Electronic Supplementary Information

Isolation of Au-, Co- η^1 PCO and Cu- η^2 PCO complexes, conversion of an Ir- η^1 PCO complex into a dimetalladiphosphene, and an interaction-free PCO anion

Liu Leo Liu, David A. Ruiz, Fatme Dahcheh, Guy Bertrand,*

Riccardo Suter, Aaron M. Tondreau, and Hansjörg Grützmacher*

Index

1.	Experimental Details	-2-21
2.	Crystallographic Data	-22-25
3.	Computational Details	-26-32

General Information

All air- and moisture-sensitive manipulations were carried out using standard vacuum line Schlenk techniques or an MBraun dry-box under argon. THF was distilled over sodium benzophenone-ketyl before use. THF-d₈, CD₂Cl₂, and C₆D₆ were purchased from Cambridge Isotope Laboratories and dried over 4 Å molecular sieves. ¹H, ¹³C, ¹¹B, ¹⁹F, and ³¹P NMR spectra were recorded on a Varian VX 500, Bruker 300, Bruker 500 and Jeol 500 spectrometer at 25 °C. All ¹H and ¹³C NMR chemical shifts are reported relative to SiMe₄ using the ¹H (residual) and ¹³C chemical shifts of the solvent as a secondary standard. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, sept = septet, m =multiplet, br = broad signal. Chemical shifts are given in ppm and coupling constants J are given in Hz. Peak widths at half heights (in Hz) are given for broad signals. Infrared spectra were collected on a Perkin-Elmer-Spectrum 2000 FT-IR-Raman spectrometer. Elemental analyses were performed at the Mikrolabor of ETH Zürich. Single crystals suitable for X-ray diffraction were coated with polyisobutylene oil in a dry-box, transferred to a nylon loop and then transferred to the goniometer of a Bruker X8 APEX2 diffractometer equipped with a molybdenum X-ray tube ($\lambda = 0.71073$ Å) or on a Bruker Apex II-CCD detector using Mo-Ka radiation ($\lambda = 0.71073$ Å) or Cu-K α radiation ($\lambda = 1.54178$ Å). The data were processed using the Bruker SAINT+ program and corrected for absorption using SADABS. The structures were solved using direct methods (SHELXS) completed by Fourier synthesis and refined by full-matrix least-squares procedures. Mass spectra were performed at the UC San Diego Mass Spectrometry Laboratory. Melting points were measured with an electrothermal MEL-TEMP apparatus

Synthesis and characterization

Preparation of (^{iP}**PDI)Co(PCO) 3:** In the glove box, a 20 mL scintillation vial was charged with 0.200 g (0.347 mmol) of (^{iP}**PDI)CoCl 1** and 10 mL of THF. The solution was cooled to -35 °C and Na(OCP) (0.130 g, 0.355 mmol) was added portion-wise over the course of 5 minutes, eliciting a color change from pink to dark purple. The reaction was placed in the freezer at -35 °C for one hour then filtered through Celite. The solution was concentrated, layered with hexane and placed at -35 °C. This gave 0.152 g (48%) of a purple crystalline solid identified as [(^{iP}**PDI)Co(PCO)] 3**. The mother liquor was placed back in the freezer to obtain another 42 mg (13%) of product. X-Ray quality crystals were grown from the second fraction. Analysis for C₃₄H₄₃CoN₃OP, 599.64 g/mol, calc: C, 68.10; H, 7.23; N, 7.01 Found: C, 66.05; H, 7.35; N, 6.85. IR (powder): v PCO = 1851 cm⁻¹. ¹H NMR (C₆D₆, 500 MHz): δ = 9.66 (t, *J* = 7.6 Hz, 1 H, CH_{Pyr}), 7.47 (t, *J* = 7.7 Hz, 2 H, CH_{arom}), 7.35 (d, *J* = 7.7 Hz, 4 H, CH_{arom}), 7.05 (d, *J* = 7.6 Hz, 2 H, CH_{Pyr}), 3.32 (sept, *J* = 6.7 Hz, 4 H, ⁱPr(CH)), 1.13 (dd, *J* = 2.4 Hz, *J* = 6.7 Hz, 24 H, ⁱPr(CH₃)), -0.19 (s, 6 H, CH-CH₃); ¹³C NMR (C₆D₆, 125 MHz): δ = 181.2 (d, *J*_{PC} = 98.8 Hz, PCO), 168.1, 153.4, 150.5, 140.0, 125.1, 124.0, 116.4, 28.6 (Ar-CH₃), 24.0 (Ar-CH₃), 23.3, 21.8; ³¹P NMR (C₆D₆, 202 MHz): δ = -225.8 ppm (lb = 634 Hz).

