Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Single-chain polybutadiene organometallic nanoparticles: An experimental and theoretical study

Inbal Berkovich,^a Sudheendran Mavila,^a Olga Iliashevsky,^b Sebastian Kozuch^{a,c} and N. G. Lemcoff^{a*}

^a Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

^b Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

^c Lise Meitner - Minerva Center for Computational Quantum Chemistry

Email: Lemcoff@bgu.ac.il

Table of Contents

1.	Experimental	2-5
2.	NMR data	6-9
3.	SEC and DLS data	10-13
4.	UV and stopped flow data	14-19
5.	GC-MS chromatograms	20-21
6.	DSC and TGA data	22-24
7.	Computational section	25-39
8.	References	40

Experimental

General Remarks. All manipulations were performed under dinitrogen atmosphere in a glove box (LabMaster 130, MBraun Garching, Germany). All commercially available solvents and reagents were of reagent grade quality and used without further purification except for THF, which was dried over sodium/benzophenone and freshly distilled and Diphenyl disulfide that was recrystallized from MeOH. The Rh-based complex $[RhCl(C_2H_4)_2]_2$ (1) was obtained from Strem chemicals. Polybutadiene (98% cis, average M_w 200,000-300,000 gmol⁻¹) and 2nd generation Grubbs' catalyst were obtained from Aldrich Chemical Co. Israel. Polybutadiene was purified by dissolution in toluene and filtration of insoluble material, followed by dissolution in toluene containing 0.05% BHT. Polycyclooctadiene (PCOD) was synthesized according to literature procedure using 2nd generation Grubbs' catalyst.¹ All nuclear magnetic resonance (NMR) spectra were acquired on a Bruker Avance DMX400 or DMX500 spectrometer, chemical shifts, given in ppm are relative to Me₄Si as the internal standard, or using the residual solvent peak. GC-MS analyses were done in an Agilent 6850 GC-MS apparatus with Agilent Mass Selective Detector G25577A and Agilent 19091S-443E HP-5MS 5% Phenyl Methyl Siloxane column after dissolution of the compounds in organic solvents. Irradiation was carried out using a Rayonet RPR-200 instrument with 350 nm lamps. Molecular weights and polydispersity indices (PDIs) of the polymers were determined by size exclusion chromatography (SEC) analyses in tetrahydrofuran (THF) at 35 °C using an Agilent 1200 HPLC equipped with two Agilent PLgel 5 µm Mixed-C columns and a Phenomenex Phenogel 5u 103A column. The flow rate was set to 1 mLmin⁻¹. Wyatt's miniDAWN TriStar laser light-scattering system, ViscoStarTM viscometer, and OptilabVR rEX refractometer were used as detectors. Prior to measurements, polymer solutions were filtered through Millipore 0.22 μ m filters. Reaction kinetics was determined using Photophysics SX20 stopped flow instrument at room temperature. Dynamic light scattering (DLS) spectra were collected by using CGS-3 (ALV, Langen, Germany). The laser power was 20 mW at the He-Ne laser line (632.8 nm). Correlograms were calculated by ALV/SLE 5003 correlator, which were collected at 90°, during 10 s for 20 times, at 25 °C. The correlograms were fitted with version of the program CONTIN (provencher, 1982). Differential scanning calorimetry (DSC) was obtained using a METTLER TOLEDO DSC 823^e and results were evaluated using the STARe software. All experiments were performed with nitrogen flow rate of 80 mL/min at a heating rate of 10 °C/min. Each sample was subjected to 1 heating-cooling cycle. The sample containing 5%

Rh(I) was heated at 40 °C/min due to difficulty in observing the T_{g} and it was subjected to 2 heating-cooling cycles. Thermal gravimetric analysis (TGA) was obtained using a METLLER TOLEDO TGA/SDTA851°. All experiments were performed with nitrogen flow rate of 50 mL/min at a heating rate of 10 °C/min. Each sample was heated at 25-1000 °C and the results were evaluated using STARe software.

General procedure for the preparation of PBD with varying *cis* content.² 95% *cis*-PBD (240 mg, 0.8 µmol) was transferred to a 50 ml RB flask and dissolved in 40 ml toluene for 16 h. Diphenyl disulfide (120 mg, 0.55 mmol) was added and the flask was purged with N₂ for 30 min. The flask was immersed in a water bath in order to maintain the temperature below 30 °C and then irradiated at 350 nm for 2.5, 5, and 30 min to obtain 72%, 51% and 20% *cis* content polymers, respectively. The reaction was quenched by the addition of BHT (1-2 g) and precipitated in excess of MeOH. The precipitate was then washed with MeOH and dissolved in 10 ml toluene containing 0.05% BHT as a preservative. The solvent was evaporated and dried *in vacuo* to afford PBD (208 mg, 87%). ¹H-NMR (400 MHz, CDCl₃, ppm): $\delta = 5.44-5.37$ (m, 4H), 2.08-2.03 (m, 2H): 5.44-5.39 (-CH=CH-, *trans*), 5.39-5.35 (-CH=CH-, *cis*), 2.12-2.05 (-CH₂-CH₂-, *cis*), 2.05-1.99 (-CH₂-CH₂-, *trans*)

Procedure for the preparation of organometallic nanoparticles of rhodium(I) (2). An NMR tube was charged with 95% *cis*-PBD (4.7 mg, 0.015 µmol) dissolved in 0.4 ml of CD₂Cl₂. A solution of **1** (0.2 mg, 0.51 mmol) in 0.2 ml of CD₂Cl₂ was added to the PBD solution in one portion. The mixture was mixed well and kept overnight at room temperature. ¹H-NMR (400 MHz, CD₂Cl₂, ppm): δ = 5.42-5.35 (bm, 2H, -CH=CH-), 4.45-4.15 (bm, Rh(-CH=CH-), 2.09-2.06 (bm, 4H, -CH₂-).

General synthesis of Rh(I)-ONPs with varying percentage of Rh(I). In a glove box, 20 mg (0.06 µmol) of the PBD (average M_w = 350,000 gmol⁻¹, PDI = 2.1) was dissolved in dry THF (30 mL) in a 50 mL RB flask. A 2.1 mM stock solution of [RhCl(C₂H₄)₂]₂ was prepared by dissolving 4.2 mg (0.01 mmol) in 5 mL of dry THF. 5 mL of the PBD stock solutions (2.5 mg PBD, 7.1 nmol) were withdrawn into three 20 mL drum vials. A 2.0 mM stock solution of [RhCl(C₂H₄)₂]₂ (2%, 110 µL, 0.23 µmol), (5%, 280 µL, 0.58 µmol) and (10%, 450 µL, 0.94 µmol) were added drop-wise to each 5 mL polymer solutions under gentle stirring. The reaction mixture was stirred for 16 h at room temperature to afford Rh(I)-ONPs in THF.

Kinetic study of rhodium complexation to PBD with varying *cis/trans* ratios by stopped flow. 5 ml of each PBD/PCOD solution (0.5 mg/ml in THF) and 1 (0.3 mM in THF) were

introduced separately into 5 ml syringes. The formation of Rh(I)-ONPs was monitored at 360 nm. Rate constants were fitted to a single exponent.

Kinetic study of ligand exchange of Rh(I)-ONPs with PCy₃. Rh(I)-ONPs (10 mol% Rh(I)) were prepared from each PBD/PCOD (1.4 μ M in THF) according to the synthetic procedure described above. Then, 5 ml of each Rh(I)-ONPs solution and PCy₃ (0.014 M in THF) were introduced separately into 5 ml syringes. The decrease in the Rh-olefin absorption peak was monitored at 360 nm. Rate constants were fitted to a single exponent.

Preparation of *cis,cis-***4,8-dodecadiene**.³ Potassium *tert*-butoxide (0.7 g, 6.25 mmol) was added to a suspension of butane-1,4-diylbis(triphenylphosphonium) bromide (2.0 g, 2.70 mmol) in diethyl ether (40 mL) at 0 °C. The yellow suspension was stirred at 0 °C for 30 min. Butyraldehyde (0.6 mL, 6.67 mmol) was added drop-wise at 0 °C. The resulting mixture was stirred at room temperature for 60 h. The reaction mixture was quenched by the addition of water (5 mL) and diluted with hexane (50 mL). The organic phase was separated, washed with water (30 mL), brine (20 mL) and dried over anhydrous MgSO4, and then the solvent was evaporated *in vacuo*. The crude product was purified by silica-gel column chromatography using hexane as eluent to afford *cis,cis*-4,8-dodecadiene (50 mg, 11%) as colourless oil. ¹H-NMR (500 MHz, CDCl₃, ppm): $\delta = 5.42-5.35$ (m, 4H), 2.08-1.99 (m, 8H), 1.41-1.33 (m, 4H), 0.92-0.89 (m, 6H).¹³C-NMR (125 MHz, CDCl₃, ppm): $\delta = 130.3$ (-CH=CH- *cis,cis*), 129.5 (-CH=CH- *cis,cis*), 29.5 (-CH₂-, *cis,cis*), 27.6 (-CH₂-, *cis,cis*), 23.0 (-CH₂-CH₃-, *cis,cis*), 13.9 (-CH₃, *cis,cis*). GC-MS (EI): m/z M⁺ calculated 166.17, found 166.00.

