Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

# **Supporting Information**

## **CONTENTS:**

| (A) General remarks                                                         | S2   |
|-----------------------------------------------------------------------------|------|
| (B) Preparation of aziridines                                               | S2   |
| (C) The analytical and spectral characterization data of aziridines         | S3   |
| (D) General procedure for chiral <i>N</i> , <i>N</i> '-dioxides preparation | S11  |
| (E) General procedure for the preparation of the racemic products           | S11  |
| (F) General procedure for the catalytic asymmetric transformation           | S11  |
| (G) Experimental procedure for the scale-up reaction                        | S12  |
| (H) Control experiments                                                     | S12  |
| (I) A plausible catalytic cycle                                             | S17  |
| (J) Optimization of conditions                                              | S18  |
| (K) The analytical and spectral characterization data of products           | S20  |
| (L) References                                                              | S46  |
| (M)The X-ray data for <b>3sa</b>                                            | S47  |
| (N) Copies of NMR spectra                                                   | S49  |
| (O) Copies of CD spectra                                                    | S126 |

#### (A) General remarks

<sup>1</sup>H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard (CDCl<sub>3</sub>,  $\delta = 7.26$ ). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. <sup>13</sup>C NMR data were collected on commercial instruments (100 MHz) with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl<sub>3</sub>,  $\delta$  = 77.0; DMSO-d<sub>6</sub>,  $\delta$  = 39.5). Enantiomeric excesses were determined by chiral HPLC analysis on Daicel Chiralcel IE, ID and IA at 23 °C with UV detector at 210 nm in comparison with the authentic racemates. Optical rotations were reported as follows:  $[\alpha]_{\lambda}^{T}$  (c: g/100 mL, in solvent,  $\lambda$ ). HRMS was recorded on a commercial apparatus (ESI source). All the reactions were carried out under an atmosphere of nitrogen in oven-dried apparatus. All the solvents were purified by usual methods before use. Molecular sieves were activated at 500 °C for 5 h before use. All the liquid aldehydes were freshly distilled prior to use. All the solid aldehydes were used after recrystallization with petroleum ether. All the imines were prepared according to literature.<sup>[1]</sup> Chromatography: Silica gel (HG/T2354-2010) made in Qingdao Haiyang Chemical Co., Ltd; Basic aluminum oxide (pH = 9-10) made in Shanghai Ludu Chemical Co., Ltd.

#### (B) Preparation of aziridines

Method A<sup>[2a]</sup>



*General Procedure:* Under  $N_2$  atmosphere, to a solution of imine (5.0 mmol) and 2-bromomalonate (5.5 mmol) in dry MeCN (50 mL) were added NaH (5.5 mmol) at 0 °C. After 20 min, the mixture was filtrated through a thin layer of silica gel with

 $CH_2Cl_2$ . The filtrates were concentrated and quickly purified by flash chromatography (Eluent: Ethyl acetate:Petroleum ether = 1:10 - 3:7) to afford the corresponding aziridines. (Ease for gram-scale preparation)

Method B<sup>[2b]</sup>



*General Procedure:* To a solution of imine (5.0 mmol) and  $CH_2(CO_2R^3)_2$  (6.0 mmol) in anhydrous MeCN (45 mL) were added PhI(OAc)<sub>2</sub> (10.0 mmol), n-Bu<sub>4</sub>NBr (10.0 mmol) and t-BuOK (2.5 mmol) at 0 °C. The reaction mixture was warmed up to 30 °C and continuously stirred for approximately 3 h. Then the resultant suspensions were filtered, concentrated, directly purified by flash column chromatography (Eluent: Ethyl acetate:Petroleum ether = 1:10 - 3:7) to provide the corresponding aziridines.

#### (C) The analytical and spectral characterization data of aziridines

#### Diethyl 3-phenyl-1-tosylaziridine-2, 2'-dicarboxylate (1a)



Prepared by *Method A*. Colorless oil, 86% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.96 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.28 - 7.21 (m, 5H), 4.88 (s, 1H), 4.43 - 4.35 (m, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 2.44 (s, 3H), 1.37 (t, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 2.44 (s, 3H), 1.37 (t, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 2.44 (s, 3H), 1.37 (t, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 2.44 (s, 3H), 1.37 (t, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 2.44 (s, 3H), 1.37 (t, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 2H), 3.95 (dd, *J* = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 3H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 1

J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 163.1$ , 162.5, 144.7, 136.6, 131.0, 129.7, 128.8, 128.4, 127.7, 127.0, 63.4, 62.1, 57.5, 49.7, 21.7, 13.8, 13.6. HRMS (ESI-TOF) calcd for C<sub>21</sub>H<sub>23</sub>KNO<sub>6</sub>S<sup>+</sup> ([M+K<sup>+</sup>]) = 456.0878, Found 456.0870.

#### Dimethyl 3-phenyl-1-tosylaziridine-2, 2'-dicarboxylate (1b)



Prepared by *Method A*. Colorless oil, 80% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.94 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.29 - 7.20 (m, 5H), 4.89 (s, 1H), 3.92 (s, 3H), 3.47 (s, 3H), 2.43 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  =

163.6, 163.0, 145.0, 136.2, 130.9, 129.8, 129.0, 128.5, 127.7, 126.9, 57.3, 54.1, 53.0, 49.8, 21.7. HRMS (ESI-TOF) calcd for  $C_{19}H_{19}NNaO_6S^+$  ([M+Na<sup>+</sup>]) = 412.0826, Found 412.0835.

#### Diisopropyl 3-phenyl-1-tosylaziridine-2, 2'-dicarboxylate (1c)



Prepared by *Method B*. Colorless oil, 42% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.99 - 7.95 (m, 2H), 7.36 - 7.32 (m, 2H), 7.27 - 7.20 (m, 5H), 5.28 - 5.20 (m, 1H), 4.88 (s, 1H), 4.83 - 4.75 (m, 1H), 2.44 (s, 3H), 1.37 (d, *J* = 6.4 Hz, 3H),

1.33 (d, J = 6.0 Hz, 3H), 1.05 (d, J = 6.0 Hz, 3H), 0.72 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 162.6$ , 161.9, 144.6, 136.9, 131.2, 129.7, 128.8, 128.3, 127.6, 127.0, 71.4, 69.9, 57.8, 49.8, 21.7, 21.4, 21.1. HRMS (ESI-TOF) calcd for  $C_{23}H_{27}NNaO_6S^+([M+Na^+]) = 468.1452$ , Found 468.1454.

#### Diethyl 3-phenyl-1-(4-chlorobenzenesulfonyl)aziridine-2, 2'-dicarboxylate (1d)



Prepared by *Method A*. Colorless oil, 66% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.03 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.8 Hz, 2H), 7.30 - 7.25 (m, 3H), 7.25 - 7.20 (m, 2H), 4.93 (s, 1H), 4.40 (dd, *J* = 6.4 Hz, 13.6 Hz, 2H), 3.96 (dd, *J* = 6.8 Hz, 14 Hz, 2H), 1.37 (t, *J* = 7.2 Hz, 3H), 0.89 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.0, 162.3, 140.4,

138.2, 130.8, 129.5, 129.1, 128.5, 126.9, 63.6, 62.3, 57.7, 50.1, 13.8, 13.6. HRMS (ESI-TOF) calcd for  $C_{20}H_{21}^{34.9689}CINO_6S^+$  ([M+H<sup>+</sup>]) = 438.0773, Found 438.0774. HRMS (ESI-TOF) calcd for  $C_{20}H_{21}^{36.9659}CINO_6S^+$  ([M+H<sup>+</sup>]) = 440.0744, Found 440.0765.

Diethyl 3-phenyl-1-benzenesulfonylaziridine-2, 2'-dicarboxylate (1e)



Prepared by *Method A*. Colorless oil, 91% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.09$  (d, J = 7.6 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 7.2 Hz, 2H), 7.29 - 7.20 (m, 5H), 4.92 (s, 1H), 4.40 (dd, J = 6.8 Hz, 14.0 Hz, 2H), 3.95 (dd, J = 7.2 Hz, 14.0 Hz, 2H), 1.37 (t, J = 6.8 Hz, 3H), 0.88 (t, J = 7.2

Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.1, 162.5, 139.6, 133.8, 130.9, 129.1, 128.9, 128.4, 127.6, 127.0, 63.5, 62.2, 57.5, 49.9, 13.8, 13.6. HRMS (ESI-TOF) calcd for C<sub>20</sub>H<sub>21</sub>NNaO<sub>6</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 426.0982, Found 426.0987.

#### Diethyl 3-phenyl-1-(4-methoxylbenzenesulfonyl)aziridine-2, 2'-dicarboxylate (1f)



Prepared by *Method A*. Colorless oil, 98% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.00 (d, *J* = 9.2 Hz, 2H), 7.30 - 7.20 (m, 5H), 7.01 (d, *J* = 8.8 Hz, 2H), 4.86 (s, 1H), 4.44 - 4.33 (m, 2H), 3.94 (dd, *J* = 7.2 Hz, 14.4 Hz, 2H), 3.85 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 0.87 (t, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.8, 163.1, 162.5, 131.0, 130.8,

130.0, 128.8, 128.4, 127.0, 114.3, 63.3, 62.1, 57.4, 55.7, 49.6, 13.8, 13.6. HRMS (ESI-TOF) calcd for  $C_{21}H_{23}NNaO_7S^+([M+Na^+]) = 456.1088$ , Found 456.1088.

#### Diethyl 3-phenyl-1-(2-methylbenzenesulfonyl)aziridine-2, 2'-dicarboxylate (1g)



Prepared by *Method A*. Colorless oil, 46% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.00 (d, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.37 (d, *J* = 7.2 Hz, 1H), 7.30 - 7.18 (m, 6H), 4.97 (s, 1H), 4.44 - 4.27 (m, 2H), 3.98 - 3.84 (m, 2H), 2.93 (s, 3H), 1.32 (t, *J* = 7.2 Hz, 3H), 0.85 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C

NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.0, 162.6, 139.1, 137.4, 134.0, 132.7, 131.1, 129.1, 129.0, 128.4, 126.9, 126.1, 63.3, 62.1, 57.4, 49.9, 20.5, 13.7, 13.6. HRMS (ESI-TOF) calcd for C<sub>21</sub>H<sub>24</sub>NO<sub>6</sub>S<sup>+</sup>([M+H<sup>+</sup>]) = 418.1319, Found 418.1321.