Preparation of [(MePDI)IrCO]₂(µ-P₂) 5: A 20 mL Schlenk flask was charged with 0.100 g (0.167 mmol) of 2 and 5 mL of THF and cooled in a dry-ice/acetone bath. A solution of Na(OCP) (0.060 g, 0.170 mmol) in THF (3 mL) was syringed into the stirring iridium solution, immediately causing a color change to dark purple. The reaction was warmed to room temperature, whereupon the color changed to deep pink, and stirred for an additional hour. The reaction was then filtered through Celite and then concentrated to roughly 3 mL. Storing at -35 °C overnight produced a solid that was collected on a glass frit and dried under reduced pressure, yielding 0.076 g (74% yield) of red crystalline solid 5. X-Ray quality crystals were grown from the slow evaporation of the mother liquor at room temperature overnight. NMR analysis was performed in CD_2Cl_2 due to the poor solubility of 5 in ethereal or aromatic solvents, but the compound slowly decomposed (if left overnight) in methylene chloride. Analysis for C₅₂H₅₅Ir₂N₆O₂P₂, Calcd: C 50.27, H 4.46, N 6.76; Found: C 49.96, H 4.63, N 6.31. IR (powder): v CO = 1967 cm⁻¹, IR (solid, KBr): v CO = 1953 cm⁻¹. ¹H NMR $(CD_2Cl_2, 500 \text{ MHz})$: $\delta = 8.12 \text{ (d, } J = 7.8 \text{ Hz}, 2 \text{ H}, \text{ m-Py}), 7.26 \text{ (br s, 1 H, p-Py)}, 7.07-6.93 \text{ (m, p-Py)}, 7.07-6.93$ 6 H), 2.3 (br s, 6 H, CN-CH₃), 1.63 (s, 6 H, Ar-CH₃), 1.43 (s, 6 H, Ar-CH₃); ¹³C NMR $(CD_2Cl_2, 125 \text{ MHz})$: $\delta = 187.50 (CO), 152.66, 149.21, 143.12, 131.89, 130.36, 128.28 (Ar-$ CH), 127.96 (Ar-CH), 126.02, (Ar-CH), 123.97 (m-Py-CH), 116.16 (m-Py-CH), 20.66 (Ar-*C*H₃), 18.31 (Ar-*C*H₃), 15.51 (CN-*C*H₃); ³¹P NMR (CD₂Cl₂, 202 MHz): $\delta = 683.2$. λ_{max} [nm]: 524.1 nm, 732.5 nm.

UV/Vis spectrum of compound **5** was measured in a THF solution. 2 mg of compound **5** was dissolved in 10 mL of THF. The solution was filtered over Celite and the solution was measured in a 2 mm quartz cuvette on a UV/vis/NIR lambda-19-spectrometer.

Figure S1: The UV/VIS absorption spectra of compound (5) was measured in a THF solution in a 2 mm quartz cuvette. The maxima were observed at 524.1 and 732.5 nm.

IR spectrum of compound 5.

The pellet was prepared with 1 mg of compound (5) and 50 mg of KBr. The two solids were grinded in an agate mortar and were pressed by the PIKE Technology hand press in a 7 mm die collar, in order to measure the IR spectrum on a Bruker Alpha FT-IR spectrometer (Figure S3). The CO stretching vibration $v_{(CO)}$ was observed at 1953 cm⁻¹. An ATIR

spectrum of the powder shows this absorption at 1967 cm⁻¹. A distinct frequency for the P=P stretching vibration could not be assigned. Several peaks are observed in the expected range between 1500 cm⁻¹ and 500 cm⁻¹ but most of them are related to the lattice vibration of the PDI ligand system.

Figure S2: Top: The IR spectrum of compound (5) in a KBr pellet. The strong peak at 1953 cm⁻¹ is assigned to the CO stretching bond $v_{(CO)}$. Bottom: Enlarged finger print region between 1500 cm⁻¹ and 500 cm⁻¹ of the IR spectrum of compound (5) (KBr pellet). Peak list [cm⁻¹]: 2910.61, 1953.02, 1464.71, 1388.65, 1344.80, 1276.27, 1221.10, 1160.70, 1129.07, 977.91, 881.78, 763.25, 715.58

Preparation of (CAAC)Au(PCO) complex 8a: A mixture of (CAAC)AuCl **6a** (1.0 g, 1.83 mmol) and [Na(PCO)(dioxane)_{2.5}] (0.55 g, 1.83 mmol) was cooled to -78 °C before THF (10 mL) was added. The mixture was stirred for 15 minutes and then warmed to room temperature. After 30 min, the solvent was removed under vacuum and the resulting brown solid was extracted with 15 mL of benzene. After removing the solvent, **8a** was obtained as a light yellow solid (0.73 g, yield: 70%). Colorless single crystals of **8a** were obtained by vapor diffusion of pentane into a saturated benzene solution of **8a** in the dark. IR (C₆H₆): v PCO = 1887 cm⁻¹. M. P. = 193 °C (dec.). ¹H NMR (C₆D₆, 500 MHz): δ = 7.13 (t, 1 H, *J* = 7.3 Hz), 7.00 (d, 2 H, *J* = 7.3 Hz), 2.72 (sept, 2 H, *J* = 6.6 Hz), 1.63 (m, 4 H), 1.54 (d, 6 H, *J* = 6.6 Hz), 1.42 (s, 2 H), 1.08 (d, 6 H, *J* = 6.6 Hz), 0.85 (m, 12 H); ¹³C{¹H} NMR (C₆D₆, 125 MHz): δ = 253.5 (C_{carbene} d, *J*_{PC} = 36.2 Hz), 183.0 (C=O d, *J*_{PC} = 100.4 Hz), 146.1, 135.3, 130.9, 126.0, 81.0, 63.0, 43.0, 32.4, 20.1, 29.5, 27.7, 23.7, 10.3; ³¹P{¹H} NMR (C₆D₆, 121 MHz) δ = - 359.5. HRMS was attempted but a peak corresponding to M⁺ could not be located, probably due to the weak P metal bond.

