Electronic Supplementary Information (ESI)

Negative Ion Photoelectron Spectroscopy of $P_2N_3^-$: Electron Affinity and Electronic Structures of $P_2N_3^-$:

Gao-Lei Hou,[†] Bo Chen,^{*¶} Wesley Transue,[§] David A. Hrovat,[‡] Christopher C. Cummins,^{*§} Weston Thatcher Borden,^{*‡} and Xue-Bin Wang,^{*†}

[†]Physical Sciences Division, Pacific Northwest National Laboratory, P. O. Box 999, MS K8-88, Richland, WA 99352, USA

[¶]Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA

[‡]Department of Chemistry and the Center for Advanced Scientific Computing and Modeling, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017

[§]Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Table of contents

Figure S1. The 20 K NIPE spectra of $P_2N_3^-$ at 266, 193, and 157 nm	
Figure S2 . Comparison of B3LYP and CCSD(T) simulations of vibrational progressions	S3
Figures S3, S4 . The simulation of the NIPE spectra by adjusting the calculated 0-0 band po each electronic state relative to the experiments	sitions for S4
Figures S5, S6 . The simulation of the 266 nm NIPE spectrum using fwhm = 20 and 30 meV functions, respectively	' Gaussian S6
Table S1. Coordinates and energies of calculated structures.	S8
Table S2. Calculated Franck-Condon Factors (FCFs).	S9

Figure S1. The 20 K NIPE spectra of $P_2N_3^-$ at 266, 193, and 157 nm, respectively.

Figure S2. Comparison of B3LYP and CCSD(T) simulations of vibrational progressions (stick spectra) for the ${}^{2}A_{1}$, ${}^{2}B_{1}$, and ${}^{2}B_{2}$ states of $P_{2}N_{3}^{\bullet}$. The CCSD(T) frequency analyses were not successful for the other two low-lying state of $P_{2}N_{3}^{\bullet}$ (${}^{2}A_{2}$ and $2{}^{2}A_{1}$); therefore, no CCSD(T) stick spectra for the two states were obtained.

Figure S3. (a) UB3LYP/aug-cc-pVTZ simulated vibrational progressions (stick spectrum) and the convoluted spectra, superimposed onto the experimental 266 nm NIPE spectrum (red). The UCCSD(T) predicted 0-0 band position of the ground state (${}^{2}A_{1}$) has been slightly adjusted, i.e., + 0.02 eV (3.74 \rightarrow 3.76 eV); and the UCCSD(T) predicted 0-0 band positions for the excited states (${}^{2}B_{1}$, ${}^{2}B_{2}$, ${}^{2}A_{1}$) are used without any adjustments. The convoluted spectrum, using Gaussian line shapes with 25 meV full widths at half maxima for each stick in ${}^{2}A_{1}$, ${}^{2}B_{2}$, and ${}^{2}A_{1}$ is also shown. (b) The computed NIPE spectrum (grey), calculated from the sum of the convoluted contributions of the four doublets in Figure S3(a), superimposed on the experimental 266 spectrum (red).

Figure S4. (a) UB3LYP/aug-cc-pVTZ simulated vibrational progressions (stick spectrum) and the convoluted spectra, superimposed onto the experimental 193 nm NIPE spectrum (red). The UCCSD(T) predicted 0-0 band positions for the ground state (${}^{2}A_{1}$) and the highest excited state (${}^{2}A_{2}$) have been slightly adjusted, i.e., +0.02 eV (3.74 \rightarrow 3.76 eV) for ${}^{2}A_{2}$ and +0.13 eV (4.62 \rightarrow 4.75 eV) for ${}^{2}A_{2}$; all other 0-0 band positions are kept the same as UCCSD(T) predictions. The convoluted spectrum, using Gaussian line shapes with 55 meV full widths at half maxima for each stick in ${}^{2}A_{1}$, ${}^{2}B_{1}$, ${}^{2}B_{2}$, ${}^{2}A_{1}$ and ${}^{2}A_{2}$, is also shown. (b) The computed NIPE spectrum (grey), calculated from the sum of the convoluted contributions of the five doublets in Figure S4(a), superimposed on the experimental 193 spectrum (red).