Diethyl 3-phenyl-1-(2-nitrobenzenesulfonyl)aziridine-2, 2'-dicarboxylate (1h)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 74% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 8.48 - 8.32$  (m, 1H), 7.94 - 7.76 (m, 3H), 7.38 - 7.27 (m, 5H), 5.12 (s, 1H), 4.42 (dd, J = 7.2, 14.4 Hz, 2H), 4.08 - 3.92 (m, 2H), 1.39 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 7.2

Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.2, 162.3, 147.9, 134.5, 133.9, 132.91, 131.0, 130.9, 129.0, 128.4, 126.9, 125.1, 63.7, 62.3, 58.4, 52.5, 13.8, 13.6. HRMS (ESI-TOF) calcd for C<sub>20</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>8</sub>S<sup>+</sup>([M+Na<sup>+</sup>]) = 471.0833, Found 471.0832.

#### Diethyl 3-phenyl-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1i)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 76% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.42 - 7.31 (m, 5H), 4.78 (s, 1H), 4.41 - 4.32 (m, 2H), 4.02 (dd, *J* = 7.2 Hz, 14.4 Hz, 2H), 3.34 (s, 3H), 1.36 (t,

J = 7.2 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 163.0$ , 162.4, 130.7, 129.1, 128.5, 127.1, 63.5, 62.4, 57.3, 48.3, 41.9, 13.7. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>19</sub>NNaO<sub>6</sub>S<sup>+</sup>([M+Na<sup>+</sup>]) = 364.0826, Found 364.0829.

#### Diethyl 3-phenyl-1-(2-trimethylsilylethanesulfonyl)aziridine-2, 2'-dicarboxylate (1j)



Prepared by *Method A*. Light yellow oil, 22% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.40 - 7.29 (m, 5H), 4.81 (s, 1H), 4.41 - 4.31 (m, 2H), 4.06 - 3.95 (m, 2H), 3.39 - 3.23 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.33 - 1.20 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H), 0.09 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.2, 162.6, 133.4, 131.3, 130.7, 129.2, 63.4, 62.2, 57.1,

51.5, 48.7, 13.7, 13.6, 9.8, -2.0. HRMS (ESI-TOF) calcd for  $C_{19}H_{29}NNaO_6SSi^+$  ([M+Na<sup>+</sup>]) = 450.1377, Found 450.1385.

Diethyl 3-(4-chlorophenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1k)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 74% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.39 - 7.29 (m, 4H), 4.72 (s, 1H), 4.36 (dd, *J* = 7.2 Hz, 14.4 Hz, 2H), 4.11 - 3.97 (m, 2H), 3.33 (s, 3H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.00 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C

NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.8, 162.2, 135.1, 129.3, 128.8, 128.6, 63.6, 62.6, 57.4, 47.4, 41.8, 13.8. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>18</sub><sup>34.9689</sup>ClNNaO<sub>6</sub>S<sup>+</sup>([M+Na<sup>+</sup>]) = 398.0436, Found 398.0436. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>18</sub><sup>36.9659</sup>ClNNaO<sub>6</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 400.0407, Found 400.0399.

#### Diethyl 3-(3-chlorophenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (11)



Prepared by *Method A*. Colorless oil, 54% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.40 - 7.37 (m, 1H), 7.35 -7.27 (m, 3H), 4.72 (s, 1H), 4.42 - 4.30 (m, 2H), 4.06 (dd, J = 7.2 Hz, 14.4 Hz, 2H), 3.34 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz,

CDCl<sub>3</sub>)  $\delta$  = 162.7, 162.2, 134.5, 132.8, 129.9, 129.3, 127.1, 125.6, 63.6, 62.6, 57.2, 47.2, 41.8, 13.8, 13.7. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>18</sub><sup>34.9689</sup>ClNKO<sub>6</sub>S<sup>+</sup>([M+K<sup>+</sup>]) = 414.0175, Found 414.0173. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>18</sub><sup>36.9659</sup>ClNKO<sub>6</sub>S<sup>+</sup> ([M+K<sup>+</sup>]) = 416.0146, Found 416.0148.

#### Diethyl 3-(2-chlorophenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1m)



Prepared by *Method A*. Colorless oil, 69% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.45 (d, *J* = 7.2 Hz, 1H), 7.37 (d, *J* = 7.6 Hz, 1H), 7.32 - 7.27 (m, 1H), 7.26 - 7.22 (m, 1H), 4.94 (s, 1H), 4.45 - 4.30 (m, 2H), 4.08 - 3.94 (m, 2H), 3.37 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 0.92 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C

NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.7, 162.2, 134.1, 130.2, 129.2, 129.1, 128.8, 126.7, 63.5, 62.5, 56.5, 46.3, 41.5, 13.7, 13.6. HRMS (ESI-TOF) calcd for

 $C_{15}H_{18}^{34.9689}$ ClNNaO<sub>6</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 398.0436, Found 398.0442. HRMS (ESI-TOF) calcd for  $C_{15}H_{18}$ Na<sup>36.9659</sup>ClNNaO<sub>6</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 400.0407, Found 400.0418.

#### Diethyl 3-(4-bromophenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1n)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 58% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.48 (d, *J* = 8.8 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 4.70 (s, 1H), 4.36 (dd, *J* = 7.2 Hz, 14.4 Hz, 2H), 4.11 - 3.97 (m, 2H), 3.33 (s, 3H), 1.36 (t, *J* = 7.2 Hz,

3H), 1.00 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 162.8$ , 162.2, 131.7, 129.8, 128.8, 123.3, 63.6, 62.6, 57.3, 47.4, 41.8, 13.8. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>18</sub><sup>78.9183</sup>BrKNO<sub>6</sub>S<sup>+</sup> ([M+K<sup>+</sup>]) = 457.9670, Found 457.9674. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>18</sub><sup>80.9163</sup>BrKNO<sub>6</sub>S<sup>+</sup> ([M+K<sup>+</sup>]) = 459.9650, Found 459.9631.

#### Diethyl 3-(4-fluorophenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (10)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 66% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.38 (dd, *J* = 5.2 Hz, 8.4 Hz, 2H), 7.04 (t, *J* = 8.8 Hz, 2H), 4.73 (s, 1H), 4.36 (dd, *J* = 7.2 Hz, 14.4 Hz, 2H), 4.04 (dd, *J* = 7.2 Hz, 14.4 Hz, 2H), 3.33 (s,

3H), 1.36 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ = 163.1 (d, J = 249.4 Hz), 162.9, 162.3, 129.0 (d, J = 8.5 Hz), 126.6 (d, J = 3.1 Hz), 115.6 (d, J = 22.0 Hz), 63.6, 62.5, 57.4, 47.4, 41.8, 13.8; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  = -112.0. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>18</sub>FNNaO<sub>6</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 382.0732, Found 382.0735.

Diethyl 3-(4-trifluoromethylphenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1p)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 77% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.61 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.0 Hz, 2H), 4.79 (s, 1H), 4.38 (dd, *J* = 7.2 Hz, 14.4 Hz, 2H), 4.10 - 3.96 (m, 2H), 3.35 (s, 3H), 1.37 (t, *J* = 7.2 Hz,

3H), 0.95 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 162.6$ , 162.0, 134.9, 131.2 (q, J = 32.7 Hz), 127.7, 125.4 (q, J = 3.7 Hz), 123.8 (d, J = 273.3 Hz), 63.6, 62.6, 57.3, 47.2, 41.7, 13.7, 13.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta = -62.8$ . HRMS (ESI-TOF) calcd for C<sub>16</sub>H<sub>18</sub>F<sub>3</sub>KNO<sub>6</sub>S<sup>+</sup>([M+K<sup>+</sup>]) = 448.0439, Found 448.0436.

#### Diethyl 3-(4-nitrophenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1q)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 74% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.22 (d, *J* = 8.8 Hz, 2H), 7.61 (d, *J* = 8.8 Hz, 2H), 4.81 (s, 1H), 4.44 - 4.32 (m, 2H), 4.11 - 3.96 (m, 2H), 3.37 (s, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.00 (t, *J* =

7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.4, 161.8, 148.3, 137.8, 128.4, 123.7, 63.8, 62.9, 57.4, 46.6, 41.7, 13.8. HRMS (ESI-TOF) calcd for C<sub>15</sub>H<sub>19</sub>N<sub>2</sub>O<sub>8</sub>S<sup>+</sup> ([M+H<sup>+</sup>]) = 387.0857, Found 387.0866.

#### Diethyl 3-(4-phenylphenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1r)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 60% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.60 - 7.54 (m, 4H), 7.50 - 7.41 (m, 4H), 7.39 - 7.33 (m, 1H), 4.81 (s, 1H), 4.42 - 4.32 (m, 2H), 4.10 - 3.98 (m, 2H), 3.35 (s, 3H) 1.37 (t, *J* = 7.2 Hz, 3H), 0.97 (t, *J* = 7.2 Hz,

3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.0, 162.5, 142.0, 140.3, 129.7, 128.9, 127.7, 127.6, 127.2, 127.1, 63.5, 62.5, 57.4, 48.2, 42.0, 13.8, 13.7. HRMS (ESI-TOF) calcd

for  $C_{21}H_{23}KNO_6S^+([M+K^+]) = 456.0878$ , Found 456.0880.