cis-trans isomerization of *cis,cis*-4,8-dodecadiene.² Diphenyl disulfide (9.7 mg, 0.04 mmol) was added to a solution of *cis,cis*-4,8-dodecadiene (50.0 mg, 0.30 mmol) in 3 ml hexane. The solution was purged with Ar and irradiated at 350 nm for 1 hour. The product was purified by silica-gel column chromatography using hexane as eluent to afford 4,8-dodecadiene (~75% *trans*) (31 mg, 62%) as colourless oil. ¹H-NMR (400 MHz, CDCl₃, ppm): δ 5.43-5.32 (m, 4H), 2.08-1.93 (m, 8H), 1.40-1.31 (m, 4H), 0.92-0.86 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃, ppm): δ 130.6 (-CH=CH- *trans,trans*), 130.1 (-CH=CH- *cis,trans* + *trans,trans*), 129.5 (-CH=CH- *cis,cis*), 34.8 (-CH₂-, *trans,trans*), 32.9 (-CH₂-, *trans,trans*), 31.7 (-CH₂-, *cis,trans*), 29.5 (-CH₂-, *cis,cis*), 27.6 (-CH₂-, *cis,cis*), 23.0 (CH₂-CH₃, *cis,cis*), 22.9 (CH₂-CH₃, *cis,trans* + *trans,trans*), 14.3 (-CH₃, *cis,trans*), 13.9 (-CH₃, *cis,cis*), 13.8 (-CH₃, *trans,trans*). GC-MS (EI): m/z M⁺ calculated 166.17, found 166.00.

Reaction of 4,8-dodecadiene with 1. In a glove box, 3.0 mg (0.018 mmol) of 4,8-dodecadiene (*cis/trans*) were dissolved in 0.4 ml CD_2Cl_2 and transferred into a vial. Then, 3.2 mg (8.2 µmol) of **1** dissolved in 0.2 ml CD_2Cl_2 was added in one portion. The mixture was stirred for 5 min and allowed to stand at room temperature for 18 hours.

Chloro(high *cis*-4,8-dodecadiene)rhodium(I) dimer ¹H-NMR (400 MHz, CD₂Cl₂, ppm): 5.42-5.35 (m, -CH=CH-, unreacted 4,8-dodecadiene), 4.70-4.15 (bm, -CH=CH-Rh), 2.85-2.75 (m), 2.57-2.50 (m), 2.45-2.20 (m), 2.09-1.22 (m), 1.10-0.85 (m).

Chloro(high *trans*-4,8-dodecadiene)rhodium(I) dimer: ¹H-NMR (400 MHz, CD₂Cl₂, ppm): 5.45-5.35 (m, -CH=CH-, unreacted 4,8-dodecadiene), 4.65-4.15 (bm, -CH=CH-Rh), 2.91-2.79 (m), 2.58-2.48 (m), 2.45-2.20 (m), 2.07-1.26 (m), 1.08-0.88 (m).

Kinetic study of rhodium(I) complexation to 4,8-dodecadienes. The rate of formation of chloro(4,8-dodecadiene)rhodium(I) dimer was determined by stopped-flow kinetics. For this purpose, 5 mL solution of each 4,8-dodecadiene (1.85 mM in THF) and **1** (0.60 mM in THF) were introduced into the stopped flow instrument separately in 5 mL syringes. The formation of chloro(4,8-dodecadiene)rhodium(I) dimer was monitored at 360 nm. The plot of absorbance versus time allowed us to calculate the rate constants.

Ligand exchange of chloro(4,8-dodecadiene)rhodium(I) dimer with PCy₃: In a glove box, chloro(4,8-dodecadiene)rhodium(I) dimer was prepared by mixing 6 ml 4,8-dodecadiene (1.3 mM in THF) and 1 ml of 1 (2.6 mM in THF). The solution was stirred at room temperature for 16 h. Then, 5 mL solution of each chloro(4,8-dodecadiene)rhodium(I) dimer (0.37 mM in THF) and PCy₃ (0.74 mM in THF) were introduced into the stopped flow instrument separately in 5 mL syringes. The reaction was monitored at 360 nm.

Reaction of 1 with 95% *cis***-PBD in bulk.** 3 ml of 0.27 mM **1** in THF were transferred to a cuvette. Then, 8 mg of 95% *cis*-PBD were added and UV-Vis spectra were recorded.

DSC analysis of 95% *cis*-PBD with varying rhodium(I) percentage. $30.5 \text{ mg} (0.1 \mu \text{mol})$ of 95% *cis*-PBD was weighed and dissolved 2 ml of THF in two separate vials. A solution of 2 ml of 1 in THF was added to each vial in one portion (5%, 3.5 mM and 10%, 7.0 mM) and allowed to stand at room temperature. After 16 hours, the samples were evaporated *in vacuo* and DSC measurements were done.

NMR spectral data

Figure S1: ¹H-NMR spectra of irradiated PBDs showing *cis-trans* isomerization of 95% *cis*-PBD. # = BHT

Figure S2: ¹H-NMR of **2** (2% Rh(I)) in CD_2Cl_2 and the expanded view of the olefinic region (Insets, # = BHT)

Figure S3: ¹H-NMR of *cis,cis*-4,8-dodecadiene in CDCl₃

Figure S4: ¹³C-NMR of *cis,cis*-4,8-dodecadiene in CDCl₃

Figure S5: ¹H-NMR of 4,8-dodecadiene (75% *trans*) in CDCl₃

Figure S6: ¹³C-NMR of 4,8-dodecadiene (75% trans) in CDCl₃

Figure S7: ¹H-NMR shifts in CD_2Cl_2 for the reaction of **1** with 4,8-dodecadiene (high *cis* content)

Figure S8: ¹H-NMR shifts in CD_2Cl_2 for the reaction of **1** with 4,8-dodecadiene (~75% *trans*)

SEC and DLS data

	<i>cis</i> (%) ^{<i>a</i>}	$M_{ m w}$	PDI	Intrinsic viscosity	R _h
#		[× 10 ⁵ gmol ⁻¹] ^b		(mLg ⁻¹) ^b	(nm) ^b
1	95	3.14	2.47	168.1	18.7
2	72	3.66	2.11	192.5	20.7
3	51	3.49	1.98	198.6	20.7
4	20	4.04	1.44	213.8	22.6

Table S1: SEC measurements of PBD with varying *cis* content.

^{*a*}Determined by ¹H-NMR,^{*b*}Determined by triple-detector SEC in THF. Values calculated assuming dn/dc=0.129 mLg^{-1.4}

Figure S9: Overlay of DLS traces obtained for 95%-*cis* Rh(I)-ONPs at varying concentrations of Rh(I).

Figure S10: Overlay of the SEC plots obtained for 72%-*cis* Rh(I)-ONPs at varying concentration of Rh(I).

#	Rh(I) [mol%] ^b	M _w [× 10 ⁵ gmol ⁻¹] ^b	PDI	Intrinsic viscosity (mLg ^{-1)b}	$R_{\rm h}$ $({\rm nm})^b$
1	0	3.60	2.12	192.5	20.7
2	2	2.91	1.81	161.0	18.5
3	5	2.89	1.61	116.0	16.6
4	8	2.28	1.73	73.6	13.2

Table S2: SEC analysis obtained for 72%-cis Rh(I)-ONPs at varying concentration of Rh(I)^a

^{*a*}Conditions: solvent = THF, t = 16 h, T = 35 °C, Rh(I) = [RhCl(C₂H₄)₂]₂, ^{*b*}Relative to 1,5-hexadiene units. ^{*c*}Determined by triple-detector SEC in THF.

Figure S11: Overlay of the SEC plots obtained for 51%-*cis* Rh(I)-ONPs at varying concentration of Rh(I)

	Rh(I)	$M_{ m w}$	PDI	Intrinsic viscosity	R _h
#	[mol%] ^b	[× 10 ⁵ gmol ⁻¹] ^b		(mLg ⁻¹) ^b	(nm) ^b
1	0	3.49	1.98	198.6	20.7
2	2	3.09	1.72	151.6	18.4
3	5	2.75	1.49	108.7	16.1
4	8	3.96	1.43	106.7	17.9

Table S3: SEC analysis obtained for 51%-cis Rh(I)-ONPs at varying concentration of Rh(I)^a

^{*a*}Conditions: solvent = THF, t = 16 h, T = 35 °C, Rh(I) = [RhCl(C₂H₄)₂]₂, ^{*b*}Relative to 1,5-hexadiene units. ^{*c*}Determined by triple-detector SEC in THF.

Figure S12: Overlay of the SEC plots obtained for 20%-*cis* Rh(I)-ONPs at varying concentration of Rh(I).

#	Rh(I) [mol%] ^b	M _w [× 10 ⁵ gmol ⁻¹] ^b	PDI	Intrinsic viscosity (mLg ⁻¹) ^b	$\frac{R_{\rm h}}{(\rm nm)^b}$
1	0	4.04	1.45	213.8	22.6
2	2	3.16	1.42	161.5	19.3
3	5	2.66	1.47	129.4	17.0
4	8	2.60	1.68	113.8	15.9

Table S4: SEC analysis obtained for 20%-cis Rh(I)-ONPs at varying concentration of Rh(I)^a

^{*a*}Conditions: solvent = THF, t = 16 h, T = 35 °C, Rh(I) = [RhCl(C₂H₄)₂]₂, ^{*b*}Relative to 1,5-hexadiene units. ^{*c*}Determined by triple-detector SEC in THF.

