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Figure S1: Distribution of numbers of all available ligands for family A GPCRs after

pre-processing ChEMBL19 data. The data point for CXCR4 is shown in red.
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Figure S2: Retrospective evaluation of balanced active learning strategy on all
ChEMBLA16 targets. Initial training data was selected according to “time-split” criterion
using the year of publication for each compound and adapting the threshold to
include 33% of the whole dataset. Active learning and random molecule picking was
run for 50 iterations per dataset. Active learning was performed using different
selection functions: maximum uncertainty (light blue, “explorative”), maximum
prediction (orange, “exploitive”), maximum random forest dissimilarity to the training
data (violet, “outlier picking”), or an average value of all the strategies (yellow,
“balanced”). Performance was evaluated as the difference in average activity of the
50 selected compounds (A) or the number of retrieved atomistic molecular scaffolds
among those compounds (B) compared to random picking on the same data. The
values for CXCR4 are shown with a green dot. The balanced strategy apparently
provides a compromise in terms of finding active compounds better than explorative
or outlier picking, while at the same timing detecting more novel compounds
compared to a purely exploitive strategy.
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Figure S3: Nearest neighbors in the ChEMBL19 training data of selected hits.
Compound similarity was calculated using the Tanimoto coefficient on Morgan
fingerprints (RDKit, radius = 2, 2048 bit).
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Figure S4: Positions of selected compounds during active learning iterations and
initial training compounds in important feature space. This feature space consists of
the first two principle components of the normalized descriptor values for the most
important features (cf. Figure 3B). ChEMBL training data is shown in dark blue, the
first active learning selection in light blue and the second active learning selection in

light green.
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Figure S5: Comparison of change of model importance for individual features
(descriptors). Every dot corresponds to a single feature and its position reflects the
change in model importance after the first or the second prospective iteration of
active learning. Features are visible that steadily increased (quadrant |) or decreased
(quadrant IIl) in importance. More interestingly, other features were re-discovered as
important (quadrant Il) or neglected (quadrant IV) during the second prospective

iteration.
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Figure S6: Ligand-receptor interaction diagrams for selected hlts generated through
GOLD (5.1) docking and visualized in MOE (2011.10).
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Figure S7: Comparison of observed “percentage efficacy” values in the CXCR4
arrestin assay. The positive control is shown on top in red, an agonist control at 400
nM CXCL12 is shown at the bottom in blue. Screening measurements are shown in
pairs as technical duplicates, sorted according to the mean efficacy value. The
positioning of the data points in “y” direction is arbitrary and for better visibility only.
The dots are colored according to the selection strategy, with the learning iterations
in green and the exploitive iterations in orange.
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Table S1: Parameter optimization for balanced active learning model on CXCR4 time
series data. Compounds were sorted according to publication year and the first 33%
served as training data. The remaining 66% were randomly split into learning set and
external test set. Active learning was run for 50 iterations. The parameters are the
weights of the weighted average for the selection function, balancing the influence of
the predicted affinity (w4), the uncertainty about that prediction (wz), and the random
forest outlier measure calculated for that compound (ws). After the active learning
model was trained, we calculated four different evaluation criteria: (i) the reduction of
the mean squared error (MSE) on a randomly selected test set (ii) the number of
scaffolds investigated (scaffold count SC) (iii) the average affinity of the picked
compounds (AF) (iv) the area under the learning curve (ALC). The selected
parameter set and the associated model quality is shown in bold.

tested parameters model quality
w1 W w3 MSE SC AF ALC
1.58 90.00 7.37 0.09
1.63 88.00 7.36 0.16
1.62 91.00 7.37 0.18
1.62 91.00 7.37 0.18
1.62 91.00 7.37 0.18
1.63 92.00 7.33 0.17
1.63 91.00 7.36 0.17
0.70 86.00 7.38 0.13
1.04 91.00 7.34 0.13
1.04 91.00 7.34 0.13
1.04 91.00 7.34 0.13
1.64 90.00 7.38 0.17
1.62 91.00 7.40 0.20
1.62 91.00 7.40 0.20
1.62 91.00 7.40 0.20
1.63 92.00 7.43 0.17
1.63 92.00 7.38 0.19
1.62 92.00 7.41 0.19
1.62 92.00 7.41 0.19
1.65 91.00 7.41 0.18
1.63 91.00 7.40 0.21
1.64 91.00 7.40 0.21
1.61 91.00 7.35 0.22
1.04 91.00 7.34 0.13
1.63 90.00 7.47 0.17
1.59 92.00 7.56 0.17
1.59 92.00 7.56 0.17
1.59 92.00 7.56 0.17
1.63 90.00 7.35 0.20
1.66 88.00 7.37 0.18
1.04 91.00 7.34 0.13
1.43 87.00 7.64 0.15
1.49 88.00 7.50 0.15
1.49 88.00 7.50 0.15
1.49 88.00 7.50 0.15
1.59 92.00 7.56 0.17

1.66 91.00 7.40 0.19
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Table S2: Comparison of compounds selected with the initial machine learning model
trained on ChEMBL19 training data. Compounds were either selected naively
according to their highest score (“without batch selection”) or were re-scored after
every selection using the random forest similarity metric (“with batch selection”).