#### Diethyl 3-(2-naphthyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1s)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 55% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.89 (s, 1H), 7.87 -7.79 (m, 3H), 7.54 - 7.44 (m, 3H), 4.93 (s, 1H), 4.39 (dd, *J* = 6.8 Hz, 14.0 Hz, 2H), 4.05 - 3.88 (m, 2H), 3.38 (s, 3H), 1.38

 $(t, J = 7.2 \text{ Hz}, 3\text{H}), 0.87 (t, J = 7.2 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta = 163.0, 162.5, 133.5, 132.8, 128.4, 128.2, 128.1, 127.8, 126.8, 126.7, 126.6, 124.2, 63.6, 62.5, 57.5, 48.5, 41.9, 13.8, 13.7. HRMS (ESI-TOF) calcd for C<sub>19</sub>H<sub>21</sub>NNaO<sub>6</sub>S<sup>+</sup>([M+Na<sup>+</sup>]) = 414.0982, Found 414.0987.$ 

#### Diethyl 3-(3-methylphenyl)-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1t)



Prepared by *Method A*. Light yellow oil, 45% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.25 - 7.10 (m, 4H), 4.72 (s, 1H), 4.40 - 4.30 (m, 2H), 4.06 - 3.96 (m, 2H), 3.31 (s, 3H), 2.32 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H), 0.94 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.7, 162.1, 137.9,

130.4, 129.5, 128.1, 127.3, 123.8, 63.1, 62.0, 56.9, 47.9, 41.5, 20.9, 13.3. HRMS (ESI-TOF) calcd for  $C_{16}H_{21}NNaO_6S^+([M+Na^+]) = 378.0982$ , Found 378.0991.

#### Diethyl 3-cyclohexyl-1-methylsulfonylaziridine-2, 2'-dicarboxylate (1u)



Prepared by *Method A*. White solid (Crystallized by Et<sub>2</sub>O/petroleum ether), 20% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 4.39 - 4.24 (m, 4H), 3.36 (d, *J* = 9.6 Hz, 1H), 3.22 (s, 3H), 2.00 - 1.55 (m, 6H), 1.37 - 1.11 (m, 12H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.8, 163.4, 63.1, 62.7, 55.5,

51.1, 41.0, 36.8, 30.8, 29.0, 25.8, 25.1, 14.1, 13.7. HRMS (ESI-TOF) calcd for

 $C_{15}H_{25}NNaO_6S^+([M+Na^+]) = 370.1295$ , Found 370.1296.

#### (D) General procedure for chiral *N*,*N'*-dioxides preparation

The N, N'-dioxide ligands were prepared by the similar procedure in the literatures.<sup>[3]</sup>



#### (E) General procedure for the preparation of the racemic products

Some known racemic products (**3aa**, **3ba**, **3ca**, **3da**, **3ea**, **3fa**) were synthesized according to the literature.<sup>[4]</sup> Other racemic products were prepared as following: To an oven-dried reaction tube were added Nd(OTf)<sub>3</sub> (10 mol%), LiNTf<sub>2</sub> (15 mol%), 4 Å molecular sieves (100 mg) and CHCl<sub>3</sub> (1.0 mL). Then to the suspensions were added aldehydes (0.3 mmol) and aziridines (0.1 mmol). Then the solutions were stirred at room temperature for 12-40 h. After the completion of the reaction, the suspensions were directly purified by flash chromatography on basic aluminum oxide (pH = 9-10) (Eluent: Ethyl acetate:Petroleum ether = 1:10 - 3:7) to provide the desired products.

#### (F) General procedure for the catalytic asymmetric transformation



To an oven-dried reaction tube were added Nd(OTf)<sub>3</sub> (5-10 mol%), **L-PiPr<sub>2</sub>** (2.5-5 mol%), LiNTf<sub>2</sub> (15 mol%), 4 Å molecular sieves (100 mg) and CHCl<sub>3</sub> (0.5 mL). The suspensions were stirred at 35 °C for 0.5 h under nitrogen atmosphere. Subsequently, aldehydes (0.15-0.3 mmol) and aziridines (0.1 mmol) in 0.25 mL of CHCl<sub>3</sub> were added. The solutions were stirred at 35 °C for the indicated time. After the completion

of the reactions, the suspensions were directly purified by flash chromatography on basic aluminum oxide (pH = 9-10) (Eluent: Ethyl acetate:Petroleum ether = 1:10 - 3:7) to afford the corresponding products (37-98% yield, >19:1 dr, 55-95% ee).

#### (G) Experimental procedure for the scale-up reaction



To an oven-dried 50 mL round-bottomed flask were added Nd(OTf)<sub>3</sub> (5.5 mol%), **L-PiPr<sub>2</sub>** (5 mol%), LiNTf<sub>2</sub> (15 mol%), 4 Å molecular sieves (3.0 g) and CHCl<sub>3</sub> (15 mL). The suspension was stirred at 35 °C for 0.5 h under nitrogen atmosphere. Subsequently, aldehyde **2h** (0.375 mL, 4.5 mmol) and aziridine **1k** (1.125 g, 3.0 mmol) in 7.5 mL of CHCl<sub>3</sub> were added. The solution was stirred at 35 °C for 38 h. After the completion of the reaction, the suspension was directly purified by flash chromatography on basic aluminum oxide (pH = 9-10) (Eluent: Ethyl acetate:Petroleum ether = 1:14 - 1:3) to afford the desired product (1.320 g, 93% yield, >19:1 dr, 93% ee).

(H) Control experiments



Procedure for control experiment a: To an oven-dried reaction tube were added  $Nd(OTf)_3$  (5 mol%), **L-PiPr<sub>2</sub>** (2.5 mol%), LiNTf<sub>2</sub> (15 mol%), 4 Å molecular sieves (100 mg) and CHCl<sub>3</sub> (0.5 mL). The suspension was stirred at 35 °C for 0.5 h under nitrogen atmosphere. Subsequently, benzaldehyde **2a** (0.2 mmol), aziridine **1i** (0.05

mmol) and **1k** (0.05 mmol) in 0.25 mL of CHCl<sub>3</sub> were added. The solution was stirred at 35 °C for 2 h. After the completion of the reaction, the suspension was directly purified by flash chromatography on basic aluminum oxide (pH = 9-10) (Eluent: Ethyl acetate:Petroleum ether = 1:9 - 3:7) to afford the mixture of **3ia** and **3ka** (**3ia**:**3ka** = 1.5:1, determined by <sup>1</sup>H NMR).



Figure 1 The ratio of 3ia to 3ka determined by <sup>1</sup>H NMR



Procedure for control experiment b: To an oven-dried reaction tube were added Nd(OTf)<sub>3</sub> (5 mol%), **L-PiPr<sub>2</sub>** (2.5 mol%), LiNTf<sub>2</sub> (15 mol%), 4 Å molecular sieves (100 mg) and CHCl<sub>3</sub> (0.5 mL). The suspension was stirred at 35 °C for 0.5 h under nitrogen atmosphere. Subsequently, benzaldehyde **2a** (0.1 mmol), 4-chloro benzaldehyde **2b** (0.1 mmol), and aziridine **1k** (0.1 mmol) in 0.25 mL of CHCl<sub>3</sub> were added. The solution was stirred at 35 °C for 2 h. After the completion of the reaction, the suspension was directly purified by flash chromatography on basic aluminum oxide (pH = 9-10) (Eluent: Ethyl acetate:Petroleum ether = 1:9 - 3:7) to afford the mixture of **3ka** and **3kb** (**3ka**:**3kb** = 3.6:1, determined by <sup>1</sup>**H NMR**).



Figure 2 The ratio of 3ka to 3kb determined by <sup>1</sup>H NMR

(3) HPLC traces of catalytic asymmetric [3+2]-cycloaddition of aziridine 1k with aldehyde 2h.

| entry | substrate ratio (x/y) | ee of <b>1k</b> (%) | ee of <b>3kh</b> (%) |
|-------|-----------------------|---------------------|----------------------|
| 1     | 1:2                   | -                   | 93                   |
| 2     | 1:1.5                 | -                   | 93                   |
| 3     | 1:1                   | -                   | 93                   |
| 4     | 1.5:1                 | 0                   | 94                   |
| 5     | 2:1                   | 0                   | 94                   |
| 6     | 3:1                   | 0                   | 94                   |

(4) Kinetic study on catalytic asymmetric [3+2]-cycloaddition of DA aziridine **1i** with aldehyde **2a**.

| t/main  | 15 mol% L    | iNTf <sub>2</sub> | no LiNTf <sub>2</sub> |         |  |
|---------|--------------|-------------------|-----------------------|---------|--|
| U/IIIII | Conversion % | Yield %           | Conversion %          | Yield % |  |
| 15      | 58           | 37                | 21                    | 2       |  |
| 30      | 66           | 41                | 28                    | 2       |  |
| 45      | 72           | 50                | 31                    | 9       |  |
| 60      | 87           | 67                | 43                    | 13      |  |

(5)  $^{1}$ H NMR experiments.

(a)  $LiNTf_2$  and  $LiClO_4$  were selected as metal salt respectively. (mixing after 30 min)



Figure 3 The solution of LiClO<sub>4</sub> (0.1 mmol) and aziridine 1r (0.1 mmol) in CD<sub>3</sub>CN (1 mL).



**Figure 4** The solution of LiNTf<sub>2</sub> (0.1 mmol) and aziridine 1r (0.1 mmol) in CD<sub>3</sub>CN (1 mL). *Note:* At first, LiClO<sub>4</sub> was selected as metal salt to detect the azomethine ylide intermediate according to previous report.<sup>[5]</sup> Instead, the side product A and B from the trapping of water were received, might for the unstable intermediate of DA *N*-sulfonylaziridines. Then the same operation

was carried out for LiNTf<sub>2</sub>, proving its feature of promoting the ring-opening process more easily.



(6) HRMS experiments.

Figure 5 ESI-MS analysis of the mixture of LiNTf<sub>2</sub> and L-PiPr<sub>2</sub> (1:1).







Figure 7 ESI-MS analysis of the mixture of Nd(OTf)<sub>3</sub>, L-PiPr<sub>2</sub> and LiNTf<sub>2</sub> (1.1:1:3).