Preparation of (CAAC)Au(PCO) complex 8b: A mixture of (CAAC)AuCl **6b** (1.0 g, 1.63 mmol) and [Na(PCO) (dioxane)_{2.5}] (0.49 g, 1.63 mmol) was cooled to -78 °C before THF (10 mL) was added. The mixture was stirred for 15 minutes and then warmed to room temperature. After 30 min, the solvent was removed under vacuum and the resulting brown

solid was extracted with 15 mL of benzene. After removing the solvent, **8b** was obtained as a light yellow solid (0.70 g, yield: 67%). Colorless single crystals of **8b** were obtained by vapor diffusion of (TMS)₂O into a saturated benzene solution of **8b** in the dark. IR (C₆H₆): v PCO = 1889 cm⁻¹. M. P. = 221 °C (dec.). ¹H NMR (C₆D₆, 500 MHz): δ = 7.14 (br, 1 H), 7.00 (br, 2 H), 3.17 (br, 2 H), 2.79 (sept, 2 H, *J* = 6.8 Hz), 2.05 (m, 1 H), 1.95 (m, 1 H), 1.88 (d, 1 H, *J* = 12.4 Hz), 1.82 (m, 1 H), 1.69 (d, 2 H, *J* = 12.4 Hz), 1.58 (d, 3 H, *J* = 6.8 Hz), 1.52 (d, 3 H, *J* = 6.8 Hz), 1.26 (d, 3 H, *J* = 6.8 Hz), 1.09 (m, 9 H), 0.93 (m, 9 H), 0.87 (d, 3 H, *J* = 6.8 Hz); ¹³C{¹H} NMR (C₆D₆, 125 MHz): δ = 253.5 (C_{carbene} d, *J*_{PC} = 37.1 Hz), 182.5 (C=O d, *J*_{PC} = 101.1 Hz), 146.2, 145.8, 136.1, 130.6, 129.2, 125.8, 77.6, 65.4, 53.4, 52.0, 50.0, 36.4, 31.3, 30.1, 29.8, 28.8, 28.0, 27.3, 25.6, 23.8, 23.7, 23.6, 20.7; ³¹P{¹H} NMR (C₆D₆, 121 MHz) δ = -364.2. HRMS was attempted but a peak corresponding to M⁺ could not be located, probably due to the weak P metal bond.

Preparation of (CAAC)Cu(PCO) complex 9: A mixture of (CAAC)CuOtBu 7 (50 mg, 0.11 mmol) and [Na(OCP) (dioxane)_{2.5}] (35 mg, 0.11 mmol) was stirred for 10 minutes in 3 mL of benzene at room temperature. The solvent was removed under vacuum and the resulting

brown solid was washed with 10 mL of pentane. After drying under vacuum, **9** was obtained as a light yellow solid (30 mg, yield: 62%). Colorless single crystals of **9** were obtained were obtained by vapor diffusion of (TMS)₂O into a saturated toluene solution of **9** at -40 °C. IR (C₆H₆): v PCO = 1849 cm⁻¹. M. P. = 173 °C (dec.). ¹H NMR (C₆D₆, 500 MHz): δ = 7.12 (t, 1 H, *J* = 7.7 Hz), 7.00 (d, 2 H, *J* = 7.7 Hz), 2.75 (sept, 2 H, *J* = 6.8 Hz), 1.68 (m, 4 H), 1.43 (d, 6 H, *J* = 6.8 Hz), 1.38 (s, 2 H), 1.08 (d, 6 H, *J* = 6.8 Hz), 0.93 (m, 6 H), 0.85 (s, 6 H); ¹³C {¹H} NMR (C₆D₆, 125 MHz): δ = 251.8 (C_{carbene}), 175.2 (C=O d, *J*_{PC} = 97.8 Hz), 145.9, 135.5, 130.7, 125.6, 81.2, 63.1, 43.1, 31.9, 29.9, 29.4, 27.9, 23.1, 10.4; ³¹P {¹H} NMR (C₆D₆, 121 MHz) δ = -387.4. HRMS was attempted but a peak corresponding to M⁺ could not be located, probably due to the weak P metal bond.

Preparation of $(L_bAu)_3P$ **10:** Complex **8b** (50 mg, 0.078 mmol) was left standing in 2 mL of THF for 1 week under visible light. White crystals of **10** were generated and washed with 5 mL of pentane (10 mg, yield: 22%). M. P. = 293 °C (dec.). ¹H NMR (CD₂Cl₂, 500 MHz): δ =

7.39 (t, 3 H, J = 8.4 Hz), 7.18 (m, 6 H), 2.72 (m, 12 H), 2.28 (m, 3 H), 1.88 (m, 9 H), 1.78 (m, 3 H), 1.67 (m, 3 H), 1.34 (m, 9 H), 1.24 (m, 36 H), 1.13 (d, 9 H, J = 6.6 Hz), 0.98 (m, 18 H), 0.90 (d, 9 H, J = 6.6 Hz), 0.82 (d, 9 H, J = 6.6 Hz); ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz): $\delta = 260.3$ (C_{carbene} d, $J_{PC} = 84$ Hz), 146.3, 145.7, 135.3 130.2, 125.5, 125.2, 79.0, 78.9, 66.5, 66.4, 52.9, 50.5, 36.5, 30.5, 30.4, 30.0, 29.9, 29.5, 29.0, 28.9, 28.5, 25.2, 25.1, 24.5, 23.3, 23.2, 21.3; ³¹P{¹H} NMR (CD₂Cl₂, 121 MHz) $\delta = -200.2$. HRMS: m/z calculated for [C₈₁H₁₃₀N₃Au₃P]⁺ (M+H)⁺ 1766.8999; found 1766.8980.