UV and stopped flow data

Figure S13: UV-Vis spectra of Rh(I)-ONPs made from PBD with varying cis content

Figure S14: UV spectra of 95%-cis Rh(I)-ONP(10 mol%) before and after addition of PCy₃

Figure S15: Plot of absorbance versus time obtained for formation of Rh(I)-ONP made of PBD and PCOD with varying *cis* content using stopped flow kinetics

Table S5: 1	Rate constants	for the f	formation	of Rh(I)-ONPs
-------------	----------------	-----------	-----------	---------	--------

Polymer	95% cis-PBD	72% <i>cis</i> -PBD	51% cis-PBD	20% <i>cis</i> -PBD	20% cis-PCOD
k (s ⁻¹)	0.3195	0.2409	0.1937	0.1178	0.1102
	± 0.0025	± 0.0025	±0.0016	± 0.0010	± 0.0008

Figure S16: Plot of absorbance versus time obtained the reaction of different *cis* content Rh(I)-ONP with PCy₃ using stopped flow kinetics

Table S6: Rate constants for the reaction of Rh	I)	I)-ONF	's with	PCy ₃
---	----	--------	---------	------------------

Polymer	95% <i>cis</i> -PBD	72% <i>cis</i> -PBD	51% cis-PBD	20% cis-PBD	20% cis-PCOD
k (s ⁻¹)	0.00593	0.00498	0.00512	0.00366	0.00417
	± 0.00005	± 0.00002	± 0.00003	± 0.00002	± 0.00001

Figure S17: UV-Vis spectra of chloro(4,8-dodecadiene)rhodium(I) dimer in THF

Figure S18: UV-Vis spectra of chloro(4,8-dodecadiene)rhodium(I) dimer prior and following the addition of PCy₃ in THF

Figure S19: Plot of absorbance versus time obtained for the formation of chloro(4,8-dodecadiene)rhodium(I) dimer using stopped flow kinetics.

Figure S20: Plot of absorbance versus time obtained for the reaction of chloro(4,8-dodecadiene)rhodium(I) dimer with PCy₃ using stopped flow kinetics.

Table S7: Rate constants for the reaction of chloro(4,8-dodecadiene)rhodium(I) dimer with PCy₃

4,8-dodecadiene type	High <i>cis</i> content	75% trans	
		Single exponent: 0.0130 ± 0.0005	
k (s ⁻¹)	0.0128 ± 0.0001	Double exponent: $k_1 = 0.2174 \pm 0.0063$ $k_2: 0.0065 \pm 0.0002$	

Figure S21: UV-Vis spectra of 1 with solid 95% cis-PBD in THF

GC-MS chromatograms

Figure S22: GC-MS chromatogram of high cis content 4,8-dodecadiene

Figure S23: MS spectrum of high *cis* content 4,8-dodecadiene.

Figure S24: GC-MS chromatogram of ~ 75% trans 4,8-dodecadiene.

Figure S25: MS spectrum of ~ 75% trans 4,8-dodecadiene.

DSC and TGA data

Figure S27: DSC plot of 95% *cis*-PBD with 5% Rh(I)

Figure S28: DSC plot of 95% cis-PBD with 10% Rh(I)

Figure S29: TGA plot of 95% cis-PBD

Figure S30: TGA plot of 95% cis-PBD with 5% Rh(I)

Figure S31: TGA plot of 95% cis-PBD with 10% Rh(I)

TGA analysis has shown that 95% *cis*-PBD has a single degradation step with a midpoint of 459.1 °C. As more rhodium was added to the polymer, the midpoint of this step was shifted to lower temperatures (431.7 °C and 412.4 °C for 5% and 10%, respectively). In addition, the added rhodium led to another degradation step at even lower temperatures - in the 5% Rh(I) sample, 7.5% of the sample was degraded at 213.4 °C and in the 10% Rh(I) sample 18.7% of the sample was degraded at 196.7 °C

Computational calculations of rhodium binding and release

Theoretical Method:

The B97D3BJ method of Grimme was selected for geometry optimizations^{5,6}, since it provides fast but also reliable geometries for transition metal complexes. It includes the most advanced dispersion correction of Grimme's group, and being a pure GGA, density fitting correction can be used to significantly accelerate the computations. The Def2-SVP basis set is not always accurate enough for energies, but it is adequate and inexpensive for geometries, and therefore it was used for all the optimizations. Frequencies (and subsequent Gibbs energy corrections) where computed at this same level, using a pressure of 24.5 atm to simulate standard 1 M concentrations in a solvent.

Single point energies were computed with the M06 functional of Truhlar and coworkers^{7,8}. This functional has a balanced exact exchange to compute reactions involving transition metals, and can accurately include medium-range dispersion interactions. The employed Def2-TZVPP basis set is an accurate triple-zeta adequate for DFT energies (where basis set convergence is much faster than with post-HF ab initio methods). It must be pointed out that preliminary tests with ω B97XD, another accurate hybrid functional for this type of reactions, provided very similar results (and virtually the same selectivity).

Solvent (THF) computations where included with the SMD method of Truhlar et al. This method provides good solvation Gibbs energies, and thus it is more adequate for Gibbs energies (the values expressed in the article) than for internal energies. Nevertheless, as can be seen from table S8, the relative kinetics of the *cis* and *trans* butene ligand substitution are almost unaffected by the solvent, as the solvation energy is practically identical for both reactants.

In the paper it is argued that the association energy for the double *cis* octadiene is less exothermic than for the double *trans* conformer. It must be noted that there is another *cis*-diene complex conformation ("conf. II" in table S8, see its xyz geometry below) with stronger association energy than the one depicted in Fig. 6 of the main text. This conformer is still less stable than the *trans* case, so the postulated explanation of the faster *cis* diene dissociation still stands when considering this alternative *cis* conformation.

Nonetheless, it is much harder to obtain the conf. II through a stepwise substitution of the ethene groups, and therefore we did not consider it further.

As explained in the main text, breaking the verticality of the olefin ligand diminishes the back-bonding ability of the metal to the ligand, generating a more labile bond. To quantitatively analyse this effect, we studied the energy required to twist the dihedral angle of the double bond in a model *trans*-Rh(PH₃)₂Cl(H₂C=CH₂) complex with respect to the complex plane. By twisting the ligand by 10° and 20°, the energy of the complex rises by 5.6 and 11.0 kJ/mol, respectively. This shows that the stronger steric impediment felt by the *trans*-butene indeed generates a significant effect on the stability and ligand substitution kinetics of the Rh complex.

Table S8. Absolute and relative energies of the computed systems (see geometries below). An "Inverted" conformation corresponds to the systems with an inversion of the angle between the coordination planes of the two metal atoms. For the *trans*-butene system the olefin can be coordinated in two ways, as can be seen in Fig. 4 of the main text; "conf II" has a slightly higher TS_{cd} , and therefore corresponds to the less crossed pathway (hence not discussed in the article).