(I) A plausible catalytic cycle

### (J) Optimization of conditions<sup>a</sup>













**L-RiPr<sub>2</sub>**: R = 2,6-*i*-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, m = 1

| Entry | Ligand                 | Metal salt                                            | Solvent | Additive           | x/y   | t (h) | Yield $(\%)^b$ | d.r. <sup><i>c</i></sup> | $ee(\%)^d$ |
|-------|------------------------|-------------------------------------------------------|---------|--------------------|-------|-------|----------------|--------------------------|------------|
| 1     | L-PiPr <sub>2</sub>    | Sc(OTf) <sub>3</sub>                                  | toluene | -                  | 10/10 | 12    | 45             | >19:1                    | 0          |
| 2     | L-PiPr <sub>2</sub>    | Ni(ClO <sub>4</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | toluene | -                  | 10/10 | 12    | 20             | >19:1                    | -22        |
| 3     | L-PiPr <sub>2</sub>    | Zn(OTf) <sub>2</sub>                                  | toluene | -                  | 10/10 | 12    | trace          | -                        | -          |
| 4     | L-PiPr <sub>2</sub>    | La(OTf) <sub>3</sub>                                  | toluene | -                  | 10/10 | 12    | 14             | >19:1                    | 36         |
| 5     | L-PiPr <sub>2</sub>    | In(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | <10            | > 19:1                   | -3         |
| 6     | L-PiPr <sub>2</sub>    | La(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 24             | >19:1                    | 58         |
| 7     | L-PiPr <sub>2</sub>    | Hf(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | <10            | > 19:1                   | 9          |
| 8     | L-PiPr <sub>2</sub>    | Sm(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 18             | > 19:1                   | 50         |
| 9     | L-PiPr <sub>2</sub>    | Eu(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 15             | > 19:1                   | 40         |
| 10    | L-PiPr <sub>2</sub>    | Gd(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 22             | > 19:1                   | 56         |
| 11    | L-PiPr <sub>2</sub>    | Tb(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 14             | > 19:1                   | 55         |
| 12    | L-PiPr <sub>2</sub>    | Ho(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 14             | > 19:1                   | 50         |
| 13    | L-PiPr <sub>2</sub>    | Er(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 15             | > 19:1                   | 20         |
| 14    | L-PiPr <sub>2</sub>    | Nd(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 30             | >19:1                    | 71         |
| 15    | L-PrPr <sub>2</sub>    | Nd(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 31             | > 19:1                   | 40         |
| 16    | L-RiPr <sub>2</sub>    | Nd(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 27             | >19:1                    | 13         |
| 17    | C2-L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 45             | >19:1                    | 4          |
| 18    | L-PiPr <sub>3</sub>    | Nd(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 33             | >19:1                    | 56         |
| 19    | L-PiEt <sub>2</sub>    | Nd(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 24             | >19:1                    | 59         |
| 20    | L-PiCHPh <sub>2</sub>  | Nd(OTf) <sub>3</sub>                                  | toluene | LiNTf <sub>2</sub> | 10/10 | 12    | 26             | >19:1                    | -9         |

| 21                              | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | DCM               | LiNTf <sub>2</sub>  | 10/10 | 12 | 34 | > 19:1 | 75 |
|---------------------------------|---------------------|----------------------|-------------------|---------------------|-------|----|----|--------|----|
| 22                              | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | DCE               | LiNTf <sub>2</sub>  | 10/10 | 12 | 32 | > 19:1 | 76 |
| 23                              | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | PhCl              | LiNTf <sub>2</sub>  | 10/10 | 12 | 32 | > 19:1 | 74 |
| 24                              | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | TCE               | LiNTf <sub>2</sub>  | 10/10 | 12 | 31 | > 19:1 | 80 |
| 25                              | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiNTf <sub>2</sub>  | 10/10 | 12 | 35 | > 19:1 | 85 |
| 26 <sup>e</sup>                 | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiNTf <sub>2</sub>  | 10/10 | 12 | 47 | > 19:1 | 86 |
| 27 <sup>e</sup>                 | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiNTf <sub>2</sub>  | 10/5  | 12 | 65 | > 19:1 | 87 |
| 28 <sup>e</sup>                 | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiCl                | 10/5  | 12 | 55 | >19:1  | 67 |
| 29 <sup>e</sup>                 | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | NaBAr <sub>F4</sub> | 10/5  | 12 | 66 | >19:1  | 14 |
| 30 <sup>e</sup>                 | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | NaNTf <sub>2</sub>  | 10/5  | 12 | 41 | >19:1  | 73 |
| 31 <sup>e</sup>                 | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiBF <sub>4</sub>   | 10/5  | 12 | 51 | >19:1  | 63 |
| 32 <sup>e</sup>                 | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiClO <sub>4</sub>  | 10/5  | 12 | 53 | >19:1  | 63 |
| 33 <sup>e</sup>                 | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiBr                | 10/5  | 12 | 32 | >19:1  | 64 |
| 34 <sup><i>e</i>,<i>f</i></sup> | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiNTf <sub>2</sub>  | 10/5  | 12 | 68 | >19:1  | 91 |
| 35 <sup><i>e</i>,<i>f</i></sup> | L-PiPr <sub>2</sub> | Nd(OTf) <sub>3</sub> | CHCl <sub>3</sub> | LiNTf <sub>2</sub>  | 5/2.5 | 12 | 68 | >19:1  | 91 |

<sup>*a*</sup> Unless otherwise noted, the reactions were performed with x mol% metal, y mol% ligand, 10 mol% additive, 4 Å MS (20 mg), **1a** (0.1 mmol) and **2a** (0.15 mmol) in solvent (1 mL) under N<sub>2</sub> at 35 °C for the indicated time. <sup>*b*</sup> Isolated yield by silica gel chromatography. <sup>*c*</sup> Determined by <sup>1</sup>H NMR spectroscopy and chiral HPLC analysis (Chiralcel IE). <sup>*d*</sup> Determined by chiral HPLC analysis (Chiralcel IE). <sup>*e*</sup> x mol% metal, y mol% ligand, 15 mol% additive, 4 Å MS (100 mg), **1a** (0.1 mmol) and **2a** (0.2 mmol) in solvent (0.75 mL). <sup>*f*</sup> Isolation by basic Al<sub>2</sub>O<sub>3</sub> chromatography.

#### (K) The analytical and spectral characterization data of products

#### cis-Diethyl 2, 5-diphenyl-3-tosyloxazolidine-4, 4'-dicarboxylate (3aa)



Colorless oil, 68% yield, 91% ee.  $[\alpha]_D{}^{14} = +54.9 \ (c = 0.39)$ in CH<sub>2</sub>Cl<sub>2</sub>). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_R$  (major) = 29.51 min,  $t_R$ (minor) = 16.33 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta =$ 

7.49 (d, J = 7.2 Hz, 2H), 7.36 - 7.26 (m, 6H), 7.15 (t, J = 8.4 Hz, 4H), 6.90 (d, J = 8.0 Hz, 2H), 6.24 (s, 1H), 5.83 (s, 1H), 4.58 - 4.40 (m, 2H), 3.98 - 3.87 (m, 1H), 3.55 - 3.44 (m, 1H), 2.29 (s, 3H), 1.46 (t, J = 7.2 Hz, 3H), 0.80 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.4$ , 166.3, 142.8, 137.6, 134.6, 134.0, 129.9, 129.8, 129.0, 128.3, 128.1, 127.9, 126.6, 92.9, 87.4, 76.9, 63.1, 62.0, 21.5, 14.0, 13.3. HRMS (ESI-TOF) calcd for C<sub>28</sub>H<sub>29</sub>NO<sub>7</sub>SNa ([M+Na<sup>+</sup>]) = 546.1557, Found 546.1554.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 16.326         | 2295633  | 4.67   |
| 2 | 29.505         | 46816648 | 95.33  |

#### (2R,5S)-Dimethyl 2, 5-diphenyl-3-tosyloxazolidine-4, 4'-dicarboxylate (3ba)



Colorless oil, 62% yield, 90% ee.  $[\alpha]_D{}^{15} = +55.3$  (*c* = 0.55 in CH<sub>2</sub>Cl<sub>2</sub>). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda$  = 210 nm:  $t_R$  (major) = 23.25 min,  $t_R$ (minor) = 17.25 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  =

7.52 - 7.45 (m, 2H), 7.36 - 7.27 (m, 6H), 7.20 - 7.14 (m, 3H), 7.12 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.0 Hz, 2H), 6.26 (s, 1H), 5.83 (s, 1H), 4.02 (s, 3H), 3.24 (s, 3H), 2.30 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta = 166.8$ , 165.80, 143.1, 137.2, 134.0, 133.9, 130.0, 129.5, 129.1, 128.6, 128.2, 127.9, 127.3, 126.4, 92.2, 86.3, 76.1, 53.6, 52.2, 20.9. HRMS (ESI-TOF) calcd for C<sub>26</sub>H<sub>25</sub>NNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 518.1244, Found 518.1257.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 17.245         | 4475915  | 5.09   |
| 2 | 23.253         | 83399621 | 94.91  |

#### (2R,5S)-Diisopropyl 2, 5-diphenyl-3-tosyloxazolidine-4, 4'-dicarboxylate (3ca)



Colorless oil, 40% yield, 72% ee.  $[\alpha]_{\lambda}^{27} = +181.5$  (c = 0.54in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 23.25 min,  $t_{\rm R}$  (minor) = 17.25 min.) <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta = 7.47$  (d, J = 7.6 Hz, 2H), 7.37 - 7.27 (m, 6H), 7.19 - 7.11 (m, 4H), 6.90 (d, J = 8.4 Hz, 2H), 6.19 (s, 1H), 5.82 (s, 1H), 5.41 - 5.31 (m, 1H), 4.68 - 4.58 (m, 1H), 2.29 (s, 3H), 1.49 - 1.42 (m, 6H), 1.08 (d, J = 6.0 Hz, 3H), 0.60 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.0$ , 165.9, 142.7, 137.8, 134.8, 134.1, 129.9, 129.8, 128.8, 128.3, 128.2, 127.9, 126.7, 92.7, 87.3, 76.8, 71.1, 70.2, 21.7, 21.4, 21.3, 20.7. HRMS (ESI-TOF) calcd for C<sub>30</sub>H<sub>34</sub>NO<sub>7</sub>S<sup>+</sup> ([M+H<sup>+</sup>]) = 552.2050, Found 552.2051.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 12.911         | 1047197 | 13.96  |
| 2 | 23.062         | 6455169 | 86.04  |