Preparation of bis(CAAC)Cu⁺PCO⁻ complex 11: A mixture of **9** (20 mg, 0.046 mmol) and carbene L_a (15 mg, 0.049 mmol) was stirred for 2 min in benzene (0.5 mL). The suspension was filtered and the colorless powder was washed with benzene (1 mL), yielding **11** (30 mg,

86% yield). Single crystals were obtained by slow evaporation of a saturated benzene solution of **11**. IR (solid, KBr): PCO v = 1791 cm⁻¹. M. P. = 158 °C (dec.). ¹H NMR (C₆D₆, 500 MHz): δ = 7.08 (t, 2 H, *J* = 7.8 Hz), 6.97 (d, 4 H, *J* = 7.8 Hz), 2.70 (sept, 4 H, *J* = 6.8 Hz), 1.54 (m, 8 H), 1.42 (d, 12 H, *J* = 6.8 Hz), 1.32 (s, 4 H), 1.05 (d, 12 H, *J* = 6.8 Hz), 0.84 (t, 12 H, *J* = 7.2 Hz), 0.81 (s, 12 H); ¹³C{¹H} NMR (C₆D₆, 125 MHz): δ = 253.3 (C_{carbene}), 145.8, 135.3, 130.7, 125.5, 80.8, 63.0, 43.6, 31.6, 30.0, 29.4, 28.0, 23.1, 10.2; ³¹P{¹H} NMR (C₆D₆, 121 MHz) δ = -399.5. HRMS: m/z calculated for [C₄₄H₇₀CuN₂]⁺ 689.4835; found 689.4847.

Preparation of four-membered heterocycle 12: A mixture of **8b** (50 mg, 0.078 mmol) and $B(C_6F_5)_3$ (40 mg, 0.078 mmol) was stirred in 2 mL of benzene for 5 minutes. The resulting yellow suspension was filtered and the yellow residue was washed with benzene (0.5 mL),

then dried under vacuum, yielding 61 mg (64%) of a bright-yellow powder. Yellow single crystals of **12** were obtained in the filtrate in less than 1 min. M. P. = 230 °C (dec.).

Preparation of four-membered heterocycle 13: A mixture of **9** (50 mg, 0.12 mmol) and B(C₆F₅)₃ (59 mg, 0.12 mmol) was stirred in 1 mL of toluene for 5 minutes. The solvent was removed under reduced pressure and the residue was washed with pentane (2 mL), yielding 68 mg (62 %) of a light-yellow powder. Colorless single crystals were obtained by vapor diffusion of (TMS)₂O into a saturated toluene solution of **13**. M. P. = 160 °C (dec.). ¹H NMR (C₆D₆, 500 MHz): δ = 7.08 (t, 2 H, *J* = 8.1 Hz), 6.93 (d, 4 H, *J* = 8.1 Hz), 2.59 (sept, 4 H, *J* = 6.6 Hz), 1.40 (m, 8 H), 1.31 (m, 4 H), 1.12 (d, 12 H, *J* = 6.6 Hz), 1.08 (d, 12 H, *J* = 6.6 Hz), 1.01 (m, 12 H), 0.85 (m, 12 H); ¹³C{¹H} NMR (C₆D₆, 125 MHz): δ = 248.8 (C_{carbene} br), 149.5 (br d, *J*_{FC} = 238 Hz), 149.0 (br d, *J*_{FC} = 247 Hz), 145.5, 138.1 (br d, *J*_{FC} = 247 Hz), 135.1, 131.2, 125.8, 82.5, 62.8, 43.0, 31.5, 29.7, 29.2, 27.7, 22.7, 9.9; ³¹P{¹H} NMR (C₆D₆, 121 MHz) δ = 260.6 (br), 136.2 (br). HRMS was attempted but a peak corresponding to M⁺ could not be located, probably due to the weak P metal bond.

Preparation of S1: A mixture of **9** (50 mg, 0.12 mmol) and CyNCNCy (50 mg, 0.24 mmol) was stirred in 1 mL of benzene for 30 minutes at 50 °C. The solvent was removed under reduced pressure and the residue was extracted with pentane (5 mL), yielding 73 mg (72%) of yellow **S1**. Colorless single crystals of **S1** were obtained by slow evaporation of a saturated pentane solution. M. P. = 170 °C (dec.). ¹H NMR (C₆D₆, 500 MHz): δ = 7.04 (t, 1 H, *J* = 7.7 Hz), 6.90 (d, 2 H, *J* = 7.7 Hz), 5.13 (m, 2 H), 3.77 (m, 2 H), 3.01 (m, 4 H), 2.65 (m, 4 H), 2.00-1.27 (overlapping m, 46 H), 1.06 (d, 6 H, *J* = 6.8 Hz), 0.94 (t, 6 H, *J* = 7.2 Hz), 0.75 (s, 6 H); ¹³C{¹H} NMR (C₆D₆, 125 MHz): δ = 252.0 (C_{carbene} d, *J*_{PC} = 28.8 Hz), 162.2 (C=N d, *J*_{PC} = 46.2 Hz), 155.2 (C=O), 145.5, 134.9, 130.7, 130.5, 125.4, 125.3, 81.7, 63.5, 60.5, 60.4, 60.3, 60.2, 58.8, 58.6, 42.6, 35.1 (br), 31.8, 31.2, 31.1, 30.0, 29.9, 29.3, 29.2, 28.6 (br), 27.4 (br), 25.8 (br), 22.7, 22.6, 10.4, 10.3. ³¹P{¹H} NMR (C₆D₆, 121 MHz) δ = -88.8. HRMS: m/z calculated for [C₄₉H₈₀N₅OPCu]⁺ (M+H)⁺ 848.5391; found 848.5408.

