Supporting Information for:

Electronic Structure of $PbCr_{(1-x)}S_{(x)}O_4$ Solid Solution: an Inside Look at Van Gogh Yellow Degradation

Ana B. Muñoz-García,* Arianna Massaro, and Michele Pavone.

Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, 80126 Naples, Italy.

S.1. Structural models for VGY

 $PbCr_{(1-x)}S_{(x)}O_4$ is a solid solution with ABO₄ general formula: A-sites are occupied by Pb and B-sites by Cr and S in different ratio. $PbCrO_4$ (x=0) presents two phases, monoclinic (M) and orthorhombic (O): M is the most abundant and belongs to *P21/n* space group; O has been detected in small percentages and belongs to the *Pnma* one.^{S1} Also PbSO4 (x=1) belongs to the orthorhombic *Pnma* space group. In all these cases, the unit cell contains four formula units (A₄B₄O₁₆) for a total of 24 atoms (Figure S.1.0). In M, every PbCrO4, atom (Pb, Cr, OI, OII, OIII and OIV) occupies 4e Wyckoff sites.^{S2} In O crystals, Pb, Cr/S, OI and OII occupy 4c Wyckoff positions and OIII atoms are in 8d ones.^{S3,S4}

Figure S.1.0. Structural models for lead chromate (a) monoclinic and (b) orthorhombic unit cells and for (c) orthorhombic lead sulfate. Spheres represent atoms, color legend: Pb grey, Cr blue, S yellow, and O red.

Besides pure lead chromate and sulphate (see main text for structural details), we have explored the $PbCr_{(1-x)}S_xO_4$ solid solution with x=0.125, 0.25, 0.50, 0.75 and 0.875. In the following, we describe the corresponding structural models.

- $PbCr_{0.875}S_{0.125}O_4$: The 24-atom ABO₄ unit cell is insufficient to describe the 7:1 Cr:S ratio Thereby, a supercell approach is needed in order to get the stoichiometric formula: we substituted 1 Cr atom with 1 S atom in monoclinic 48–atom 2x1x1 PbCrO₄ and orthorhombic 1x2x1 PbCrO₄ supercells. Figure S.1.1 shows the relaxed structure of the two models.

Figure S.1.1 Structural models of monoclinic (left) and orthorhombic (right) $PbCr_{0.875}S_{0.125}O_4$

 PbCr_{0.75}S_{0.25}O₄: it presents a 3:1 Cr:S ratio, which can be modeled by substitution of 1 Cr atom by 1 S atom in the 24-atom ABO₄ cell (Figure S.1.2)

Figure S.1.2 Structural models of monoclinic (left) and orthorhombic (right) PbCr_{0.75}S_{0.25}O₄

- PbCr_{0.50}S_{0.50}O₄: we have modeled the 1:1 Cr:S ratio by substituting 2 out of 4 Cr atoms in the 24-atom ABO₄ unit cell by S. Depending on the relative position of the two substituents in the unit cell, three different configurations arise (Figs S.1.3-5):
 - Configuration A, with the largest distance between the 2 S atoms:

 $Figure \ S.1.3 \ Structural \ models \ of \ monoclinic \ (left) \ and \ orthorhombic \ (right) \ PbCr_{0.50}S_{0.50}O_4 \ (configuration \ A)$

• Configuration B, with the smallest S – S distance:

Figure S.1.4 Structural models of monoclinic (left) and orthorhombic (right) PbCr_{0.50}S_{0.50}O₄ (configuration B)

• Configuration C, with an intermediate S – S distance:

Figure S.1.5 Structural models of monoclinic (left) and orthorhombic (right) PbCr_{0.50}S_{0.50}O₄ (configuration C)

- $PbCr_{0.25}S_{0.75}O_4$: This lattice presents a 1:3 Cr:S ratio, which can be, in principle modeled with the 24-atom ABO₄ unit. Since this particular solid solution with 1:3 Cr:S ratio is not found experimentally (see main text for details), we have focused on it for analysing the thermodynamic stability of the solid solution and we have considered 48-atom supercells in order to evaluate multiple spatial configurations within the Cr/S sublattice. We substituted 6 Cr atoms with 6 S atoms in 2x1x1 monoclinic and 1x2x1 orthorhombic supercells. Figure S.1.6 shows random configuration among the 7 possible configurations for each space group.