(2*R*,5*S*)-Diethyl 2, 5-diphenyl-3-(4-chlorobenzenesulfonyl)oxazolidine-4, 4'-dicarboxylate (3da)



Colorless oil, 74% yield, 89% ee.  $[\alpha]_D{}^{14} = +59.6$  (c = 0.70in CH<sub>2</sub>Cl<sub>2</sub>). (Chiralpak IE, hexane/*i*PrOH = 80/20, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_R$  (major) = 18.54 min,  $t_R$ (minor) = 12.71 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 7.46$ 

(d, J = 7.2 Hz, 2H), 7.37 - 7.29 (m, 6H), 7.23 - 7.14 (m, 4H), 7.09 - 7.03 (m, 2H), 6.22 (s, 1H), 5.82 (s, 1H), 4.58 - 4.41 (m, 2H), 3.99 - 3.89 (m, 1H), 3.55 - 3.45 (m, 1H), 1.46 (t, J = 7.2 Hz, 3H), 0.80 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.2$ , 166.3, 139.0, 138.6, 134.4, 133.6, 130.2, 129.9, 129.6, 129.1, 128.3, 128.1, 127.9, 126.5, 92.8, 87.5, 77.2, 63.2, 62.2, 14.0, 13.3. HRMS (ESI-TOF) calcd for C<sub>27</sub>H<sub>26</sub>NO<sub>7</sub>S<sup>34.9689</sup>CINa ([M+Na<sup>+</sup>]) = 566.1011, Found 566.1013. HRMS (ESI-TOF) calcd for C<sub>27</sub>H<sub>26</sub>NO<sub>7</sub>S<sup>36.9659</sup>CINa ([M+Na<sup>+</sup>]) = 568.0982, Found 568.1010



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 12.708         | 5133168  | 5.61   |
| 2 | 18.541         | 86387984 | 94.39  |

cis-Diethyl 2, 5-diphenyl-3-benzenesulfonyloxazolidine-4, 4'-dicarboxylate (3ea)



Colorless oil, 70% yield, 90% ee.  $[\alpha]_D^{14} = +49.5$  (*c* = 0.59 in CH<sub>2</sub>Cl<sub>2</sub>). (Chiralpak IE, hexane/*i*PrOH = 80/20, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_R$  (major) = 36.03 min,  $t_R$  (minor) = 20.06 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 7.48$  (d, *J* =

7.6 Hz, 2H), 7.37 - 7.25 (m, 9H), 7.17 - 7.08 (m, 4H), 6.25 (s, 1H), 5.84 (s, 1H), 4.59 - 4.41 (m, 2H), 3.98 - 3.88 (m, 1H), 3.56 - 3.45 (m, 1H), 1.47 (t, J = 7.2 Hz, 3H), 0.81 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.3$ , 166.2, 140.5, 134.5, 133.8, 132.1, 130.1, 129.8, 129.0, 128.2, 128.1, 128.0, 127.7, 126.6, 92.9, 87.4, 77.0, 63.1, 62.0, 14.0, 13.3. HRMS (ESI-TOF) calcd for C<sub>27</sub>H<sub>27</sub>NO<sub>7</sub>SNa<sup>+</sup> ([M+Na<sup>+</sup>]) = 532.1401, Found 532.1393.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 20.061         | 2679807  | 5.24   |
| 2 | 36.027         | 48483432 | 94.76  |

cis-Diethyl 2, 5-diphenyl-3-(4-methoxylbenzenesulfonyl)oxazolidine-4, 4'-dicarboxylate (3fa)



Colorless oil, 60% yield, 90% ee.  $[\alpha]_{\lambda}^{26} = +216.1$  (*c* = 0.58 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 34.17 min,  $t_{\rm R}$  (minor) = 20.58 min.) <sup>1</sup>H NMR (400 MHz,

DMSO-d<sub>6</sub>)  $\delta$  = 7.48 (d, *J* = 7.2 Hz, 2H), 7.37 - 7.27 (m, 6H), 7.25 - 7.14 (m, 4H), 6.57 (d, *J* = 9.2 Hz, 2H), 6.22 (s, 1H), 5.82 (s, 1H), 4.59 - 4.40 (m, 2H), 3.98 - 3.88 (m, 1H), 3.77 (s, 3H), 3.55 - 3.45 (m, 1H), 1.46 (t, *J* = 7.2 Hz, 3H), 0.81 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO)  $\delta$  = 166.3, 165.4, 162.2, 134.3, 133.9, 131.8, 130.0, 129.6, 129.4, 128.9, 128.1, 127.8, 126.4, 113.3, 92.0, 86.3, 76.0, 62.4, 61.5, 55.6, 13.7, 13.0. HRMS (ESI-TOF) calcd for C<sub>28</sub>H<sub>29</sub>NNaO<sub>8</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 562.1506, Found 562.1508.



| 1 | 20.585 | 1897845  | 5.19  |
|---|--------|----------|-------|
| 2 | 34.167 | 34638368 | 94.81 |

cis-Diethyl 2, 5-diphenyl-3-(2-methylbenzenesulfonyl)oxazolidine-4, 4'-dicarboxylate (3ga)



Colorless oil, 54% yield, 76% ee. (4% recovered aziridine) (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda$  = 210 nm:  $t_{\rm R}$  (major) = 25.51 min,  $t_{\rm R}$  (minor) = 13.24 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.60 (d, *J* = 7.2

Hz, 2H), 7.41 (d, J = 8.0 Hz, 1H), 7.38 - 7.29 (m, 5H), 7.29 - 7.23 (m, 2H), 7.19 (dd, J = 7.6, 15.2 Hz, 3H), 6.98 (d, J = 7.6 Hz, 1H), 6.91 (t, J = 8.0 Hz, 1H), 6.34 (s, 1H), 5.97 (s, 1H), 4.52 - 4.29 (m, 2H), 4.00 - 3.85 (m, 1H), 3.55 - 3.39 (m, 1H), 2.33 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 166.5, 166.4, 138.8, 138.0, 134.6, 134.4, 132.3, 131.9, 130.2, 129.9, 129.7, 128.9, 128.2, 127.9, 126.5, 125.4, 93.7, 87.6, 76.7, 63.0, 61.9, 20.9, 13.8, 13.3. HRMS (ESI-TOF) calcd for C<sub>28</sub>H<sub>29</sub>NNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 546.1557, Found 546.1555.$ 



(2R,5S)-Diethyl 2, 5-diphenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3ia)



Colorless oil, 77% yield, 95% ee.  $[\alpha]_{\lambda}^{31} = +58.9$  (c = 0.43 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 17.73 min,  $t_{\rm R}$  (minor) = 13.21 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta =$ 

7.82 - 7.75 (m, 2H), 7.52 - 7.46 (m, 3H), 7.37 (s, 5H), 6.25 (s, 1H), 5.82 (s, 1H), 4.50 - 4.32 (m, 2H), 4.02 - 3.90 (m, 1H), 3.63 - 3.52 (m, 1H), 2.48 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.1$ , 166.9, 134.6, 134.5, 130.6, 129.7, 129.1, 128.6, 128.3, 126.4, 92.3, 87.6, 77.0, 63.2, 62.1, 43.0, 14.0, 13.2. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>25</sub>NNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 470.1244, Found 470.1255.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 13.208         | 858882   | 1.80   |
| 2 | 17.731         | 46729578 | 98.20  |

(2R,5S)-Diethyl 2, 5-diphenyl-3-(2-trimethylsilylethanesulfonyl)oxazolidine-4, 4'-dicarboxylate (3ja)



White solid, m.p. 108-109 °C, 66% yield, 93% ee.  $[\alpha]_{\lambda}^{27}$  = +65.3 (*c* = 1.32 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda$  = 365 nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda$  = 210 nm: *t*<sub>R</sub> (major) = 32.19 min, *t*<sub>R</sub> (minor) = 11.22 min.) <sup>1</sup>H

NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.76 - 7.67 (m, 2H), 7.44 - 7.36 (m, 3H), 7.34 - 7.25 (m, 5H), 6.18 (s, 1H), 5.76 (s, 1H), 4.48 - 4.22 (m, 2H), 3.93 - 3.80 (m, 1H), 3.53 - 3.40 (m, 1H), 2.95 - 2.82 (m, 1H), 1.88 - 1.75 (m, 1H), 1.33 (t, *J* = 7.2 Hz, 3H), 0.80- 0.69 (m, 4H), 0.65 - 0.55 (m, 1H), -0.27 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 167.2, 166.8, 135.2, 134.6, 130.5, 129.6, 128.9, 128.4, 128.2, 126.4, 92.2, 87.6, 76.8, 63.0, 61.9, 51.8, 13.9, 13.2, 8.8, -2.3. HRMS (ESI-TOF) calcd for C<sub>26</sub>H<sub>35</sub>NNaO<sub>7</sub>SSi<sup>+</sup> ([M+Na<sup>+</sup>]) = 556.1796, Found 556.1806.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 11.225         | 778015   | 3.63   |
| 2 | 32.193         | 20653020 | 96.37  |