			Relative Energies (kJ/mol) M06/def2-tzvpp//					
	Absolute Energies (Ha)							
					b97d3/	def2-svj	р	
	D07D2D1	Gibbs Energy	M06	M06	Б	Б	C	C
Conformation	BALD2R1	Correction	Def2-TZVPP	Def2-TZVPP	Ł	E	G	G
	Def2-SVP	(B97D3BJ)	(gas phase)	(THF)	gas	THF	gas	THF
	-1455.97258	0.17519	-1456.00448	-1456.01766				
cis	-157.01152	0.08104	-157.14665	-157.15069				
trans	-157.01292	0.08129	-157.14818	-157.15219				
	-78.48054	0.03182	-78.54802	-78.54920				
cis	-312.82401	0.15892		-313.10455				
trans	-312.82645	0.16004		-313.10748				
cis	-1612.99770	0.27122	-1613.15978	-1613.17557	-22.7	-19.0	16.7	20.4
cis	-1612.99212	0.27475	-1613.15025	-1613.16384	2.3	11.8	50.9	60.5
cis	-1612.99393	0.27363	-1613.15271	-1613.16630	-4.2	5.4	41.5	51.1
cis	-1612.98732	0.27446	-1613.14516	-1613.15877	15.7	25.1	63.5	73.0
	Conformation cis trans cis cis cis cis cis cis cis cis cis c	Absolute Energy B97D3BJ B97D3BJ Def2-SVP -1455.97258 cis -157.01152 trans -157.01292 -78.48054 cis -312.82401 trans -312.82645 cis cis cis -1612.99770 cis cis cis -1612.99393 cis cis -1612.98732	Absolute Energy Conformation B97D3BJ P62-SVP Gibbs Energy Correction P62-SVP Correction P62-SVP Correction P63D3BJ cis -1455.97258 0.17519 cis -157.01152 0.08104 trans -157.01292 0.08129 cis -157.01292 0.08129 cis -157.01292 0.03182 cis -312.82645 0.15892 cis -1612.99770 0.27122 cis -1612.99770 0.27475 cis -1612.99303 0.27363 cis -1612.98732 0.27446	Absolute Energies (Ha) B97D3BJ Def2-SVP Gibbs Energy Correction Def2-TZVPP 1455.97258 Correction Def2-TZVPP (B97D3BJ) (B97D3BJ) (B97D3BJ) cis -1455.97258 0.17519 -1456.00448 cis -157.01152 0.08104 -157.14665 trans -157.01292 0.08129 -157.14818 cis -157.01292 0.08129 -157.14818 cis -157.01292 0.03182 -78.54802 cis -312.82645 0.15092 -78.54802 cis -1612.99770 0.27122 -1613.15978 cis -1612.99770 0.27150 -1613.15025 cis -1612.99780 0.27363 -1613.15021 cis -1612.99393 0.27446 -1613.15271	Absolute Energies (Ha) Gibbs Energy M06 M06 B97D3BJ Def2-SVP Gibbs Energy M06 M06 B97D3BJ Correction Def2-TZVP Def2-TZVP B97D3BJ Gibbs Energy M06 M06 Correction Def2-TZVP B97D3BJ Gibbs Energy M06 Def2-TZVP Def2-TZVP G102-SVP Gib703BJ Gas phase Ifficience cis -157.0152 0.08104 -157.14818 -157.15219 cis -312.82645 0.16004 -157.313.0455 -313.10455 cis -1612.99770 0.27122 -1613.15978 -1613.15978 -1613.1630 cis -1612.99303 0.27445 -1613.15271 -1613.1630 cis -1612.98732 <th< td=""><td>Relative Absolute Energies (Ha) Relative M06 M06 Port 2007 B97D3BJ Gibbs Energy M06 Port 2007 Port 2007</td><td>Relative reaction Relative reaction <td>Relative Energies (Ha) Relative Energies (Ka) Absolute Energies (Ha) Relative Energies (Ka) Gibbs Energy M06 M06 E E G Def2-SVP Def2-TZVP Def2-TZVP Page THF gas THF G cis -1455.97258 0.17519 -1456.00448 -1456.01766 -157.15219 cis -157.14818 -157.15219 -1613.1073</td></td></th<>	Relative Absolute Energies (Ha) Relative M06 M06 Port 2007 B97D3BJ Gibbs Energy M06 Port 2007 Port 2007	Relative reaction Relative reaction <td>Relative Energies (Ha) Relative Energies (Ka) Absolute Energies (Ha) Relative Energies (Ka) Gibbs Energy M06 M06 E E G Def2-SVP Def2-TZVP Def2-TZVP Page THF gas THF G cis -1455.97258 0.17519 -1456.00448 -1456.01766 -157.15219 cis -157.14818 -157.15219 -1613.1073</td>	Relative Energies (Ha) Relative Energies (Ka) Absolute Energies (Ha) Relative Energies (Ka) Gibbs Energy M06 M06 E E G Def2-SVP Def2-TZVP Def2-TZVP Page THF gas THF G cis -1455.97258 0.17519 -1456.00448 -1456.01766 -157.15219 cis -157.14818 -157.15219 -1613.1073

1d	cis	-1612.99327	0.26950	-1613.15463	-1613.16909	-9.2	-2.0	25.7	32.9
RhEtBu + Et	cis	-1612.98348	0.25661	-1613.14759	-1613.16372	9.3	12.2	10.3	13.2
1e	cis	-1534.50295	0.22479	-1534.59957	-1534.61452	9.3	12.2	10.3	13.2
TScd	cis - Inverted	-1612.98652	0.27420	-1613.14287	-1613.15767	21.7	28.0	68.9	75.2
TScd	trans	-1612.98715	0.27514	-1613.14495	-1613.15951	20.3	27.1	69.2	76.1
1e	trans	-1534.50222	0.22410	-1534.59954	-1534.61494	13.4	15.0	11.9	13.5
TScd	trans-Conf II	-1612.98599	0.27459	-1613.14427	-1613.15766	22.0	32.0	69.6	79.5
1e	trans-Conf II	-1534.50253	0.22550	-1534.60034	-1534.61529	11.3	14.1	13.5	16.2
TScd	trans-Conf II-Inverted	-1612.98549	0.27340	-1613.14224	-1613.15665	27.4	34.7	71.8	79.1
TScd	trans-Inverted	-1612.98533	0.27310	-1613.14235	-1613.15705	27.1	33.6	70.7	77.2
Rh ₂ Cl ₂ Et ₂ -Octadiene	cis	-1611.81217	0.25938		-1611.99991		66.2		33.6
Rh ₂ Cl ₂ Et ₂ -Octadiene	cis -Conf II	-1611.82200	0.25851		-1612.00826		44.3		9.7
Rh ₂ Cl ₂ Et ₂ -Octadiene	trans	-1611.83223	0.26073		-1612.01690		25.8		-2.7

XYZ Geometries computed at B97D3BJ/Def2-SVP level with density fitting approximation.

Example of route line: #p b97d3/def2svp/auto opt pressure=24.5 freq EmpiricalDispersion=GD3BJ

cis-	2-Butene (C2	v)		:	1b <i>c</i>	is		
С	0.000000	0.674177	0.665707]	Rh	1.705411	-0.618444	-0.138842
Н	0.000000	1.176310	1.645730	(С	3.026244	0.576830	-1.273153
С	0.000000	-0.674177	0.665707	(2	3.074144	-1.651834	1.095404
Н	0.000000	-1.176310	1.645730	(С	3.100636	-0.764148	-1.714766
С	0.000000	1.594166	-0.523182	(21	-0.141630	-1.361826	1.326987
Н	0.000000	1.054974	-1.484975]	H	2.414660	1.306837	-1.818383
Н	-0.885825	2.259598	-0.507952	(2	2.934295	-0.319233	1.546989
Н	0.885825	2.259598	-0.507952]	H	3.837214	1.012634	-0.675294
С	0.000000	-1.594166	-0.523182	(2	1.255766	3.175198	0.193931
Н	0.000000	-1.054974	-1.484975]	H	3.971048	-1.385348	-1.466796
Н	0.885825	-2.259598	-0.507952]	H	2.524386	-2.468062	1.583563
Н	-0.885825	-2.259598	-0.507952]	H	2.545378	-1.088675	-2.605502
]	H	2.277993	3.432272	-0.122772
tran	s-2-Butene (C2h)]	H	3.984786	-1.964299	0.567724
С	0.324939	0.589034	0.000000	(С	1.100219	2.710256	1.450377
Н	1.427891	0.578494	0.000000]	H	3.729688	0.417318	1.375563
С	-0.324939	-0.589034	0.000000]	H	2.266751	-0.086723	2.387264
Н	-1.427891	-0.578494	0.000000]	H	2.004691	2.633876	2.072519
С	-0.324939	1.943057	0.000000	(С	-0.175606	2.283723	2.114855
Н	-0.022280	2.536140	0.886080]	H	-1.025065	2.239021	1.413142
Н	-0.022280	2.536140	-0.886080]	H	-0.066524	1.274559	2.552176
Н	-1.427093	1.868317	0.000000]	H	-0.444280	2.968256	2.944407
С	0.324939	-1.943057	0.000000	(21	-0.089533	-0.248952	-1.795744
Н	1.427093	-1.868317	0.000000]	Rh	-1.882576	-0.372690	-0.110307
Н	0.022280	-2.536140	0.886080	(С	0.187987	3.384555	-0.839630
Н	0.022280	-2.536140	-0.886080]	H	0.339136	2.716578	-1.709593
]	H	-0.822294	3.187171	-0.447326
Ethe	ne (D2h)]	H	0.209552	4.423098	-1.223687
С	0.000000	0.000000	0.669749	(С	-3.355428	-1.264976	1.113012
С	0.000000	0.000000	-0.669749	(2	-3.069359	0.032579	1.593505