Rank without batch selection with batch selection
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Table S3: Compounds for the first explorative active learning iteration with measured
effect in the CXCR4 arrestin assay. Reported is the Enamine catalogue ID, the
chemical structure of the compound, the predicted plCs, for this compound using the
initial machine learning model, the predictive uncertainty in terms of the standard
deviation of the random forest model, the re-scored random forest similarity during
batch selection, the structural similarity towards the initial training data in terms of the
Morgan fingerprint (radius = 2, 2048 bit, RDKit). Furthermore, we report the initial
rank of this compound in the screening list without batch selection. Both replicates of
the in vitro experiment are given, as well as an approximate ICso value derived from
these two measurements using the inverse of the Hill equation.
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Table S4: Compounds for the second explorative active learning iteration with
measured effect in the CXCR4 arrestin and the CXCR4 cAMP assay. Reported is the
Enamine catalogue ID, the chemical structure of the compound, the predicted plCs
for this compound using the second machine learning model, the predictive
uncertainty in terms of the standard deviation of the second random forest model, the
re-scored random forest similarity during batch selection, the maximal structural
similarity towards the initial training data and the first iteration in terms of the Morgan
fingerprint (radius = 2, 2048 bit, RDKit). Furthermore, we report the initial rank of this
compound in the screening list without batch selection. Both replicates of the two in
vitro experiment are given, as well as an approximate 1C5, value derived from the two
measurement from the cAMP assay using the inverse of the Hill equation.
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Table S5: Compounds selected in the exploitive, greedy iteration. Reported is the
Enamine catalogue ID, the chemical structure of the compound, the predicted plCsg
for this compound using the second machine learning model, the predictive
uncertainty in terms of the standard deviation of the second random forest model,
and their difference which served as the selection criteria. We also report the
maximal structural similarity towards the initial training data and the first and second
iteration in terms of the Morgan fingerprint (radius = 2, 2048 bit, RDKit). Furthermore,
we report the rank of this compound in hypothetical screening list generated with the
same scoring function but using a model trained only with the initial ChEMBL data to
monitor the impact of using the actively trained model. Both replicates of the in vitro
experiment in the arrestin assay are given, as well as an approximate ICs, value
derived from the two measurement using the inverse of the Hill equation
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Table S6: Top 15 known CXCR4 antagonists used for the prediction of the most
potent identified thiourea compound 10 with their respective compound class
annotation. Compounds were identified by determining the leaf that compound 10 is
predicted with for every tree of the final random forest model and then determine the
training examples that are predicted with the same leaf. The column “# used”
indicates the number of trees for which the reported reference was perceived
equivalent to compound 10 by being predicted with the same leaf.

Reference #used compound class
CHEMBL478168 45 Cyclam
CHEMBL2170444 45 Diamine
CHEMBL2170443 45 Diamine
CHEMBL2170299 45 Diamine
CHEMBL545532 31 Cyclam
CHEMBL2347623 30 Guanidine
CHEMBL2347624 28 Guanidine
CHEMBL2347627 26 Guanidine
CHEMBL543895 24 Cyclam
CHEMBL2347626 22 Guanidine
CHEMBL1202231 22 Cyclam
CHEMBL477121 21 Cyclam
CHEMBL516480 21 Isothiourea
CHEMBL2347631 19 Guanidine

CHEMBL2347625 18 Guanidine
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Table S7: Origin of known ligands used in the prediction of the 10 compounds
selected for the greedy iteration. Compounds were identified by determining the leaf
that a prospective compound is predicted with for every tree and then determine the
training examples that are predicted with the same leaf. For these training examples
we determined their origin (original ChEMBL19 data, first active learning iteration,
second active learning iteration) and counted them. Note that the number is higher
than the number of trees because the out-of-bag examples are also considered. We
report the absolute number of times that any reference compound from a specific
source was used for the tree-based prediction as well as the relative number
normalized by the number of compounds contained in a specific source.

Original Iteration 1 Iteration 2
Compound absolute relative absolute relative absolute relative
21041113924 329 1.15 786 26.20 122 4.07
Z1172231060 461 1.61 747 24.90 123 4.10
21558506262 1311 4.58 14 0.47 52 1.73
2432102094 423 1.48 759 25.30 128 4.27
245766764 1062 3.71 102 3.40 131 4.37
245801934 926 3.24 91 3.03 279 9.30
245831362 1019 3.56 109 3.63 189 6.30
245904687 970 3.39 66 2.20 194 6.47
246033340 729 2.55 141 4.70 372 12.40

256790850 1100 3.85 142 4.73 164 5.47
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Table S8: Compounds selected in the hit expansion for compound 1. Reported is the
Enamine catalogue ID, the chemical structure of the compound, the predicted plCs
for this compound using the third machine learning model, the predictive uncertainty
in terms of the standard deviation of the second random forest model, and the
random forest similarity to compound 1 that served as selection criteria. We also
report the maximal structural similarity towards the original training data and the first
and second iteration in terms of the Morgan fingerprint (radius = 2, 2048 bit, RDKit).
Furthermore, we report the rank of this compound in hypothetical screening list
generated with the greedy function using a model trained only with the initial
ChEMBL data to monitor the impact of using the hit expansion approach. Both
replicates of the in vifro experiment in the arrestin assay are given, as well as an
approximate plCsg value derived from the two measurement using the inverse of the
Hill equation
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Table S9: Compounds selected in the hit expansion for compound 2. Reported is the
Enamine catalogue ID, the chemical structure of the compound, the predicted plCs
for this compound using the third machine learning model, the predictive uncertainty
in terms of the standard deviation of the third random forest model, and the random
forest similarity to compound 2 that served as selection criteria. We also report the
maximal structural similarity towards the original training data and the first and
second iteration in terms of the Morgan fingerprint (radius = 2, 2048 bit, RDKit).
Furthermore, we report the rank of this compound in hypothetical screening list
generated with the greedy function using a model trained only with the initial
ChEMBL data to monitor the impact of using the hit expansion approach. Both
replicates of the in vifro experiment in the arrestin assay are given, as well as an
approximate plCsg value derived from the two measurement using the inverse of the
Hill equation.
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