# (2*R*,5*S*)-Diethyl 2-(4-chlorophenyl)-5-phenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3ka)



Colorless oil, 80% yield, 94% ee.  $[\alpha]_{\lambda}^{31} = +19.8$  (c = 0.51in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 17.67 min,  $t_{\rm R}$  (minor) = 12.23 min.) <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta = 7.74$  (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 7.41 - 7.30 (m, 5H), 6.23 (s, 1H), 5.82 (s, 1H), 4.49 - 4.30 (m, 2H), 4.01 - 3.90 (m, 1H), 3.61 - 3.49 (m, 1H), 2.56 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 166.9$ , 166.9, 136.6, 134.3, 133.4, 131.0, 129.2, 128.9, 128.4, 126.3, 91.6, 87.7, 76.8, 63.2, 62.2, 43.2, 13.9, 13.2. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>7</sub>S<sup>34.9689</sup>CINa ([M+Na<sup>+</sup>]) = 504.0855, Found 504.0862. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>7</sub>S<sup>36.9659</sup>CINa ([M+Na<sup>+</sup>]) = 506.0825, Found 506.0844.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 12.231         | 1346321  | 3.24   |
| 2 | 17.673         | 40206392 | 96.76  |

(2R,5S)-Diethyl 2-(3-chlorophenyl)-5-phenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3la)



Colorless oil, 78% yield, 92% ee.  $[\alpha]_{\lambda}^{25} = +34.6$  (c = 0.48in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 21.0 min,  $t_{\rm R}$  (minor) = 11.5 min.) <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  = 7.83 - 7.77 (m, 1H), 7.71 - 7.65 (m, 1H), 7.50 - 7.30 (m, 7H), 6.21 (s, 1H), 5.82 (s, 1H), 4.48 - 4.31 (m, 2H), 4.03 - 3.92 (m, 1H), 3.65 - 3.53 (m, 1H), 2.59 (s, 3H), 1.38 (t, *J* = 7.2 Hz, 3H), 0.80 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ = 166.9, 166.8, 136.9, 134.5, 134.2, 130.8, 129.9, 129.6, 129.2, 128.4, 127.9, 126.4, 91.6, 87.8, 76.8, 63.3, 62.2, 43.2, 13.9, 13.2. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>7</sub>S<sup>34.9689</sup>CINa ([M+Na<sup>+</sup>]) = 504.0855, Found 504.0864. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>7</sub>S<sup>36.9659</sup>CINa ([M+Na<sup>+</sup>]) = 506.0825, Found 506.0846.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 11.539         | 2842464  | 3.87   |
| 2 | 20.995         | 70607097 | 96.13  |

(2R,5S)-Diethyl 2-(2-chlorophenyl)-5-phenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3ma)



Colorless oil, 71% yield, 88% ee.  $[\alpha]_{\lambda}^{26} = +43.4$  (*c* = 0.58 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak ID, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 27.6 min,  $t_{\rm R}$  (minor) = 12.0 min.) <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta =$ 

8.11 (d, J = 7.2 Hz, 1H), 7.63 - 7.51 (m, 3H), 7.46 - 7.37 (m, 3H), 7.37 - 7.24 (m, 2H), 6.68 (s, 1H), 5.89 (s, 1H), 4.46 - 4.17 (m, 2H), 3.94 - 3.82 (m, 1H), 3.60 - 3.50 (m, 1H), 2.80 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H), 0.76 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta = 166.1$ , 166.0, 134.2, 133.9, 132.4, 131.9, 130.9, 129.7, 129.0, 128.2, 127.6, 126.6, 87.7, 86.6, 75.9, 62.6, 61.7, 42.8, 13.6, 13.0. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>7</sub>S<sup>34.9689</sup>ClNa ([M+Na<sup>+</sup>]) = 504.0855, Found 504.0851. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>7</sub>S<sup>36.9659</sup>ClNa ([M+Na<sup>+</sup>]) = 506.0825, Found 506.0842.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 12.004         | 2746877  | 6.21   |
| 2 | 27.591         | 41471338 | 93.79  |

(2R,5S)-Diethyl 2-(4-bromophenyl)-5-phenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3na)



Colorless oil, 70% yield, 93% ee.  $[\alpha]_{\lambda}^{31} = +18.8 \ (c = 0.55)$ in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 19.97 min,  $t_{\rm R}$  (minor) = 12.91 min.) <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta = 7.65$  (dd, J = 8.8 Hz, 20.0 Hz, 4H), 7.43 - 7.30 (m, 5H), 6.21 (s, 1H), 5.82 (s, 1H), 4.48 - 4.30 (m, 2H), 4.01 - 3.90 (m, 1H), 3.61 - 3.49 (m, 1H), 2.57 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 166.9$ , 166.8, 134.3, 133.9, 131.8, 131.3, 129.2, 128.4, 126.4, 124.9, 91.7, 87.7, 76.8, 63.2, 62.2, 43.3, 13.9, 13.2. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub><sup>78.9183</sup>BrNNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 548.0350, Found 548.0352. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub><sup>80.9163</sup>BrNNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 550.0329, Found 550.0331.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 12.908         | 2090620  | 3.64   |
| 2 | 19.966         | 55326464 | 96.36  |

(2R,5S)-Diethyl 2-(4-fluorophenyl)-5-phenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (30a)



Colorless oil, 66% yield, 94% ee.  $[\alpha]_{\lambda}^{22} = +39.2$  (*c* = 0.56 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 80/20, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 19.17 min,  $t_{\rm R}$  (minor) = 15.52 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta =$ 

7.79 (dd, J = 8.4, 5.2 Hz, 2H), 7.42 - 7.31 (m, 5H), 7.18 (t, J = 8.4 Hz, 2H), 6.24 (s, 1H), 5.82 (s, 1H), 4.50 - 4.30 (m, 2H), 4.02 - 3.89 (m, 1H), 3.60 - 3.50 (m, 1H), 2.53 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.0$ , 166.9, 164.0 (d, J = 251.1 Hz), 134.3, 131.6 (d, J = 8.7 Hz), 130.7 (d, J = 3.2 Hz), 129.1, 128.4, 126.3, 115.7 (J = 21.9 Hz), 91.6, 87.6, 76.9, 63.2, 62.2, 43.1, 13.9, 13.2; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta = -109.8$ . HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>FNNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 488.1150, Found 488.1156.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 15.451         | 13202966 | 50.32  |
| 2 | 19.097         | 13033592 | 49.68  |



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 15.529         | 262149  | 2.97   |
| 2 | 19.170         | 8567033 | 97.03  |

(2R,5S)-Diethyl 2-(2-trifluoromethylphenyl)-5-phenyl-3-methylsulfonyloxazoidine-4, 4'-dicarboxylate (3pa)



Colorless oil, 98% yield, 91% ee.  $[\alpha]_{\lambda}^{25} = +32.2$  (*c* = 0.85 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 80/20, flow rate = 1.0 mL/min,  $\lambda = 210$  nm: *t*<sub>R</sub> (major) =

12.30 min,  $t_{\rm R}$  (minor) = 11.48 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.94 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.40 - 7.32 (m, 5H), 6.31 (s, 1H), 5.87 (s, 1H), 4.51 - 4.27 (m, 2H), 4.02 - 3.91 (m, 1H), 3.61 - 3.50 (m, 1H), 2.57 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 166.9, 166.7, 139.0, 134.2, 132.5 (q, J = 32.7 Hz), 130.1, 129.2, 128.4, 126.3, 125.5 (q, J = 3.7 Hz), 123.8 (d, J = 273.5 Hz), 91.5, 87.9, 76.8, 63.3, 62.3, 43.3, 13.9, 13.2; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  = -62.8. HRMS (ESI-TOF) calcd for C<sub>23</sub>H<sub>24</sub>F<sub>3</sub>NNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 538.1118, Found 538.1121.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 11.481         | 371533  | 4.28   |
| 2 | 12.301         | 8308964 | 95.72  |

cis-Diethyl 2-(4-nitrophenyl)-5-phenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3qa)



Colorless oil, 84% yield, 87% ee.  $[\alpha]_{\lambda}^{23} = -13.6$  (c = 0.74in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 405$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) =

32.68 min,  $t_{\rm R}$  (minor) = 17.55 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.35 (d, J = 8.8 Hz, 2H), 8.01 (d, J = 8.8 Hz, 2H), 7.45 - 7.30 (m, 5H), 6.35 (s, 1H), 5.91 (s, 1H), 4.50 - 4.30 (m, 2H), 4.03 - 3.93 (m, 1H), 3.60 - 3.49 (m, 1H), 2.64 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.78 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 167.0, 166.3, 149.1, 142.1, 133.9, 130.7, 129.3, 128.5, 126.3, 123.7, 91.1, 88.0, 76.6, 63.4, 62.4, 43.4, 13.9, 13.2. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>9</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 515.1095, Found 515.1099.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 17.549         | 681501  | 6.59   |
| 2 | 32.684         | 9661414 | 93.41  |

*cis*-Diethyl 2-(4-phenylphenyl)-5-phenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3ra)



Light yellow oil, 70% yield, 93% ee.  $[\alpha]_{\lambda}^{28} = -31.2$  (c = 2.30in CH<sub>2</sub>Cl<sub>2</sub>, 365 nm). (Chiralpak IA, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 6.16 min,

 $t_{\rm R}$  (minor) = 8.02 min.) <sup>1</sup>H NMR(400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.86 (d, *J* = 8.4 Hz, 2H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 7.2 Hz, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.41 - 7.34 (m, 6H), 6.30 (s, 1H), 5.84 (s, 1H), 4.50 - 4.33 (m, 2H), 4.02 - 3.92 (m, 1H), 3.64 - 3.53 (m, 1H), 2.57 (s, 3H), 1.40 (t, *J* = 7.2 Hz, 3H), 0.80 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 167.1, 167.0, 143.4, 140.2, 134.5, 133.6, 130.1, 129.1, 129.0, 128.4, 127.9, 127.3, 127.2, 126.4, 92.1, 87.7, 77.0, 63.2, 62.2, 43.2, 14.0, 13.3. HRMS (ESI-TOF) calcd for C<sub>28</sub>H<sub>29</sub>NNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 546.1557, Found 546.1564.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 6.162          | 26928620 | 96.54  |
| 2 | 8.024          | 964882   | 3.46   |
(2*R*,5*S*)-Diethyl 2-(2-naphthyl)-5-phenyl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3sa)