Preparation of S2: A mixture of **9** (20 mg, 0.046 mmol) and Ph_3GeCl (16 mg, 0.046 mmol) was stirred for 2 min in toluene (0.5 mL). The NMR spectra are identical as previous reports assigned to **S2** and CAACCuCl.

	8a	8b	9	10
Formula	$C_{46}H_{70}N_2O_2Au_2$ P2	C ₂₈ H ₄₃ AuNOP	C ₂₃ H ₃₅ CuNOP	$C_{40.5}H_{64.5}Au_{1.5}N_{1.5}P_{0.5}$
wt	1138.91	637.57	436.03	883.37
Cryst. syst.	Monoclinic	Orthorhombic	Monoclinic	Hexagonal
Space group	$P2_1/n$	$P2_{1}2_{1}2_{1}$	$P2_1/n$	R32
a(Å)	9.3038(5)	10.7215(7)	9.1985(7)	23.2392(6)
b(Å)	14.9607(8)	13.5360(7)	15.0111(11)	23.2392(6)
c(Å)	16.6489(9)	19.0499(12)	16.6696(13)	27.9791(10)
\Box (deg)	90.00	90.00	90.00	90.00
\Box (deg)	91.195(2)	90.00	90.736(3)	90.00
\Box (deg)	90.00	90.00	90.00	120.00
V(Å ³)	2316.9(2)	2764.6(3)	2301.5(3)	13086.0(7)
Ζ	2	4	4	12
d(calc) gcm ⁻³	1.633	1.532	1.258	1.345
R(int)	0.0423	0.0534	0.0473	0.0708
\Box , mm ⁻¹	6.431	5.398	2.071	5.089
Total data	4255	4873	4181	5380
$>2\sigma(F_0^2)$	3640	4652	4057	4659
Variables	252	281	252	274
R (>2□)	0.0203	0.0358	0.0255	0.0384
R _w	0.0426	0.0666	0.0689	0.0899
GOF	1.023	1.321	1.050	1.027

Crystallographic Data

	S1	11	12	$13 \cdot (C_7 H_8)_2$
Formula	$\begin{array}{c} C_{98}H_{158}Cu_2N_{10}\\ O_2P_2 \end{array}$	$C_{46}H_{70}CuN_2O_2P$	C ₄₆ H ₄₃ AuBF ₁₅ NO P	$\begin{array}{c} C_{384}H_{344}B_8Cu_8F_{120}N_8O_8\\ P_8 \end{array}$
wt	1697.36	777.55	1149.56	8321.23
Cryst. syst.	Monoclinic	Monoclinic	Tetragonal	Monoclinic
Space group	$P2_1/n$	$P2_1/n$	P4(3)2(1)2	C2/c
a(Å)	12.6627(14)	9.4619(4)	14.7478(2)	26.7657(13)
b(Å)	16.2794(15)	13.4134(6)	14.7478(2)	16.5433(13)
c(Å)	23.264(3)	16.9001(8)	40.2121(10)	21.4790(13)
\Box (deg)	90.00	90.00	90.00	90.00
\Box (deg)	98.409(3)	101.411(2)	90.00	107.104(3)

\Box (deg)	90.00	90.00	90.00	90.00
V(Å ³)	4744.1(9)	2102.50(16)	8746.0(3)	9090.1(10)
Ζ	2	2	8	1
d(calc) gcm ⁻³	1.188	1.228	1.746	1.520
R(int)	0.0787	0.1005	0.0815	0.0629
\Box , mm ⁻¹	0.534	0.596	3.503	0.616
Total data	8282	3706	7708	8353
$>2\sigma(F_0^2)$	4839	3001	6379	6701
Variables	522	234	605	623
R (>2□)	0.0632	0.0893	0.0437	0.0347
R _w	0.1379	0.2121	0.0952	0.1059
GOF	1.029	1.249	1.131	1.098

	3	5
Formula	$C_{42}H_{59}CoN_3O_3P$	$C_{30}H_{35}IrN_3O_2P$
wt	743.82	692.8
Cryst. syst.	Triclinic	Monoclinic
Space group	P-1	$P2_1/n$
a(Å)	10.1044(5)	13.7808(13)
b(Å)	14.1614(7)	12.3485(16)
c(Å)	15.8020(7)	16.5685(19)
\Box (deg)	111.476(4)	90.00
\Box (deg)	93.948(4)	96.530(4)
\Box (deg)	104.766(4)	90.00
V(Å ³)	2001.36(16)	2801.2(6)
Z	2	4
d(calc) gcm ⁻³	1.234	1.643
R(int)	0.0727	0.0433
\Box , mm ⁻¹	0.509	4.855
Total data	30723	78327
$>2\sigma(F_0^2)$	8175	13573
Variables	507	340
R (>2□)	0.0699	0.0321
R _w	0.1304	0.0511
GOF	1.158	1.937

Molecular view of 3 and 5 (50% thermal ellipsoids are shown) with hydrogen atoms omitted for clarity.

Molecular view of 8a and 9 (50% thermal ellipsoids are shown) with hydrogen atoms omitted for clarity.

Molecular view of 10 and 11 (50% thermal ellipsoids are shown) with hydrogen atoms omitted for clarity.

Molecular view of 12 and 13 (50% thermal ellipsoids are shown) with hydrogen atoms omitted for clarity.

Computational Details

Calculations were carried out with the Gaussian 09 package.¹ Geometry optimizations were performed with the M06 functional.² A mixed basis set employing 6-31G(d)³ for C, H, O, N and P atoms and LANL2DZ⁴ for Au and Cu was used. Polarization functions were added for Au ($\xi_f = 1.05$) and Cu ($\xi_f = 3.525$).⁵ Frequency calculations at the same level of theory were performed to identify the number of imaginary frequencies (zero for local minimum) and provide frontier molecular orbitals (HOMO). A larger mixed basis set employing 6-311++G(2d,p)⁶ for C, H, O, N and P atoms and SDD⁷ for Au and Cu was used for Natural bond orbital (NBO) calculations using NBO 3.0 program.

HOMOs of 8a (left) and 9 (right) (isovalue = 0.05 a.u.)

The geometry of the complex **5** was optimized starting from the crystal structure data using Gaussian 09¹ employing lanl2dz (Ir)² and b3lyp/6-31G* (C, H, N, O, P)³ as functionals. The calculated IR spectrum is shown in Figure S3. The wave number for the P=P stretching vibration is 498.21 cm⁻¹ but the dipole strength is 0 10⁻⁴⁰ esu² cm². The P=P frequency likely is IR inactive and explains why this band was not found experimentally. The calculated CO stretching vibration [$v_{(CO)}^{calc}$ = 1937 cm⁻¹] is in good agreement with the experimental data.

Figure S3: (*top*): The IR spectra of compound (**5**) calculated on an optimized structure by DFT (b3lyp, 6-31G* (C, H, N, O, P) and lanl2dz (Ir). (*bottom*): zoomed in the region of the P=P stretching frequency. The vibration at 498 cm⁻¹ is too small to be observed.

The Cartesian Coordinates for 5, 8a and 9

С	-3.06329300	3.08838800	-2.33876000
Н	-2.89356500	2.38018300	-3.15817300
Н	-2.42419700	3.95948500	-2.50619200
Н	-4.10899800	3.41799000	-2.41247300
С	-2.76646000	2.45553300	-1.00017300
С	-1.97818600	3.09709100	0.01590100
С	-1.34718600	4.35194300	-0.01217600
Н	-1.36351200	4.95172700	-0.91630000
С	-0.69546100	4.83486600	1.14254500
Н	-0.20884000	5.80537700	1.11951200
С	-0.67501400	4.07014500	2.32772400
Н	-0.18173900	4.45711100	3.21358800
С	-1.29873800	2.81031600	2.35721600
С	-1.46178600	1.90429300	3.46008900
С	-0.99499200	2.21421200	4.86276700
Н	-1.84303400	2.36253000	5.54544200
Н	-0.38844900	3.12357600	4.87975500
Н	-0.39308700	1.39682300	5.27766800
С	-4.34682800	0.66276900	-1.44516500
С	-4.07187600	-0.34693800	-2.40058400
С	-5.14945400	-0.88662900	-3.13629500
Н	-4.94533400	-1.66112000	-3.87265200
С	-6.46588000	-0.44609700	-2.92988500
Н	-7.28356500	-0.87747100	-3.50233600
С	-6.72163400	0.55372600	-1.97589800
Н	-7.74060100	0.89423700	-1.80515400
С	-5.67470600	1.12344600	-1.22400300
С	-5.97891600	2.18769300	-0.18693700
Н	-5.54982100	3.16280000	-0.45615700
Н	-5.55306400	1.91589800	0.78751100
Н	-7.06038900	2.31852800	-0.07197000
С	-2.67014900	-0.86645200	-2.64048000
Н	-2.37022000	-1.57450300	-1.85627100
Н	-1.92329000	-0.06715100	-2.62537700
Н	-2.61085900	-1.38741500	-3.60382700
С	-2.58286100	-0.10720800	4.24186000
С	-1.77744200	-1.19341500	4.66710900