Н	0.00000	0.934602	-1.247441	Н	-2.891642	-2.145618	1.577802
Н	0.00000	-0.934602	-1.247441	Н	-4.294667	-1.467989	0.582664
Н	0.00000	-0.934602	1.247441	Н	-3.786409	0.850648	1.443490
Н	0.00000	0.934602	1.247441	Н	-2.383954	0.170807	2.439845
				С	-2.995410	1.063574	-1.191329
1a	(C2v)			С	-3.314710	-0.231554	-1.658061
Rh	0.000000	1.528794	-0.090266	Н	-3.709091	1.623976	-0.572616
Rh	0.000000	-1.528794	-0.090266	Н	-2.270134	1.683203	-1.734844
Cl	-1.645335	0.000000	-1.092830	Н	-2.843549	-0.627652	-2.567838
Cl	1.645335	0.000000	-1.092830	Н	-4.278142	-0.691436	-1.401708
С	1.488552	3.018396	0.112946				
С	1.480134	2.200571	1.265479	1c c	is		
С	-1.480134	2.200571	1.265479	Rh	1.694708	-0.266648	-0.145011
С	-1.488552	3.018396	0.112946	С	2.375984	-0.281733	-2.224011
Н	-2.225927	2.850102	-0.683518	С	2.628652	-1.917888	0.830116
Н	-1.072158	4.033447	0.150826	С	1.564641	-1.410796	-1.995988
Н	-1.065137	2.575656	2.209920	Cl	-0.448305	-1.606121	0.819349
Н	-2.209470	1.386876	1.372250	Н	1.947782	0.619607	-2.679345
Н	1.065137	2.575656	2.209920	С	3.640971	-1.113316	0.283017
Н	2.209470	1.386876	1.372250	Н	3.464669	-0.372059	-2.315223
Н	2.225927	2.850102	-0.683518	С	2.599197	1.607187	0.780248
Н	1.072158	4.033447	0.150826	Н	2.020054	-2.404689	-1.891749
Н	-1.065137	-2.575656	2.209920	Н	2.381755	-1.867203	1.897087
Н	1.065137	-2.575656	2.209920	Н	0.509128	-1.404398	-2.290253
Н	-1.072158	-4.033447	0.150826	Н	3.674936	1.394863	0.786610
Н	1.072158	-4.033447	0.150826	Н	2.298838	-2.834184	0.326884
С	1.488552	-3.018396	0.112946	С	1.809562	0.957318	1.748944
С	1.480134	-2.200571	1.265479	Н	4.149523	-1.418946	-0.638664
С	-1.480134	-2.200571	1.265479	Н	4.233798	-0.461298	0.934794
С	-1.488552	-3.018396	0.112946	Н	2.349290	0.292321	2.439908
Н	2.225927	-2.850102	-0.683518	С	0.506978	1.480093	2.301815
Н	-2.225927	-2.850102	-0.683518	Н	0.704800	2.140448	3.170822
Н	2.209470	-1.386876	1.372250	Н	-0.065539	2.055778	1.559166
Н	-2.209470	-1.386876	1.372250	Н	-0.133984	0.651980	2.646735
				Cl	-0.172188	1.112607	-1.067653

TSbo	c cis			Rh	-2.088322	-0.057035	-0.066653
Rh	1.656680	-0.423421	-0.156445	С	2.266858	2.908075	0.099141
С	2.651331	-0.382785	-1.997873	Н	2.647780	2.927199	-0.937696
С	2.537612	-2.124774	0.775998	Н	1.189103	3.120179	0.069803
С	1.751635	-1.497291	-1.955694	Н	2.769042	3.734032	0.644050
Cl	-0.425592	-1.220558	1.300256	С	-3.594993	-1.504999	0.245715
Н	2.362369	0.531967	-2.534722	С	-3.461415	-0.702978	1.402361
С	3.495536	-1.096269	0.709722	н	-3.111161	-2.489606	0.195421
Н	3.735826	-0.554831	-1.960990	Н	-4.459958	-1.379863	-0.418943
С	2.555659	1.861657	0.760744	Н	-4.220926	0.051639	1.645714
Н	2.154490	-2.516186	-1.876478	Н	-2.870856	-1.058990	2.257208
Н	1.977222	-2.299445	1.702032	С	-3.238450	1.708821	-0.303788
Н	0.774937	-1.435375	-2.452956	С	-3.359380	0.910137	-1.462210
Н	3.584472	1.484084	0.799364	Н	-4.071942	1.783766	0.406876
Н	2.580803	-2.984622	0.097213	Н	-2.536413	2.553571	-0.280847
С	1.689970	1.459523	1.745759	Н	-2.753210	1.124077	-2.353192
Н	4.309744	-1.136945	-0.024532	Н	-4.287159	0.357738	-1.661290
Н	3.718579	-0.503306	1.605472				
Н	2.070809	0.755450	2.499531	1d <i>c</i> .	is		
С	0.345222	2.059558	2.041089	Rh	1.122988	-0.109845	-0.531076
Н	0.448381	2.849269	2.812888	С	3.231465	2.530222	1.207818
Н	-0.117328	2.509953	1.149024	С	1.157896	-0.155210	-2.642155
Н	-0.347370	1.297160	2.432159	С	2.217953	2.805881	2.039781
Cl	-0.143046	0.900118	-1.253700	Cl	-0.378362	1.852433	-0.701803
Rh	-2.072413	-0.069182	-0.067520	Н	3.073213	1.903054	0.319155
С	2.329452	2.972620	-0.225716	С	2.242824	0.620474	-2.170347
Н	2.766253	2.726251	-1.209443	Н	4.248771	2.910288	1.376917
Н	1.263696	3.201031	-0.374113	С	2.815898	-1.284670	0.058326
Н	2.835454	3.892876	0.130713	Н	2.358757	3.429598	2.933653
С	-3.507317	-1.507620	0.507414	Н	1.324117	-1.156171	-3.060067
С	-3.525493	-0.431123	1.423588	Н	1.210761	2.412239	1.854548
Н	-2.954463	-2.426763	0.743266	Н	3.659597	-0.945522	-0.560312
Н	-4.317652	-1.630092	-0.222858	Н	0.239154	0.338326	-2.983800
Н	-4.350578	0.293979	1.408330	С	1.864241	-2.116699	-0.591602
Н	-2.995915	-0.510383	2.382526	Н	2.178667	1.716814	-2.159333

С	-3.268383	1.519801	-0.792149	Н	3.264614	0.219403	-2.211423	
С	-3.307901	0.447168	-1.710724	Н	2.084731	-2.355673	-1.642214	
Н	-4.134480	1.736340	-0.152283	С	0.986517	-3.147656	0.071646	
Н	-2.598576	2.373990	-0.962829	Н	1.489096	-4.136321	0.045086	
Н	-2.669815	0.456365	-2.604935	Н	0.755992	-2.901372	1.118216	
Н	-4.205991	-0.178939	-1.792335	Н	0.031206	-3.250700	-0.473083	
				Cl	0.004485	-0.312417	1.685362	
TSco	l cis			Rh	-1.889121	0.155542	0.219537	
Rh	-1.481590	-0.263456	-0.173044	С	3.136567	-1.290550	1.532199	
С	-2.629917	-0.780373	2.184691	Н	3.359499	-0.273061	1.897400	
С	-2.094200	-1.364826	-1.896893	Н	2.324426	-1.703271	2.147874	
С	-1.659234	-1.723833	2.194489	Н	4.044634	-1.906624	1.694786	
Cl	0.546541	-1.950335	-0.186814	С	-3.545502	1.109403	-0.694788	
Н	-2.442700	0.222189	2.583765	С	-3.003159	0.148010	-1.576576	
С	-2.979493	-1.609832	-0.828119	Н	-3.292503	2.172322	-0.806436	
Н	-3.659136	-1.008079	1.882179	Н	-4.491989	0.911937	-0.174664	
С	-2.793286	1.349561	-0.524161	Н	-3.525346	-0.800736	-1.755984	
Н	-1.845050	-2.751723	1.861558	Н	-2.319190	0.457933	-2.377642	
Н	-2.418393	-0.735774	-2.734612	С	-2.720691	-1.737240	0.692185	
Н	-0.650481	-1.500358	2.554509	С	-3.206145	-0.765006	1.594931	
Н	-3.734672	0.951133	-0.936451	Н	-3.371898	-2.134846	-0.097352	
Н	-1.283867	-2.066224	-2.127566	Н	-1.890333	-2.393515	0.980898	
С	-1.702238	1.428003	-1.459395	Н	-2.755310	-0.658497	2.590973	
Н	-2.872708	-2.519255	-0.224438	Н	-4.235964	-0.393983	1.513060	
Н	-3.985444	-1.169416	-0.823942					
Н	-1.918171	1.076878	-2.476705	TSc	d <i>cis</i> inverte	d bent struc	ture	
С	-0.634474	2.493653	-1.464411	Rh	-1.560291	-0.369549	0.001796	
Н	-0.956843	3.312174	-2.140941	С	-1.173823	-0.340336	2.581233	
Н	-0.438245	2.921276	-0.471459	С	-2.557134	-2.044860	-0.867492	
Н	0.317475	2.095913	-1.858347	С	-0.177679	-1.192983	2.231871	
Cl	0.107022	1.000520	1.305145	Cl	0.593827	-1.539885	-1.038588	
Rh	2.009430	-0.030230	0.111024	Н	-0.981888	0.735344	2.664461	
С	-3.024548	2.347538	0.587374	С	-2.819379	-2.008245	0.516111	
Н	-3.714539	1.942522	1.348043	Н	-2.157078	-0.694985	2.912341	
Н	-2.093810	2.646279	1.094245	С	-3.250911	0.885260	0.134399	