White solid, m.p. 146-148 °C, 94% yield, 93% ee.  $[\alpha]_{\lambda}^{31} =$ -4.3 (*c* = 0.56 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda$  = 365 nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda$  = 210 nm:

*t*R (major) = 49.42 min, *t*R (minor) = 19.98 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.19 (s, 1H), 8.01 - 7.87 (m, 4H), 7.60 - 7.52 (m, 2H), 7.43 - 7.35 (m, 5H), 6.42 (s, 1H), 5.87 (s, 1H), 4.54 - 4.33 (m, 2H), 4.05 - 3.94 (m, 1H), 3.67 - 3.56 (m, 1H), 2.47 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H), 0.82 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>)  $\delta$  = 166.3, 166.0, 134.3, 133.8, 132.1, 132.0, 130.0, 129.0, 128.4, 128.3, 128.3, 127.7, 127.4, 126.7, 126.5, 125.4, 91.7, 86.7, 76.2, 62.5, 61.7, 42.7, 13.7, 13.1. HRMS (ESI-TOF) calcd for C<sub>26</sub>H<sub>27</sub>NO<sub>7</sub>SNa ([M+Na<sup>+</sup>]) = 520.1400, Found 520.1405.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 19.980         | 522238   | 3.54   |
| 2 | 49.420         | 14232749 | 96.46  |

*cis*-Diethyl-2-phenyl-5-(4-chlorophenyl)-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3ib)



Colorless oil, 70% yield, 90% ee.  $[\alpha]_{\lambda}^{31} = +91.7$  (c = 0.37in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 16.40 min,  $t_{\rm R}$  (minor) = 10.27min.) <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta = 7.80 - 7.72$  (m, 2H), 7.54 - 7.46 (m, 3H), 7.40 - 7.27 (m, 4H), 6.23 (s, 1H), 5.79 (s, 1H), 4.49 - 4.30 (m, 2H), 4.05 - 3.94 (m, 1H), 3.73 - 3.62 (m, 1H), 2.49 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$ = 166.9, 166.8, 134.9, 134.4, 133.1, 130.7, 129.6, 128.6, 128.5, 127.8, 92.4, 86.9, 76.8, 63.3, 62.3, 43.0, 13.9, 13.3. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>7</sub>S<sup>34.9689</sup>ClNa ([M+Na<sup>+</sup>]) = 504.0855, Found 504.0857. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>7</sub>S<sup>36.9659</sup>ClNa ([M+Na<sup>+</sup>]) = 506.0825, Found 506.0826.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 10.270         | 157976  | 5.06   |
| 2 | 16.399         | 2963710 | 94.94  |

*cis*-Diethyl 2-(3-chlorophenyl)-5-(3-chlorophenyl)-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3lc)



Colorless oil, 38% yield, 89% ee.  $[\alpha]_{\lambda}^{26} = +13.4$  (c = 0.30 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 22.62 min,  $t_{\rm R}$  (minor) = 10.71 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 7.77$ 

- 7.74 (m, 1H), 7.68 - 7.63 (m, 1H), 7.51 - 7.41 (m, 2H), 7.38 - 7.29 (m, 3H), 7.25 - 7.21 (m, 1H), 6.20 (s, 1H), 5.79 (s, 1H), 4.49 - 4.31 (m, 2H), 4.06 - 3.95 (m, 1H), 3.77 - 3.66 (m, 1H), 2.61 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 166.6$ , 166.6, 136.7, 136.2, 134.6, 134.4, 130.9, 129.9, 129.7, 129.5, 129.2, 127.8, 126.5, 124.6, 91.7, 86.8, 76.6, 63.5, 62.4, 43.2, 13.9, 13.3. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>23</sub><sup>34.9689</sup>Cl<sub>2</sub>NNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 538.0465, Found 538.0477. HRMS (ESI-TOF) calcd for C<sub>22</sub>H<sub>23</sub><sup>34.9689</sup>Cl<sup>36.9659</sup>ClNNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 540.0435, Found 540.0454.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 10.706         | 1347917  | 5.70   |
| 2 | 22.617         | 22296304 | 94.30  |

(2R,5S)-Diethyl 2-(4-chlorophenyl)-5-(4-methylphenyl)-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3kd)



Colorless oil, 51% yield, 84% ee.  $[\alpha]_{\lambda}^{32} = +45.1$  (c = 0.29in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) =

19.99 min,  $t_{\rm R}$  (minor) = 11.94 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.73 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.21 (s, 1H), 5.78 (s, 1H), 4.49 - 4.28 (m, 2H), 4.02 - 3.90 (m, 1H), 3.65 - 3.52 (m, 1H), 2.55 (s, 3H), 2.36 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.80 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 167.0, 166.9, 139.1, 136.5, 133.4, 131.3, 131.0, 129.0, 128.8, 126.3, 91.5, 87.8, 76.8, 63.2, 62.2, 43.2, 21.2, 13.9, 13.2. HRMS (ESI-TOF) calcd for C<sub>23</sub>H<sub>26</sub><sup>34.9689</sup>CINNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 518.1011, Found 518.1019. HRMS (ESI-TOF) calcd for C<sub>23</sub>H<sub>26</sub><sup>36.9659</sup>CINNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 520.0982, Found 520.0997.



21836030

91.98

2

19.988

(2R,5S)-Diethyl 2-(4-chlorophenyl)-5-(3-methylphenyl)-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3ke)



Colorless oil, 73% yield, 94% ee.  $[\alpha]_{\lambda}^{32} = +14.9$  (*c* = 0.57 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm: *t*<sub>R</sub> (major) = 16.55 min,

 $t_{\rm R}$  (minor) = 11.68 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.74 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.8 Hz, 2H), 7.25 (t, J = 8.0 Hz, 1H), 7.20 - 7.10 (m, 3H), 6.21 (s, 1H), 5.78 (s, 1H), 4.53 - 4.26 (m, 2H), 4.04 - 3.90 (m, 1H), 3.64 - 3.50 (m, 1H), 2.56 (s, 3H), 2.35 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 167.0, 166.9, 138.1, 136.5, 134.2, 133.4, 131.0, 129.9, 128.8, 128.3, 126.9, 123.5, 91.6, 87.8, 76.8, 63.2, 62.1, 43.2, 21.4, 13.9, 13.2. HRMS (ESI-TOF) calcd for C<sub>23</sub>H<sub>26</sub><sup>34.9689</sup>CINNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 518.1011, Found 518.1013. HRMS (ESI-TOF) calcd for C<sub>23</sub>H<sub>26</sub><sup>36.9659</sup>CINNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 520.0982, Found 520.0991.



(2R,5S)-Diethyl 2-(3-methylphenyl)-5-(3-methylphenyl)-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3te)



Colorless oil, 51% yield, 92% ee.  $[\alpha]_{\lambda}^{30} = +44.2$  (*c* = 1.00 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 26.00 min,  $t_{\rm R}$  (minor) = 12.96 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta =$ 

7.61 (d, J = 7.6 Hz, 1H), 7.55 (s, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.19 - 7.13 (m, 3H), 6.19 (s, 1H), 5.75 (s, 1H), 4.53 - 4.28 (m, 2H), 4.02 - 3.88 (m, 1H), 3.67 - 3.55 (m, 1H), 2.51 (s, 3H), 2.43 (s, 3H), 2.35 (s, 3H), 1.40 (t, J = 7.2 Hz, 3H), 0.82 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.2$ , 166.8, 138.2, 137.9, 134.4, 131.3, 130.3, 129.7, 128.4, 128.2, 127.0, 126.6, 123.5, 92.3, 87.7, 76.9, 63.0, 62.0, 43.0, 21.4, 13.9, 13.2. HRMS (ESI-TOF) calcd for C<sub>24</sub>H<sub>29</sub>NNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 498.1557, Found 498.1566.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 12.959         | 250292  | 3.78   |
| 2 | 26.005         | 6369513 | 96.22  |

(2R,5S)-Diethyl 2-(4-chlorophenyl)-5-(3-methoxylphenyl)-3-methylsulfonyloxazolidine-4, 4'dicarboxylate (3kf)



Colorless oil, 70% yield, 93% ee.  $[\alpha]_{\lambda}^{30} = -2.4$  (c = 1.55 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 25.51 min,  $t_{\rm R}$  (minor) = 13.75 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta =$ 

7.73 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 7.33 - 7.27 (m, 1H), 6.97 - 6.85 (m, 3H), 6.21 (s, 1H), 5.79 (s, 1H), 4.52 - 4.25 (m, 2H), 4.03 - 3.92 (m, 1H), 3.80 (s, 3H), 3.68 - 3.57 (m, 1H), 2.56 (s, 3H), 1.38 (t, J = 7.2 Hz, 3H), 0.83 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 166.9$ , 166.8, 159.6, 136.6, 135.7, 133.4, 131.0, 129.5, 128.8, 118.8, 114.3, 112.2, 91.6, 87.5, 76.8, 63.2, 62.2, 55.3, 43.2, 13.9, 13.3. HRMS (ESI-TOF) calcd for C<sub>23</sub>H<sub>26</sub><sup>34.9689</sup>CINNaO<sub>8</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 534.0960, Found 534.0962. HRMS (ESI-TOF) calcd for C<sub>23</sub>H<sub>26</sub><sup>36.9659</sup>CINNaO<sub>8</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 536.0931, Found 536.0958.