С	-2.26312900	-2.02677700	5.69711700
Н	-1.65465200	-2.86689800	6.02467000
С	-3.50926900	-1.78784300	6.29880900
Н	-3.86988200	-2.44305100	7.08814000
С	-4.28857300	-0.69881600	5.87407800
Н	-5.25552200	-0.50963200	6.33503700
С	-3.84152100	0.15687700	4.84647600
С	-4.70639400	1.31926300	4.39831800
Н	-4.20894800	2.28654300	4.55307400
Н	-5.65233900	1.33392400	4.95055900
Н	-4.92857500	1.24961700	3.32590200
С	-0.42096000	-1.46609900	4.05205300
Н	-0.49052900	-1.60381800	2.96615300
Н	0.02603100	-2.36763400	4.48658400
Н	0.27422300	-0.63195800	4.21765700
С	-3.68056300	-1.05005500	1.28926500
Ir	-2.66754700	0.52954400	1.18374000
Ν	-3.29029800	1.25089500	-0.63671200
Ν	-1.91812100	2.34637000	1.19320200
Ν	-2.14963800	0.76574300	3.16151900
0	-4.34029600	-2.03409100	1.36494600
Р	-0.64748400	-0.75307400	0.40990900
Р	0.64748400	0.75307400	-0.40990900
С	3.06329300	-3.08838800	2.33876000
Н	2.89356500	-2.38018300	3.15817300
Н	2.42419700	-3.95948500	2.50619200
Н	4.10899800	-3.41799000	2.41247300
С	2.76646000	-2.45553300	1.00017300
С	1.97818600	-3.09709100	-0.01590100
С	1.34718600	-4.35194300	0.01217600
Н	1.36351200	-4.95172700	0.91630000
С	0.69546100	-4.83486600	-1.14254500
Н	0.20884000	-5.80537700	-1.11951200
С	0.67501400	-4.07014500	-2.32772400
Н	0.18173900	-4.45711100	-3.21358800
С	1.29873800	-2.81031600	-2.35721600
С	1.46178600	-1.90429300	-3.46008900
С	0.99499200	-2.21421200	-4.86276700
Н	1.84303400	-2.36253000	-5.54544200
Н	0.38844900	-3.12357600	-4.87975500
Н	0.39308700	-1.39682300	-5.27766800
С	4.34682800	-0.66276900	1.44516500
С	4.07187600	0.34693800	2.40058400
С	5.14945400	0.88662900	3.13629500

Н	4.94533400	1.66112000	3.87265200
С	6.46588000	0.44609700	2.92988500
Н	7.28356500	0.87747100	3.50233600
С	6.72163400	-0.55372600	1.97589800
Н	7.74060100	-0.89423700	1.80515400
С	5.67470600	-1.12344600	1.22400300
С	5.97891600	-2.18769300	0.18693700
Н	5.54982100	-3.16280000	0.45615700
Н	5.55306400	-1.91589800	-0.78751100
Н	7.06038900	-2.31852800	0.07197000
С	2.67014900	0.86645200	2.64048000
Н	2.37022000	1.57450300	1.85627100
Н	1.92329000	0.06715100	2.62537700
Н	2.61085900	1.38741500	3.60382700
С	2.58286100	0.10720800	-4.24186000
С	1.77744200	1.19341500	-4.66710900
С	2.26312900	2.02677700	-5.69711700
Н	1.65465200	2.86689800	-6.02467000
С	3.50926900	1.78784300	-6.29880900
Н	3.86988200	2.44305100	-7.08814000
С	4.28857300	0.69881600	-5.87407800
Н	5.25552200	0.50963200	-6.33503700
С	3.84152100	-0.15687700	-4.84647600
С	4.70639400	-1.31926300	-4.39831800
Н	4.20894800	-2.28654300	-4.55307400
Н	5.65233900	-1.33392400	-4.95055900
Н	4.92857500	-1.24961700	-3.32590200
С	0.42096000	1.46609900	-4.05205300
Н	0.49052900	1.60381800	-2.96615300
Н	-0.02603100	2.36763400	-4.48658400
Н	-0.27422300	0.63195800	-4.21765700
С	3.68056300	1.05005500	-1.28926500
Ir	2.66754700	-0.52954400	-1.18374000
Ν	3.29029800	-1.25089500	0.63671200
Ν	1.91812100	-2.34637000	-1.19320200
Ν	2.14963800	-0.76574300	-3.16151900
0	4.34029600	2.03409100	-1.36494600

8a				6	0.189935	1.022997	0.046258
79	-1.501906	-0.046870	-0.488601	6	1.728504	2.828235	0.476445
15	-3.465471	-1.267398	-1.203848	1	2.150723	3.323679	-0.409006
8	-4.316563	-1.309497	1.506599	1	1.888047	3.509218	1.323372
7	1.361670	0.501678	0.303978	6	2.284272	-3.611099	0.076581