Н	-3.496091	3.264598	0.177156	Н		-0.313536	-2.280808	2.216641	
С	3.661516	-1.272317	-0.342091	Н		-3.336868	-1.763148	-1.584817	
С	3.164510	-0.686714	-1.528619	Н		0.827609	-0.825678	1.989110	
Н	3.384773	-2.300145	-0.072286	Н		-4.130803	0.279567	0.402583	
Н	4.602388	-0.916835	0.099015	Н		-1.778389	-2.703039	-1.270574	
Н	3.715234	0.124084	-2.023280	С		-2.842472	0.790759	-1.244332	
Н	2.488193	-1.255455	-2.180888	Н		-2.261205	-2.664628	1.194321	
С	2.914488	1.881765	-0.073345	Н		-3.801700	-1.695252	0.892683	
С	3.319328	1.276615	1.136214	Н		-3.443788	0.114981	-1.867246	
Н	3.612715	1.951566	-0.918316	С		-2.255951	1.916160	-2.061348	
Н	2.110149	2.628430	-0.074422	Н		-1.722116	2.664159	-1.459238	
Н	2.827755	1.542812	2.082094	Н		-1.553639	1.532098	-2.822130	
Н	4.333371	0.870736	1.245902	Н		-3.079685	2.427296	-2.601612	
				Cl	L	0.094432	1.512499	0.079022	
1e <i>c</i>	is			Rł	1	2.108574	0.131289	-0.137783	
Rh	-1.334989	-0.444410	-0.087989	С		-3.144142	2.138574	0.971257	
С	-2.502919	-2.187487	0.151412	Н		-3.204402	1.900683	2.047763	
Cl	0.511954	-1.834591	-0.982667	Н		-2.210736	2.695551	0.796935	
С	-1.699762	-1.999238	1.300091	Н		-3.991548	2.816557	0.739621	
С	-2.387289	0.852487	1.244548	С		3.509741	-1.387419	0.315289	
Н	-3.582672	-1.991635	0.194439	С		3.739250	-0.911690	-0.995085	
Н	-2.745865	0.245438	2.088378	Н		2.937081	-2.310948	0.475338	
Н	-2.195346	-2.892525	-0.632841	Н		4.192260	-1.115872	1.131400	
С	-3.126573	0.722329	0.036500	Н		4.599889	-0.263197	-1.207310	
Н	-0.757425	-2.550868	1.408998	Н		3.348648	-1.461759	-1.861649	
Н	-2.147632	-1.661090	2.243344	С		3.306105	1.876135	-0.037147	
Н	-3.968531	0.016059	0.068369	С		3.084333	1.384704	1.267982	
С	-3.298097	1.788609	-1.017106	Н		4.285762	1.753962	-0.517981	
Н	-4.260002	2.313880	-0.845230	Н		2.701148	2.704462	-0.430993	
Н	-2.490589	2.534891	-1.011839	Н		2.303081	1.826356	1.901353	
Н	-3.345459	1.346036	-2.027983	Н		3.891115	0.879246	1.814580	
Cl	-0.044180	1.351123	-1.236004						
Rh	1.741608	0.104613	-0.126692	TS	Scd	<i>trans</i> conf.	II		
С	-1.617243	2.069757	1.689869	Rł	1	-1.487761	-0.205616	-0.057748	
Н	-0.747803	1.774002	2.303589	С		-2.478126	-0.991844	2.168389	

Н	-1.248212	2.672610	0.847805	С	-2.262627	-1.004442	-1.889287
Н	-2.267032	2.707377	2.323898	С	-1.506834	-1.924605	1.970954
С	2.605999	-1.088666	1.388729	Cl	0.550107	-1.817120	-0.588666
С	3.434040	-1.115135	0.243995	Н	-2.268755	-0.065605	2.715708
Н	1.903457	-1.910171	1.582470	С	-3.054626	-1.440379	-0.811121
Н	2.900225	-0.514333	2.276702	Н	-3.527980	-1.190871	1.923818
Н	4.377365	-0.552974	0.230866	С	-2.628876	1.569445	0.028206
Н	3.390253	-1.960604	-0.455571	Н	-1.725088	-2.897544	1.515962
С	3.007270	1.793926	-0.201516	Н	-2.649455	-0.246439	-2.579258
С	2.261615	1.825717	0.998294	Н	-0.479393	-1.759025	2.307946
Н	4.071814	1.527157	-0.189461	Н	-2.317372	2.071263	0.959178
Н	2.690783	2.390841	-1.067647	Н	-1.471747	-1.644928	-2.296591
Н	1.365945	2.454129	1.075732	С	-1.716403	1.665708	-1.078735
Н	2.744479	1.587858	1.955113	Н	-2.898013	-2.440665	-0.389334
				Н	-4.050856	-1.018152	-0.640251
TScd	trans			Н	-2.169809	1.525348	-2.070262
Rh	1.434489	-0.200000	0.086430	С	-0.521620	2.588294	-1.135925
С	2.912890	-0.950852	-1.756755	Н	-0.176618	2.885216	-0.135266
С	1.909441	-0.806465	2.078540	Н	0.329058	2.121514	-1.665210
С	2.066716	-2.010925	-1.577271	Н	-0.801082	3.502654	-1.698562
Cl	-0.551677	-2.037305	0.366060	Cl	0.225076	0.826074	1.458499
Н	2.676547	-0.162819	-2.480383	Rh	2.077321	-0.035896	0.059684
С	3.031815	-1.003558	1.253847	С	-4.127662	1.544588	-0.159220
Н	3.922786	-0.935460	-1.331202	Н	-4.521661	2.581139	-0.155414
С	2.280428	1.718905	0.360215	Н	-4.424908	1.090942	-1.120687
Н	2.345032	-2.877213	-0.965923	Н	-4.639120	1.003032	0.657239
Н	1.892759	0.022157	2.789470	С	3.682007	-1.213739	-0.658601
Н	1.119997	-2.080146	-2.120781	С	3.191255	-0.392127	-1.698685
Н	3.084624	1.686962	1.116343	Н	3.375371	-2.265984	-0.590503
Н	1.233751	-1.637595	2.310177	Н	4.638575	-0.978264	-0.173220
С	0.944761	1.739540	0.885798	Н	3.761882	0.484126	-2.033811
Н	3.259414	-2.005411	0.871688	H	2.489769	-0.800579	-2.438704
Н	3.891434	-0.322720	1.306343	С	3.045499	1.843865	0.238422
Н	0.176722	2.093013	0.187698	С	3.443910	0.999101	1.297510
С	0.571180	2.028557	2.319294	Н	3.737466	2.059958	-0.586256

Н	1.395228	1.865219	3.033947	Н	[2.267207	2.601354	0.397211
Н	0.282915	3.095777	2.403235	Н	[2.974758	1.087810	2.287140
Н	-0.302611	1.433490	2.639748	Н	[4.444044	0.546338	1.303397
Cl	-0.098849	0.473094	-1.792507					
Rh	-1.909514	-0.108447	-0.188463	1	e t	<i>rans</i> conf. I	I	
С	2.684208	2.437433	-0.905883	R	th	1.301415	-0.315414	-0.099874
Н	3.590706	1.992812	-1.354541	C	:	1.756235	-1.671803	1.460064
Н	1.877526	2.421941	-1.656369	C	:1	-0.460905	-1.891519	-0.817745
Н	2.920859	3.497652	-0.677872	C	;	2.566369	-1.956767	0.337015
С	-3.546471	-1.018670	0.795753	C	;	2.908634	1.099085	-0.284721
С	-2.805145	-0.240426	1.714927	Н	[2.181649	-1.195513	2.352673
Н	-3.401761	-2.105777	0.745687	Н	[2.506709	1.830045	-1.002216
Н	-4.520183	-0.663310	0.432677	H	[0.844201	-2.255811	1.638596
Н	-3.195603	0.720313	2.076178	C	:	2.380296	1.138461	1.030659
Н	-2.069472	-0.721153	2.373672	Н	[2.293541	-2.768788	-0.350487
С	-2.675854	1.864303	-0.363794	Н	[3.630853	-1.700306	0.344539
С	-3.278328	1.028658	-1.329339	H	[2.993714	0.646417	1.802599
Н	-3.242941	2.190043	0.518507	C	;	1.482190	2.224149	1.572272
Н	-1.850900	2.528648	-0.653442	Н	[2.087444	2.960890	2.139391
Н	-2.908700	1.022656	-2.364093	Н	[0.953238	2.754931	0.765500
Н	-4.316914	0.693621	-1.211685	H	[0.729948	1.811323	2.268522
				C	:1	-0.083798	1.296463	-1.378297
1e :	trans			R	lh	-1.793166	0.048278	-0.135796
Rh	-1.253802	0.370451	-0.164641	C	:	4.291966	0.614593	-0.636396
С	-1.646893	1.765122	1.382811	Н	[4.948948	1.492159	-0.801838
Cl	0.551740	1.853967	-0.991083	Н	[4.749086	0.010703	0.165113
С	-2.407044	2.096462	0.237785	Н	[4.298503	0.026088	-1.571472
С	-3.050186	-0.746800	0.078971	C	:	-3.427074	-1.217729	0.317849
Н	-2.133065	1.325325	2.259885	C	:	-2.608393	-1.071407	1.460611
Н	-3.819024	-0.136275	0.580060	Н	[-3.339552	-2.107526	-0.320045
Н	-0.707669	2.293287	1.592728	Н	[-4.395145	-0.702863	0.262316
С	-2.055502	-1.301898	0.923383	Н	[-2.936713	-0.450692	2.304420
Н	-2.051502	2.872341	-0.453266	Н	[-1.870680	-1.843664	1.715765
Н	-3.489552	1.917626	0.212598	C	;	-2.369522	1.821227	0.873284
Н	-1.484016	-2.146742	0.512508	C	;	-3.134283	1.674141	-0.305430