(2R,5S)-Diethyl 2-(4-chlorophenyl)-5-(3-thienyl)-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3kg)



Colorless oil, 84% yield, 91% ee.  $[\alpha]_{\lambda}^{26} = +5.8$  (c = 0.64 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IE, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) = 15.12 min,

 $t_{\rm R}$  (minor) = 12.30 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.70 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 3.2 Hz, 2H), 7.04 (t, J = 3.2 Hz, 1H), 6.19 (s, 1H), 5.87 (s, 1H), 4.49 - 4.27 (m, 2H), 4.10 - 3.97 (m, 1H), 3.76 - 3.64 (m, 1H), 2.56 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H), 0.94 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.0, 166.7, 136.5, 135.2, 133.4, 130.9, 128.8, 126.0, 125.8, 123.1, 91.6, 84.7,$ 76.3, 62.4. 43.2, 13.9, 13.4. HRMS (ESI-TOF) 63.3, calcd for  $C_{20}H_{22}^{34.9689}$ ClNNaO<sub>7</sub>S<sub>2</sub><sup>+</sup> ([M+Na<sup>+</sup>]) = 510.0419, Found 510.0426. HRMS (ESI-TOF) calcd for  $C_{20}H_{22}^{36.9659}$ ClNNaO<sub>7</sub>S<sub>2</sub><sup>+</sup> ([M+Na<sup>+</sup>]) = 512.0389, Found 512.0407.



|   | Retention Time | Area     | % Area |
|---|----------------|----------|--------|
| 1 | 12.299         | 721904   | 4.74   |
| 2 | 15.122         | 14519480 | 95.26  |

(2R,5R)-Diethyl 2-(4-chlorophenyl)-5-(2-furyl)-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3kh)



Colorless oil, 93% yield, 94% ee.  $[\alpha]_{\lambda}^{32} = +20.1$  (*c* = 0.80 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IA, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm:  $t_{\rm R}$  (major) =

5.78 min,  $t_{\rm R}$  (minor) = 10.02 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.68 (d, J = 8.4 Hz, 2H), 7.45 (t, J = 8.4 Hz, 3H), 6.45 (d, J = 3.2 Hz, 1H), 6.42 - 6.34 (m, 1H), 6.21 (s, 1H), 5.79 (s, 1H), 4.46 - 4.28 (m, 2H), 4.25 - 4.13 (m, 1H), 3.92 - 3.80 (m, 1H), 2.61 (s, 3H), 1.37 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta = 167.0, 166.8, 147.2, 143.5, 136.5, 133.5, 130.9, 128.8, 110.6, 110.3, 91.8, 81.8,$ 75.5. 62.8, 43.3, 13.8, 13.6. HRMS (ESI-TOF) 63.4, calcd for  $C_{20}H_{22}^{34.9689}$ ClNNaO<sub>8</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 494.0647, Found 494.0659. HRMS (ESI-TOF) calcd for  $C_{20}H_{22}^{36.9659}$ ClNNaO<sub>8</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 496.0618, Found 496.0642.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 5.778          | 4536714 | 96.96  |
| 2 | 10.024         | 142112  | 3.04   |

(2R,5S)-Diethyl 2-(4-chlorophenyl)-5-(E)-styryl-3-methylsulfonyloxazolidine-4, 4'-dicarboxylate (3ki)



Colorless oil, 84% yield, 55% ee.  $[\alpha]_{\lambda}^{26} = -2.5$  (*c* = 0.80 in CH<sub>2</sub>Cl<sub>2</sub>,  $\lambda = 365$  nm). (Chiralpak IA, hexane/*i*PrOH = 70/30, flow rate = 1.0 mL/min,  $\lambda = 210$  nm: *t*<sub>R</sub> (major) = 25.51 min,

 $t_{\rm R}$  (minor) = 13.75 min.) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.61 (d, J = 8.0 Hz, 2H), 7.46 - 7.37 (m, 4H), 7.36 - 7.26 (m, 3H), 6.72 (d, J = 15.6 Hz, 1H), 6.28 (dd, J = 6.8, 15.6 Hz, 1H), 6.14 (s, 1H), 5.33 (d, J = 6.8 Hz, 1H), 4.46 - 4.19 (m, 4H), 2.57 (s, 3H), 1.35 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  = 167.1, 166.5, 136.5, 135.6, 134.0, 133.5, 130.8, 128.8, 128.7, 128.6, 126.8, 121.3, 91.7, 86.9, 75.9, 63.3, 62.7, 43.2, 14.1, 13.9. HRMS (ESI-TOF) calcd for  $C_{24}H_{26}^{34.9689}$ ClNNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 530.1011, Found 530.1014. HRMS (ESI-TOF) calcd for  $C_{24}H_{26}^{36.9659}$ ClNNaO<sub>7</sub>S<sup>+</sup> ([M+Na<sup>+</sup>]) = 532.0982, Found 532.0988.



|   | Retention Time | Area    | % Area |
|---|----------------|---------|--------|
| 1 | 6.446          | 4712372 | 77.39  |
| 2 | 11.166         | 1376722 | 22.61  |

## (L) References

1 (a) K. Y. Lee, C. G. Lee and J. N. Kim, Tetrahedron Lett., 2003, 44, 1231; (b) D.-J.

Dong, H.-H. Li and S.-K. Tian, J. Am. Chem. Soc., 2010, 132, 5018.

2 (a) X. Wu, L. Li and J. Zhang, *Adv. Synth. Catal.*, 2012, **354**, 3485; (b) R. H. Fan and Y. Ye, *Adv. Synth. Catal.*, 2008, **350**, 1526.

3 (a) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin and X. M. Feng, Synlett.,

2005, 16, 2445; (b) X. H. Liu, L. L. Lin and X. M. Feng, Acc. Chem. Res., 2011, 44,

574; (c) X. H. Liu, L. L. Lin and X. M. Feng, Org. Chem. Front., 2014, 1, 298.

4 X. Wu, L. Li and J. Zhang, Chem. Commun., 2011, 47, 7824.

5 M. Vaultier and R. Carrie, Tetrahedron Lett., 1978, 19, 1195.

## (M) The X-ray data for 3sa

The following single crystal **3sa** was recrystallized from  $Et_2O$ . CCDC-1057118 (**3sa**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk./ data\_request/cif.



## Table 1 Crystal data and structure refinement for fxm-lyt-20150303.

| Identification code | fxm-lyt-20150303    |
|---------------------|---------------------|
| Empirical formula   | $C_{26}H_{27}NO_7S$ |
| Formula weight      | 497.54              |
| Temperature/K       | 293                 |
| Crystal system      | monoclinic          |
| Space group         | P2 <sub>1</sub>     |
| a/Å                 | 11.1671(2)          |
| b/Å                 | 7.62440(10)         |
| c/Å                 | 14.6056(3)          |
| α/°                 | 90                  |
| β/°                 | 94.103(2)           |
| $\gamma/^{\circ}$   | 90                  |

| Volume/Å <sup>3</sup>                       | 1240.37(4)                                           |
|---------------------------------------------|------------------------------------------------------|
| Ζ                                           | 2                                                    |
| $\rho_{calc}g/cm^3$                         | 1.332                                                |
| $\mu/\text{mm}^{-1}$                        | 1.552                                                |
| F(000)                                      | 524.0                                                |
| Crystal size/mm <sup>3</sup>                | $0.4\times0.3\times0.2$                              |
| Radiation                                   | $CuK\alpha (\lambda = 1.54184)$                      |
| $2\Theta$ range for data collection/°       | 9.644 to 134.112                                     |
| Index ranges                                | $-13 \le h \le 12, -9 \le k \le 6, -17 \le l \le 17$ |
| Reflections collected                       | 12899                                                |
| Independent reflections                     | $3607 [R_{int} = 0.0319, R_{sigma} = 0.0223]$        |
| Data/restraints/parameters                  | 3607/1/319                                           |
| Goodness-of-fit on F <sup>2</sup>           | 1.070                                                |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0526, wR_2 = 0.1353$                        |
| Final R indexes [all data]                  | $R_1 = 0.0534, wR_2 = 0.1366$                        |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.25/-0.39                                           |
| Flack parameter                             | 0.011(12)                                            |

## (N) Copies of NMR spectra















































170 160 150 140 130 120 110 100 90 80 f1 (ppm) 70 60 50 40 30 20 10 0

F2 - Processing Param SI: 6536 DC: 0.05 LB: 1.00 HZ First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -59.63 Ph1: 64.40










































































Current Data Parameters

P2 - Acquisition Parameters DATE: 2015-02-03T00:08:14 PULPROG: sg30 TD: 32768 Solvent: CDC13 NS: 32 DS: undefined SWH: 8223.7 H2 AQ: undefined TE: 293.9 C ------ CHANNEL fl ------NUCl: lH P1: 9.93 usec SFO1: undefined MHz F2 - Processing Parameters F2 - Processing Param SI: 65536 LB: 0.05 LB: 0.30 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: 95.35 Ph1: 18.03 从 . А 1.00⊣ 4.04⊣ 2.06⊣ 4.98√ 1.03H 1.00H **⊢66'0** 2.0<del>5</del> 2.99H 3.03≖ 2.99∃ 9. 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm) 129.990 129.033 128.400 128.288 128.288 128.261 127.752 127.393 126.514 126.514 126.514 134.315 40.091 39.883 39.674 39.465 39.257 39.048 38.839 -- 91.712 -- 86.678 < 13.670 < 13.099- 76,230 62.521 61.711 Current Data Parameters F2 - Acquisition Parameters F2 - Acquisition Parameters DATE: 2015-05-31T04:19:54 FULFROG: zqpg30 TD: 32768 Solvant: DMSO DS: undefined SWH: 24038.5 Hz Ag: undefined TE: 296.1 C

a the state of the s

90 80 f1 (ppm)

70 60 50 40

170 160 150 140 130 120 110 100

ali pine pala ni kalendari in dala kalendari kalendari kalendari kalendari kalendari kalendari kalendari kalend

30 20

10 0

CHANNEL f1 ------NUC1: 13C P1: 9.63 usec SFO1: undefined MHz

F2 - Processing Parameters SI: 65536 DC: 0.05 LB: 1.00 Hz First Point: 0.50 FT: Hyper Quadrature Phase: Manual Ph0: -64.21 Ph1: 65.76

H






































## (O) Copies of CD Spectra

a. CD Spectra for the cycloadducts in  $CH_2Cl_2$ , (2R, 5S)-3sa is an authentic sample.





(2R, 5S)-**3ba**:









(2R, 5S)-**3ia**:

















































(*2R*, *5S*)-**3ki**:

