Supplementary information

The Flat-on Ambipolar Triphenylamine/C₆₀ Nano-Stacks Formed from the Self-Organization of a Pyramid-Sphere Shape Amphiphile

Wei-Wei Liang, ^{*a*} Chi-Feng Huang, ^{*a*} Kuan-Yi Wu, ^{*a*} San-Lien Wu, ^{*a*} Shu-Ting Chang, ^{*a*} Yen-Ju Cheng, ^{*a*} and Chien-Lung Wang^{*a*}*

^aDepartment of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Road Hsin-Chu, 30010, Taiwan E-Mail: kclwang@nctu.edu.tw

Fig. S1 ¹H NMR spectra of (a) TPA-OH and (b) TPA-C₆₀.

Fig. S2 13 C NMR spectra of (a) TPA-OH and (b) TPA-C₆₀.

Fig. S4 Thermogravimetry analysis of the **TPA-C**₆₀ samples dried by (a) a cryo pump (~ 6×10^{-7} torr) and (b) a mechanical pump (~ 10^{-2} torr).

Fig. S5 DSC curves of (a) (b) 4-ethynyl-N,N-diphenylaniline, (c)TPA-OH, (d) TPA-C₆₀

Fig. S6 Optical microscope (OM) images (a) (b), and POM images (c) (d) of TPA- C_{60} processed via the PAC method with ODCB.

Fig. S7 The powder X-ray diffraction pattern of TPA-C₆₀.

Fig. S8 Simulated ED patterns of **TPA-C**₆₀ along (a) the [001] zone and (b) the [100] zone.

Fig. S9 UV-Vis spectra of TPA-C $_{60}$, TPA-OH, and PCBM.

Fig. S10 (a) Reduction and (b) oxidation cyclic voltammetry curves of TPA- C_{60} and comparisons.

(hkl) plane	Theoretical d- spacing (Å)	Experimental d-spacing (Å)	
(102)	16.4	16.3	
(103)	14.2	14.2	
(200)	11.4	11.6	
(202)	10.4	10.9	
(110)	9.7	9.7	
(006)	8.5	8.7	
(210)	7.8	8.0	
(210)	7.5	7.5	
(206)	6.8	6.9	
(214)	6.7	6.6	
(216)	5.7	5.7	
(020)	5.4	5.3	
(410)	5.0	5.0	
(026)	4.5	4.5	
(502)	4.5	4.5	
(322)	4.3	4.3	
(420)	3.9	3.9	

Table S1. The d-spacings of the (hkl) planes of the crystalline phase of $TPA-C_{60}$.

Table S2. Reduction potential, oxidized potential, HOMO and LUMO energy of $PC_{61}BM$, **TPA-C₆₀** and TPA-OH.

	E _{ox} onset [V]	E _{re} onset [V]	HOMO [eV]	LUMO [eV]
PC ₆₁ BM		-0.88		-3.91
TPA-C ₆₀	0.41	-0.85	-5.20	-3.94
ТРА-ОН	0.40		-5.19	