Figure S.1.6 Structural models of monoclinic (left) and orthorhombic (right) PbCr_{0.25}S_{0.75}O₄

- $PbCr_{0.125}S_{0.875}O_4$: as for $PbCr_{0.875}S_{0.125}O_4$, we have modeled the 1:7 Cr:S ratio by substitution of 7 Cr atoms with 7 S atoms in 48-atoms supercells (Fig. S.1.7)

Figure S.1.8 Structural models of monoclinic (left) and orthorhombic (right) PbCr_{0.125}S_{0.875}O₄

S.2. Equilibrium Structures: PBE vs PBE-D3 lattice constants and Monoclinic vs Orthorhombic cell volumes

Table S.2.1 gathers the equilibrium lattice constants obtained with PBE and PBE-D3(BJ) methods, in comparison with experimental values.

Table S.2.1 Comparison between experimental lattice parameters and PBE/PBE – D3 (BJ) equilibrium structures. For PbCrO₄ (monoclinic): β =102.40° (experimental), β =102.54° (theoretical). *Data without experimental counterpart

Leve	l of theory	Lattice parameters (Å)						
		Monoclinic P2 ₁ /n			Orthorhombic Pnma			
		a	b	с	а	b	с	
	<i>Experimental</i> [Ref. 1]	7.128	7.437	6.801	8.667	5.548	7.118	
PbCrO ₄	PBE	7.274	7.605	6.912	8.712	5.617	7.165	
	PBE-D3(BJ)	7.131	7.513	6.809	8.647	5.575	7.111	
	<i>Experimental</i> [Ref. 2]	-	-	-	8.482	5.398	6.959	
PbSO ₄	PBE	(7.070	7.285	6.755)*	8.528	5.530	7.057	
	PBE-D3(BJ)	(7.054	7.269	6.740)*	8.489	5.419	7.047	

Ref 1. Monico L., Janssens K., Hendriks E., Brunetti B.G., Miliani C., *J. Raman. Spectrosc.*, **45**, 1034-45, (2014) **Ref 2.** Miyake M., Minato I., Morikawa H., Iwai S., *Am. Mineral.*, **63**, 506-510, (1978)

Table S.2.2 lists the equilibrium volumes of monoclinic and orthorhombic at PBE-D3(BJ) level of theory.

Table S.2.2 Calculated equilibrium volumes of monoclinic and orthorhombic VGY solid solution at PBE-D3 level
of theory. In parenthesis, forms that are not detected experimentally.

Structure	Equilibrium Volume (ų)			
	Monoclinic P2 ₁ /n	Orthorhombic Pnma		
PbCrO ₄	356.12	342.85		
PbCr _{0.875} S _{0.125} O ₄	354.69	(353.98)		
PbCr _{0.75} S _{0.25} O ₄	352.62	(351.92)		
PbCr _{0.50} S _{0.50} O ₄	347.90	(344.95)		
PbCr _{0.125} S _{0.875} O ₄	(352.53)	333.96		
PbSO ₄	(337.51)	324.17		

S.3. Exploring segregation in VGY

We have hypothesized a possible tendency towards phase separation between lead chromate and lead sulphate already in the bulk state as a first cause of the degradation.

Sulphur segregation has been simulated by optimization of the three different configurations of $PbCr_{0.50}S_{0.50}O_4$ solid solution described in S.1. Among these structures, it is possible to distinguish between a more segregated (smallest distance between sulphur atoms, B), a more homogeneous structure (largest S–S distance, structure A) and a intermediate situation (configuration C). Fig. S.3 shows the energy differences with respect to the most stable configuration after relaxation.

Figure S.3 Difference in energy $(E - E_{(min)})$ of each PbCr_{0.50}S_{0.50}O₄ configuration (see S.1. for details) compared with the minimum-energy configuration as a function of S – S distance.

From our calculations, we can state that the "segregated" configuration B is the most stable, while the "homogeneous" solution A is the less stable. One reason behind this tendency of atoms at the B site of the ABO₄ structure to aggregate can be found in the significant difference between Cr-O and S-O distances (~ 1.66 and 1.49 Å, respectively, in both the parent solids and in VGY with x = 0.5), that brings an important size mismatch among the BO₄ moieties. The overall stress on the bulk structure is minimized when the dissimilar moieties are close in the cell.

S.4. Bader (AIM) Charge analysis of PbCrO₄

Table S.4 gathers the calculated Bader charges of Pb, Cr and O species in monoclinic $PbCrO_4$, which give a qualitative indication of their oxidation state in this solid. From our calculations, Pb presents a oxidation state close to the +2 formal oxidation state for A-site

in ABO₄ compounds. Cr and O oxidation states, however, are very far from the formal +6 and -2 expected, which is a clear indication of the high degree ov covalency of Cr-O bonds. Thus, PbCrO₄ can be regarded as $(CrO_4)^{2-}$ highly moieties electrostatically attracted to Pb²⁺ cations. For this reason, it is reasonable to describe Cr, not as Cr(IV) with d^0 configuration, but with some occupation at the *d* orbitals, which hybridize with oxygen *p* orbitals.

Specie		Bader (Bader Charges	
	Formal	PBE	PBE+U (<i>U-J_{Cr}</i> =3.2 eV)	
Pb	+2	+1.544	+1.542	
Cr	+6	+1.820	+1.828	
0	-2	-0.816	-0.818	

Table S.4 Calculated Bader charges of Pb, Cr and O in monoclinic PbCrO₄ at PBE and PBE+U levels of theory

S.5. PBE(+U) bandgaps in VGY

Table S.5 lists the calculated eignevalue gaps of the VGY solid solution at the PBE and PBE+U levels of theory. The PBE+U values have been used to estimate the G_0W_0 -related bandgaps according to eq. 3 of the main text.

Table S.5 Band gaps of $PbCr_{(1-x)}S_xO_4$ equilibrium structures at PBE and PBE+U levels of theory	y
--	---

Structure		Band gap (eV)				
		Monoclinic P2 ₁ /n		Orthorhombic Pnm		
		PBE	PBE+U	PBE	PBE+U	
PbCrO ₄		1.68	1.89	1.95	2.16	
PbCr _{0.875} S _{0.125} O ₄		1.73	1.94	1.98	2.19	
PbCr _{0.75} S _{0.25} O ₄		1.85	2.05	2.05	2.26	
	Α	1.92	2.12	2.06	2.27	
PbCr _{0.50} S _{0.50} O ₄	В	1.92	2.12	2.19	2.38	
	С	1.94	2.13	2.18	2.37	
PbCr _{0.125} S _{0.875} O ₄		2.04	2.24	2.28	2.47	
PbSO ₄		4.36	-	4.03	-	

S.6. PDOS of VGY solid solution

Figs. S.6.1, S.6.2 and S.6.3 display the computed projected density of states of $PbCr_{0.875}S_{0.125}O_4$, $PbCr_{0.75}S_{0.25}O_4$ and $PbCr_{0.5}S_{0.5}O_4$ (configuration B, the most stable – see S.3 for details), respectively. Together with that of $PbCr_{0.875}S_{0.125}O_4$ (see Fig. 8 in the main

text), they show that the electronic strucutre of VGY solid solution for all x retains the band edges features of $PbCrO_4$ (Fig. 6 in the main text), while S sates are very intern and do not participate in the band edges character.

Figure S.6.1 Projected density of states (PDOS) of monoclinic $PbCr_{0.875}S_{0.125}O_4$ equilibrium structure at PBE and PBE+U levels of theory. Color legend: Pb *d* states are in black, Cr *d* states in blue, and O *p* states in red. The Fermi energy (E_F) is set to zero. Eigenvalue gaps are indicated (in eV).

Figure S.6.2 Projected density of states (PDOS) of monoclinic $PbCr_{0.75}S_{0.25}O_4$ equilibrium structure at PBE and PBE+U levels of theory. Color legend: Pb *d* states are in black, Cr *d* states in blue, and O *p* states in red. The Fermi energy (E_F) is set to zero. Eigenvalue gaps are indicated (in eV).

Figure S.6.3 Projected density of states (PDOS) of monoclinic $PbCr_{0.5}S_{0.5}O_4$ equilibrium structure (configuration B) at PBE and PBE+U levels of theory. Color legend: Pb *d* states are in black, Cr *d* states in blue, and O *p* states in red. The Fermi energy (E_F) is set to zero. Eigenvalue gaps are indicated (in eV).

REFERENCES

- S1. L. Monico, K. Janssens, E. Hendriks, B.G. Brunetti, C. Miliani, Raman study of different crystalline forms of PbCrO₄ and PbCr_{1-x}S_xO₄ solid solutions for the noninvasive identification of chrome yellows in paintings: a focus on works by Vincent van Gogh. *Journal of Raman Spectroscopy* **2014**, 45, 1034-1045.
- S2. E. Bandiello, D. Errandonea, D. Martinez-Garcia, D. Santamaria-Perez, F. J. Manjón, Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO₄, *Phys. Rev. B* **2012**, 85, 024108.
- S3. G. Collotti, L. Conti, M. Zocchi, The structure of the orthorhombic modification of lead chromate PbCrO₄. *Acta Crystallographica* **1959**, 12, 416-416.
- S4. M. Miyake, I. M., H. Morikawa and S. Iwai, Crystal structures and sulphate force constants of barite, celestite, and anglesite. *American Mineralogist* 1978, 63, 506-510.