1	2.555498	-4.664537	0.025594
6	-0.604052	2.788215	1.536699
1	-1.589377	2.310601	1.416310
1	-0.123785	2.276891	2.387177
6	2.824881	1.286343	2.177451
1	1.976978	1.430625	2.858748
1	3.596488	2.021054	2.444363
1	3.246518	0.286734	2.345179
6	1.773511	-3.080897	1.252620
1	1.622659	-3.734751	2.111171
6	0.232323	2.514285	0.264037
6	1.419592	-1.733054	1.350895
6	2.442575	1.489742	0.716812
6	0.191751	2.852140	-2.295541
1	1.282178	2.987021	-2.356231
1	-0.251064	3.460115	-3.093789
1	-0.032529	1.800509	-2.525669
6	1.630730	-0.920993	0.220396
6	2.406368	-2.805589	-1.047004
1	2.750499	-3.242430	-1.984345
6	-0.367996	3.257750	-0.939752
1	-1.458077	3.097463	-0.935868
1	-0.207578	4.335933	-0.783486
6	2.071113	-1.451127	-1.007882
6	-0.792409	4.260686	1.871449
1	0.162546	4.802610	1.929567
1	-1.287610	4.367706	2.844265
1	-1.420338	4.770614	1.130445
6	-3.926922	-1.264739	0.396310
6	2.086412	-0.657531	-2.299766
1	1.905528	0.399660	-2.062138
6	0.725108	-1.256489	2.612025
1	0.609151	-0.166631	2.553217
6	3.416695	-0.748390	-3.045304
1	4.270768	-0.484000	-2.407389
1	3.413174	-0.069952	-3.909591
1	3.594538	-1.760709	-3.434106
6	1.501480	-1.579525	3.887839
1	1.520191	-2.660349	4.084808
1	1.017724	-1.105494	4.752821
1	2.543022	-1.233481	3.848808
6	3.688661	1.332642	-0.140087
1	4.139178	0.337687	-0.023236
1	4.430449	2.076950	0.179624

1	3.482999	1.503025	-1.203922
6	0.937682	-1.109086	-3.205591
1	1.059171	-2.159048	-3.507263
1	0.908094	-0.497679	-4.118929
1	-0.036365	-1.019761	-2.700998
6	-0.683899	-1.849677	2.688974
1	-1.272432	-1.610729	1.792286
1	-1.222501	-1.455174	3.561340
1	-0.648932	-2.944433	2.780263

15	2.222379	-2.937355	-1.495592
29	1.288285	-1.019146	-0.754936
6	0.585209	0.677472	-0.148130
7	-0.638290	0.889689	0.260208
6	-1.604653	-0.185519	0.342532
6	-2.415538	-0.458619	-0.773739
6	-2.206572	0.191672	-2.126726
1	-1.512333	1.034051	-2.005859
6	-1.533911	-0.801861	-3.077860
1	-0.582820	-1.178043	-2.668890
1	-1.323453	-0.325208	-4.045879
1	-2.179611	-1.672129	-3.263104
6	-3.494937	0.734302	-2.740377
1	-4.191461	-0.073648	-3.005159
1	-3.272092	1.282609	-3.665986
1	-4.022382	1.415713	-2.059058
6	-3.373998	-1.466355	-0.647117
1	-4.016231	-1.702593	-1.495507
6	-3.500221	-2.196656	0.526677
1	-4.255869	-2.976975	0.605551
6	-2.630113	-1.963669	1.582881
1	-2.690282	-2.586480	2.475117
6	-1.653200	-0.968230	1.511631
6	-0.626568	-0.861002	2.622417
1	-0.042500	0.053961	2.465460
6	-1.251581	-0.779823	4.012935
1	-1.996053	0.024630	4.087831
1	-0.473770	-0.595621	4.766516
1	-1.749271	-1.719506	4.290585
6	0.360818	-2.028138	2.542964
1	-0.145729	-2.990717	2.703461
1	1.141047	-1.922488	3.309476
1	0.856877	-2.078355	1.561361

6	-0.962998	2.312173	0.689410
6	0.340903	3.034912	0.310927
1	0.672766	3.686544	1.131242
1	0.170502	3.687014	-0.557111
6	1.385105	1.946097	-0.021300
6	2.157011	2.223697	-1.320755
1	2.636952	3.210877	-1.232849
1	2.971106	1.484991	-1.403621
6	1.311437	2.179126	-2.585587
1	0.889982	1.176795	-2.753122
1	1.914473	2.429252	-3.466874
1	0.475628	2.894023	-2.552767
6	2.368166	1.702677	1.149890
1	1.783360	1.549442	2.072668
1	2.901088	0.754132	0.972439

6	3.380880	2.816023	1.372591
1	3.958159	2.624853	2.285308
1	2.902871	3.799935	1.485612
1	4.098202	2.886297	0.545658
6	-2.168422	2.848286	-0.067431
1	-2.006205	2.854476	-1.152351
1	-2.350376	3.884876	0.247189
1	-3.075654	2.268470	0.151269
6	-1.255850	2.376190	2.183616
1	-2.111656	1.743071	2.454714
1	-1.510810	3.411213	2.448742
1	-0.392413	2.081125	2.792743
6	3.223043	-2.405350	-0.284315
8	3.962001	-2.074157	0.581246

- Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; and Fox, D. J.; Gaussian, Inc., Wallingford CT, 2010.
- 2. Zhao, Y. and Truhlar, D., Theor. Chem. Acc., 2008, 120, 215-241.
- (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724–728. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257–2261. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213–222. (d) Dill, J. D.; Pople, J. A. J. Chem. Phys. 1975, 62, 2921–2923. (e) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654–3665.
- 4. Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284–298.
- (a) Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.* 1993, **208**, 237–240. (b) Ehlers, A.; Böhme, M.; Dapprich, S.; Gobbi, A.; Höllwarth, A.; Jonas, V.; Köhler, K.; Stegmann, R.; Veldkamp, A.; Frenking, G. *Chem. Phys. Lett.* 1993, **208**, 111–114.
- (a) Krishan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650–654. (b) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639–5648. (c) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Comput. Chem. 1983, 4, 294–301.
- Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H., *Theoret. chim. Acta* 1990, 77, 123-141.