app. tt, J 11.3, 4.9, 3-H), 7.04-7.11 (3H, m, ArH), 7.19-7.5 (7H, m, ArH); $\delta_{C}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)-6.1\left(\mathrm{SiCH}_{3}\right),-5.9\left(\mathrm{SiCH}_{3}\right), 21.4\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 22.9\left(\mathrm{SiCH}_{2}\right), 31.7\left(\mathrm{C}-2^{\prime}\right), 32.7\left(\mathrm{C}-1^{\prime}\right) 37.9(\mathrm{C}-4)$, 37.9 (C-2), 68.0 (C-1), 71.7 (C-3), 77.1 (C-5), 124.1 (C-Ar), 125.7 (C-Ar), 128.2 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.2 (2 x C-Ar), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.4 ($2 \times \mathrm{C}-\mathrm{Ar}$), 142.2 ($2 \times \mathrm{C}-\mathrm{Ar}$), 170.5 (CO); m/z (ESI) 419.2000 (MNa^{+}, $100 \%, \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NaSiO}$ requires 419.2013).
(1S,2R,3S,5R)-3-O-Benzyl-1-(Benzyldimethylsilane)-2-methyl-5-(2'-phenylethyl)tetrahydropyran 20

$\mathrm{NaH}(36 \mathrm{mg}, 60 \%$ dispersion in oil, 0.88 mmol$)$ was added to a solution of alcohol $7(80 \mathrm{mg}, 0.22$ mmol) in dry THF (2 mL), cooled to $0{ }^{\circ} \mathrm{C}$ and stirred for 30 minutes under N_{2}. To the resulting suspension, TBAI ($8 \mathrm{mg}, 0.02 \mathrm{mmol}$) and benzyl bromide ($150 \mathrm{mg}, 0.88 \mathrm{mmol}$) were added and the reaction was allowed to warm to RT slowly. After stirring for $6 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) was added and the reaction mixture diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic phases were combined and washed with brine (5 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a crude residue. Purification by column chromatography (EtOAc:Pet, 1:99) gave benzyl ether 20 as a yellow oil ($99 \mathrm{mg}, 99 \%$); [$\alpha]^{23}+29$ (c $\left.1.00, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.96(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,2-$
$\left.\mathrm{CH}_{3}\right), 1.31\left(1 \mathrm{H}\right.$, app. q., J 11.4, 4-H $\left.\mathrm{axx}^{\prime}\right), 1.71-1.19\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}\right.$ and $\left.1^{\prime}-\mathrm{HH}\right), 1.87\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right), 2.11$ (1H, ddd, J 11.4, 4.6, 2.0, 4- H_{eq}), 2.22 (1H, d, J 13.7, SiCHH), 2.31 (1H, d, J 13.7, SiCHH), 2.71 (1H, m, 2'-HH), $2.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0,1-\mathrm{H}), 2.83\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{HH}\right), 3.07(1 \mathrm{H}, \mathrm{td}, J 11.4,4.6,3-\mathrm{H}), 3.22(1 \mathrm{H}$, tdd, J 11.4, 3.9, 2.0, 5-H), 4.43 (1H, d, J 11.5, CHHPh), 4.66 (1H, d, J 11.5, CHHPh), 7.05-7.38 (15H, $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.8\left(\mathrm{SiCH}_{3}\right),-3.7\left(\mathrm{SiCH}_{3}\right), 13.8\left(2-\mathrm{CH}_{3}\right), 23.9\left(\mathrm{SiCH}_{2}\right), 31.8\left(\mathrm{C}-2^{\prime}\right), 37.5$ (C-4), $38.2\left(\mathrm{C}-1^{\prime}\right), 39.2(\mathrm{C}-2), 70.3\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 74.4$ (C-1), $76.9(\mathrm{C}-5), 81.3(\mathrm{C}-3), 123.9(\mathrm{C}-\mathrm{Ar}), 125.7$ (C-Ar), 127.5 (C-Ar), 127.8 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.1 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.4 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.5 ($2 \times$ C-Ar), 130.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 138.7 (C-Ar), 140.1 (C-Ar), 142.4 (C-Ar); m/z (ESI) 481.2521 ($\mathrm{MNa}^{+}, 100 \%$, $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NaSiO}_{2}$ requires 481.2539).

(1S,3S,5R)-3-O-Benzyl-1-(Benzyldimethylsilane)-5-ethyl-(2'-phenylethyl)-tetrahydropyran

21

$\mathrm{NaH}(41 \mathrm{mg}, 60 \%$ dispersion in oil, 1.02 mmol) was added to a solution of alcohol 9 ($90 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ in dry THF (2.5 mL), cooled to $0^{\circ} \mathrm{C}$ and stirred for 30 minutes under N_{2}. To the resulting suspension, TBAI ($9 \mathrm{mg}, 0.03 \mathrm{mmol}$) and benzyl bromide ($174 \mathrm{mg}, 1.02 \mathrm{mmol}$) were added and the reaction was allowed to warm to RT slowly. After stirring for $12 \mathrm{~h}, \mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) was added and the reaction mixture diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, separated and the aqueous layers extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic phases were combined and washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give a crude residue. Further purification by column chromatography (EtOAc:Pet, 2:98) gave benzyl ether $\mathbf{2 1}$ as yellow oil (110 $\mathrm{mg}, 97 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.28(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., \mathrm{J} 11.0$, $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.42\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., J 12.7,2-\mathrm{H}_{\mathrm{ax}}\right), 1.72\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right), 1.83-1.91\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right.$ and $\left.2-\mathrm{H}_{\mathrm{eq}}\right)$, $2.02\left(1 \mathrm{H}, \mathrm{ddd}, J 11.0,4.7,2.2,4-\mathrm{H}_{\mathrm{eq}}\right), 2.17(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{SiCHH}), 2.26(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{SiCHH}) 2.70$ $\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-H \mathrm{H}\right), 2.82\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{HH}\right), 3.01\left(1 \mathrm{H}, \mathrm{dd}, J 12.7,1.7,1-\mathrm{H}_{\mathrm{ax}}\right), 3.18(1 \mathrm{H}, \mathrm{tdd}, J 11.0,4.2,2.2$, $5-\mathrm{H}), 3.48\left(1 \mathrm{H}, \mathrm{dtt}, \mathrm{J} 12.7,11.0,4.7,3-\mathrm{H}_{\mathrm{ax}}\right), 4.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 7.04-7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.19-$ $7.39(12 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.0\left(\mathrm{SiCH}_{3}\right),-5.8\left(\mathrm{SiCH}_{3}\right), 23.1\left(\mathrm{SiCH}_{2}\right), 31.8\left(\mathrm{C}-2^{\prime}\right), 33.4$ (C-2), 38.1 (C-4), $38.8\left(\mathrm{C}-1^{\prime}\right), 68.1(\mathrm{C}-1), 69.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 75.8(\mathrm{C}-3), 77.2(\mathrm{C}-5), 124.0(\mathrm{C}-\mathrm{Ar}), 125.7$ (C-Ar), 127.5 (C-Ar), 127.6 ($2 \times \mathrm{C}-\mathrm{Ar}$), 127.8 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.2 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.4 ($2 \times$

C-Ar), 128.5 ($2 \times$ C-Ar), 138.7 (C-Ar), 139.9 (C-Ar), 142.4 (C-Ar); $m / z(E S I) 467.2361$ ($\mathrm{MNa}^{+}, 100 \%$, $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NaSiO}$ requires 467.2377).

General procedure for the oxidation of 1-silyl tetrahydropyrans

TBAF (1.5 eq, 0.25 M solution in THF) was added dropwise over 30 minutes to a solution of 1silyl tetrahydropyran ($0.1 \mathrm{mmol}, 1 \mathrm{eq}$) in dry $\mathrm{THF}(1.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}. Upon warming slowly to $15{ }^{\circ} \mathrm{C}$, disappearance of 1-silyl tetrahydropyran was monitored by TLC. Urea hydrogen peroxide (5 eq), potassium hydrogen carbonate (3 eq) and dry methanol (0.25 mL) were added. This was left to warm to RT for 1 hour, monitored by TLC using phosphomolybdic acid staining, with the lactol visualized as a green spot. On completion aqueous saturated sodium thiosulfate solution (2 mL) was added, the organic phases separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The crude reaction mixture was concentrated in vacuo then taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. The solution was then cooled to $0^{\circ} \mathrm{C}$ and triethylamine (5 eq), acetic anhydride (3 eq) and a crystal of DMAP was added. The reaction was stirred for 1 h and on completion water (6 mL) was added and the organic phase separated. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 6 \mathrm{~mL})$, the combined organic phases dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was then purified by column chromatography (Pet:EtOAc) to yield 1-O-acetates as a mixture of α / β anomers, inseparable by column chromatography. Selected data is reported below.

(2R,3S,5R)-1,3-O-Acetyl-2-methyl-5-(2'-phenylethyl)-tetrahydropyran 17 (from 18)

Yellow oil (80 \%, $\alpha: \beta 51: 49)$; $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8, \beta-2-\mathrm{CH}_{3}\right), 0.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \alpha-$ 2- CH_{3}), 1.30-1.45 (2H, app. q., J 11.0, $2 \times 4-\mathrm{H}_{\mathrm{ax}}$), $2.05\left(\beta \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.07\left(\alpha \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.08(\beta$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.18\left(\alpha \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 5.36\left(1 \mathrm{H}, \mathrm{d}, J 9.0, \beta 1-\mathrm{H}_{\mathrm{ax}}\right), 6.13\left(1 \mathrm{H}, \mathrm{d}, J 3.5, \alpha 1-\mathrm{H}_{\mathrm{eq}}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 94.7(\mathrm{C}-1), 96.0(\mathrm{C}-1) ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}) 343.1530\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}\right.$ requires 343.1515).
(3S,5R)-1,3-O-Acetyl-5-(2'-phenylethyl)-tetrahydropyran 22 (from 19)

Colorless oil (64 \%, $\alpha: \beta 29: 71$); $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.05\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.15(3 \mathrm{H}, \mathrm{s}, \alpha-$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 5.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.3,2.5, \beta 1-\mathrm{H}_{\mathrm{ax}}\right), 6.31\left(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, \mathrm{J} 2.7, \alpha 1-\mathrm{H}_{\mathrm{eq}}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 92.0 (C-1), 92.1 (C-1); $m / z(E S I) 329.1345\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}\right.$ requires 329.1359).
(2R,3S,5R)-1-O-Acetyl-3-O-Benzyl-2-methyl-5-(2'-phenylethyl)-tetrahydropyran 23 (from 20)

Clear oil ($73 \%, \alpha: \beta 32: 68$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.06\left(3 \mathrm{H}, \mathrm{s}, \alpha \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{\beta C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, 5.32 (1H, d, J 9.2, a 1- H_{ax}), 6.13 (1H, d, J 3.5, β 1- $\mathrm{H}_{\text {eq }}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 95.2(\mathrm{C}-1), 96.4(\mathrm{C}-1)$; m / z (ESI) 391.1889 ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ONaCISi}$ requires 391.1879).
(3S,5R)-1-O-Acetyl-3-O-Benzyl-5-(2'-phenylethyl)-tetrahydropyran 24 (from 21)

Colorless oil (71 \% $\alpha: \beta$ 37:43); 2.04 ($3 \mathrm{H}, \mathrm{s}, \alpha-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$), 2.16 ($\left.3 \mathrm{H}, \mathrm{s}, \beta-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 5.61$ (1 H , dd, J 10.0, 2.2, 1-H Hax), $6.33\left(1 \mathrm{H}\right.$, br. d, J 2.5, 1- $\mathrm{H}_{\text {eq }}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 92.6(\mathrm{C}-1), 92.7(\mathrm{C}-1) ; m / z(E S I)$ 377.17171 ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}$ requires 377.1723).