С	-2.078291	-1.271753	2.429251	Н	-2.823389	1.634176	1.855230
Н	-1.071372	-1.094746	2.848948	Н	-1.496906	2.485511	0.887479
Н	-2.768269	-0.513445	2.834752	Н	-2.858859	2.220782	-1.217465
Н	-2.416868	-2.258695	2.804274	Н	-4.186378	1.365510	-0.251976
Cl	0.037815	-1.325272	-1.441645				
Rh	1.728013	-0.121606	-0.131837	TScd	inv. bent c	onf. II	
С	-3.501490	-1.353575	-1.228041	Rh	1.516460	-0.264088	-0.064958
Н	-3.775346	-0.572993	-1.960945	С	0.089449	-1.393929	2.124478
Н	-2.721133	-1.988963	-1.676573	С	2.852289	-1.881955	0.286149
Н	-4.404629	-1.976742	-1.061933	С	1.076038	-0.576917	2.559227
С	3.429259	1.046624	0.330067	Cl	-0.585179	-1.362206	-1.213443
С	2.540676	1.053764	1.429167	Н	-0.911945	-1.008504	1.890787
Н	3.443022	1.886399	-0.377926	С	2.545175	-1.822733	-1.088647
Н	4.355621	0.458585	0.367925	Н	0.237737	-2.472588	1.992000
Н	2.771871	0.474448	2.332729	С	2.989177	1.197224	0.358384
Н	1.860522	1.901359	1.583980	Н	2.058357	-0.962030	2.856678
С	2.007886	-1.834388	1.075178	Н	3.832059	-1.563865	0.656295
С	2.917514	-1.868587	-0.006230	Н	0.889832	0.488775	2.734146
Н	2.356265	-1.596726	2.088695	Н	2.413799	2.016798	0.817970
Н	1.075024	-2.411169	1.032395	Н	2.336714	-2.608595	0.926802
Н	2.701449	-2.476382	-0.895243	С	2.848039	1.038942	-1.062560
Н	3.981139	-1.652158	0.158240	Н	1.777386	-2.480970	-1.511888
				Н	3.281428	-1.452643	-1.811920
TSec	d <i>trans</i> inv.	bent		Н	3.668110	0.479946	-1.542327
Rh	1.515644	-0.260142	0.106637	С	2.210277	2.034302	-2.001798
С	-0.027701	-0.465212	2.520578	Н	1.440761	2.644541	-1.506872
С	2.744800	-1.667680	1.105194	Н	2.993223	2.710963	-2.403290
С	0.953802	0.456285	2.639785	Н	1.742728	1.525835	-2.864256
Cl	-0.563588	-1.756274	-0.528791	Cl	-0.185173	1.569448	0.247709
Н	-1.015667	-0.198679	2.122556	Rh	-2.148877	0.139136	-0.104257
С	2.617740	-2.045640	-0.247081	С	4.273611	0.901321	1.094538
Н	0.109147	-1.511696	2.818284	Н	4.088951	0.530639	2.118926
С	2.735605	0.744548	-1.316758	Н	4.909082	0.170286	0.565639
Н	1.925424	0.218235	3.088572	Н	4.865774	1.833786	1.190268
Н	3.680665	-1.232199	1.480288	С	-3.754702	-0.832715	-1.079615

Н	0.771238	1.504437	2.380052	С	-3.487486	-1.481048	0.146893
Н	2.029818	1.458530	-1.766896	Н	-3.359417	-1.237686	-2.020863
Н	2.126256	-2.156898	1.868293	Н	-4.641782	-0.194199	-1.186090
С	3.171329	1.042420	0.019899	Н	-4.167798	-1.355961	1.000108
Н	1.892980	-2.813034	-0.544839	Н	-2.878987	-2.395148	0.168471
Н	3.454353	-1.909225	-0.936021	С	-3.151585	1.158165	1.459877
Н	4.098009	0.529002	0.330466	С	-3.404909	1.811081	0.233485
С	3.005568	2.399228	0.667268	Н	-3.935448	0.557181	1.939917
Н	2.051988	2.876933	0.389263	Н	-2.379655	1.539368	2.142379
Н	3.056445	2.334192	1.768486	Н	-2.833198	2.705078	-0.050834
Н	3.828296	3.070388	0.344224	Н	-4.385211	1.718300	-0.252349
Cl	-0.168960	1.522446	-0.429742				
Rh	-2.143210	0.074500	-0.239601	Rh ₂ C	$l_2 E t_2$ -Octadie	ene <i>cis</i>	
С	3.590658	0.063680	-2.356817	Rh	1.009986	-0.175746	-0.320607
Н	4.046158	0.843493	-3.000270	Cl	-0.552371	-2.104786	-0.050667
Н	4.421941	-0.518899	-1.924637	С	1.200452	1.911641	0.049548
Н	2.998828	-0.593999	-3.018424	Н	0.397112	2.303739	-0.587880
С	-3.719229	-1.222344	-0.791462	С	2.341723	1.469389	-0.676961
С	-3.530338	-1.279797	0.607557	Н	2.337825	1.674984	-1.757584
Н	-3.285762	-1.993521	-1.442299	С	2.458278	-1.584956	0.447718
Н	-4.583366	-0.692167	-1.213414	Н	1.826865	-2.418762	0.780305
Н	-4.249415	-0.798944	1.283999	С	2.491187	-0.462119	1.293844
Н	-2.948274	-2.097700	1.053316	Н	1.925763	-0.526483	2.233785
С	-3.184890	1.664194	0.699437	С	3.716835	1.314218	-0.054544
С	-3.383413	1.731397	-0.697134	Н	4.375063	0.801701	-0.777098
Н	-3.993990	1.324676	1.359523	Н	4.175351	2.313363	0.100899
Н	-2.430226	2.299617	1.183026	С	3.652038	0.528637	1.268124
Н	-2.787326	2.419303	-1.312269	Н	4.599979	-0.020513	1.435140
Н	-4.347335	1.440662	-1.135670	Н	3.560680	1.219479	2.121797
				Cl	-0.660572	0.463618	-2.005733
tra	<i>ns</i> -octadiene			Rh	-1.988353	-0.121333	-0.014579
С	-2.051404	-0.439139	-0.407115	С	3.495154	-1.993532	-0.564995
Н	-1.931751	-0.403740	-1.502751	Н	3.020150	-2.498087	-1.425104
С	-1.520984	0.557800	0.322796	Н	4.100812	-1.159249	-0.945968
Н	-1.623126	0.520829	1.420589	Н	4.183811	-2.730940	-0.101376

С	2.051408	-0.439136	0.407115	С	1.065285	2.415079	1.462142
Н	1.931761	-0.403733	1.502752	Н	0.069162	2.143398	1.854990
С	1.520981	0.557799	-0.322797	Н	1.824220	2.044933	2.162757
Н	1.623117	0.520824	-1.420590	Н	1.122203	3.523572	1.458206
С	-0.742987	1.721557	-0.224593	С	-3.333747	-1.066779	1.314195
Н	-0.792467	1.720478	-1.330813	С	-2.317850	-0.411635	2.049827
Н	-1.204278	2.672564	0.111671	Н	-3.276419	-2.148129	1.130158
С	0.742985	1.721557	0.224592	Н	-4.346775	-0.644877	1.278210
Н	1.204276	2.672564	-0.111672	Н	-2.533470	0.519888	2.590037
Н	0.792465	1.720478	1.330812	Н	-1.456484	-0.977022	2.429775
С	2.799237	-1.620137	-0.140736	С	-2.636314	1.880526	0.202348
Н	2.298960	-2.571359	0.130208	С	-3.543345	1.173677	-0.620615
Н	2.879929	-1.579193	-1.241662	Н	-2.912691	2.136849	1.233891
Н	3.824326	-1.680064	0.276289	Н	-1.877313	2.535397	-0.245521
С	-2.799236	-1.620139	0.140736	Н	-3.480572	1.257399	-1.714032
Н	-3.824327	-1.680060	-0.276283	Н	-4.526900	0.872877	-0.237007
Н	-2.298965	-2.571363	-0.130213				
Н	-2.879922	-1.579198	1.241663	Rh ₂ Cl	₂ Et ₂ -Octadie	ne <i>trans</i>	
Н	-2.879922	-1.579198	1.241663	Rh₂Cl Rh	2 Et₂-Octadie 1.125949	ne <i>trans</i> 0.013454	-0.367171
H cis	-2.879922	-1.579198	1.241663	Rh₂Cl Rh Cl	-2 Et₂-Octadie 1.125949 -0.515440	ne <i>trans</i> 0.013454 -1.459936	-0.367171 -1.483428
н сіз С	-2.879922 -octadiene -2.110865	-1.579198 0.757603	1.241663 -0.492096	Rh₂Cl Rh Cl C	.₂Et₂-Octadie 1.125949 -0.515440 2.707755	ne trans 0.013454 -1.459936 1.421761	-0.367171 -1.483428 -0.024103
Н сіз С Н	-2.879922 -octadiene -2.110865 -2.222931	-1.579198 0.757603 1.707043	1.241663 -0.492096 -1.039158	Rh₂Cl Rh Cl C H	<pre>_2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476</pre>	ne trans 0.013454 -1.459936 1.421761 0.885126	-0.367171 -1.483428 -0.024103 -0.053387
н сіз - С Н С	-2.879922 -octadiene -2.110865 -2.222931 -1.020995	-1.579198 0.757603 1.707043 0.013540	1.241663 -0.492096 -1.039158 -0.768977	Rh₂Cl Rh Cl C H C	<pre>_2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062</pre>	<pre>ne trans 0.013454 -1.459936 1.421761 0.885126 1.263036</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015
н сія С Н С Н	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626	-1.579198 0.757603 1.707043 0.013540 0.410028	1.241663 -0.492096 -1.039158 -0.768977 -1.507345	Rh₂Cl Rh Cl C H C H	-2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626	ne trans 0.013454 -1.459936 1.421761 0.885126 1.263036 2.018246	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311
н с <i>із</i> - с н с н с	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873	Rh₂Cl Rh Сl С Н С Н С	<pre>-2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065</pre>	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627
н с <i>із</i> - с н с н с	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351	Rh₂Cl Rh Сl С Н С Н С Н	<pre>-2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711</pre>	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712
н с ія с н с н с н с	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688 1.894255	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944 -0.874285	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351 -0.175325	Rh ₂ Cl Rh Cl C H C H C H C	<pre>_2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711 1.506989</pre>	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712 1.037852
н с ія - с н с н с н с н	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688 1.894255 2.275955	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944 -0.874285 -1.704121	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351 -0.175325 -0.790705	Rh ₂ Cl Rh Cl C H C H C H C H	<pre>.2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711 1.506989 0.719480</pre>	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712 1.037852 0.938786
н с із - с н с н с н с н с	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688 1.894255 2.275955 -0.624636	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944 -0.874285 -1.704121 -1.299192	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351 -0.175325 -0.790705 -0.150541	Rh ₂ Cl Rh Cl C H C H C H C H C	<pre>.2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711 1.506989 0.719480 2.413108</pre>	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712 1.037852 0.938786 2.339472
н с <i>із</i> - с н с н с н с н с	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688 1.894255 2.275955 -0.624636 -1.424749	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944 -0.874285 -1.704121 -1.299192 -1.690678	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351 -0.175325 -0.790705 -0.150541 0.502381	Rh ₂ Cl Rh Cl C H C H C H C H	<pre>.2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711 1.506989 0.719480 2.413108 3.490425</pre>	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712 1.037852 0.938786 2.339472 2.229127
н сія- с н с н с н с н с н с н	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688 1.894255 2.275955 -0.624636 -1.424749 -0.481341	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944 -0.874285 -1.704121 -1.299192 -1.690678 -2.051522	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351 -0.175325 -0.790705 -0.150541 0.502381 -0.953778	Rh ₂ Cl Rh Cl C H C H C H C H C H	-2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711 1.506989 0.719480 2.413108 3.490425 2.306347	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712 1.037852 0.938786 2.339472 2.229127 3.278045
н сія- с н с н с н с н с н с	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688 1.894255 2.275955 -0.624636 -1.424749 -0.481341 0.691959	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944 -0.874285 -1.704121 -1.299192 -1.690678 -2.051522 -1.204445	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351 -0.175325 -0.790705 -0.150541 0.502381 -0.953778 0.669949	Rh ₂ Cl Rh Cl C H C H C H C H C H C	-2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711 1.506989 0.719480 2.413108 3.490425 2.306347 1.614945	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712 1.037852 0.938786 2.339472 2.229127 3.278045 2.412163
н сія- с н с н с н с н с н с н с н	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688 1.894255 2.275955 -0.624636 -1.424749 -0.481341 0.691959 0.554001	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944 -0.874285 -1.704121 -1.299192 -1.690678 -2.051522 -1.204445 -0.459136	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351 -0.175325 -0.790705 -0.150541 0.502381 -0.953778 0.669949 1.473750	Rh ₂ Cl Rh Cl C H C H C H C H C H H	-2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711 1.506989 0.719480 2.413108 3.490425 2.306347 1.614945 2.063540	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712 1.037852 0.938786 2.339472 2.229127 3.278045 2.412163 3.135173
н с <i>із</i> - с н с н с н с н с н с н н	-2.879922 -octadiene -2.110865 -2.222931 -1.020995 -0.308626 2.513064 3.374688 1.894255 2.275955 -0.624636 -1.424749 -0.481341 0.691959 0.554001 0.858966	-1.579198 0.757603 1.707043 0.013540 0.410028 0.318190 0.377944 -0.874285 -1.704121 -1.299192 -1.690678 -2.051522 -1.204445 -0.459136 -2.180035	1.241663 -0.492096 -1.039158 -0.768977 -1.507345 -0.287873 -0.971351 -0.175325 -0.790705 -0.150541 0.502381 -0.953778 0.669949 1.473750 1.167674	Rh ₂ Cl Rh Cl C H C H C H C H C H H	-2Et2-Octadie 1.125949 -0.515440 2.707755 3.668476 1.935062 1.165626 2.540065 3.502711 1.506989 0.719480 2.413108 3.490425 2.306347 1.614945 2.063540 0.589616	<pre>ne trans</pre>	-0.367171 -1.483428 -0.024103 -0.053387 1.155015 1.373311 0.059627 0.325712 1.037852 0.938786 2.339472 2.229127 3.278045 2.412163 3.135173 2.770930

Н	3.009999	1.976050	1.012725	Rł	-1.873327	0.041288	-0.083991
Н	1.923815	2.393070	-0.324465	С	2.662725	-2.613738	-0.986326
Н	1.284362	1.497640	1.075819	Н	3.375474	-3.391022	-0.642037
С	-3.214169	0.450994	0.481360	Н	1.694422	-3.097051	-1.191586
Н	-4.193892	0.396264	-0.033656	Н	3.054604	-2.211645	-1.938036
Н	-3.063682	-0.499524	1.019850	С	2.671355	2.631926	-0.925680
Н	-3.308672	1.256091	1.236763	Н	1.758186	3.229600	-0.784304
				Н	3.549753	3.271626	-0.703785
Rh ₂ C	l_2Et_2 -Octadie	ne <i>cis</i> Conf.	II	Н	2.738224	2.349921	-1.991910
Rh	0.992496	0.062863	-0.419255	С	-3.370217	-1.435650	0.126065
Cl	-0.657084	-1.382177	-1.551975	С	-2.402768	-1.598779	1.144008
Cl	-0.655942	1.839396	-1.004764	Н	-3.336184	-2.059042	-0.777772
Rh	-2.008428	0.027431	-0.048716	Н	-4.357113	-1.016283	0.360086
С	-3.502145	-1.462574	0.056618	Н	-2.631715	-1.311030	2.178449
С	-2.544114	-1.686579	1.072319	Н	-1.616354	-2.357113	1.039012
Н	-3.456265	-2.029176	-0.883378	C	-2.281949	1.333462	1.535034
Н	-4.492800	-1.060506	0.304616	С	-3.271169	1.503050	0.538231
Н	-2.784066	-1.461134	2.120121	Н	-2.516512	0.800844	2.466311
Н	-1.757915	-2.439402	0.929038	Н	-1.441260	2.036371	1.605170
С	-2.386806	1.216858	1.651655	Н	-3.208308	2.340477	-0.169660
С	-3.408803	1.426579	0.696378	Н	-4.281060	1.098366	0.686609
Н	-2.580893	0.626756	2.556958				
Н	-1.558477	1.932805	1.735523				
Н	-3.381362	2.305659	0.038605				
Н	-4.406911	0.996535	0.852041				
С	2.381875	1.692692	-0.102732				
Н	1.808473	2.524603	-0.533886				
С	1.894627	1.203098	1.135121				
Н	1.031094	1.722071	1.577203				
С	2.309887	-1.649520	-0.341678				
Н	1.858308	-2.293847	-1.110326				
С	1.538719	-1.525300	0.848185				
Н	0.626915	-2.137001	0.898986				
С	2.690408	0.343073	2.098857				
Н	3.735450	0.254630	1.761080				

Н	2.727188	0.823957	3.094457
С	2.032640	-1.044500	2.201858
Н	2.719911	-1.784648	2.662381
Н	1.152990	-0.975845	2.867660
С	3.812779	-1.621211	-0.449150
Н	4.148682	-1.188506	-1.407281
Н	4.310132	-1.084801	0.371040
Н	4.183041	-2.666507	-0.425986
С	3.791413	1.634137	-0.626410
Н	4.448983	0.955158	-0.067562
Н	3.808845	1.333737	-1.689309
Н	4.234182	2.648983	-0.574872

References

- 1. C. W Bielawski and R. H. Grubbs, Macromolecules, 2001, 34, 8838.
- 2. M. A. Golub. J. Polym. Sci., 1957, 25, 373-377.
- 3. S. Mavila, I. Rozenberg and N. G. Lemcoff, Chem. Sci., 2014, 5, 4196-4203.
- 4. LDC Milton Roy technical note
- 5. S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- 6. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
- 7. Y. Zhao and D. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.

8. A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.