SUPPORTING INFORMATION

Successive C-C bond cleavage, fluorination, trifluoromethylthio- or pentafluorophenylthiolation under metal-free conditions to provide compounds with dual fluoro-functionalization

Ibrayim Saidalimu,^a Shugo Suzuki,^b Etsuko Tokunaga,^a and Norio Shibata

∗a,b

^aDepartment of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.

^bDpartment of Frontier Materials, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.

Correspondence and requests for materials should be addressed to N.S. (e-mail: nozshiba@nitech.ac.jp.)

Table of Contents

1. Experimental Section2
1.1 General Methods2
1.2 Preparation of 4-nitrobenzyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1n);
2. Optimization of ring-opening reaction condition (mono-fluorination)4
3. General procedure and product characterization data for 2a-2k, 2o and 3a-3c;4
4. X-ray crystallography data for the 2h (CCDC 1415530)15
5. Optimization of ring-opening reaction condition (SCF ₃)17
6. Typical procedure preparation of CF ₃ -DAST reagents19
7. General procedure and product characterization data for 4a—4o;19
8. X-ray crystallography data for the 4h (CCDC 1415531)30
9. General procedure and product characterization data for 5a;32
10. General procedure and product characterization data for 5b;32
11. General procedure and product characterization data for 6a;33
12. General procedure and product characterization data for 6b;34
13. General procedure and product characterization data for 6c;35
14. Typical procedure preparation of C ₆ F ₅ -DAST reagents
15. General procedure and product characterization data for 7b;36
16. General procedure and product characterization data for 9;37
17. General procedure and product characterization data for 10;38
18. References
19. ¹ H NMR and ¹³ C NMR spectra for starting material 1n;40
20. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for doubly fluoro-functionalization compounds
2a—2k, 2o and 3a—3c (Table 1)42
21. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for doubly fluoro-functionalization compounds
4a—4o (Table 2)
22. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for transformation of acid fluorides 2b and 4b
to ketones 5a, 6a amides 5b, 6b and ester 6c (Scheme 2);132
23. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for product 7b (Scheme 3)148
24. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra for product 9 and 10 (Scheme 4);151

1. Experimental Section

1.1 General Methods

All reactions were performed in oven-dried glassware under a positive pressure of nitrogen. Solvents were transferred via syringe and were introduced into the reaction vessels though a rubber septum. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica-gel (60-F254). The TLC plates were visualized with UV light and 7% phosphomolybdic acid or KMnO₄ in water/heat. Column chromatography was carried out on a column packed with silica-gel 60N spherical neutral size 63-210 µm. The ¹H-NMR (500 MHz or 400 MHz), ¹⁹F-NMR (282 MHz), ¹³C-NMR (125.7 MHz) spectra for solution in CDCl₃ were recorded on a Buruker Avance 500, Buruker Avance 400 and a Varian Mercury 300. Chemical shifts (δ) are expressed in ppm downfield from internal TMS (δ = 0.00). The C₆F₆ [δ = -162.2 (CDCl₃)] was used as internal standard for ¹⁹F NMR. Mass spectra were recorded on a SHIMADZU GCMS-QP5050A (EI-MS) and SHIMAZU LCMS-2020 (ESI-MS). High resolution mass spectrometry were recorded on a Waters Synapt G2 HDMS (ESI-MS). Infrared spectra were recorded on a JASCO FT/IR-4100 spectrometer. Melting point were recorded on a BUCHI M-565. The balance used is ATX-224 (Shimadzu Corporation); Minimum Display 0.1 mg; Repeatability (Standard Deviation); 0.1 mg; Linearity error ± 0.2 mg. All solvents were dried and distilled before use. Chemist Plaza CP-170 (SIBATA SCIENTIFIC TECHNOLOGY LTD.) for heating and cooling was used for all the reaction.

DAST [(Diethylamino)sulfur Trifluoride] (Purity: >90.0%, Product Number; D1868), Methoxy-DAST [Bis(2-methoxyethyl)aminosulfur Trifluoride] (Purity: >90.0%, Product Number; B2440) and Morph-DAST (Morpholinosulfur Trifluoride) (Purity: >93.0%, Product Number; M1573) were purchased from Tokyo Chemical Industry Co., Ltd., Japan. Methyl-DAST (Dimethylaminosulfur trifluoride) was purchased from Aldrich, USA. (Purity: >95.0%, Product Number; 248215).

The β -keto esters **1a**—m and **1o**—**1q** are known compounds, and all these compounds were synthesized according to the literature procedures.^{1—5}

1.2 Preparation of 4-nitrobenzyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (1n);

To a flask equipped with a Dean-Stark trap and reflux condenser was added methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1b (0.5)2.6 g, mmol), (4-nitrophenyl)methanol (0.6 g, 3.9 mmol), DMAP (0.06 g, 0.52 mmol) and cyclohexane (4 mL). The mixture was heated to reflux, distilling the methanol formed during the reaction. The mixture was refluxed until complete conversion was observed by TLC, then concentrated under reduced pressure and the crude product was purified by flash column chromatography (Hex: AcOEt = 8:1-3:1) to provide the title compound **1n** as a white solid in 45% yield (0.36 g). This compound was observed as a mixture of two isomers (keto- and enol forms) in the NMR. mp: 97.9—99.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 8.22—8.27 (m, 4H), 7.79 (d, 1H, J = 8.4 Hz), 7.63–7.68 (m, 2H), 7.57–7.59 (m, 4H), 7.50–7.53 (m, 1H), 7.40–7.48 (m, 4H), 5.26–5.40 (m, 4H), 3.83 (dd, 1H, J = 8.4, J = 4.0 Hz), 3.57-3.62 (m, 3H), 3.41 (dd, 1H, J = 17.2, J = 8.0 Hz); ¹³C NMR (75.5 MHz, CDCl₃) δ 199.0, 168.7, 153.5, 147.7, 143.5, 142.9, 136.6, 135.7, 135.0, 129.9, 128.2, 128.0, 127.0, 126.6, 124.9, 124.8, 123.9, 121.0, 101.1, 65.7, 64.2, 53.2, 32.5, 30.1; IR (KBr): 3283, 1658, 1573, 1514, 1341, 1270, 1218, 1180, 759 cm⁻¹; HRMS (ESI): Calcd. for C₁₇H₁₃NNaO₅ [M+H]⁺: 334.0691; Found: 334.0696.

2. Optimization of ring-opening reaction condition (mono-fluorination)

		^F -S [−] F + ^I -F Et ^{−N} Et −	Solvent Temp, Time	$ \begin{array}{c} $	
Entry	Solvent	DAST (eq)	Temp (°C)	Time	2a (%) ^b
1	DMF	2.0	RT	Overnight	54
2	DMF	1.0	RT	Overnight	30
3	DMF	3.0	RT	Overnight	50
4	DMF	4.0	RT	Overnight	54
5	DMF	2.0	50	Overnight	36
6	CH ₂ Cl ₂	2.0	RT	Overnight	31
7	toluene	2.0	RT	Overnight	14
8	THF	2.0	RT	Overnight	85
9	EtOH	2.0	RT	Overnight	NR
10	CH ₃ CN	2.0	RT	Overnight	85
11	THF	1.5	RT	Overnight	71
12	CH ₃ CN	1.5	RT	Overnight	66
13 ^c	THF	2.0	RT	Overnight	60

Table S1. Optimization of ring-opening reaction condition^a

^{*a*}The reaction of **1a** with DAST was carried out in different solvents and at different temperature. For detailed reaction conditions, see the table S1. ^{*b*} Yield was determined by ¹⁹F NMR spectroscopy with an internal standard as C_6H_5F . ^{*c*} Following the general procedure, and use 1.0 eq of base (DIEA).

3. General procedure and product characterization data for 2a—2k, 20 and 3a—3c;

A flame-dried vessel was successively charged, under nitrogen, with β -keto esters **1a**—**1k** and **1o** (0.1 mmol, 1.0 equiv) and anhydrous THF (1.0 mL). The solution was cooled to 0 °C and the DAST (0.2 mmol, 2.0 equiv) was added slowly by syringe. Then the reaction mixture was stirred at room temperature for overnight, quenched by addition of water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄ and then concentrated in vacuo. The crude product was purified by flash column chromatography to provide the title compound **2a**—**2k**, **2o and 3a**—**3c**.

3.1

Ethyl

2-((diethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)phenyl)propanoate (2a);

Following the general procedure, using ethyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1a (20.4 mg, 0.1 mmol, 1.0 equiv) and DAST (30 µL, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound 2a as a vellow oil in 85% yield (29.6 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.96 (dd, 1H, J = 8.0 Hz, J = 1.0 Hz), 7.54-7.58 (m, 1H), 7.38-7.42 (m, 2H), 4.12-4.23 (m, 2H), 3.94 (dd, 1H, J = 15.0 Hz, J = 11.0 Hz), 3.79 (dd, 1H, J = 25.5 Hz, J = 14.5 Hz), 3.02–3.08 (m, 4H), 1.25 (t, 3H, J = 7.2 Hz), 1.10 (t, 6H, J = 7.0 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +31.3 (s, 1F), -140.1 (dd, 1F, J = 25.6 Hz, J = 10.7 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ: 168.3 (d, *J* = 31.3 Hz), 156.9 (d, *J* = 346.6 Hz), 137.8 (d, *J* = 6.0 Hz), 134.2,

132.7 (d, J = 3.0 Hz), 132.4 (d, J = 1.2 Hz), 127.9, 125.7 (d, J = 57.3 Hz), 107.2 (d, J = 234.8 Hz), 62.3, 52.3, 36.8 (d, J = 21.8 Hz), 14.1, 13.7; IR (NaCl): 2985, 2924, 2854, 1725, 1696, 1450, 1261, 715, 531 cm⁻¹; HRMS (ESI): Calcd. for C₁₆H₂₂F₂NO₃S [M+H]⁺: 346.1288; Found: 346.1291.

Methyl

2-((diethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)phenyl)propanoate (2b);

3.2

Following the general procedure, using methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1b (19.0 mg, 0.1 mmol, 1.0 equiv) and DAST (30 µL, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound **2b** as a yellow oil in 78% yield (25.8 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.96 (dd, 1H, J = 8.5 Hz, J = 1.5 Hz), 7.55–7.58 (m, 1H), 7.39–7.42 (m, 2H), 3.94 (dd, 1H, J = 14.5 Hz, J =10.5 Hz), 3.79 (dd, 1H, J = 25.0 Hz, J = 14.5 Hz), 3.74 (s, 3H), 2.96–3.03 (m, 4H), 1.09 (t, 6H, J = 7.2 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +31.4 (s, 1F), -140.4 (dd, 1F, J = 23.6 Hz, J = 9.5 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.7 (d, J = 31.4 Hz), 156.9 (d, J = 346.9 Hz), 137.7 (d, J = 6.2 Hz), 134.3, 132.7 (d, J = 3.7 Hz), 132.4 (d, J= 1.2 Hz), 127.9, 125.7 (d, J = 57.8 Hz), 107.3 (d, J = 235.0 Hz), 52.9, 52.3, 36.8 (d, J= 22.6 Hz), 13.7; IR (NaCl): 2973, 2931, 2858, 1812, 1758, 1237, 1119, 756, 704 cm⁻ ¹; HRMS (ESI): Calcd. for $C_{15}H_{19}F_2NNaO_3S$ [M+Na]⁺: 354.0951; Found: 354.0955.

3.3

Benzyl

2-((diethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)phenyl)propanoate (2c);

CO₂Bn

Followingthegeneralprocedure,usingbenzyl1-oxo-2,3-dihydro-1H-indene-2-carboxylate1c (26.6 mg, 0.1 mmol, 1.0 equiv) and

DAST (30 µL, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 10:1) to provide the title compound **2c** as a yellow oil in 69% yield (28.1 mg). ¹H NMR (CDCl₃, 500 MHz) & 7.92 (dd, 1H, J = 8.0 Hz, J = 1.5 Hz), 7.39—7.43 (m, 1H), 7.29—7.36 (m, 6H), 7.23—7.26 (m, 1H), 5.20, 5.11 (AB quartet, J=12.5 Hz, 2H), 3.98 (dd, 1H, J = 14.5 Hz, J = 10.0 Hz), 3.73 (dd, 1H, J = 25.5 Hz, J = 14.5 Hz), 2.83—3.06 (m, 4H), 1.04 (s, 6H); ¹⁹F NMR (CDCl₃, 282 MHz) & +31.1 (s, 1F), -140.4 (dd, 1F, J = 25.6 Hz, J = 9.6 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) & 168.2 (d, J = 31.4 Hz), 156.8 (d, J = 346.9 Hz), 137.7 (d, J = 6.2 Hz), 134.9, 134.3, 132.6 (d, J = 3.7 Hz), 132.4 (d, J = 1.2 Hz), 128.9, 128.7, 128.6, 127.8, 125.6 (d, J = 57.8 Hz), 107.2 (d, J = 235.0 Hz), 67.8, 52.3, 36.8 (d, J = 21.3 Hz), 13.7; IR (NaCl): 2970, 2935, 2873, 1811, 1749, 1236, 1002, 741, 698 cm⁻¹; HRMS (ESI): Calcd. for C₂₁H₂₃F₂NNaO₃S [M+Na]⁺: 430.1264; Found: 430.1257.

3.4

Methyl

2-((diethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)-4-methylphenyl)propanoat e (2d);

Following the general procedure, using methyl 6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate **1d** (20.2 mg, 0.1 mmol, 1.0 equiv) and DAST (30 μ L, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound **2d** as a yellow oil in 70% yield (24.2 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.76 (d, 1H, *J* = 1.5 Hz), 7.36 (dd, 1H, *J* = 8.0 Hz, *J* = 1.5 Hz), 7.26—7.28 (m, 1H), 3.88 (dd, 1H, *J* = 14.5 Hz, *J* = 11.0 Hz), 3.70—3.78 (m, 4H), 2.97—3.02 (m, 4H), 2.37 (s, 3H), 1.09 (t, 6H, *J* = 7.0 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +31.3 (s, 1F), -140.3 (dd, 1F, *J* = 24.5 Hz, *J* = 10.8 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.8 (d, *J* = 31.6 Hz), 157.1

(d, J = 346.9 Hz), 137.9, 135.1, 134.5 (d, J = 5.0 Hz), 132.9, 132.6 (d, J = 3.7 Hz), 125.4 (d, J = 56.5 Hz), 107.4 (d, J = 234.3 Hz), 52.9, 52.3, 36.5 (d, J = 21.8 Hz), 20.9, 13.7; IR (NaCl): 2973, 2927, 2870, 1817, 1756, 1259, 1175, 1015, 764, 728 cm⁻¹; HRMS (ESI): Calcd. for C₁₆H₂₁F₂NNaO₃S [M+Na]⁺: 368.1108; Found: 368.1100.

3.5 Methyl 2-((diethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)-4-methoxyphenyl)propano ate (2e);

Following the general procedure, using methyl 6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1e (22.0 mg, 0.1 mmol, 1.0 equiv) and DAST (30 µL, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 10:1) to provide the title compound 2e as a yellow oil in 80% yield (28.9 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.44 (d, 1H, J = 2.5 Hz), 7.29 (d, 1H, J = 8.5 Hz), 7.09 (dd, 1H, J = 8.5 Hz, J = 2.5 Hz), 3.82–3.87 (m, 4H), 3.67—3.75 (m, 4H), 2.95—3.06 (m, 4H), 1.09 (t, 6H, J = 7.0 Hz); ¹⁹F NMR $(CDCl_3, 282 \text{ MHz}) \delta$; +31.3 (s, 1F), -140.3 (dd, 1F, J = 24.8 Hz, J = 10.7 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.8 (d, J = 31.6 Hz), 158.8, 156.7 (d, J = 347.4 Hz), 133.9 (d, J = 3.7 Hz), 129.3 (d, J = 5.0 Hz), 126.4 (d, J = 56.5 Hz), 120.3, 117.0, 107.5 (d, J = 234.0 Hz), 55.6, 52.8, 52.3, 36.5 (dd, J = 21.7 Hz, J = 1.2 Hz), 13.7; IR (NaCl): 2970, 2931, 2858, 1813, 1755, 1507, 1267, 1004, 760, 724 cm⁻¹; HRMS (ESI): Calcd. for $C_{16}H_{21}F_2NNaO_4S[M+Na]^+$: 384.1057; Found: 384.1071.

3.6

Methyl

3-(4-chloro-2-(fluorocarbonyl)phenyl)-2-((diethylamino)thio)-2-fluoropropanoate (2f);

Following the procedure, methyl general using 6-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1f (22.6 mg, 0.1 mmol, 1.0 equiv) and DAST (30 µL, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound 2f as a yellow oil in 67% yield (24.5 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.90 (d, 1H, J = 8.5 Hz), 7.38–7.40 (m, 2H), 3.91 (dd, 1H, J = 14.5 Hz, J = 11.0 Hz), 3.72–3.80 (m, 4H), 2.97–3.03 (m, 4H), 1.10 (t, 6H, J = 7.0 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +31.4 (s, 1F), -140.3 (dd, 1F, J = 23.6 Hz, J = 10.7 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ: 168.5 (d, *J* = 31.1 Hz), 156.1 (d, *J* = 345.8 Hz), 140.9, 139.7 (d, *J* = 6.2 Hz), 133.6, 132.9 (d, J = 2.7 Hz), 128.3, 124.0 (d, J = 58.8 Hz), 107.0 (d, J = 235.0 Hz), 53.0, 52.3, 36.6 (d, J = 21.7 Hz), 13.7; IR (NaCl): 2973, 2933, 2868, 1815, 1757, 1236, 1005, 769, 698 cm⁻¹; HRMS (ESI): Calcd. for C₁₅H₁₈ClF₂NNaO₃S [M+Na]⁺: 388.0562; Found: 388.0574.

3.7

Methyl

3-(4-bromo-2-(fluorocarbonyl)phenyl)-2-((diethylamino)thio)-2-fluoropropanoat e (2g);

Following the general procedure, using methyl 6-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate **1g** (26.9 mg, 0.1 mmol, 1.0 equiv) and DAST (30 μ L, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound **2g**

as a yellow oil in 71% yield (29.0 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.81 (d, 1H, *J* = 8.0 Hz), 7.54—7.56 (m, 2H), 3.91 (dd, 1H, *J* = 14.5 Hz, *J* = 10.5 Hz), 3.70—3.78 (m, 4H), 2.97—3.03 (m, 4H), 1.10 (t, 6H, *J* = 7.0 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +31.4 (s, 1F), -140.3 (dd, 1F, *J* = 24.5 Hz, *J* = 10.7 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.3 (d, *J* = 31.1 Hz), 156.3 (d, *J* = 345.9 Hz), 139.5 (d, *J* = 6.2 Hz), 135.7 (d, *J* = 2.4 Hz), 133.4, 131.2, 129.4, 124.4 (d, *J* = 58.9 Hz), 106.9 (d, *J* = 235.0 Hz), 52.9, 52.1, 36.4 (d, *J* = 21.7 Hz), 13.6; IR (NaCl): 2972, 2931, 2867, 1815, 1757, 1238, 1004, 767, 697 cm⁻¹; HRMS (ESI): Calcd. for C₁₅H₁₈BrF₂NNaO₃S [M+Na]⁺: 432.0057; Found: 432.0049.

3.8

Methyl

2-((diethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)-4,5-dimethoxyphenyl)prop anoate (2h);

Following the general procedure, using methvl 5,6-dimethoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1h (25.0 mg, 0.1 mmol, 1.0 equiv) and DAST (30 µL, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 10:1-3:1) to provide the title compound **2h** as a white solid in 54% yield (21.2 mg); mp: 102–103 °C; ¹H NMR (CDCl₃, 500 MHz) δ: 7.42 (s, 1H), 6.87 (s, 1H), 3.93 (s, 3H), 3.86–3.92 (m, 4H), 3.74–3.82 (m, 4H), 2.96–3.06 (m, 4H), 1.09 (t, 6H, J = 7.2 Hz); ¹⁹F NMR $(CDCl_3, 282 \text{ MHz}) \delta$: +28.6 (s, 1F), -140.0 (dd, 1F, J = 24.5 Hz, J = 12.6 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.8 (d, J = 31.4 Hz), 156.4 (d, J = 342.1 Hz), 153.5, 147.8, 132.8 (d, J = 6.2 Hz), 116.7 (d, J = 57.6 Hz), 114.8 (d, J = 1.8 Hz), 114.3 (d, J = 1.4 Hz), 107.3 (d, J = 234.4 Hz), 56.1, 56.0, 52.8, 52.1, 36.5 (d, J = 21.7 Hz), 13.6; IR (NaCl): 2961, 2918, 2853, 1802, 1523, 1275, 1130, 1048, 800, 717, 592 cm⁻¹;

Methyl

2-((diethylamino)thio)-2-fluoro-4-(2-(fluorocarbonyl)phenyl)butanoate (2i);

3.9

Following general procedure, using methyl the 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate 1i (40.8 mg, 0.2 mmol, 1.0 equiv) and DAST (60 µL, 0.4 mmol, 2.0 equiv) in THF (2 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 20:1-12:1) to provide the title compound 2i as a yellow oil in 30% yield (20.7 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.99 (dd, 1H, J = 7.0 Hz, J = 1.0 Hz), 7.56–7.59 (m, 1H), 7.34–7.38 (m, 2H), 3.73 (s, 3H), 3.18-3.24 (m, 1H), 2.94-3.10 (m, 5H), 2.36-2.47 (m, 1H), 2.13-2.20 (m, 1H), 1.09 (s, 6H); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +28.7 (s, 1F), -142.3 (dd, 1F, J = 19.4 Hz, J = 6.4 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ: 169.0 (d, J = 32.5 Hz), 156.3 (d, J= 345.8 Hz), 145.6 (d, J = 7.5 Hz), 135.0, 132.9 (d, J = 1.2 Hz), 132.3 (d, J = 4.2 Hz), 127.2, 123.4 (d, J = 56.5 Hz), 107.7 (d, J = 230.2 Hz), 52.7, 52.2, 35.0 (d, J = 21.9 Hz), 28.9 (d, J = 3.2 Hz), 13.7; IR (NaCl): 2973, 2935, 2868, 1809, 1754, 1233, 1001, 928, 742, 695 cm⁻¹; HRMS (ESI): Calcd. for C₁₆H₂₁F₂NNaO₃S [M+Na]⁺: 368.1108; Found: 368.1105.

3.10

Methyl

2-((diethylamino)thio)-2-fluoro-5-(2-(fluorocarbonyl)phenyl)pentanoate (2j);

Following the general procedure, using methyl 5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxylate **1j** (43.6 mg, 0.2 mmol, 1.0 equiv) and DAST (60 μ L, 0.4 mmol, 2.0 equiv) in THF (2 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was

purified by flash column chromatography (Hex: AcOEt = 15:1-12:1) to provide the title compound **2j** as a yellow oil in 39% yield (28.0 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.99 (dd, 1H, J = 7.5 Hz, J = 1.0 Hz), 7.56—7.59 (m, 1H), 7.31—7.36 (m, 2 H), 3.80 (s, 3H), 2.93—3.05 (m, 6H), 2.08—2.19 (m, 1H), 1.95—2.03 (m, 1H), 1.79—1.84 (m, 1H), 1.62—1.68 (m, 1H), 1.08 (t, 6H, J = 7.0 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +29.3 (s, 1F), -141.9 (dd, 1F, J = 25.6 Hz, J = 11.8 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 169.4 (d, J = 31.9 Hz), 156.4 (d, J = 345.6 Hz), 147.0 (d, J = 7.4 Hz), 134.9, 132.9 (d, J = 1.5 Hz), 131.6 (d, J = 4.2 Hz), 126.8, 123.2 (d, J = 56.3 Hz), 108.2 (d, J = 230.0 Hz), 52.8, 52.2, 34.0 (d, J = 22.3 Hz), 33.9, 25.0 (d, J = 2.2 Hz), 13.7; IR (NaCl): 2971, 2930, 2870, 1808, 1749, 1229, 999, 743, 697 cm⁻¹; HRMS (ESI): Calcd. for C₁₇H₂₃F₂NNaO₃S [M+Na]⁺: 382.1264; Found: 382.1260.

3.11 Benzyl 2-((diethylamino)thio)-2,6-difluoro-6-oxohexanoate (2k);

Following the general procedure, using benzyl 2-oxocyclopentanecarboxylate **2k** (43.6 mg, 0.2 mmol, 1.0 equiv) and DAST (60 µL, 0.4 mmol, 2.0 equiv) in THF (2 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1—5:1) to provide the title compound **2k** as a yellow oil in 39% yield (28.1 mg). ¹H NMR (CDCl₃, 400 MHz) δ : 7.32—7.42 (m, 5H), 5.29, 5.18 (AB quartet, *J*=12.0 Hz, 2H), 3.90—3.00 (m, 4H), 2.47—2.51 (m, 2H), 2.10—2.44 (m, 1H), 1.92—2.08 (m, 1H), 1.78—1.89 (m, 1H), 1.63—1.73 (m, 1H), 1.04—1.10 (m, 6H); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +44.9 (s, 1F),-142.0 (dd, 1F, *J* = 24.2 Hz, *J* = 9.5 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.5 (d, *J* = 31.8 Hz), 162.8 (d, *J* = 360.1 Hz), 134.9, 128.8, 128.7, 107.8 (d, *J* = 230.7 Hz), 67.9, 52.2, 32.9 (d, *J* = 22.3 Hz), 31.6 (d, *J* = 51.5 Hz), 18.3, 13.6; IR (NaCl): 2974, 2938, 2866, 1847, 1748, 1119, 1264, 1001, 753, 698, 669 cm⁻¹; HRMS (ESI): Calcd. for C₁₇H₂₄F₂NO₃S [M+H]⁺: 360.1445; Found: 360.1444.

2-((bis(2-methoxyethyl)amino)thio)-2-fluoro-3-(2-(fluorocarbonyl)phenyl)propan oate (3a);

Following the general procedure, using ethvl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1a (20.4 mg, 0.1 mmol, 1.0 equiv) and Methoxy-DAST [Bis(2-methoxyethyl)aminosulfur Trifluoride] (41 µL, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound 3a as a yellow oil in 77% yield (31.4) mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.97 (dd, 1H, J = 8.0 Hz, J = 1.5 Hz), 7.55–7.58 (m, 1H), 7.39-7.42 (m, 2 H), 4.17-4.22 (m, 2H), 3.91 (dd, 1H, J = 14.5 Hz, J = 14.5 H 10.5 Hz), 3.80 (dd, 1H, J = 25.5 Hz, J = 14.5 Hz), 3.51 (s, 4H), 3.33 (s, 6H), 3.22 (s, 4H), 1.26 (t, 3H, J = 7.0 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +31.2 (s, 1F), -140.7 (dd, 1F, J = 24.5 Hz, J = 10.7 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.1 (d, J =31.4 Hz), 156.8 (d, J = 346.6 Hz), 137.7 (d, J = 6.2 Hz), 134.3, 132.7 (d, J = 2.5 Hz), 132.4, 127.9, 125.6 (d, J = 57.3 Hz), 107.2 (d, J = 234.3 Hz), 71.3, 71.0, 62.4, 58.8, 58.2, 36.5 (d, J = 21.4 Hz), 14.1; IR (NaCl): 2981, 2927, 1812, 1751, 1449, 1237, 1004, 741, 703 cm⁻¹; HRMS (ESI): Calcd. for $C_{18}H_{25}F_2NNaO_5S [M+Na]^+$: 428.1319; Found: 428.1324.

3.13

Ethyl

2-((dimethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)phenyl)propanoate (3b);

Following the general procedure, using ethyl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate **1a** (20.4 mg, 0.1 mmol, 1.0 equiv) and Methyl-DAST (Dimethylaminosulfur trifluoride) (22 μ L, 0.2 mmol, 2.0 equiv) in

THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 15:1) to provide the title compound **3b** as a yellow oil in 51% yield (16.2 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.97 (dd, 1H, J = 8.0 Hz, J = 1.5 Hz), 7.55—7.58 (m, 1H), 7.39—7.42 (m, 2H), 4.19—4.23 (m, 2H), 3.92 (dd, 1H, J = 14.5 Hz, J = 11.5 Hz), 3.80 (dd, 1H, J = 25.0 Hz, J = 14.5 Hz), 2.86 (s, 6H), 1.27 (t, 3H, J = 7.2 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +31.2 (s, 1F), -140.4 (dd, 1F, J = 24.5 Hz, J = 11.5 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.6 (d, J = 31.1 Hz), 156.8 (d, J = 346.6 Hz), 137.6 (d, J = 6.4 Hz), 134.3, 132.8 (d, J = 3.2 Hz), 132.4, 128.0, 125.6 (d, J = 57.3 Hz), 107.1 (d, J = 234.0 Hz), 62.4, 49.3, 36.8 (d, J = 20.7 Hz), 14.1; IR (NaCl): 2986, 2937, 2791, 1811, 1749, 1237, 1003, 755, 742, 702 cm⁻¹; HRMS (ESI): Calcd. for C₁₄H₁₇F₂NNaO₃S [M+Na]⁺: 340.0795; Found: 340.0789.

3.14 Ethyl 2-fluoro-3-(2-(fluorocarbonyl)phenyl)-2-(morpholinothio)propanoate (3c);

Following the general procedure, using ethyl 1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate 1a (20.4 mg, 0.1 mmol, 1.0 equiv) and Morph-DAST (Morpholinosulfur Trifluoride) (27 µL, 0.2 mmol, 2.0 equiv) in THF (1 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 10:1) to provide the title compound 3c as a yellow oil in 72% yield (25.9 mg). ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta$: 7.99 (dd, 1H, J = 8.0 Hz, J = 1.5 Hz), 7.56-7.59 (m, 1H), 7.39—7.44 (m, 2H), 4.19—4.24 (m, 2H), 4.00 (dd, 1H, J = 14.5 Hz, J = 12.0 Hz), 3.79 (dd, 1H, J = 24.5 Hz, J = 14.5 Hz, 3.58 - 3.65 (m, 4H), 3.05 - 3.12 (m, 4H),1.27 (t, 3H, J = 7.2 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ ; +31.2 (s, 1F), -138.6 (dd, 1F, J = 23.6 Hz, J = 11.8 Hz; ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.0 (d, J = 30.9 Hz), 156.8 (d, J = 346.5 Hz), 137.4 (d, J = 6.2 Hz), 134.3, 132.8 (d, J = 3.2 Hz), 132.5, 128.1, 125.5 (d, J = 57.4 Hz), 107.6 (d, J = 235.3 Hz), 67.8, 62.5, 57.3, 37.0 (d, J = 21.6 Hz), 14.2; IR (NaCl): 2961, 2913, 2853, 1811, 1750, 1237, 1113, 1003, 742, 702 cm⁻¹; HRMS (ESI): Calcd. for C₁₆H₁₉F₂NNaO₄S [M+Na]⁺: 382.0901; Found: 382.0894.

Methyl 2-((diethylamino)thio)-2-fluoro-3-phenylpropanoate (20);

Following the general procedure, using methyl 2-benzyl-3-oxobutanoate **10** (41.2 mg, 0.2 mmol, 1.0 equiv) and DAST (60 μ L, 0.4 mmol, 2.0 equiv) in DMF (2 mL), the reaction mixture was stirred at 50 °C for overnight. After cooling to room temperature, the reaction was quenched by addition of water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄ and then concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt = 20:1—10:1) to provide the title compound **20** as a yellow oil in 45% yield (25.6 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.21—7.29 (m, 5H), 3.73 (s, 3H), 3.33 (dd, 1H, *J* = 28.0 Hz, *J* = 14.5 Hz), 3.21 (t, 1H, *J* = 14.0 Hz), 2.95—3.02 (m, 4H), 1.10 (t, 6H, *J* = 7.2 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : -140.2 (dd, 1F, *J* = 26.7 Hz, *J* = 12.9 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 168.9 (d, *J* = 31.6 Hz), 133.6, 130.2, 128.4, 127.4, 107.9 (d, *J* = 233.1 Hz), 52.7, 52.3, 40.3 (d, *J* = 21.7 Hz), 13.7; IR (NaCl): 2970, 2920, 2861, 1584, 1237, 1167, 1082, 913, 785, 708, 609 cm⁻¹; HRMS (ESI): Calcd. for C₁₄H₂₀FNNaO₂S [M+Na]⁺: 308.1096; Found: 308.1079.

4. X-ray crystallography data for the 2h (CCDC 1415530)

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₁₇ H ₂₃ F ₂ NO ₅ S
Formula Weight	391.43
Crystal Color, Habit	colorless, needle
Crystal Dimensions	0.200 X 0.100 X 0.100 mm
Crystal System	monoclinic
Lattice Type	C-centered
Lattice Parameters	a = $38.0429(9)$ Å b = $5.9645(2)$ Å c = $19.5829(5)$ Å β = $120.9238(7)$ ^O V = $3811.8(2)$ Å ³
Space Group	C2/c (#15)
Z value	8
D _{calc}	1.364 g/cm ³
F ₀₀₀	1648.00
μ(ΜοΚα)	2.153 cm ⁻¹

5. Optimization of ring-opening reaction condition (SCF₃)

	DAST +		IEA (1.0 eq)		
	1.0 mmol	DCM (2	2 mL) / –20 °C/ 2	n (0.5 M Solutio	n)
			0		
		-CO ₂ Et + CF ₃ -DAST	Solvent	F O	<
			louib (SCF3	
	1a	x eq		4a	
Entry	Solvent	CF ₃ -DAST (eq)	Temp(°C)	Time	4a (%) ^b
1	THF	2.0	RT	Overnight	28
2	THF	2.0	50	Overnight	18
3	THF	2.0	0	Overnight	17
4	THF	2.0	-20	Overnight	22
5	DMF	2.0	RT	Overnight	24
6	DCM	2.0	RT	Overnight	14
7	CH ₃ CN	2.0	RT	Overnight	3
8	МеОН	2.0	RT	Overnight	0
9	Toluene	2.0	RT	Overnight	18
10	Et ₂ O	2.0	RT	Overnight	34
11	dioxane	2.0	RT	Overnight	49
12	Benzene	2.0	RT	Overnight	17
13	CHCl ₃	2.0	RT	Overnight	30
14	Pridine	2.0	RT	Overnight	32
15	dioxane	2.0	50	Overnight	38

Table S2. Optimization of ring-opening reaction condition^a

16	dioxane	2.0	0	Overnight	67
17	dioxane	2.0	-10	Overnight	78
18	dioxane	1.0	-10	Overnight	52
19	dioxane	1.5	-10	Overnight	61

^aThe reaction of 1a with 2.0 equivalents of CF₃-DAST (0.5 M mixture in DCM) was carried out in different solvents and at different temperature. For detailed reaction conditions, see the table S2. ^bYield was determined by ¹⁹F NMR spectroscopy with an internal standard as C₆H₅CF₃.

Table S3. Optimization of ring-opening reaction condition^a

	1.0 m	imol x mmol	Solvent / -	–20 °C / 2h (S	Solution)	
Entry Solvent		Dage (ag)	TMSCE	Concentration	4a (%) ^b	
Enuy	Solvent	Dase (eq)	TMSCF3	Concentration	Time	yield
1	THF	DIEA (1.0)	1.0	0.5	Overnight	46
2	Et ₂ O	DIEA (1.0)	1.0	0.5	Overnight	40
3	CHCl ₃	DIEA (1.0)	1.0	0.5	Overnight	0
4	dioxane	DIEA (1.0)	1.0	0.5	Overnight	5
5	DCM	TEA (1.0)	1.0	0.5	Overnight	54
6	DCM	DBU (1.0)	1.0	0.5	Overnight	trace
7	DCM	DIEA (1.0)	2.0	0.5	Overnight	61
8	DCM	DIEA (1.0)	3.0	0.5	Overnight	38
9	DCM	DIEA (1.0)	1.0	1.0	Overnight	66
10	DCM	DIEA (0.5)	1.0	0.5	Overnight	53
11	DCM	DIEA (1.5)	1.0	0.5	Overnight	72
12	DCM	DIEA (1.0)	1.0	0.5	30 min	42
13	DCM	DIEA (1.0)	1.0	0.5	1 h	47

14	DCM	DIEA (1.0)	1.0	0.5	3 h	58
15	DCM		1.0	0.5	Overnight	6
16	DCM	DIEA (0.1)	1.0	0.5	Overnight	19

^{*a*}The reaction of **1a** with 2.0 equivalents of CF₃-DAST (0.5 M mixture in DCM) was carried out in different solvents and different bases. For detailed reaction conditions, see the table S3. ^{*b*} Yield was determined by ¹⁹F NMR spectroscopy with an internal standard as $C_6H_5CF_3$.

6. Typical procedure preparation of CF₃-DAST reagents

A flame-dried vessel was successively charged, under nitrogen, with diisopropylethylamine (0.17 mL, 1.0 mmol) and anhydrous dichloromethane (2 mL). The resulting mixture was cooled to -20 °C, the diethylaminosulfurtrifluoride (0.15 mL, 1.0 mmol) was added slowly by syringe, stirred for 15 min at same temperature, then the trimethylsilyltrifluoromethane (0.16 mL, 1.0 mmol) was added slowly by syringe, and stirring for two hours under the same reaction temperature. After two hours, the solution was directly used for next step without purification. See below.

7. General procedure and product characterization data for 4a-4o;

A flame-dried vessel was successively charged, under nitrogen, with β -keto esters **1a—h, j—n, q and 1o** (0.1 mmol, 1.0 equiv) and anhydrous 1,4-dioxane (1.0 mL). The solution was cooled to -10 °C and the 0.5M solution of CF₃-DAST (0.2 mmol, 2.0 equiv, 0.45 mL taken from the solution above mentioned) or (0.4 mmol, 4.0 equiv,

0.9 mL taken from the solution above mentioned) in CH_2Cl_2 was added slowly by syringe. Then the reaction mixture was stirred at -10 °C or room temperature for overnight, quenched by addition of water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄ and then concentrated in vacuo. The crude product was purified by flash column chromatography to provide the title compound **4a**—**4n** and **4o**.

7.1 Ethyl 3-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (4a);

Following the general procedure, using ethyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1a (20.4 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 8:1:1) to provide the title compound 4a as a yellow oil in 61% yield (19.7 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 8.00 (dd, 1H, J = 7.5 Hz, J = 1.0 Hz), 7.54—7.57 (m, 1H), 7.37—7.40 (m, 1H), 7.30 (d, 1H, J = 7.5 Hz), 4.05-4.10 (m, 2H), 3.98-4.04 (m, 1H), 3.53 (dd, 1H, J = 13.5 Hz, J = 7.0 Hz), 3.47(dd, 1H, J = 13.5 Hz, J = 9.0 Hz), 1.09 (t, 3 H, J = 7.2 Hz; ¹⁹F NMR (CDCl₃, 282) MHz) δ: +27.9 (s, 1F), -40.7 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ: 170.3, 156.4 (d, J = 345.5 Hz), 141.2 (d, J = 8.2 Hz), 135.1, 133.3 (d, J = 4.2 Hz), 133.2, 130.0 (q, J = 4.2 Hz), 133.2 (q, J = 4.2J = 307.4 Hz), 128.4, 123.7 (d, J = 56.9 Hz), 62.1, 46.3, 37.0, 13.9; IR (NaCl): 2986, 2942, 1806, 1740, 1238, 1112, 1009, 757, 742, 696 cm⁻¹; HRMS (ESI): Calcd. for $C_{13}H_{12}F_4NaO_3S [M+Na]^+$: 347.0341; Found: 347.0326.

7.2 Methyl 3-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (4b);

Following the general procedure, using methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1b (19.1 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 8:1:1) to provide the title compound **4b** as a yellow oil in 35% yield (10.9 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 8.00 (dd, 1H, J = 7.5 Hz, J = 1.0 Hz), 7.55—7.58 (m, 1H), 7.38—7.41 (m, 1H), 7.29 (d, 1H, J = 8.0 Hz), 4.08—4.11 (m, 1H), 3.61 (s, 3H), 3.48—3.54 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ: +27.9 (s, 1F), -40.9 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.8, 156.5 (d, J = 345.6 Hz), 141.1 (d, J = 8.2 Hz), 135.1, 133.2 (d, J = 4.0 Hz), 133.2, 129.9 (q, J =307.7 Hz), 128.5, 123.7 (d, J = 56.9 Hz), 53.0, 46.1, 37.0; IR (NaCl): 2957, 1806, 1745, 1237, 1110, 1008, 757, 742, 696 cm⁻¹; HRMS (ESI): Calcd. for C₁₂H₁₀F₄NaO₃S [M+Na]⁺: 333.0184; Found: 333.0193.

7.3 Benzyl 3-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (4c);

Following the general procedure, using benzyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate **1c** (26.7 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 10:1:1) to provide the title compound **4c** as a yellow oil in 64% yield (24.7 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.96 (dd, 1H, *J* = 8.0 Hz, *J* = 1.5 Hz), 7.43—7.46 (m, 1H), 7.32—7.36 (m, 1H), 7.24—7.26 (m, 3H), 7.18—7.20 (m, 1H), 7.13—7.15 (m, 2H), 4.98—5.04 (m, 2H), 4.12—4.15 (m, 1H),

3.55 (dd, 1H, J = 13.5 Hz, J = 7.0 Hz), 3.45 (dd, 1H, J = 13.5 Hz, J = 9.0 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +27.8 (s, 1F), -40.7 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.2, 156.4 (d, J = 345.5 Hz), 141.0 (d, J = 8.2 Hz), 135.1, 134.9, 133.2 (d, J = 3.6 Hz), 129.9 (q, J = 307.8 Hz), 128.7, 128.6, 128.5, 128.4, 123.7 (d, J = 56.8 Hz), 67.8, 46.2, 37.1; IR (NaCl): 3068, 3035, 2959, 1804, 1741, 1238, 1161, 1110, 1007, 741, 696 cm⁻¹; HRMS (ESI): Calcd. for C₁₈H₁₄F₄NaO₃S [M+Na]⁺: 409.0497; Found: 409.0486.

7.4

Methyl

3-(2-(fluorocarbonyl)-4-methylphenyl)-2-((trifluoromethyl)thio)propanoate (4d);

Following the procedure, methyl general using 6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1d (20.4 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 10:1:1) to provide the title compound 4d as a yellow oil in 59% yield (19.1 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.79 (d, 1H, J = 1.5 Hz), 7.35 (dd, 1H, J = 7.5 Hz, J = 1.0 Hz), 7.15–7.17 (m, 1H), 4.06–4.09 (m, 1H), 3.61 (s, 3H), 3.41—3.49 (m, 2H), 2.33 (s, 3H); ¹⁹F NMR (CDCl₃, 282 MHz) δ: +27.6 (s, 1F), -40.8 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.9, 156.6 (d, J = 345.5 Hz), 138.5, 138.0 (d, J = 7.9 Hz), 135.9, 133.7, 133.1 (d, J = 4.3 Hz), 129.9 (q, J = 307.3 Hz), 123.4 (d, J = 55.9 Hz), 53.0, 46.2, 36.5, 21.0; IR (NaCl): 2957, 1803, 1746, 1501, 1439, 1261, 1165, 1111, 1019, 758, 730, 697 cm⁻¹; HRMS (ESI): Calcd. for C₁₃H₁₂F₄NaO₃S [M+Na]⁺: 347.0341; Found: 347.0336.

7.5

Methyl

3-(2-(fluorocarbonyl)-4-methoxyphenyl)-2-((trifluoromethyl)thio)propanoate (4e);

Following the general procedure, using methyl 6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1e (22.0 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 10:1:1) to provide the title compound 4e as a yellow oil in 48% yield (16.3 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.47 (d, 1H, J = 2.5 Hz), 7.18-7.20 (m, 1H), 7.08 (dd, 1H, J = 8.5 Hz, J = 3.0 Hz), 4.04-4.07 (m, 1H), 3.78 (s, 3H), 3.61 (s, 3H), 3.37–3.44 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ: +27.8 (s, 1F), -40.8 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ: 170.9, 159.1, 156.3 (d, J = 346.0 Hz), 134.4 (d, J = 4.5 Hz), 132.9 (d, J = 7.5 Hz), 130.0 (g, J = 307.2 Hz), 124.5 (d, J = 56.4 Hz), 121.1, 117.7, 55.7, 53.0, 46.3, 36.2; IR (NaCl): 3009, 2956, 2844, 1807, 1744, 1504, 1165, 1111, 1010, 758, 731, 700 cm⁻¹; HRMS (ESI): Calcd. for C₁₃H₁₂F₄NaO₄S [M+Na]⁺: 363.0290; Found: 363.0296.

7.6 Ethyl

3-(5-chloro-2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (4f);

Following the general procedure, using ethyl 5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate **1f** (23.9 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 10:1:1) to provide the title compound **4f** as a yellow oil in 45% yield (16.1 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.93 (d, 1H, *J* = 8.5 Hz), 7.37 (dd, 1H, *J* = 8.5 Hz, *J* = 2.0 Hz), 7.30 (s, 1H), 4.02—4.12 (m, 3H), 3.51 (dd, 1H, *J* = 13.5 Hz, *J* = 7.0 Hz), 3.44 (dd, 1H, *J* = 13.5 Hz, *J* = 9.0 Hz), 1.13 (t, 3H,

J = 7.2 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +28.2 (s, 1F), -40.7 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.0, 155.7 (d, J = 344.7 Hz), 143.1 (d, J = 8.2 Hz), 141.8, 134.4, 133.4 (d, J = 4.1 Hz), 129.9 (q, J = 307.5 Hz), 128.7, 122.1 (d, J = 58.1 Hz), 62.4, 46.0, 36.8, 13.9; IR (NaCl): 2984, 2943, 1809, 1740, 1595, 1566, 1236, 1111, 1010, 768, 758, 690 cm⁻¹; HRMS (ESI): Calcd. for C₁₃H₁₁ClF₄NaO₃S [M+Na]⁺: 380.9951; Found: 380.9955.

7.7

Methyl

3-(5-bromo-2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (4g);

O F SCF₃

Following the general procedure, using methyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1g (26.9 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 10:1:1) to provide the title compound 4g as a yellow oil in 49% yield (19.0 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.84 (d, 1H, J = 8.5 Hz), 7.54 (dd, 1H, J = 8.5 Hz, J = 2.0 Hz), 7.47 (s, 1H), 4.04–4.07 (m, 1H), 3.64 (s, 3H), 3.46–3.49 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ: +28.2 (s, 1F), -40.8 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.4, 155.9 (d, J = 344.9 Hz), 142.9 (d, J =8.1 Hz), 136.3 (d, J = 4.1 Hz), 134.3, 131.8, 130.6, 129.8 (q, J = 307.8 Hz), 122.5 (d, J = 58.0 Hz), 53.2, 45.9, 36.7; IR (NaCl): 3022, 2956, 1807, 1742, 1589, 1561, 1239, 1111, 1011, 758, 689, 669 cm⁻¹; HRMS (ESI): Calcd. for C₁₂H₉BrF₄NaO₃S [M+Na]⁺: 410.9290; Found: 410.9261.

7.8

Methyl

3-(2-(fluorocarbonyl)-4,5-dimethoxyphenyl)-2-((trifluoromethyl)thio)propanoate (4h);

Following the general procedure, using methyl 5,6-dimethoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1h (25.0 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 5:1:1) to provide the title compound 4h as a white solid in 40% yield (14.7 mg). mp: 89.7–90.9. ¹H NMR (CDCl₃, 500 MHz) δ: 7.40 (s, 1H), 6.72 (s, 1H), 4.06–4.10 (m, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 3.62 (s, 3H), 3.49 (dd, 1H, J = 13.5 Hz, J = 7.0 Hz), 3.41 (dd, 1H, J = 13.5 Hz, J = 8.5Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ: +25.5 (s, 1F), -40.7 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 171.0, 156.2 (d, J = 341.2 Hz), 154.2, 148.2, 136.4 (d, J = 8.2 Hz), 129.9 (q, J = 307.6 Hz), 115.5 (d, J = 4.3 Hz), 115.0 (d, J = 57.4 Hz), 114.7, 56.4, 56.2, 53.0, 46.0, 36.9; IR (NaCl): 2944, 2850, 1794, 1741, 1576, 1526, 1277, 1214, 1127, 962, 878, 768, 720, 651 cm⁻¹; HRMS (ESI): Calcd. for C₁₄H₁₄F₄NaO₅S [M+Na]⁺: 393.0396; Found: 393.0386.

7.9 Benzyl 4-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)butanoate (4i);

Following the general procedure, using benzyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate **1q** (56.1 mg, 0.2 mmol, 1.0 equiv) and CF₃-DAST (1.8 mL, 4.0 equiv) in dioxane (2 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound **4i** as a yellow oil in 27% yield (21.6 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 8.01 (dd, 1H, *J* = 8.0 Hz, *J* = 1.5 Hz), 7.55—7.59 (m, 1H), 7.34—7.39 (m, 6H), 7.26 (d, 1H, *J* = 6.0 Hz), 5.21 (s, 2H), 3.90—3.93 (m, 1H), 3.14—3.20 (m, 1H), 3.01—3.06 (m, 1H),

2.21—2.29 (m, 1H), 2.12—2.19 (m, 1H); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +28.6 (s, 1F), -40.8 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.4, 156.3 (d, *J* = 345.2 Hz), 145.3 (d, *J* = 8.0 Hz), 135.2, 135.0, 133.1, 131.9 (d, *J* = 4.2 Hz), 130.1 (q, *J* = 307.5 Hz), 128.8, 128.7, 128.6, 127.4, 123.2 (d, *J* = 56.4 Hz), 68.0, 46.3, 33.1, 31.8; IR (NaCl): 3068, 3034, 2960, 1806, 1740, 1231, 1113, 1003, 756, 696, 646 cm⁻¹; HRMS (ESI): Calcd. for C₁₉H₁₆F₄NaO₃S [M+Na]⁺: 423.0654; Found: 423.0652.

7.10 Methyl 5-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)pentanoate (4j);

Following the general procedure, using methyl 5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxylate 1j (43.7 mg, 0.2 mmol, 1.0 equiv) and CF₃-DAST (1.8 mL, 4.0 equiv) in dioxane (2 mL), the reaction mixture was stirred at room temperature for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound 4j as a yellow oil in 53% yield (36.2 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.94 (dd, 1H, J = 8.0 Hz, J = 1.5 Hz), 7.50 - 7.54 (m, 1H), 7.25 - 7.31 (m, 2H), 3.74 - 3.77 (m, 1H),3.70 (s, 3H), 2.91-3.02 (m, 2H), 1.94-2.01 (m, 1H), 1.81-1.89 (m, 1H), 1.69—1.74 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ: +29.1 (s, 1F), -41.1 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 171.3, 156.4 (d, J = 345.2 Hz), 146.8 (d, J = 8.0 Hz), 135.0, 133.0 (d, J = 1.4 Hz), 131.7 (d, J = 4.2 Hz), 130.1 (q, J = 306.9 Hz), 127.0, 123.2 (d, J = 56.5 Hz), 53.1, 46.1 (d, J = 1.5 Hz), 33.9, 31.8, 28.3; IR (NaCl): 2956, 2870, 1807, 1744, 1449, 1231, 1115, 1000, 758, 742, 697 cm⁻¹; HRMS (ESI): Calcd. for C₁₄H₁₄F₄NaO₃S [M+Na]⁺: 361.0497; Found: 361.0481.

7.11 Benzyl 6-fluoro-6-oxo-2-((trifluoromethyl)thio)hexanoate (4k);

Following the general procedure, using methyl 5-oxo-6,7,8,9-tetrahydro-5H-benzo[7]annulene-6-carboxylate **1k** (43.7 mg, 0.2 mmol, 1.0 equiv) and CF₃-DAST (0.9 mL, 2.0 equiv) in dioxane (2 mL), the reaction mixture was stirred at room temperature for overnight. Target product **4k** is too unstable to be isolated under purification, so **4k** was ascertained only by ¹⁹F NMR of the crude product and yield was also decided by ¹⁹F NMR, in 26% yield. ¹⁹F NMR (CDCl₃, 282 MHz) δ : +44.5 (s, 1F), -40.8 (s, 3F);

7.12 Isopropyl 3-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (4l);

O F O SCF3

Following the general procedure, using isopropyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate 11 (21.8 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 8:1:1) to provide the title compound 4I as a yellow oil in 56% yield (18.9 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 8.00 (dd, 1H, J = 8.0 Hz, J = 1.0 Hz, 7.53 - 7.56 (m, 1H), 7.37 - 7.40 (m, 1H), 7.30 (d, 1H, J = 8.0 Hz),4.83-4.91 (m, 1H), 4.03-4.06 (m, 1H), 3.54 (dd, 1H, J = 13.5 Hz, J = 7.0 Hz), 3.43(dd, 1H, J = 13.5 Hz, J = 9.0 Hz), 1.13 (d, 3H, J = 6.5 Hz), 0.97 (d, 3H, J = 6.0 Hz);¹⁹F NMR (CDCl₃, 282 MHz) δ: +27.9 (s, 1F), -40.7 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 169.9, 156.4 (d, J = 345.5 Hz), 141.2 (d, J = 8.0 Hz), 135.1, 133.3 (d, J = 4.0Hz), 133.2, 130.0 (q, J = 307.5 Hz), 128.4, 123.7 (d, J = 56.5 Hz), 69.9, 46.4, 37.0, 21.5, 21.4; IR (NaCl): 2985, 2938, 1807, 1736, 1237, 1169, 1100, 1008, 757, 741, 696 cm^{-1} ; HRMS (ESI); Calcd. for $C_{14}H_{14}F_4NaO_3S$ [M+Na]⁺; 361.0497; Found: 361.0500.

Adamantan-1-yl

3-(5-bromo-2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (4m);

Following the general procedure, using adamantan-1-yl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 1m (38.9 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 8:1:1) to provide the title compound 4m as a yellow oil in 37% yield (18.8 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.84 (d, 1H, J = 8.5 Hz), 7.53 (dd, 1H, J = 8.5 Hz, J = 2.0 Hz), 7.48 (s, 1H), 3.92–3.95 (m, 1H), 3.54 (dd, 1H, J = 13.5 Hz, J = 6.5 Hz), 3.30 (dd, 1H, J = 13.5 Hz, J = 10.0 Hz), 2.08 (s, 3H), 1.89–1.94 (m, 6H), 1.56 (t, 6H, J = 2.7 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +28.2 (s, 1F), -40.5 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 169.8, 155.8 (d, J = 344.6 Hz), 143.3 (d, J = 8.0 Hz), 136.4 (d, J = 4.0 Hz), 134.3, 131.6, 130.6, 130.0 (q, J = 307.3 Hz), 122.6 (d, J = 58.1 Hz), 83.4, 47.1, 41.0, 36.9, 36.1, 30.9; IR (NaCl): 2913, 2855, 1809, 1732, 1589, 1239, 1159, 1111, 1007, 768, 758, 690 cm⁻¹; HRMS (ESI): Calcd. for C₂₁H₂₁BrF₄NaO₃S [M+Na]⁺: 531.0229; Found: 531.0237.

7.14

4-nitrobenzyl

3-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (4n);

Following the general procedure, using 4-nitrobenzyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate **1n** (31.1 mg, 0.1 mmol, 1.0 equiv) and CF₃-DAST (0.45 mL, 2.0 equiv) in dioxane (1 mL), the reaction mixture was stirred at -10 °C for overnight. The crude product was purified by flash column chromatography (Hex: AcOEt: DCM = 8:1:1) to provide the title compound **4n** as a yellow oil in 36% yield (15.5 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 8.10—8.13 (m,

2H), 8.00 (dd, 1H, J = 7.5 Hz, J = 1.0 Hz), 7.48—7.52 (m, 1H), 7.37—7.40 (m, 1H), 7.31 (d, 2H, J = 9.0 Hz), 7.25 (d, 1H, J = 7.5 Hz), 5.09—5.15 (m, 2H), 4.15—4.18 (m, 1H), 3.47—3.55 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +27.9 (s, 1F), -40.7 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.1, 156.5 (d, J = 345.8 Hz), 147.9, 142.0, 140.8 (d, J = 8.4 Hz), 135.2, 133.4 (d, J = 4.2 Hz), 133.3, 129.8 (q, J = 307.7 Hz), 128.6, 123.9, 123.7 (d, J = 60.7 Hz), 66.2, 46.0, 36.8; IR (NaCl): 2924, 2861, 1803, 1746, 1523, 1348, 1237, 1160, 1107, 1008, 740, 696, 647 cm⁻¹; HRMS (ESI): Calcd. for C₁₈H₁₃F₄NNaO₅S [M+Na]⁺: 454.0348; Found: 454.0340.

7.15 Methyl 3-phenyl-2-((trifluoromethyl)thio)propanoate (40);

Following the general procedure, using methyl 2-benzyl-3-oxobutanoate **10** (41.2 mg, 0.2 mmol, 1.0 equiv) and CF₃-DAST (1.8 mL, 4.0 equiv) in DMF (2 mL), the reaction mixture was stirred at 50 °C for overnight. After cooling to room temperature, quenched by addition of water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄ and then concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt =10:1) to provide the title compound **40** as a yellow oil in 19% yield (10.1 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.31—7.33 (m, 2H), 7.26—7.28 (m, 1H), 7.17—7.19 (m, 2H), 4.01—4.04 (m, 1H), 3.68 (s, 3H), 3.23 (dd, 1H, *J* = 14.0 Hz, *J* = 9.5 Hz), 3.12 (dd, 1H, *J* = 14.0 Hz, *J* = 6.5 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : -41.0 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.8, 136.1, 130.1 (q, *J* = 307.0 Hz), 129.1, 128.8, 127.6, 53.0, 47.5, 38.4; IR (NaCl): 3032, 2955, 1747, 1438, 1162, 1110, 845, 747, 699 cm⁻¹; HRMS (ESI): Calcd. For C₁₁H₁₁F₃NaO₂S [M+Na]⁺: 287.0330; Found: 287.0332.

8. X-ray crystallography data for the 4h (CCDC 1415531)

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	C ₁₄ H ₁₄ F ₄ O ₅ S
Formula Weight	370.32
Crystal Color, Habit	colorless, block
Crystal Dimensions	0.300 X 0.200 X 0.200 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 8.1328(3) Å b = 19.0087(6) Å c = 10.7270(4) Å β = 104.6528(9) ^O V = 1604.4(1) Å ³
Space Group	P2 ₁ /n (#14)
Z value	4
D _{calc}	1.533 g/cm ³
F ₀₀₀	760.00
μ(ΜοΚα)	2.665 cm ⁻¹

9. General procedure and product characterization data for 5a;

A flame-dried vessel was successively charged, under nitrogen, with methyl 2-((diethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)phenyl)propanoate (2b) (66.2 mg, 0.2 mmol) and anhydrous acetonitrile (2.0 mL), stirred at room temperature for 5 min, then benzylamine (44 µL, 0.4 mmol, 2.0 equiv) and diisopropylethylamine (68 μ L, 0.4 mmol, 2.0 equiv) were added slowly by syringe. The reaction mixture was stirred at room temperature for 5 min, quenched with water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄, concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt =5:1-3:1) to provide the target product **5a** as a colourless oil in 94% yield (78.6 mg). ¹H NMR (CDCl₃, 500 MHz) δ: 7.39–7.41 (m, 3H), 7.31–7.36 (m, 2H), 7.29–7.30 (m, 1H), 7.24-7.27 (m, 3H), 6.49 (s, 1H), 4.58-4.66 (m, 2H), 3.71-3.76 (m, 4H), 3.53 (dd, 1H, J = 27.2 Hz, J = 15.0 Hz), 2.92–2.98 (m, 4H), 1.07 (t, 6H, J = 7.0 Hz); ¹⁹F NMR $(CDCl_3, 282 \text{ MHz}) \delta$: -137.9 (dd, 1F, J = 26.7 Hz, J = 12.8 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 169.8, 169.0 (d, J = 31.8 Hz), 138.1, 131.8, 131.1, 130.0, 128.8, 128.1, 127.7, 127.6, 127.5, 108.6 (d, J = 232.6 Hz), 52.8, 52.2, 44.2, 36.3 (d, J = 21.9 Hz), 13.7; IR (NaCl): 3307, 2971, 2931, 2360, 2341, 1749, 1652, 1539, 1268, 911, 731 cm⁻ ¹; HRMS (ESI): Calcd. For C₂₂H₂₇FN₂NaO₃S [M+Na]⁺: 441.1624; Found: 441.1621.

10. General procedure and product characterization data for 5b;

A flame-dried vessel was successively charged, under nitrogen, with methanol (2.0

mL) and CaCO₃ (20.0 mg, 0.2 mmol, 1.0 equiv), stirred at 45 °C for 10 min, the solution of methyl

2-((diethylamino)thio)-2-fluoro-3-(2-(fluorocarbonyl)phenyl)propanoate (**2b**) (66.2 mg, 0.2 mmol) in methanol (1.0 mL) was added slowly by syringe at same temperature. Then the reaction mixture was stirred at 68 °C for 24 hours. The mixture was cooled to room temperature for filtration and concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt =10:1—6:1) to provide the target product **5b** as a colourless oil in 57% yield (39.1 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.80 (dd, 1H, *J* = 8.5 Hz, *J* = 1.5 Hz), 7.38—7.42 (m, 1H), 7.28—7.32 (m, 2H), 3.88—3.93 (m, 4H), 3.76 (dd, 1H, *J* = 26.5 Hz, *J* = 14.5 Hz), 3.70 (s, 3H), 2.95—3.04 (m, 4H), 1.07 (t, 6H, *J* = 7.0 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : -140.4 (dd, 1F, *J* = 24.8 Hz, *J* = 11.8 Hz); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 169.0 (d, *J* = 31.8 Hz), 168.4, 134.4, 132.2, 131.8, 131.6, 130.5, 127.4, 107.7 (d, *J* = 234.1 Hz), 52.7, 52.2, 36.8 (d, *J* = 21.4 Hz), 13.7; IR (NaCl): 2971, 2952, 2360, 2341, 1719, 1435, 1256, 1085, 668 cm⁻¹; HRMS (ESI): Calcd. for C₁₆H₂₂FNNaO₄S [M+Na]⁺: 366.1151 Found: 366.1155.

11. General procedure and product characterization data for 6a;

A flame-dried round bottom flask was charged with Ni(COD)₂ (5.5 mg, 0.02 mmol, 20 mol%) and pyphos (7.0 mg, 24 mol%) in an inert atmosphere (N₂) glove box. Upon removal from the glove box, anhydrous THF (0.5 mL) was added via syringe under an atmosphere of argon and stirred at ambient temperature for 15 minutes. 4-fluorostyrene (2.4 μ L, 0.02 mmol, 20 mol%) was introduced via syringe followed by a solution of diethylzinc (0.1 mL,1.0 equiv, 1M solution in Hexane). Then the solution of methyl 3-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (**4b**)

(31.0 mg, 0.1 mmol) in THF (0.5 mL) was added. The reaction mixture was stirred at the room temperature for 12 hours, quenched with 1M HCl (4 mL), extracted with diethyl ether (3 x 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt =10:1) to provide the target product **6a** as a colourless oil in 59% yield (18.8 mg). ¹H NMR (CDCl₃, 400 MHz) δ : 7.78 (dd, 1H, *J* = 7.6 Hz, *J* = 1.6 Hz), 7.42—7.46 (m, 1H), 7.35—7.40 (m, 1H), 7.25 (dd, 1H, *J* = 7.6 Hz, *J* = 1.2 Hz), 4.28 (dd, 1H, *J* = 8.2 Hz, *J* = 7.4 Hz), 3.67 (s, 3H), 3.32—3.42 (m, 2H), 2.91—3.01 (m, 2H), 1.21 (t, 3H, *J* = 7.4 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : – 40.8 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 204.3, 171.4, 137.4, 136.5, 132.9, 131.8, 130.1 (q, *J* = 307.6 Hz), 129.6, 127.7, 52.8, 47.0, 36.8, 34.4, 8.6; IR (NaCl): 2940, 1744, 1686, 1438, 1159, 1112, 1032, 952, 756 cm⁻¹; HRMS (ESI): Calcd. for C₁₄H₁₅F₃NaO₃S [M+Na]⁺: 343.0592; Found: 343.0603.

12. General procedure and product characterization data for 6b;

A flame-dried vessel was successively charged, under nitrogen, with methyl 3-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (**4b**) (31.0 mg, 0.1 mmol) and anhydrous acetonitrile (1.0 mL), stirred at room temperature for 5 min, then the benzylamine (22 μ L, 0.2 mmol, 2.0 equiv) and diisopropylethylamine (34 μ L, 0.2 mmol, 2.0 equiv) was added slowly by syringe. The reaction mixture was stirred at room temperature for 5 min, quenched with water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄, concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt =20:1—10:1) to provide the target product **6b** as a colourless oil in 73% yield (28.9 mg). ¹H NMR (CDCl₃, 400 MHz) δ : 7.42 (dd, 1H, *J* = 7.6 Hz, *J* = 1.2 Hz), 7.33—7.39 (m, 5H),

7.26—7.32 (m, 2H), 7.24 (dd, 1H, J = 7.6 Hz, J = 1.2Hz), 6.29 (s, 1H), 4.57—4.66 (m, 2H), 4.37 (dd, 1H, J = 8.4 Hz, J = 7.6 Hz), 3.66 (s, 3H), 3.42 (dd, 1H, J = 14.0 Hz, J = 8.8 Hz), 3.42 (dd, 1H, J = 13.6 Hz, J = 7.6 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ : -40.7 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 171.3, 169.1, 138.0, 136.2, 135.2, 131.6, 130.4, 130.0 (q, J = 307.4 Hz), 128.9, 128.0, 127.8, 127.7, 127.3, 52.9, 47.0, 44.2, 35.7; IR (NaCl): 3298, 3064, 3031, 2953, 1743, 1641, 1529, 1156, 1112, 752, 699, 660 cm⁻¹; HRMS (ESI): Calcd. for C₁₉H₁₈F₃NNaO₃S [M+Na]⁺: 420.0857; Found: 420.0848.

13. General procedure and product characterization data for 6c;

A flame-dried vessel was successively charged, under nitrogen, with methanol (1.0 mL) and CaCO₃ (10.0 mg, 0.1 mmol, 1.0 equiv), stirred at 45 °C for 10 min, the solution of methyl 3-(2-(fluorocarbonyl)phenyl)-2-((trifluoromethyl)thio)propanoate (**4b**) (31.0 mg, 0.1 mmol) in methanol (0.5 mL) was added slowly by syringe at same temperature. Then the reaction mixture was stirred at 68 °C for 24 hours. Which was cooled to room temperature, filtration, concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt =20:1) to provide the target product **6c** as a colourless oil in 72% yield (23.1 mg). ¹H NMR (CDCl₃, 400 MHz) δ: 8.01 (dd, 1H, J = 7.6 Hz, J = 1.2 Hz), 7.44—7.48 (m, 1H), 7.33—7.38 (m, 1H), 7.24 (dd, 1H, J = 7.6 Hz, J = 0.8 Hz), 4.28 (dd, 1H, J = 8.4 Hz, J = 7.0 Hz), 3.92 (s, 3H), 3.66 (s, 3H), 3.45—3.56 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ: -40.9 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ: 171.3, 167.4, 138.1, 132.6, 132.5, 131.6, 130.1 (q, J = 307.2 Hz), 129.5, 127.8, 52.9, 52.4, 46.9, 37.1; IR (NaCl): 3003, 2956, 2845, 1745, 1720, 1437, 1269, 1113, 844, 751, 707, 664 cm⁻¹; HRMS (ESI): Calcd. for C₁₃H₁₃F₃NaO₄S [M+Na]⁺: 345.0384 Found: 345.0370.
14. Typical procedure preparation of C₆F₅-DAST reagents

A flame-dried vessel was successively charged, under nitrogen, with diisopropylethylamine (0.17 mL, 1.0 mmol) and anhydrous dichloromethane (2 mL). The resulting mixture was cooled to -10 °C, the diethylaminosulfurtrifluoride (0.15 mL, 1.0 mmol) was added slowly by syringe, stirred for 15 min at same temperature, then the trimethyl(perfluorophenyl)silane (0.19 mL, 1.0 mmol) was added slowly by syringe, and stirring for two hours under the same reaction temperature, after two hours directly use for next step reactions without purifacation.

15. General procedure and product characterization data for 7b;

A flame-dried vessel was successively charged, under nitrogen, with β -keto esters **1b** (19.0 mg, 0.1 mmol, 1.0 equiv) and anhydrous 1,4-dioxane (1.0 mL). The solution was cooled to -10 °C and the 0.5M solution of C₆F₅-DAST (0.2 mmol, 2.0 equiv, 0.46 mL) in CH₂Cl₂ was added slowly by syringe. Then the reaction mixture was stirred at -10 °C or room temperature for overnight, quenched by addition of water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄ and then concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt = 12:1) to provide the title compound **7b** as a colourless oil in 53% yield (21.6 mg). ¹H NMR (CDCl₃, 400 MHz) δ : 8.03 (dd, 1H, *J* = 8.0 Hz, *J* = 1.6 Hz), 7.58—7.62 (m, 1H), 7.38—7.45 (m, 2H), 3.91—3.94 (m, 1H), 3.62 (s, 3H), 3.44—3.58 (m, 2H); ¹⁹F NMR (CDCl₃, 282 MHz) δ : +28.0 (s, 1F), –

131.01— -131.08 (m, 2F), -149.94— -150.09 (m, 1F), -160.84— -160.97 (m, 2F); ¹³C NMR (CDCl₃, 125.7 MHz) δ : 170.7, 156.4 (d, *J* = 345.5 Hz), 149.3, 147.3, 141.8 (d, *J* = 8.1 Hz), 141.6, 138.7, 136.8, 135.1, 133.2, 133.0 (d, *J* = 4.1 Hz), 128.2, 123.4 (d, *J* = 56.5 Hz), 106.2, 52.7, 50.0, 36.8; IR (NaCl): 2956, 2920, 2862, 1804, 1738, 1515, 1489, 1237, 1093, 1008, 863, 756, 696 cm⁻¹; HRMS (ESI): Calcd. for C₁₇H₁₀F₆NaO₃S [M+Na]⁺: 431.0153; Found: 431.0155.

16. General procedure and product characterization data for 9;

flame-dried vessel was successively charged, under nitrogen, А with 2-acetyl-2,3-dihydro-1H-inden-1-one 8 (34.8 mg, 0.2 mmol, 1.0 equiv) and anhydrous THF (2.0 mL). The solution was cooled to 0 °C and the DAST (0.4 mmol, 2.0 equiv) was added slowly by syringe. Then the reaction mixture was stirred at room temperature for 10 min, quenched by addition of water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄ and then concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt = 5:1) to provide the title compound 9 as a yellow oil in 63% yield (31.9 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.81 (d, 1H, J = 7.5 Hz), 7.61—7.64 (m, 1H), 7.43 (t, 1H, J = 7.5 Hz), 7.37 (d, 1H, J = 7.5 Hz), 3.26–3.39 (m, 2H), 3.04 (s, 4H), 1.08 (s, 6H); ¹⁹F NMR $(CDCl_3, 282 \text{ MHz}) \delta$: -147.0 (d, 1F, J = 12.9 Hz); ¹³C NMR (CDCl_3, 125.7 MHz) δ : 1195.4 (d, J = 24.8 Hz), 147.2 (d, J = 4.5 Hz), 135.7, 133.6 (d, J = 2.7 Hz), 128.6, 126.4, 125.3, 108.3 (d, J = 241.7 Hz), 52.4 (d, J = 17.8 Hz), 36.7 (d, J = 23.5 Hz), 14.1; IR (NaCl): 2969, 2930, 2360, 2341, 1732, 1717, 1558, 1540, 1084, 668 cm⁻¹; HRMS (ESI): Calcd. for C₁₃H₁₇FNOS [M+H]⁺: 254.1015; Found: 254.1035. This compound is not so stable under column chromatography on silica-gel.

17. General procedure and product characterization data for 10;

flame-dried vessel was successively charged, А under nitrogen, with 2-acetyl-2,3-dihydro-1H-inden-1-one 8 (34.8 mg, 0.2 mmol, 1.0 equiv) and anhydrous 1,4-dioxane (2.0 mL). The solution was cooled to -10 °C and the 0.5M solution of CF₃-DAST (0.4 mmol, 2.0 equiv, 0.90 mL taken from the solution above mentioned) in CH₂Cl₂ was added slowly by syringe. Then the reaction mixture was stirred at – 10 °C or room temperature for overnight, quenched by addition of water (10 mL), extracted with ethyl acetate (3 x 20 mL), dried over with Na₂SO₄ and then concentrated in vacuo. The crude product was purified by flash column chromatography (Hex: AcOEt = 10:1) to provide the title compound **10** as a vellow oil in 54% yield (25.1 mg). ¹H NMR (CDCl₃, 500 MHz) δ : 7.82 (d, 1H, J = 8.0 Hz), 7.66—7.69 (m, 1H), 7.47—7.49 (m, 1H), 7.42—7.45 (m, 1H), 4.24 (dd, 1H, J = 8.0Hz, J = 4.5 Hz), 3.79 (dd, 1H, J = 17.5 Hz, J = 8.0 Hz), 3.37 (dd, 1H, J = 17.5 Hz, J4.5 Hz); ¹⁹F NMR (CDCl₃, 282 MHz) δ: -40.0 (s, 3F); ¹³C NMR (CDCl₃, 125.7 MHz) δ: 199.3, 151.5, 134.6, 130.7 (q, J = 307.4 Hz), 128.4, 126.5, 124.9,47.5, 36.4; IR (NaCl): 2925, 2360, 2341, 1732, 1717, 1540, 1507, 1110, 668 cm⁻¹; MS (ESI, m/z): 231 [M-H]⁻. The NMR data are consistent with those reported in the literature. ^[6]

18. References

- 1. Cordova, A.; Janda, K. D. J. Org. Chem. 2001, 66, 1906.
- 2. Nieman, J. A.; Keay, B. A. Tetrahedron Asymmetry 1995, 6, 1575.
- Smith, A. M. R.; Rzepa, H. S.; White, A. J. P.; Billen, D.; Hii, K. K. J. Org. Chem. 2010, 75, 3085.
- 4. Nakajima, M.; Yamamoto, S.; Yamaguchi, Y.; Nakamura, S.; Hashimoto, S.

Tetrahedron 2003, 59, 7307.

- 5. Lian, M.; Li, Z.; Du, J.; Meng, Q.; Gao, Z. Eur. J. Org. Chem. 2010, 6525.
- 6. Alazet, S.; Zimmer, L.; Billard, T. Chem. Eur. J. 2014, 20, 8589.

19. ¹H NMR and ¹³C NMR spectra for starting material 1n;

20. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for doubly fluoro-functionalization

compounds 2a—2k, 2o and 3a—3c (Table 1)

21. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for doubly fluoro-functionalization

compounds 4a—4o (Table 2)

.

89

3ª 🔪

3e ...

Be

Зe

3e

3ç

^w

3K

ŝ

З'n

Зh

22. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra for transformation of acid fluorides

2b and 4b to ketones 5a, 6a amides 5b, 6b and ester 6c (Scheme 2);