(2R)-1,2-Epoxy-3-O-(tert-butyldiphenylsilane)-propane 25²

n-BuLi (1.48 M in hexanes, $4.56 \mathrm{~mL}, 6.78 \mathrm{mmol}$) was added dropwise to a solution of (S)-glycidol ($0.45 \mathrm{~mL}, 6.75 \mathrm{mmol}$) in THF (14.0 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2}. After 20 min , TBDPSCl ($1.86 \mathrm{~g}, 6.75 \mathrm{mmol}$) was added dropwise. After 5 min , the reaction mixture was warmed to RT and stirred for 72 h . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added and the reaction mixture was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography (Pet:EtOAc, 90:10) gave silyl ether $\mathbf{2 5}$ as a colourless oil (2.11 g, 99\%); $[\alpha]^{22} \mathrm{D}+1.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$, lit. $^{3}[\alpha]^{25}+2.3\left(c 2.00, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10$ $\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 2.64(1 \mathrm{H}, \mathrm{dd}, J 5.1,2.7,1-\mathrm{HH}), 2.77(1 \mathrm{H}, \mathrm{dd}, J 5.1,4.2,1-\mathrm{HH}), 3.18(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H})$, $3.75(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 3.89(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{HH}), 7.32-7.53(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.62-7.84(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 26.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 44.5(\mathrm{C}-1), 52.3(\mathrm{C}-2), 64.3(\mathrm{C}-3), 127.7(2 \times \mathrm{C}-\mathrm{Ar}) \text {, }, ~(2)}\right.$ 129.8 ($2 \times \mathrm{C}-\mathrm{Ar}$), 133.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 134.8 ($2 \times \mathrm{C}-\mathrm{Ar}$), 135.6 ($2 \times \mathrm{C}-\mathrm{Ar}$). Spectroscopic data in agreement with literature. ${ }^{2}$

(2R)-1-O-(tert-Butyldiphenylsilyl)-4-penten-1,2-diol 26²

Vinylmagnesium bromide (1.0 M in THF, $7.36 \mathrm{~mL}, 7.36 \mathrm{mmol}$) was added dropwise to a solution of $\mathrm{CuCN}(0.33 \mathrm{~g}, 3.68 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2}. The reaction mixture was warmed to $-60^{\circ} \mathrm{C}$ until the CuCN had dissolved. The reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of epoxide $25(500 \mathrm{mg}, 1.60 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ added dropwise. The reaction mixture was slowly warmed to $-60{ }^{\circ} \mathrm{C}$ and stirred for 3 h . The reaction mixture was quenched with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and stirred for 25 mins. $\mathrm{Et}_{2} \mathrm{O}(30$
mL) and water (30 mL) were added and the organic phase was separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (40 mL), dried over MgSO_{4} and concentrated in vacuo. Purification by column chromatography (Pet: EtOAc, 90:10) gave alcohol 26 as a colourless oil ($482 \mathrm{mg}, 89 \%$); $[\alpha]^{25}+2.5$ (c 1.0, CHCl_{3}), lit. ${ }^{2}[\alpha]$ ${ }_{\mathrm{D}}^{25}+3.0\left(c 0.99, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right), 2.21-2.29\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.56$ ($1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}$), $3.68(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{HH}), 3.80(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 6.6,3.7,2-\mathrm{H}), 5.03-5.13\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right), 5.74-5.87$ (1H, m, 4-H), 7.36-7.50 (6H, m, ArH), 7.64-7.72 (4H, m, ArH); $\delta_{C}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) ; 18.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) \text {, }}\right.$ $26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 37.2(\mathrm{C}-3), 67.0(\mathrm{C}-1), 70.9(\mathrm{C}-2), 117.1(\mathrm{C}-5), 127.4$ ($2 \times \mathrm{C}-\mathrm{Ar}$), 129.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 134.0 (C-4), 134.5 ($2 \times$ C-Ar), 135.2 ($2 \times \mathrm{C}-\mathrm{Ar}$). Spectroscopic data in agreement with the literature. ${ }^{2}$

(1S,3S,5S)-3-O-Acetyl-5-acetoxymethyl-1-(benzyldimethylsilyl)-tetrahydropyran 27

To a solution of homoallylic alcohol 26 ($46 \mathrm{mg}, 0.14 \mathrm{mmol}$), silyl acetal 5 ($68 \mathrm{mg}, 0.27 \mathrm{mmol}$) and trimethylsilyl acetate ($20 \mu \mathrm{l}, 0.14 \mathrm{mmol}$) in acetic acid (1 mL) was added triethylsilyl trifluoromethanesulfonate (TESOTf) ($122 \mu \mathrm{l}, 0.54 \mathrm{mmol}$). This was stirred for 5 minutes, then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and saturated aqueous solution of $\mathrm{NaHCO}_{3}(5$ mL) added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, combined, washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude residue was then purified by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 85: 15$) to give diacetate 27 as a yellow oil ($32 \mathrm{mg}, 65 \%$); $[\alpha]^{23}+37\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3059(\mathrm{CH}), 2955(\mathrm{CH})$, 1737 (C=O), $1600(\mathrm{C}=\mathrm{C}), 1027(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $1.39\left(1 \mathrm{H}\right.$, app. q., J 11.8, $\left.2-\mathrm{H}_{\mathrm{ax}}\right), 1.51\left(1 \mathrm{H}\right.$, app. q., J 12.5, $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.87$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.5,4.7,2.5,4-$ $\mathrm{H}_{\text {eq }}$), $2.03\left(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J} 11.8,4.7,2.5,2-\mathrm{H}_{\text {eq }}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.17(1 \mathrm{H}$, d, J 13.5, SiCHH), $2.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{SiCHH}), 3.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.8,2.5,1-\mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$, 4.07 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5,3.9,1^{\prime}-\mathrm{HH}$), 4.19 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5,6.91^{\prime}-\mathrm{HH}$), 4.90 (1 H , app. tt, J 11.8, 4.7, 3H), 7.02-7.09 (3H, m, ArH), 7.18-7.22 (2H, m, ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$-6.3 $\left(\mathrm{SiCH}_{3}\right),-6.0\left(\mathrm{SiCH}_{3}\right)$, $20.8\left(\mathrm{COCH}_{3}\right), 21.2\left(\mathrm{COCH}_{3}\right), 22.3\left(\mathrm{SiCH}_{2}\right), 32.3(\mathrm{C}-4), 34.0(\mathrm{C}-2), 66.8\left(\mathrm{C}-1{ }^{\prime}\right), 67.9(\mathrm{C}-1), 71.0(\mathrm{C}-3)$,
75.8 (C-5), 124.1 (C-Ar), 128.1 ($2 \times$ C-Ar), 128.2 ($2 \times \mathrm{C}-\mathrm{Ar}$), 139.5 (C-Ar), 170.4 (CO), 170.8 (CO); $\mathrm{m} / \mathrm{z}(\mathrm{ESI}) 387.1601\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{NaSi}\right.$ requires 387.1604).

2,4-Dideoxy-gluc-3,5-diacetate hexopyranose 28

TBAF ($1 \mathrm{~mL}, 0.50 \mathrm{mmol}, 0.5 \mathrm{M}$ solution in THF) was added dropwise over 15 minutes to a solution of 1-silyl tetrahydropyran $27(60 \mathrm{mg}, 0.16 \mathrm{mmol}, 1 \mathrm{eq})$ in dry THF (4 mL) at $0^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed slowly to RT until disappearance of 1-silyl tetrahydropyran 27 by TLC. Urea hydrogen peroxide ($78 \mathrm{mg}, 0.82 \mathrm{mmol}$), potassium hydrogen carbonate ($50 \mathrm{mg}, 0.50$ mmol) and dry methanol (1 mL) was added. The reaction was warmed to $40^{\circ} \mathrm{C}$ and left to stir for 12 h and upon completion aqueous saturated sodium thiosulphate solution (3 mL) was added, the organic phases separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The crude reaction mixture was concentrated in vacuo then taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}$). The solution was then cooled to $0^{\circ} \mathrm{C}$ and triethylamine ($230 \mu \mathrm{l}, 1.64 \mathrm{mmol}$), a crystal of DMAP then acetic anhydride ($78 \mu \mathrm{l}, 0.82 \mathrm{mmol}$) was added. The reaction was warmed to RT and left to stir for 1 h and on completion water (12 mL) was added and the organic phase separated. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, the combined organic phases dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was then purified by column chromatography $\left(\mathrm{Pet}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}\right.$, $50: 50$) to yield 28 as a yellow oil, as a mixture of α / β anomers ($26 \mathrm{mg}, 57 \%, \alpha: \beta 31: 69$); $\delta_{H}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.67(1 \mathrm{H}, \mathrm{m}, 1 \times 2-\mathrm{HH}$ or $4-\mathrm{HH}), 1.73-1.83(4 \mathrm{H}, \mathrm{m}, 4 \times 2-\mathrm{HH}$ or $4-\mathrm{HH}), 1.94-2.04(3 \mathrm{H}$, $\mathrm{m}, 3 \times 2-\mathrm{HH}$ or $4-\mathrm{HH}), 2.08-2.11\left(9 \mathrm{H}\right.$, br. $\left.\mathrm{m}, 3 \times \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.12-2.18\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 4.09-4.15$ $\left(4 \mathrm{H}, 2 \mathrm{x}\right.$ br. s, $\left.2 \times 1^{\prime}-\mathrm{H}_{2}\right), 4.18\left(1 \mathrm{H}, \mathrm{m}, \beta 5-\mathrm{H}_{\mathrm{ax}}\right), 4.38\left(1 \mathrm{H}, \mathrm{m}, \alpha 5-\mathrm{H}_{\mathrm{ax}}\right), 5.16\left(1 \mathrm{H}, \mathrm{br} . \mathrm{m}, \alpha-3-\mathrm{H}_{\mathrm{ax}}\right), 5.32$ $\left(1 H\right.$, br. m, $\left.\beta 3-H_{a x}\right), 6.01\left(1 H, d d, J 9.8,2.0, \beta 1-H_{a x}\right), 6.20\left(1 H, d, J 3.9, \alpha 1-H_{e q}\right) ; \delta_{c}(100 \mathrm{MHz} ;$ CDCl_{3}) 20.8 (br. $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$), 21.2 (br. $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$), 29.7, 30.6, 30.9, 31.1, 34.0, $64.2(\alpha \mathrm{C}-5$), $65.0(\alpha \mathrm{C}-$ 3), $66.0\left(\mathrm{C}-1^{\prime}\right), 66.2\left(\mathrm{C}-1^{\prime}\right), 67.2$ ($\beta \mathrm{C}-3$), 70.0 ($\beta \mathrm{C}-5$), 91.0 ($\beta \mathrm{C}-1$), 91.1 ($\alpha \mathrm{C}-1$), $169.2(C O), 169.4$ (CO), 170.0 (CO), 170.2 (CO), 170.8 (CO), 170.9 (CO); m/z (ESI) $297.0940\left(\mathrm{MNa}^{+}, 100 \%\right.$, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{Na}$ requires 297.0945).

(1S,3S,5S)-1-(Benzyldimethylsilyl)-3-ethoxy-5-((tert-butyldiphenylsilyloxy)methyl) -

tetrahydropyran 29

Trifluoroacetic acid ($580 \mu \mathrm{l}, 5.96 \mathrm{mmol})$ was added dropwise to a solution of alcohol $\mathbf{2 6}$ (101 mg, $0.30 \mathrm{mmol})$ and silyl acetal $5(90 \mathrm{mg}, 0.36 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at RT under N_{2} and stirred for 5 mins. Aqueous saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, the organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, then concentrated in vacuo to afford the crude residue. This was further purified by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 96: 4$) gave ethyl ether 29 as a colourless oil ($58 \mathrm{mg}, 74 \%$); $[\alpha]^{23}+22\left(c 0.45, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-3} 2937(\mathrm{C}-\mathrm{H}), 1596(\mathrm{C}=\mathrm{C}), 1090(\mathrm{C}-\mathrm{O}), 1070(\mathrm{C}-\mathrm{O}), 1003$ $(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.07\left(9 \mathrm{H}, \mathrm{br} . \mathrm{s} .,\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.27\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., J 11.3,4-\mathrm{H}_{\mathrm{ax}}\right), 1.36\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., J 11.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.83(1 \mathrm{H}$, ddd, J 11.5, 3.9, 2.0, 2-Heq), $2.04\left(1 \mathrm{H}, \mathrm{ddd}, J 11.3,4.4,2.0,4-\mathrm{H}_{\text {eq }}\right.$), $2.13(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{SiCHH}), 2.28$ (1H, d, J 13.5, SiCHH), $3.06(1 \mathrm{H}, \mathrm{dd}, J 11.5,2.0,1-\mathrm{H}), 3.42(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $5-\mathrm{H}), 3.53(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $3.63\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,4.2,1^{\prime}-\mathrm{HH}\right), 3.72\left(1 \mathrm{H}, \mathrm{dd}, J 10.5,5.6,1^{\prime}-\mathrm{H} H\right)$, $7.04-7.22(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.37-7.76(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.2\left(\mathrm{SiCH}_{3}\right)-6.0\left(\mathrm{SiCH}_{3}\right) 14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 26.8$ $\left.\left(\left(\mathrm{CH}_{3}\right)_{3}\right), 28.9\left(\mathrm{C}_{3} \mathrm{CH}_{3}\right)_{3}\right), 33.4(\mathrm{C}-2), 35.0(\mathrm{C}-4), 62.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 67.3\left(\mathrm{C}-1^{\prime}\right), 68.0(\mathrm{C}-1), 76.2(\mathrm{C}-3)$, 79.2 (C-5), 123.9 (3 x C-Ar), 127.6 ($2 \times$ C-Ar), 128.1 (C-Ar), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 129.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 129.6 (2 x C-Ar), 133.8 (C-Ar), 135.6 (2 x C-Ar), 135.7 (2 x C-Ar), 139.9 (C-Ar); m/z (ESI) 569.2891 (MNa+, $100 \%, \mathrm{C}_{33} \mathrm{H}_{46} \mathrm{NaSi}_{2} \mathrm{O}_{3}$ requires 569.2883).

To a solution of (S)-glycidol ($896 \mu \mathrm{l}, 1.0 \mathrm{~g}, 13.5 \mathrm{mmol}$) in THF $(130 \mathrm{~mL})$ was added $\mathrm{NaH}(2.15 \mathrm{~g}$, 60% dispersion in oil, 54.0 mmol) at $0^{\circ} \mathrm{C}$ under N_{2}. The resulting mixture was stirred for 30 minutes, after which benzyl bromide ($6.41 \mathrm{~mL}, 54.0 \mathrm{mmol}$) and tert-butylammonium iodide (498 $\mathrm{mg}, 1.35 \mathrm{mmol}$) were added. The reaction mixture was allowed to warm to RT and stirred overnight. Saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(130 \mathrm{~mL})$ was then added. The organic phases were extracted with EtOAc ($3 \times 100 \mathrm{~mL}$), combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude residue was then purified by column chromatography ($\mathrm{Pet}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}, 86: 14$) to give epoxide SI-2 an colourless oil ($2.09 \mathrm{~g}, 94 \%$); $[\alpha]^{25}-5.0$ (c $0.97, \mathrm{CHCl}_{3}$), lit. ${ }^{4}[\alpha]^{25}-6.8$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.7,5.4,1-\mathrm{HH}), 2.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.9,1-\mathrm{HH}), 3.11(1 \mathrm{H}, \mathrm{m}$, $2-H), 3.37(1 H, d d, J 11.5,5.9,3-H H), 3.69(1 H, d d, J 11.5,2.9,3-H H), 4.48(1 H, d, J 12.0, C H H P h)$, $4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0, \mathrm{CH} H \mathrm{Ph}), 7.18-7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 44.2$ (C-1), 50.8 (C-2), $70.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.3(\mathrm{C}-3), 127.7$ (C-Ar), 128.4 (C-Ar), 137.8 (C-Ar). Data in accordance with literature. ${ }^{5}$
(2R)-1-O-(Benzyl)-4-pentene-1,2-diol SI-3

To a solution of epoxide SI-2 (1.4 g, 9.74 mmol$)$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and copper (I) iodide (185 mg, 0.97 mmol) at $-78^{\circ} \mathrm{C}$ under N_{2} was added vinyl magnesium bromide (10.7 mL of 1 M solution in THF, 10.7 mmol) dropwise over 5 minutes. The resulting mixture was allowed to stir for 4 h , after which saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added. The organics were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, combined, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude residue was then purified by column chromatography (85:15, Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) to give alcohol SI-3 an colourless oil ($1.85 \mathrm{~g}, 99 \%$); $[\alpha]^{25}-6.0$ (c 1.5, $\left.\mathrm{CHCl}_{3}\right)$, lit. ${ }^{6}[\alpha]^{25}-4.98\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.19\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right), 3.31(1 \mathrm{H}, \mathrm{dd}, J 9.5$, $7.4,1-H H), 3.44(1 \mathrm{H}, J 9.51 .7,1-H H), 3.81(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.94(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}) .4 .49\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.02(1 \mathrm{H}, \mathrm{dd}, J 10.1,1.9,5-H \mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{dd}, J 17.2,1.9,5-H \mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 7.20-7.31(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 37.9(\mathrm{C}-3), 69.7(\mathrm{C}-2), 73.3\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 73.8(\mathrm{C}-1), 117.7(\mathrm{C}-5), 127.6$
(C-Ar), 127.7 (C-Ar), 128.4 (C-Ar), 134.2 (C-4), 137.9 (C-Ar). Data in accordance with the literature. ${ }^{7}$

To a solution of alcohol SI-3 ($46 \mathrm{mg}, 0.14 \mathrm{mmol}$) and silyl acetal 5 ($68 \mathrm{mg}, 0.27 \mathrm{mmol}$) and trimethylsilyl acetate ($20 \mu \mathrm{l}, 0.14 \mathrm{mmol}$) in acetic acid (1 mL) was added triethylsilyl trifluoromethanesulfonate (TESOTf) ($122 \mu \mathrm{l}, 0.54 \mathrm{mmol}$). This was stirred for 5 minutes, then the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and saturated aqueous solution of NaHCO_{3} (5 mL) was carefully added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, combined, washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude residue was then purified by column chromatography (91: 9, Hexanes: $\mathrm{Et}_{2} \mathrm{O}$) to give acetate 30 as yellow oil ($42 \mathrm{mg}, 72 \%$); $[\alpha]^{23}+28.3$ (c 1.27, CHCl_{3}); $\mathrm{v}_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3061$ (CH), 2856 (CH), 1738 (C=O), 1600 (C=C), 1026 (C-O); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) -0.03 (3H, s, SiCH_{3}), $0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.38\left(1 \mathrm{H}\right.$, app. q., J 12.5, $\left.4-\mathrm{H}_{\mathrm{ax}}\right), 1.46\left(1 \mathrm{H}\right.$, app. q., J 12.5, 2- H_{ax}), 1.83 (1 H , ddt, $\left.J 12.5,6.6,2.0,2-\mathrm{H}_{\text {eq }}\right), 2.01\left(1 \mathrm{H}, \mathrm{ddt}, J 12.5,6.6,2.2,4-\mathrm{H}_{\text {eq }}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 13.8, SiCHH), 2.24 (1H, d, J 13.8, SiCHH), 3.14 (1H, dd, J 12.5, 2.2, 1-H), 3.47 (1H, dd, J 13.3, 6.9, $\left.1^{\prime}-H \mathrm{H}\right), 3.53-3.60\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{HH}\right.$ and $\left.5-\mathrm{H}\right), 4.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.81(1 \mathrm{H}, \mathrm{app} . \mathrm{tt}, \mathrm{J} 12.5,6.6,3-\mathrm{H})$, 7.03-7.11 (3H, m, ArH), 7.19-7.23 (2H, m, ArH), 7.28-7.38 (5H, m, ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$-6.2 $\left(\mathrm{SiCH}_{3}\right),-5.9\left(\mathrm{SiCH}_{3}\right), 21.3\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 22.9\left(\mathrm{SiCH}_{2}\right), 32.6(\mathrm{C}-2), 34.4(\mathrm{C}-4), 68.1(\mathrm{C}-1), 71.5\left(\mathrm{C}-1^{\prime}\right)$, $73.3\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 73.3$ (C-5), 77.9 (C-3), 124.1 ($2 \times \mathrm{C}-\mathrm{Ar}$), 127.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.2 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 (2 x C-Ar), 128.4 (2 x C-Ar), 138.5 (C-Ar), 139.5 (C-Ar), 170.6 (CO); m/z (ESI) 435.1842 ($\mathrm{MNa}^{+}, 100 \%$, $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NaSi}$ requires 435.1962).

(3R, 5R)-1,3-O-Acteyl-5-(1'-benzyloxymethyl)-tetrahydropyran 31

TBAF ($2.1 \mathrm{~mL}, 1.04 \mathrm{mmol}, 0.5 \mathrm{M}$ solution in THF) was added dropwise over 15 minutes to a solution of 1-silyl tetrahydropyran 30 ($143 \mathrm{mg}, 0.35 \mathrm{mmol}, 1 \mathrm{eq}$) in dry THF (2 mL) at $0^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed slowly to room temperature until disappearance of 1-silyl tetrahydropyran 30 by TLC. Urea hydrogen peroxide ($163 \mathrm{mg}, 1.74 \mathrm{mmol}$), potassium hydrogen carbonate ($104 \mathrm{mg}, 1.04 \mathrm{mmol}$) and dry methanol (0.7 mL) was added. This was left to stir at RT for 12 h and upon completion aqueous saturated sodium thiosulphate solution (3 mL) was added, the organic phase separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The crude reaction mixture was concentrated in vacuo then taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and triethylamine ($420 \mu \mathrm{l}, 3.00 \mathrm{mmol}$), a crystal of DMAP and acetic anhydride ($190 \mu \mathrm{l}, 2.00 \mathrm{mmol}$) was added. The reaction was warmed to RT and left to stir for 1 h and on completion water (6 mL) was added and the organic phase separated. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic phases dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was then purified by column chromatography $\left(\mathrm{Pet}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}\right.$, $75: 25$) to yield 31 as a colourless oil, as mixture of α / β anomers; ($77 \mathrm{mg}, 67 \% \alpha$: $\beta 39: 69$); δ_{H} (400 MHz; CDCl_{3}) 1.67-1.88 ($6 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{HH}$ and $2 \times 4-\mathrm{H}_{2}$), 1.94-2.04 ($2 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{HH}$), $2.06(6 \mathrm{H}$, br. s., $\left.2 \times \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \alpha \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.11\left(3 \mathrm{H}, \mathrm{s}, \beta \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 3.48-3.62\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{H}_{2}\right)$, $4.11\left(1 \mathrm{H}, \mathrm{m}, \beta 5-\mathrm{H}_{\mathrm{ax}}\right), 4.35\left(1 \mathrm{H}, \mathrm{m}, \alpha 5-\mathrm{H}_{\mathrm{ax}}\right), 4.54-4.60\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}\right), 5.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.4,4.8$, $\left.\alpha 3-\mathrm{H}_{\mathrm{ax}}\right) 5.21\left(1 \mathrm{H}, \mathrm{dd}, J 7.7,4.4, \beta 3-\mathrm{H}_{\mathrm{ax}}\right), 5.71\left(1 \mathrm{H}, \mathrm{dd}, J 9.9,2.1, \beta 1-\mathrm{H}_{\mathrm{ax}}\right), 6.33(1 \mathrm{H}, \mathrm{d}, J 2.8, \alpha 1-$ $\mathrm{H}_{\text {eq }}$), 7.17-7.35 (10H, m, ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)\{21.1,21.1,21.2,21.3\}\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right),\{33.0,33.0$, 32.4, 35.8\} (C-2 and C-4), 69.2 (C-1'), 71.9 (C-1'), 72.1 (C-5), 72.1 (C-5), 72.3 (C-3), 73.4 (C-3), 92.1 (α C-1), 92.4 (β C-1), 127.7 (C-Ar), 128.3 (C-Ar), 129.7 (C-Ar), 137.9 (C-Ar), 168.9 (2 x CO), 170.1 ($2 \times \mathrm{CO}$); $m / z(\mathrm{ESI}) 345.1305\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}\right.$ requires 345.1309).
(1R,3S,5S)-3-O-Acetyl-1-O-cyclohexyl-5-(1'-(benzyloxy)methyl)-tetrahydropyran 32

$\mathrm{BF} 3 \cdot \mathrm{OEt}_{2}(37 \mu \mathrm{~L}, 0.30 \mathrm{mmol})$ was added dropwise to a solution of acetate $31(65 \mathrm{mg}, 0.20 \mathrm{mmol})$, cyclohexanol ($32 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) and $4 \AA$ molecular sieves (50 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under N_{2}. The reaction was stirred for 4 h when a saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, combined, washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude residue was then purified by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 90: 10$) to give acetate 31 as a colourless oil, as the α anomer ($52 \mathrm{mg}, 72 \%$); $\mathrm{v}_{\max }$ (neat)/cm ${ }^{-1} 2930$ (CH), 2856 (CH), 17401 (C=O), 1452 (C-C), 1025 (C-O); $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.15-1.31 (4H, m, $4 \times$ CyHex CH) 1.35 ($1 \mathrm{H}, \mathrm{m}$, CyHex CH), 1.46 (1 H, app. q, J 12.0, $4-\mathrm{H}_{\mathrm{ax}}$), 1.52 ($\left.1 \mathrm{H}, \mathrm{m}, ~ С y H e x ~ C H\right), ~ 1.66 ~(1 H, ~ a p p . ~ d t, ~ J ~ 11.5, ~ 3.5, ~$ 2- H_{ax}), 1.67-1.77 (2H, m, $2 \times$ CyHex CH), 1.81-1.91 ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CyHex} \mathrm{CH}$), 1.97-2.06 (5H, m, 2$\mathrm{H}_{\text {eq }} 4-\mathrm{H}_{\text {eq }}$ and $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right) 3.49\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,4.0,1^{\prime}-\mathrm{HH}\right), 3.52\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.5,5.0,1^{\prime}-\mathrm{HH}\right), 3.57$ (1H, m, CyHex CH), 4.10 ($1 \mathrm{H}, \mathrm{dtd}, \mathrm{J} 11.5,4.5,2.0,5-\mathrm{H}) 4.56$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHHPh}$), 4.57 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHHPh}$), $5.17\left(1 \mathrm{H}, \mathrm{d}, J 3.5,1-\mathrm{H}_{\text {eq }}\right) 5.22(1 \mathrm{H}, \mathrm{app} . \mathrm{tt}, J 11.5,5.0,3-\mathrm{H}), 7.25-7.30(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.31-7.36(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.5\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $24.1\left(\mathrm{CH}_{2}-\mathrm{CyHex}\right), 24.4\left(\mathrm{CH}_{2}-\mathrm{CyHex}\right), 25.8\left(\mathrm{CH}_{2}{ }^{-}\right.$ CyHex), 31.6 ($\left.\mathrm{CH}_{2}-\mathrm{CyHex}\right), 33.6\left(\mathrm{CH}_{2}-\mathrm{CyHex}\right), 33.9$ (C-4), 36.2 (C-2), 66.9 (C-5), 67.4 (C-3), 73.0 (C1^{\prime}), $73.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right.$), 74.6 (CH-CyHex), 95.7 (C-1), 127.6 ($2 \times \mathrm{C}-\mathrm{Ar}$), 127.7 (C-Ar), 128.4 ($2 \times \mathrm{C}-\mathrm{Ar}$), 138.4 (C-Ar), 170.5 (CO); $m / z(E S I) 385.1986\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Na}\right.$ requires 385.1985).
(1R, 3R, 5R)-1-(Benzyldimethylsilyl)-5-(1'-benzyloxymethyl)-3-hydroxy-tetrahydropyran SI4

Potassium carbonate ($149 \mathrm{mg}, 1.08 \mathrm{mmol}$) was added to a solution of acetate $\mathbf{3 0}(148 \mathrm{mg}, 0.36$ $\mathrm{mmol})$ in methanol (4 mL) at RT. After stirring for 10 minutes, the methanol was removed under reduced pressure, water (5 mL) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give alcohol SI-4 as a colourless oil ($130 \mathrm{mg}, 98 \%$); $[\alpha]^{23}+29\left(c 1.00, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.25\left(1 \mathrm{H}\right.$, app. q., J 12.2, 4- $\left.\mathrm{H}_{\mathrm{ax}}\right), 1.35\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., J 12.5,2-\mathrm{H}_{\mathrm{ax}}\right), 1.79(1 \mathrm{H}$, ddd, $\left.J 12.5,4.5,2.0,2-H_{\text {eq }}\right), 2.00\left(1 \mathrm{H}\right.$, ddd, $\left.J 12.2,4.5,2.0,4-\mathrm{H}_{\text {eq }}\right), 2.14(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{SiCHH}), 2.25(1 \mathrm{H}$, d, J 13.7, SiCHH), $3.08(1 \mathrm{H}, \mathrm{dd}, J 12.5,2.0,1-\mathrm{H}), 3.45-3.51\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 3.58(1 \mathrm{H}, \mathrm{app} . \mathrm{br} . \mathrm{dtd}, J$ 12.5, 5.7, 2.0, 5-H), 3.75 (1H, app. tt, J 12.5, 4.5, 3-H), 4.62 (2H, s, CH 2 Ph), 7.04-7.09 (3H, m, ArH), 7.19-7.23 (2H, m, ArH), 7.28-7.39 (5H, m, ArH); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$-6.1 $\left(\mathrm{SiCH}_{3}\right),-5.9\left(\mathrm{SiCH}_{3}\right)$, $23.0\left(\mathrm{SiCH}_{2}\right), 36.3$ (C-2), 38.4 (C-4), 68.3 (C-3), $69.1(\mathrm{C}-1), 73.4\left(\mathrm{C}-1^{\prime}\right), 73.5\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 78.0(\mathrm{C}-5)$, 124.0 ($2 \times \mathrm{C}-\mathrm{Ar}$), 127.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 127.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.4 (C-Ar), 128.5 (C-Ar), 138.7 (C-Ar), 139.8 (C-Ar); m / z (ESI) 393.1842 ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NaSi}$ requires 493.1862).
(1R, 3S, 5R)-1-(Benzyldimethylsilyl)-5-(1'-benzyloxymethyl)-3-hydroxy-tetrahydropyran 33

Diethyl azodicarboxylate ($94 \mu \mathrm{l}, 0.60 \mathrm{mmol}$) was added dropwise to a solution of triphenylphosphine ($157 \mathrm{mg}, 0.60 \mathrm{mmol}$) and para-nitrobenzoic acid ($100 \mathrm{mg}, 0.60 \mathrm{mmol}$) in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$.Alcohol SI-4 ($75 \mathrm{mg}, 0.20 \mathrm{mmol}$) was added as a solution in THF (1 mL) dropwise and allowed to warm to RT over 1 h . The solvent was removed in vacuo and the resulting crude residue was filtered through a SiO_{2} plug ($\mathrm{Et}_{2} \mathrm{O}:$ Pet. 15:85). The solvent was removed in vacuo to afford a crude residue, which was taken up in methanol (3 mL) and potassium carbonate (55 mg ,
0.4 mmol) added. After stirring for 10 minutes at RT , the methanol was removed under reduced pressure, water $(5 \mathrm{~mL})$ added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford alcohol 33 as a colourless oil 64 mg , $87 \%) ;[\alpha]^{23}+22\left(c 1.00, \mathrm{CHCl}_{3}\right) ; \delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.46$ $\left(1 \mathrm{H}, \mathrm{ddd}, J 13.2,4.9,2.2,4-\mathrm{H}_{\mathrm{ax}}\right), 1.57-1.68\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right), 1.74\left(1 \mathrm{H}, \mathrm{app} . \mathrm{dd}, J 13.2,2.7,4-\mathrm{H}_{\mathrm{eq}}\right)$, $2.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{SiCHH}), 2.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.5, \mathrm{SiCHH}), 3.45\left(1 \mathrm{H}, \mathrm{dd}, J 10.7,4.4,1^{\prime}-H H\right), 3.52(1 \mathrm{H}, J$ $\left.10.7,5.7,1^{\prime}-H H\right), 3.60(1 H$, dd, J 13.2, 2.1, 1-H), 3.91 (1H, app. br. dtd, J 13.2, 5.7, 2.7, 5-H), 4.23 (1 H , app. t, J 2.7, 3- $\mathrm{H}_{\text {eq }}$), 4.62 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 7.03-7.10 (3H, m, ArH), 7.17-7.24 (2H, m, ArH), 7.28$7.39(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.2\left(\mathrm{SiCH}_{3}\right),-5.7\left(\mathrm{SiCH}_{3}\right), 23.0\left(\mathrm{SiCH}_{2}\right), 33.6(\mathrm{C}-2), 35.6(\mathrm{C}-$ 4), $63.6(\mathrm{C}-1), 63.7(\mathrm{C}-3), 72.5(\mathrm{C}-5), 73.3\left(\mathrm{C}-1^{\prime}\right), 73.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 124.0(2 \times \mathrm{C}-\mathrm{Ar}), 127.4(2 \times \mathrm{C}-\mathrm{Ar})$, 127.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.1 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 138.7 (C-Ar), 139.9 (C-Ar); m/z (ESI) 393.1842 ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{NaSi}$ requires 493.1862).

(3S,5R)-1,3-O-Acetyl-5-(1'benzyloxymethyl)-tetrahydropyran 34

TBAF ($800 \mu \mathrm{l}, 0.4 \mathrm{mmol}, 0.5 \mathrm{M}$ solution in THF) was added dropwise over 15 minutes to a solution of 1-silyl tetrahydropyran $33(50 \mathrm{mg}, 0.14 \mathrm{mmol}, 1 \mathrm{eq})$ in dry $\mathrm{THF}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed slowly to RT until disappearance of 1-silyl tetrahydropyran 33 by TLC. Urea hydrogen peroxide ($64 \mathrm{mg}, 0.68 \mathrm{mmol}$), potassium hydrogen carbonate ($56 \mathrm{mg}, 0.41$ mmol) and dry methanol (1 mL) was added. This was left to stir at $40^{\circ} \mathrm{C}$ for 12 h and upon completion aqueous saturated sodium thiosulphate solution (3 mL) was added, the organic phase separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The crude reaction mixture was concentrated in vacuo then taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was then cooled to 0 ${ }^{\circ} \mathrm{C}$ and triethylamine ($189 \mu \mathrm{l}, 1.4 \mathrm{mmol}$), a crystal of DMAP then acetic anhydride ($65 \mu \mathrm{l}, 0.68$ mmol) was added. The reaction was warmed to RT and left to stir for 1 h and on completion water (5 mL) was added and the organic phase separated. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic phases dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was then purified by column chromatography ($\mathrm{Pet}_{\mathrm{Et}}^{2} \mathrm{O}, 75: 25$) to yield diacetate 34 as a
colourless oil and mixture of α / β anomers ($33 \mathrm{mg}, 75 \%, \alpha: \beta 33: 67$); $\delta_{H}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.68 $1.87\left(6 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{HH}\right.$ and $\left.2 \times 4-\mathrm{H}_{2}\right), 1.97-2.03(2 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{HH}), 2.04\left(3 \mathrm{H}, \mathrm{s}, \alpha \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.08$ ($6 \mathrm{H}, \mathrm{br}$. s., $2 \times \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$), $2.10\left(3 \mathrm{H}, \mathrm{s}, \beta \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 3.50-3.58\left(4 \mathrm{H}, \mathrm{m}, 2 \times 1^{\prime}-\mathrm{H}_{2}\right), 4.13(1 \mathrm{H}, \mathrm{dqd}, \mathrm{J}$ 11.0, 4.9, 3.4, $\beta 5-\mathrm{H}_{\mathrm{ax}}$), 4.35 ($1 \mathrm{H}, \mathrm{dqd}, J$ 15.2, 4.7, 1.0, $\alpha 5-\mathrm{H}_{\mathrm{ax}}$), 4.54-4.60 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{Ph}$), 5.15 $\left(1 \mathrm{H}, \mathrm{q}, J 3.2, \alpha 3-\mathrm{H}_{\text {eq }}\right) 5.32\left(1 \mathrm{H}, \mathrm{q}, J 3.2, \beta 3-\mathrm{H}_{\mathrm{eq}}\right), 6.01\left(1 \mathrm{H}, \mathrm{dd}, J 9.8,2.5, \beta 1-\mathrm{H}_{\mathrm{ax}}\right), 6.20(1 \mathrm{H}, \mathrm{d}, J$ $\left.3.9, \alpha 1-\mathrm{H}_{\text {eq }}\right), 7.28-7.37(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)\{21.1,21.2,21.2,21.3\}\left(\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $\{31.0,31.3,31.4,34.2\}(\mathrm{C}-4$ and $\mathrm{C}-2$), $\{65.3,65.6,67.6,71.3,72.1,72.4,73.4,73.5\}$ (C-1, C-1', C-5 and C-3), 91.2 ($\beta-\mathrm{C}-1$), 91.4 ($\alpha-\mathrm{C}-1$), 127.6 ($2 \times \mathrm{C}-\mathrm{Ar}$), 127.7 ($2 \times \mathrm{C}-\mathrm{Ar}$), 127.8 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.4 ($2 \times$ C-Ar), 137.0 ($2 \times \mathrm{C}-\mathrm{Ar}$), 169.2 (CO), 19.5 (CO), 170.1 (CO), 170.3 (CO); m/z (ESI) 345.1308 (MNa^{+}, $100 \%, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}$ requires 345.1309).

(3R,4R)-3-Hydroxy-4-ethoxy-1-phenyl-hex-5-en 35

To a solution of allyl ethyl ether (395 $\mu \mathrm{l}, 3.49 \mathrm{mmol}$) in THF (5 mL) and tetramethylethylenediamine ($420 \mu \mathrm{l}, 2.79 \mathrm{mmol}$) was added n-butyllithium ($1.84 \mathrm{~mL}, 1.52 \mathrm{M}$ solution in hexanes, 2.79 mmol) at $-78^{\circ} \mathrm{C}$ under N_{2}. After stirring at $-78^{\circ} \mathrm{C}$ for 30 minutes, (+)-Bmethoxydiisopinocampheylborane ($881 \mathrm{mg}, 2.79 \mathrm{mmol}$) in THF (1 mL) was added dropwise and the solution cleared. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(570 \mu \mathrm{l}, 4.64 \mathrm{mmol})$ was added and immediately followed by dihydrocinnamaldehyde ($370 \mu \mathrm{l}, 2.29 \mathrm{mmol}$). This was left to react for 4 h at $-78{ }^{\circ} \mathrm{C}$, then saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the organics were extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude residue. Purification by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 93: 7$) gave alcohol $\mathbf{3 5}$ as a colourless oil (190 $\mathrm{mg}, 32 \%) ;[\alpha]^{23}+8.0\left(c 0.56, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9, \mathrm{CH}_{3}\right), 1.67-1.82(2 \mathrm{H}$, m, 2-H2), $2.67(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 13.5,8.3,1-H \mathrm{H}), 2.80-2.93(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and 1-HH), $3.35(1 \mathrm{H}, \mathrm{app} \mathrm{p}, \mathrm{J} 8.9$, 6.9, CHHCH_{3}), $3.48(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.62\left(1 \mathrm{H}\right.$, app p., J 6.9, $\left.\mathrm{CHHCH}_{3}\right), 5.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5,1.8,6-\mathrm{HH})$, $5.31(1 \mathrm{H}, \mathrm{dd}, J 8.8,1.8,6-\mathrm{H} H), 5.62(1 \mathrm{H}, \mathrm{ddd}, J 11.5,8.8,1.8,5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.2$
$\left(\mathrm{CH}_{3}\right), 31.8(\mathrm{C}-2), 34.3(\mathrm{C}-1), 64.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 72.5(\mathrm{C}-3), 85.1(\mathrm{C}-4), 119.7(\mathrm{C}-6), 125.7(\mathrm{C}-5), 128.3$ (C-Ar), 128.5 (C-Ar), 135.5 (C-Ar), 142.5 (C-Ar). Spectral data in accordance with the literature. ${ }^{8}$
(1S,3R,4R)-1-(Benzyldimethylsilyl)-4-(2'-phenylethyl)-tetrahydrofuran-3-al 36

Trifluoroacetic acid ($121 \mathrm{mg}, 0.55 \mathrm{mmol}$) was added carefully dropwise to a solution of alcohol $35(80 \mathrm{mg}, 0.36 \mathrm{mmol})$ and silyl acetal $5(110 \mathrm{mg}, 0.44 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2}. This was stirred for 1 h whilst slowly warming to RT . Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the organics were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford a brown residue. Purification by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 93: 7$) gave aldehyde 36 as a colourless oil ($59 \mathrm{mg}, 46 \%$); α] ${ }_{\mathrm{D}}^{23}+14\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3082(\mathrm{CH}), 1600(\mathrm{C}=\mathrm{C}), 1719(\mathrm{C}=\mathrm{O}), 1029(\mathrm{C}-\mathrm{O}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.85-1.92\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right), 2.00-2.07(2 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}_{2}$), $2.21(1 \mathrm{H}, \mathrm{d}, J 12.7, \mathrm{SiCHH}), 2.26(1 \mathrm{H}, \mathrm{d}, J 12.7, \mathrm{SiCHH}), 2.70\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{HH}\right), 2.85\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\right.$ HH), 2.95 (1H, ddd, J 14.7, 7.1, 4.4, 3-H), 3.35 (1H, dd, J 10.8, 7.4, 1-H), 3.89 (1H, td, J 8.2, 7.4, 4H), 7.05-7.31 (10H, m, ArH), $9.6(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.4, \mathrm{CHO}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-5.8\left(\mathrm{SiCH}_{3}\right),-5.8\left(\mathrm{SiCH}_{3}\right)$, $23.5\left(\mathrm{SiCH}_{2} \mathrm{Ph}\right), 28.8(\mathrm{C}-2), 32.8\left(\mathrm{C}-2^{\prime}\right), 33.1\left(\mathrm{C}-1^{\prime}\right), 54.8(\mathrm{C}-3), 70.8(\mathrm{C}-1), 82.3$ (C-4), 124.2 (C-Ar), 125.9 (C-Ar), 128.2 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.3 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.4 ($2 \times \mathrm{C}-\mathrm{Ar}$), 128.5 ($2 \times \mathrm{C}-\mathrm{Ar}$), 136.7 (C-Ar), 139.4 (C-Ar), 202.7 (CHO); $m / z(\mathrm{ESI}) 375.1747\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{NaSi}\right.$ requires 375.1751).

(2S,3R)-1,2-Epoxy-3-hydroxy-pent-4-ene 43^{9}

Titanium tetraisopropoxide ($1.40 \mathrm{~mL}, 4.73 \mathrm{mmol}$) followed by (R, R)-(-)-diisopropyl D-tartrate ($1.32 \mathrm{~mL}, 6.31 \mathrm{mmol}$) was added to a solution of $4 \AA$ A molecular sieves (800 mg) in $\mathrm{dry}_{\mathrm{CH}_{2} \mathrm{Cl}_{2}(48}$ mL) at $-35^{\circ} \mathrm{C}$. This was stirred for 30 minutes then 1,4 -pentadiene- 3 -ol ($4.64 \mathrm{~mL}, 47.71 \mathrm{mmol}$) was added, followed by cumene hydroperoxide ($18.09 \mathrm{~mL}, 122.39 \mathrm{mmol}$). The reaction was stirred for 36 h at $-35^{\circ} \mathrm{C}$ then filtered through a SiO_{2} plug, washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. Aqueous saturated sodium thiosulphate (20 mL) was added, the organic layer separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give yellow oil. This was purified by column chromatography (Pentane: $\mathrm{Et}_{2} \mathrm{O}, 60: 40$) to remove excess cumene alcohol and cumene hydroperoxide. Kugelrohr distillation ($120^{\circ} \mathrm{C}, 30 \mathrm{~mm} / \mathrm{Hg}$) gave epoxide 43 as a colourless oil $(2.62 \mathrm{~g}, 55 \%) ;[\alpha]_{D}^{23}-55\left(c 1.00, \mathrm{CHCl}_{3}\right)$, lit. $[\alpha]^{25}-53\left(c 0.73, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.17(1 \mathrm{H}$, br. s., OH), 2.77 (1H, dd, J 5.0, 4.2, 1-HH), 2.81 (1H, dd, J 5.0, 2.8, 1-HH), 3.10 (1 H , ddd, J 6.1, 4.2, $2.8,2-H), 4.32(1 \mathrm{H}, \mathrm{br} . \mathrm{m}, 3-\mathrm{H}), 5.28$ (1H, dd, J 10.5, 1.2, 5-HH), 5.39 (1H, dd, J 17.4, 2.7, $5-\mathrm{HH}$), 5.85 (1H, ddd, J 17.4, 10.5, 6.4, 4-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 43.4$ (C-1), 53.7 (C-2), 70.2 (C-3), 117.7 (C-5), 135.5 (C-4). All data in accordance with the literature. ${ }^{9}$
(2S,3S)-1,2-Epoxy-3-hydroxy-pent-4-en 37 ${ }^{10}$

A round-bottomed flask was charged with triphenylphosphine ($2.71 \mathrm{~g}, 10.35 \mathrm{mmol}$) and paranitrobenzoic acid ($1.72 \mathrm{~g}, 10.35 \mathrm{mmol}$) in THF (40 mL) and cooled to $0^{\circ} \mathrm{C}$. To the resulting solution, diethyl azodicarboxylate ($1.63 \mathrm{~mL}, 10.35 \mathrm{mmol}$) was added dropwise and allowed to stir for 5 minutes at 0° C. Epoxide 43 ($986 \mathrm{mg}, 9.86 \mathrm{mmol}$) in THF (10 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and then the reaction mixture was allowed to warm to RT with stirring over 1 h . Upon consumption of the starting material by TLC, the reaction mixture was concentrated and filtered through a plug of SiO_{2} ($\mathrm{Pet}^{2}: \mathrm{Et}_{2} \mathrm{O}, 90: 10$ to $80: 20$) to obtain the para-nitrobenzoic acid adduct and other non-polar by-products. The filtrate was then concentrated in vacuo and taken up in methanol (10 mL). Potassium carbonate ($1.43 \mathrm{~g}, 10.35 \mathrm{mmol}$) was added and the reaction mixture left to stir for 15 minutes, until disappearance of the para-nitrobenzoic acid adduct by TLC. Methanol was removed in vacuo and water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the crude residue. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give white oily residue. This was purified by column chromatography (Pentane: $\mathrm{Et}_{2} \mathrm{O}, 60: 40$) to give alcohol 37 as a yellow oil ($388 \mathrm{mg}, 39 \%$); $[\alpha]^{23}{ }^{2}-12$ (c 1.0, $C H C l_{3}$), lit. ${ }^{10}$ ent- $37[\alpha]^{25}+20.7$ (c 1.8, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.17(1 \mathrm{H}$, br. s., OH$), 2.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.0,4.1,1-\mathrm{HH}), 2.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $5.0,2.8,1-H H$), $3.00(1 \mathrm{H}$, ddd, J 5.0, 4.1, 2.8, 2-H), $3.90(1 \mathrm{H}, \mathrm{br} . \mathrm{m}, 3-\mathrm{H}$), 5.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4,1.2$, $5-H H$), 5.31 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.3,2.8,5-\mathrm{HH}$), 5.86 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 17.3,10.4,6.4,4-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 44.7 (C-1), 54.8 (C-2), 72.6 (C-3), 116.7 (C-5), 136.1 (C-4). All data in accordance with the literature. ${ }^{10}$
(2S)-1,2-Epoxy-3-O-(N,N-diisopropylcarbamate)-pent-4-en 39

Syn-epoxide 37 ($180 \mathrm{mg}, 1.8 \mathrm{mmol}$) was added to a solution of triethylamine ($275 \mu \mathrm{l}, 1.98$ mmol) and N, N-diisopropylcarbamoyl chloride ($443 \mathrm{mg}, 2.7 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and heated to reflux for 5 h under N_{2}. Upon disappearance of the starting epoxide by TLC, the
solvent was removed under reduced pressure to give the crude residue which was redissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ filtered through a plug of silica, washing with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The solvent was then removed under reduced pressure, giving a crude mixture of epoxide 39 and chlorohydrin 38. The crude residue was redissolved in THF (10 mL) and $\mathrm{NaOH}(72 \mathrm{mg}, 1.8 \mathrm{mmol})$ was added. The reaction was left to stir for 10 minutes at RT, until chlorohydrin 38 was converted to epoxide 39, as monitored by TLC. The THF was removed under reduced pressure, water (10 mL) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude residue, which was further purified by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 80: 20$) to give epoxide 39 as a colourless oil ($282 \mathrm{mg}, 69 \%$); $[\alpha]^{23}-20$ (c $\left.1.00, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21\left(6 \mathrm{H}\right.$, br. s., $\left.2 \times \mathrm{CH}_{3}\right), 1.23\left(6 \mathrm{H}\right.$, br. s., $\left.2 \times \mathrm{CH}_{3}\right), 2.67(1 \mathrm{H}$, dd, J 4.5, 2.7, 1-HH), $2.82(1 \mathrm{H}$, app. td, J 4.5, 1.8, 1-HH), 3.16 (1 H, ddd, J 9.8, 2.9, 1.8, 2-H), 3.83 (1H, br. s., NCH), 4.01 (1 H , br. s., NCH), 5.13 (1 H , app. tt., J 5.8, 1.5, 3-H), 5.27 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 10.7,2.5$, $5-H H), 5.36(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 17.1,1.5,5-\mathrm{HH}), 5.88(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 17.1,10.7,1.5,4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $20.4\left(2 \times \mathrm{CH}_{3}\right), 21.4\left(2 \times \mathrm{CH}_{3}\right), 44.4(\mathrm{C}-1), 45.9(2 \times \mathrm{br} . \mathrm{NCH}), 52.8(\mathrm{C}-2), 74.6(\mathrm{C}-3), 117.9(\mathrm{C}-5)$, 133.1 (C-4), 154.5 (CO); $m / z(E S I) 250.1416\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{NNa}\right.$ requires 250.1414).

(2S,3S)-2-Hydroxy-3-O-(N,N-diisopropylcarbamate)-pent-4-ene 40

Diisobutylaluminum hydride ($1.84 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes, 1.84 mmol) was added dropwise to a stirring solution of epoxide $39(139 \mathrm{mg}, 0.61 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ under N_{2}. The reaction was left to stir for 20 minutes at $-20^{\circ} \mathrm{C}$, then 1 M HCl aqueous solution was added (5 mL). This was left to stir for a further 10 minutes, until the two phases separated. The organics were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to give alcohol 40 as a yellow oil ($92 \mathrm{mg}, 66 \%$); $[\alpha]^{23}-23\left(c\right.$ 1.00, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.18\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,5-\mathrm{H}_{3}\right), 1.22\left(6 \mathrm{H}, \mathrm{br} . \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.23\left(6 \mathrm{H}\right.$, br. d, $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30(1 \mathrm{H}$, br. s, OH$), 3.80(1 \mathrm{H}$, br. s., NCH), $3.88(1 \mathrm{H}, \mathrm{app} . \mathrm{q} ., \mathrm{J} 6.4,4-\mathrm{H})$, $4.02(1 \mathrm{H}$, br. s., NCH), $5.09(1 \mathrm{H}, \mathrm{t}, J 6.1,3-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{d}, J 10.0,1.2,1-\mathrm{HH}), 5.33(1 \mathrm{H}, \mathrm{dt}, J 17.4$,
1.5, 1-HH), $5.86(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 17.4,10.0,6.4,2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.0(\mathrm{C}-5), 20.6(2 \times \mathrm{br}$. CH_{3}), $21.5\left(2 \times\right.$ br. $\left.\mathrm{CH}_{3}\right), 46.1(2 \times \mathrm{br} . \mathrm{NCH}), 69.4(\mathrm{C}-4), 79.5(\mathrm{C}-3), 118.3(\mathrm{C}-2), 134.0(\mathrm{C}-1), 155.2$ (CO); m / z (ESI) $252.1578\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{NaSi}\right.$ requires 252.1570).

(1R,3S,4S,5S)-1-(Benzyldimethylsilyl)-4-O-(N,N-diisopropylcarbamate)-3-hydroxy-5-

 methyl-tetrahydropyran 41

Trifluoroacetic acid ($900 \mu \mathrm{l}, 7.20 \mathrm{mmol}$) was added dropwise to a solution of alcohol $40(61 \mathrm{mg}$, $0.36 \mathrm{mmol})$ and silyl acetal $5(118 \mathrm{mg}, 0.47 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. This was stirred for 1 h at RT , then aqueous saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and triethylamine was added until $\mathrm{pH}>7$. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic phases were then concentrated in vacuo and the resulting crude residue was redissolved in methanol (15 mL), to which $\mathrm{K}_{2} \mathrm{CO}_{3}(298 \mathrm{mg}, 2.16 \mathrm{mmol})$ was added and left to stir for 30 minutes. The methanol was removed under reduced pressure, water (20 mL) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (10 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Which was purified by column chromatography (Pet:Et ${ }_{2} \mathrm{O}, 75: 25$) to yield 41 as a yellow oil ($105 \mathrm{mg}, 72 \%$); $[\alpha]^{23}+14\left(c 1.00, \mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,5-\mathrm{H}_{3}\right), 1.24(6 \mathrm{H}, \mathrm{br} . \mathrm{s} .$, $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(6 \mathrm{H}\right.$, br. s., $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.66\left(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 12.2,2.2,2-\mathrm{H}_{\text {eq }}\right), 1.74\left(1 \mathrm{H}\right.$, app. q., J $\left.12.2,2-\mathrm{H}_{\mathrm{ax}}\right)$, $2.12(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{SiCHH}), 2.24(1 \mathrm{H}, \mathrm{d}, J 13.7, \mathrm{SiCH} H), 3.10\left(1 \mathrm{H}, \mathrm{dd}, J 12.2,2.2,1-\mathrm{H}_{\mathrm{ax}}\right), 3.46(1 \mathrm{H}$, qd, J 6.4, 1.2, 5-Hax $), 3.85(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and NCH), 4.12 (1H, br. s., NCH), 4.96 (1H, dd, J 2.9, 1.2, 4H), 7.00-7.10 (3H, m, ArH), 7.20-7.23 (2H, m, ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-6.2\left(\mathrm{SiCH}_{3}\right),-6.1\left(\mathrm{SiCH}_{3}\right)$, $17.9(\mathrm{C}-5), 20.4\left(2 \times \mathrm{CH}_{3}\right), 21.6\left(2 \times \mathrm{CH}_{3}\right), 22.9\left(\mathrm{SiCH}_{2}\right), 30.4(\mathrm{C}-2), 45.7(\mathrm{NCH}), 46.8(\mathrm{NCH}), 68.3(\mathrm{C}-$

(3S,4S,5S)-1,3-O-Acetyl-4-O-(N,N-diisopropylcarbamate)5-methyl-tetrahydropyran 42

i) TBAF, THF, RT

iii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$,

DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

TBAF ($1.2 \mathrm{~mL}, 0.60 \mathrm{mmol}, 0.5 \mathrm{M}$ solution in THF) was added dropwise over 15 minutes to a solution of 1-silyl tetrahydropyran 41 ($80 \mathrm{mg}, 0.20 \mathrm{mmol}, 1 \mathrm{eq}$) in dry THF (2 mL) at $0^{\circ} \mathrm{C}$ under N_{2}. The reaction was warmed slowly to $30^{\circ} \mathrm{C}$ and allowed to stir for 1 h until disappearance of 1silyl tetrahydropyran 41 by TLC. Urea hydrogen peroxide ($92 \mathrm{mg}, 0.98 \mathrm{mmol}$), potassium hydrogen carbonate ($60 \mathrm{mg}, 0.6 \mathrm{mmol}$) and dry methanol (0.6 mL) was added. This was left to stir at RT for 12 h and upon completion aqueous saturated sodium thiosulphate solution (2 mL) was added, the organic phases separated and aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The crude reaction mixture was concentrated in vacuo then taken up in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL). The solution was then cooled to $0^{\circ} \mathrm{C}$ and triethylamine ($420 \mu \mathrm{l}, 3.00 \mathrm{mmol}$), a crystal of DMAP then acetic anhydride ($190 \mu \mathrm{l}, 2.00 \mathrm{mmol}$) was added. The reaction was warmed to RT and left to stir for 1 h and on completion water (6 mL) was added and the organic phase separated. The aqueous phase was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, the combined organic phases dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was then purified by column chromatography $\left(\mathrm{Pet}^{2} \mathrm{Et}_{2} \mathrm{O}\right.$, $60: 40$) to give 42 as a yellow oil, as a mixture of α / β anomers ($54 \mathrm{mg}, 77 \%, \alpha: \beta 50: 50$); $v_{\max }$ (neat)/cm ${ }^{-1} 2969$ (CH), 1748 (C=O acetate), 1690 (C=O carbamate), 1038 (C-O); $\delta_{H}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.15\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,6-\mathrm{H}_{3}\right), 1.21\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,6-\mathrm{H}_{3}\right), 1.22-1.31\left(24 \mathrm{H}, \mathrm{br} . \mathrm{s} ., 4 \times\left(\mathrm{CH}_{3}\right)_{2}\right), 1.90$
$\left(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.95(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{HH}), 2.00-2.01\left(6 \mathrm{H}, \mathrm{br} . \mathrm{s} ., 2 \times 3-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \beta 1-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $2.13\left(3 \mathrm{H}, \mathrm{s}, \alpha 1-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 2.16(1 \mathrm{H}, \mathrm{m}, 2 \times 2-\mathrm{HH}), 3.82\left(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 6.4,1.4,5-\mathrm{H}_{\mathrm{ax}}\right), 3.86-4.07(4 \mathrm{H}$, br. s., $4 \times N C H$), $4.17\left(1 \mathrm{H}, \mathrm{qd}, J 6.4,1.2,5-\mathrm{H}_{\mathrm{ax}}\right), 5.03\left(1 \mathrm{H}\right.$, ddd, J 11.7, 5.5, 3.4, 3- H_{ax}), $5.13(1 \mathrm{H}, \mathrm{dd}$, $J 3.4,1.4,4-\mathrm{H}_{\text {eq }}$), $5.23\left(1 \mathrm{H}, \mathrm{dd}, J 2.7,1.2,4-\mathrm{H}_{\text {eq }}\right), 5.29\left(1 \mathrm{H}\right.$, ddd, J 12.4, 5.3, 3.2, 3- H_{ax}), $5.75(1 \mathrm{H}$, dd, J 9.4, 3.2, β 1-H), 6.30 (1H, dd, J 3.4, 0.4, $\alpha 1-\mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.5$ (C-6), 16.7 (C-6), $20.5\left(4 \times\right.$ br. $\left.\mathrm{CH}_{3}\right), 20.9\left(3-\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right), 21.1\left(3-\mathrm{C}(\mathrm{O}) \mathrm{OCH}_{3}\right), 21.4\left(4 \times \mathrm{br} . \mathrm{CH}_{3}\right), 29.4(2-\mathrm{C}), 31.1(2-\mathrm{C})$, 45.8 ($2 \times \mathrm{br} . \mathrm{NCH}$), 46.4 ($2 \times \mathrm{br} . \mathrm{NCH}$), 66.4 (C-3), 67.9 (C-4), 68.2 (C-5), 68.8 (C-3), 69.2 (C-4), 71.0 (C-5), 91.9 (α C-1), 92.0 (β C-1), 154.7 (CO carbamate), 158.8 (CO carbamate), 169.0 (CO acetate), 169.5 (CO acetate), 169.9 (CO acetate), 170.2 (CO acetate); m / z (ESI) 382.1847 (MNa , $100 \%, \mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{7} \mathrm{NNa}$ requires 382.1836).
(2S,3R)-1,2-Epoxy-3-O-(N,N-diisopropylcarbamate)-pent-4-ene SI-6

Anti-epoxide 44 ($120 \mathrm{mg}, 1.20 \mathrm{mmol}$) was added to a solution of triethylamine ($183 \mu \mathrm{l}, 1.32$ mmol) and N, N-diisopropylcarbamoyl chloride ($590 \mathrm{mg}, 3.60 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{ml}$) and heated to reflux for 5 h . Upon disappearance of the epoxide solvent was removed under reduced pressure to yield the crude residue which was redissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ then passed through a plug of Celite ${ }^{\circledR}$, washing with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml})$. The solvent was then removed under reduced pressure, giving a crude mixture of the protected epoxide compound SI-6 and chlorohydrin SI-5. The reaction was left to stir for 10 minutes at room temperature, until chlorohydrin SI-5 was converted to the title compound SI-6, as monitored by TLC. The THF was removed under reduced pressure, water (10 ml) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude residue, which was further purified by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 80: 20$) to afford epoxide SI-6 as a colourless oil (161 mg, 59\%); $[\alpha]^{23}-32\left(c \quad 1.00, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.22\left(6 \mathrm{H}\right.$, br. s, $\left.2 \times \mathrm{CH}_{3}\right), 1.24\left(6 \mathrm{H}\right.$, br. s, $\left.2 \times \mathrm{CH}_{3}\right), 2.70(1 \mathrm{H}, \mathrm{dd}, J 5.1,2.7,1-\mathrm{HH}), 2.80(1 \mathrm{H}, \mathrm{dd}, J$ 5.1, 4.2, 1-HH), 3.16 (1H, ddd, J 6.8, 4.2, 2.7, 2-H), 3.81 (1H, br. s, NCH), 4.02 (1H, br. s, NCH),
$5.25(1 \mathrm{H}, \mathrm{dd}, J 6.8,4.4,3-\mathrm{H}), 5.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6,2.4,5-\mathrm{HH}), 5.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.2,2.4,5-\mathrm{H} H), 5.84$ (1H, ddd, J 17.2, 10.6, 4.4, 4-H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.6\left(2 \times \mathrm{CH}_{3}\right), 21.3\left(2 \times \mathrm{CH}_{3}\right), 44.8(\mathrm{C}-1)$, 45.4 (br. NCH), 46.1 (br. NCH), 52.4 (C-2), 74.2 (C-3), 119.1 (C-5), 132.5 (C-4), 154.5 (CO); m/z (ESI) $250.1408\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{NNa}\right.$ requires 250.1414).; Data for chlorohydrin $\mathrm{SI}-5 ;[\alpha]{ }^{23}$ -23.5 (c 1.00, CHCl_{3}); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.19-1.23\left(6 \mathrm{H}, \mathrm{br} . \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.24-1.27(6 \mathrm{H}, \mathrm{br} . \mathrm{s}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{3}\right), 3.18(1 \mathrm{H}$, br. s, OH$), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3,7.6,1-\mathrm{HH}), 2.80(1 \mathrm{H}, \mathrm{dd} ., \mathrm{J} 11.3,3.9,1-\mathrm{HH}), 3.83$ (1H, br. s., NCH), 4.01 (1H, br. s., 2-H), 4.07 (1H, br. s., NCH), 5.34 (1H, dd, J 10.7, 2.3, 5-HH), 5.35 $(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.39(1 \mathrm{H}, \mathrm{d}, J 17.4,2.3,5-\mathrm{HH}), 5.95(1 \mathrm{H}, \mathrm{ddd}, J 17.4,10.7,6.9,4-\mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 20.2\left(2 \times \mathrm{br} . \mathrm{CH}_{3}\right), 21.5\left(2 \times \mathrm{br} . \mathrm{CH}_{3}\right), 45.8(\mathrm{C}-1), 45.4(\mathrm{NCH}), 46.1(\mathrm{NCH}), 73.6(\mathrm{C}-2), 76.8(\mathrm{C}-$ 3), 119.0 (C-5), 132.9 (C-4), 154.9 (CO); $m / z(E S I) 286.1194$ ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{NCINa}$ requires 286.1180).

(2S,3R)-4-hydroxy-3-O-(N,N-diisopropylcarbamate)-pent-1-ene 44

Diisobutylaluminum hydride ($2.25 \mathrm{ml}, 1 \mathrm{M}$ in hexanes, 2.25 mmol) was added dropwise to a stirring solution of epoxide $\mathrm{SI}-6(170 \mathrm{mg}, 0.75 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$. The reaction was left to stir for 20 minutes at $-20^{\circ} \mathrm{C}$, then 1 M HCl aqueous solution was added (5 ml). This was left to stir for 10 minutes, until the two phases separated. The organics were separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$. The combined organic phases dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford alcohol 44 as a yellow oil ($148 \mathrm{mg}, 87 \%$); $[\alpha]^{23}-40$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.17\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4,1-\mathrm{H}_{3}\right), 1.23\left(12 \mathrm{H}, \mathrm{br} . \mathrm{d}, 2 \times\left(\mathrm{CH}_{3}\right)_{2}\right), 3.84(1 \mathrm{H}, \mathrm{br} . \mathrm{s}$, NCH), 3.95 (1H, ddt, J 6.4, 3.4, 1.2, 2-H), 4.08 (1H, br. s, NCH), 5.21 (1H, dd, J 6.6, 1.2, 3-H), 5.29 (1H, dt, J 10.6, 1.4, 5-HH), $5.34(1 H, d t, J 17.4,1.4,5-H H), 5.88(1 H, d d d, J 17.4,10.6,6.6,4-H) ; \delta_{C}$ (100 MHz; CDCl_{3}) $17.8(\mathrm{C}-1), 20.4\left(2 \times \mathrm{br} . \mathrm{CH}_{3}\right), 21.4\left(2 \times \mathrm{br} . \mathrm{CH}_{3}\right), 46.2(2 \times \mathrm{br} . \mathrm{NCH}), 69.7(\mathrm{C}-2)$, 79.6 (C-3), 118.4 (C-4), 133.3 (C-5), 155.4 (CO); $m / z(E S I) 250.1416\left(\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{NNa}\right.$ requires 250.1414).

(1R,3S,4R,5S)-1-(Benzyl(dimethyl)silane)-3,4-dihydroxy-5-methyl-tetrahydropyran 45

Trifluoroacetic acid ($662 \mu \mathrm{l}, 6.80 \mathrm{mmol}$) was added dropwise to a solution of alcohol 44 (77 mg , $0.34 \mathrm{mmol})$ and silyl acetal $5(127 \mathrm{mg}, 0.50 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. This was stirred for 1 h at RT , then aqueous saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and triethylamine was added until $\mathrm{pH}>7$. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were then concentrated in vacuo and the resulting crude residue was redissolved in methanol (10 ml), to which $\mathrm{K}_{2} \mathrm{CO}_{3}(139 \mathrm{mg}, 1.01 \mathrm{mmol})$ was added and left to stir for 30 minutes. The methanol was removed under reduced pressure, water (20 mL) added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (10 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude residue. This residue was taken up in dry THF (6 mL) and cooled to $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere. Lithium aluminium hydride ($51 \mathrm{mg}, 1.34 \mathrm{mmol}$) was added portion-wise and the mixture stirred for 5 minutes. The reaction mixture was then heated to reflux for 1 h , cooled to $0{ }^{\circ} \mathrm{C}$ and water (5 ml) carefully added dropwise. Ethyl acetate (5 ml) was added, the organics were separated and the aqueous layer further extracted using ethyl acetate ($3 \times 5 \mathrm{ml}$). The combined organics were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford the crude residue. This residue was further purified by column chromatography (Pet: $\mathrm{Et}_{2} \mathrm{O}, 50: 50$) to afford the diol 45 as a yellow oil (54 $\mathrm{mg}, 57 \%) ;[\alpha]_{D}^{23}-15\left(c \quad 0.9, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$, $1.29\left(3 \mathrm{H}, \mathrm{d}, J 6.0,1^{\prime}-\mathrm{H}_{3}\right), 1.53\left(1 \mathrm{H}, \mathrm{app} . \mathrm{q}, J 12.8,2-\mathrm{H}_{\mathrm{ax}}\right), 1.85$ ($1 \mathrm{H}, \mathrm{ddd}, J 12.8,5.1,1.8,2-\mathrm{H}_{\text {eq }}$), $2.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7, \mathrm{SiCHH}), 2.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.7, \mathrm{SiCHH}), 2.26(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 3.04(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ or $5-$ H), 3.07 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.8,1.8,1-\mathrm{H}$), 3.13 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ or $5-\mathrm{H}$), 3.54 (1 H, ddd, J 12.8, 12.2, 5.1, $3-\mathrm{H}$), 6.99-7.24 (5H, m, ArH); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$-6.1 $\left(\mathrm{SiCH}_{3}\right),-5.8\left(\mathrm{SiCH}_{3}\right), 18.2\left(\mathrm{C}-1^{\prime}\right), 23.0\left(\mathrm{SiCH}_{2}\right)$, 34.8 (C-2), 68.1 (C-1), 74.3 (C-3), 78.3 (C-4 or C-5), 78.7 (C-4 or C-5), 124.1 (C-Ar), 128.1 (C-Ar), 128.2 (C-Ar), 139.6 (C-Ar); m / z (ESI) 303.1377 ($\mathrm{MNa}^{+}, 100 \%, \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}$ requires 303.1387).

Chiral SFC data

(Chiralpak IA, 125 bar, $40 \mathrm{C}, 2 \mathrm{~mL} / \mathrm{min}, \mathrm{MeOH}$); $t_{\mathrm{R}} 6.08 \mathrm{~min}$ (minor enantiomer), 6.66 min (major enantiomer); er = 97.5:2.5

Peak Information

Peak No	\% Area	Area	Ret. Time	Height	Cap. Factor
1	2.4339	284.9367	6.08 min	29.0525	6078.8333
2	97.5661	11422.072 1	6.66 min	867.3455	6662.1333

NMR Spectra

Benzyl(1,3-dithiane)dimethylsilane 4

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR (CDCl $3,100 \mathrm{MHz}$)

Benzyl(diethoxymethyl)dimethylsilane 5
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S,2R,3S,5R)-1-(Dimethyl(benzyl)silyl)-2-methyl-3-hydroxy-5-(2'-phenylethyl)tetrahydropyran 7
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S,3S,5R)-1-(Dimethyl(benzyl)silyl)-3-hydroxy-5-(2'-phenylethyl)-tetrahydropyran 9 ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

1-(Benzyl(dimethyl)silyl)-but-3-en-1-ol 10

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR (CDCl $3,100 \mathrm{MHz}$)

(1R*,3R*,5S*)-1-(Benzyl(dimethyl)silyl)-3-hydroxy-5-methyl-tetrahydropyran 11 ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S*,3S*,5R*)-1-(Benzyl(dimethyl)silyl)-3-hydroxy-5-(2'-(benzyloxy)ethyl)-tetrahydropyran 12
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
th21208_TWH906F38-47_PROTON_001

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S*,3S*,5R*)-3-O-Acetyl-1-(benzyldimethylsilyl)-5-methyl-tetrahydropyran 13
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
th134809_TWH908F6-13_PROTON_01

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S,3S,5S)-3-O-Acetyl-1-(benzyldimethylsilyl)-5-(2'-(benzyloxy)ethyl)-tetrahydropyran 14 ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S, $2 R, 3 S, 5 R$)-3-O-Acetyl-1-(dimethyl(benzyl)silyl)-2-methyl-5-(2'-phenylethyl)tetrahydropyran 18

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S,3S,5R)-3-O-Acetyl-1-(dimethyl(benzyl)silyl)-5-(2'-phenylethyl)-tetrahydropyran
19
${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR (CDCl $3,100 \mathrm{MHz}$)

(1S,2R,3S,5R)-3-O-Benzyl-1-(dimethyl(benzyl)silyl)-2-methyl-5-(2'-phenylethyl)tetrahydropyran 20

${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 100 \mathrm{MHz}$)

(1S,3S,5R)-3-O-Benzyl-1-(dimethyl(benzyl)silyl)-5-ethyl-(2'-phenylethyl)-tetrahydropyran
21

(3S,5R)-1,3-O-Acetyl-2-methyl-5-(2'-phenylethyl)-tetrahydropyran 17
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(3S,5R)-1,3-O-Acetyl-5-(2'-phenylethyl)-tetrahydropyran 22 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (CDCl $3,100 \mathrm{MHz}$)

(2R,3S,5R)-1-O-Acetyl-3-O-Benzyl-2-methyl-5-(2'-phenylethyl)-tetrahydropyran 23 ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

((3S,5R)-1-O-Acetyl-3-O-Benzyl-5-(2'-phenylethyl)-tetrahydropyran 24

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S, 3S, 5S)-3-O-Acetyl-5-acetoxymethyl-1-(benzyldimethylsilyl)-tetrahydropyran 27 ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

2,4-Dideoxy-gluc-3,5-diacetate hexopyranose 28

${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(1S, 3S, 5S)-1-(Benzyldimethylsilyl)-3-ethoxy-5-((tert-butyldiphenylsilyloxy)methyl) tetrahydropyran 29

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1S,3S,5S)-3-O-Acetyl-1-(benzyldimethylsilyl)-5-(1'-(benzyloxy)methyl)-tetrahydropyran 30 ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$)

(3R, 5R)-1,3-O-Acteyl-5-(1'-benzyloxymethyl)-tetrahydropyran 31
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

(1R,3S,5S)-3-O-Acetyl-1-O-cyclohexyl-5-(1'-(benzyloxy)methyl)-tetrahydropyran 32
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

(1R, 3 R, $5 R$)-1-(Benzyldimethylsilyl)-5-(1'-benzyloxymethyl)-3-hydroxy-tetrahydropyran SI4
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(1R, 3S, 5R)-1-(Benzyldimethylsilyl)-5-(1'-benzyloxymethyl)-3-hydroxy-tetrahydropyran 33
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (CDCl $3,100 \mathrm{MHz}$)

(3S,5R)-1,3-O-Acetyl-5-(1'benzyloxymethyl)-tetrahydropyran 34
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

(1S,3R,4R)-1-(Benzyldimethylsilyl)-4-(2'-phenylethyl)-tetrahydrofuran-3-al 36 ${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 400 \mathrm{MHz}$)

${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(2S)-1,2-Epoxy-3-O-(N, N-diisopropylcarbamate)-pent-4-en 39
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(2S,3S)-2-Hydroxy-3-O-(N,N-diisopropylcarbamate)-pent-4-en 40
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

(1R,3S,4S,5S)-1-(Benzyldimethylsilyl)-4-O-(N,N-diisopropylcarbamate)-3-hydroxy-5-methyl-tetrahydropyran 41
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}, 100 \mathrm{MHz}$)

(3S,4S,5S)-1,3-O-Acetyl-4-O-(N,N-diisopropylcarbamate)5-methyl-tetrahydropyran 42
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(2S,3R)-1,2-Epoxy-3-O-(N,N-diisopropylcarbamate)-pent-4-ene 44
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

(1R,3S,4R,5S)-1-(Benzyl(dimethyl)silane)-3,4-dihydroxy-5-methyl-tetrahydropyran 45 ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

References

(1) Nokami, J.; Ohga, M.; Nakamoto, H.; Matsubara, T.; Hussain, I.; Kataoka, K. J. Am. Chem. Soc. 2001, 123, 9168.
(2) Díaz, Y.; Bravo, F.; Castillón, S. J. Org. Chem. 1999, 64, 6508.
(3) Hansen, T. V. Tetrahedron: Asymmetry 2002, 13, 547.
(4) Dar, A. R.; Aga, M. A.; Kumar, B.; Yousuf, S. K.; Taneja, S. C. Org. Biomol. Chem. 2013, 11, 6195.
(5) Saikia, B.; Joymati Devi, T.; Barua, N. C. Org. Biomol. Chem. 2013, 11, 905.
(6) Sabitha, G.; Fatima, N.; Reddy, E. V.; Yadav, J. S. Tetrahedron Lett.2008, 49, 6087.
(7) Huang, X.-R.; Pan, X.-H.; Lee, G.-H.; Chen, C. Adv. Synth. Catal. 2011, 353, 1949.
(8) Ito, H.; Nakamura, T.; Taguchi, T.; Hanzawa, Y. Tetrahedron 1995, 51, 4507.
(9) Romero, A.; Wong, C.-H. J. Org. Chem. 2000, 65, 8264.
(10) Singh, S.; Guiry, P. J. J. Org. Chem. 2009, 74, 5758.