Fig. S5 (a) UB3LYP/aug-cc-pVTZ simulated vibrational progressions (sticks) in the NIPE spectrum and the convoluted spectra, superimposed onto the experimental 266 nm NIPE spectrum (red). The UCCSD(T) predicted positions of the 0-0 bands have been slightly adjusted – $3.74 \rightarrow 3.76$ eV for ²A₁ (pink), $4.05 \rightarrow 4.03$ eV for ²B₁(blue), $4.08 \rightarrow 4.05$ eV for ²B₂ (green), $4.36 \rightarrow 4.26$ eV for 2²A₁ (orange) – to give a better match to the experimental spectrum. The convoluted spectrum, using Gaussian line shapes with 20 meV full widths at half maxima for each stick in the ²A₁, ²B₁, ²B₂, and 2²A₁ states is also shown. (b) The computed NIPE spectrum (grey), calculated from the sum of the convoluted contributions of the four doublet states in Fig. 5a, superimposed on the experimental 266 spectrum (red).

Fig. S6 (a) UB3LYP/aug-cc-pVTZ simulated vibrational progressions (sticks) in the NIPE spectrum and the convoluted spectra, superimposed onto the experimental 266 nm NIPE spectrum (red). The UCCSD(T) predicted positions of the 0-0 bands have been slightly adjusted – $3.74 \rightarrow 3.76$ eV for ²A₁ (pink), $4.05 \rightarrow 4.03$ eV for ²B₁(blue), $4.08 \rightarrow 4.05$ eV for ²B₂ (green), $4.36 \rightarrow 4.26$ eV for 2²A₁ (orange) – to give a better match to the experimental spectrum. The convoluted spectrum, using Gaussian line shapes with 30 meV full widths at half maxima for each stick in the ²A₁, ²B₁, ²B₂, and 2²A₁ states is also shown. (b) The computed NIPE spectrum (grey), calculated from the sum of the convoluted contributions of the four doublet states in Fig. 5a, superimposed on the experimental 266 spectrum (red).

Table	S1 .	Coordinates	and	energies	of	calculated	structures.
-------	-------------	-------------	-----	----------	----	------------	-------------

	$P_2N_3^-$, 1A_1 state												
1	UB3LYP/aug-co	c-pVTZ geomet	ery		UCCSD(T)/aug-cc-pVTZ geometry								
N	0.000000	0.000000	1.566609	N	0.000000	0.000000	1.575092						
N	0.000000	-1.134574	0.909852	N	0.000000	-1.144472	0.911056						
N	0.000000	1.134574	0.909852	N	0.000000	1.144472	0.911056						
Р	0.000000	-1.050800	-0.790140	Р	0.000000	-1.049702	-0.795586						
Р	0.000000	1.050800	-0.790140	Р	0.00000	1.049702	-0.795586						
UB3LYP/aug	-cc-pVTZ ener	rgy = -84	47.121388557	UCCSD(T)/aug-cc-pVTZ energy = -845.88545933									
UB3LYP/aug	-cc-pVTZ ZPE	correction=	0.014879	UCCSI	O(T)/aug-cc-p	VTZ ZPE corre	ection=0.01470034						

P_2N_3 , 2A_1 state												
1	UB3LYP/aug-co	-pVTZ geomet	ery	UCCSD(T)/aug-cc-pVTZ geometry								
N	0.000000	0.000000	1.437593	N	0.000000	0.00000	1.435489					
N	0.000000	-1.140905	0.947571	N	0.00000	-1.155647	0.953700					
N	0.000000	1.140905	0.947571	N	0.000000	1.155647	0.953700					
Р	0.000000	-1.073576	-0.777638	Р	0.000000	-1.069094	-0.782715					
Р	0.000000	1.073576	-0.777638	Р	0.000000	1.069094	-0.782715					
UB3LYP/aug	-cc-pVTZ ener	rgy = -84	46.989342529	UCCSD(T)/aug-cc-pVTZ energy = -845.74777734								
UB3LYP/aug	-cc-pVTZ ZPE	correction=	0.014566	UCCSI	O(T)/aug-cc-p	VTZ ZPE corre	ction=0.01439744					

P_2N_3 , 2B_1 state												
	UB3LYP/aug-cc-	-pVTZ geomet:	ry	UCCSD(T)/aug-cc-pVTZ geometry								
N	0.000000	0.000000	1.547833	N	0.000000	0.000000	1.557798					
N	0.000000	-1.143913	0.880553	N	0.000000	-1.154604	0.882842					
N	0.000000	1.143913	0.880553	N	0.000000	1.154604	0.882842					
Р	0.000000	-1.133769	-0.772086	Р	0.000000	-1.125725	-0.779358					
Р	0.000000	1.133769	-0.772086	Р	0.000000	1.125725	-0.779358					
UB3LYP/aug	g-cc-pVTZ energ	gy = -84	6.972511846	UCCSD(T)	/aug-cc-pVTZ	energy =	-845.73490611					
UB3LYP/aug	g-cc-pVTZ ZPE o	correction=	0.011603	UCCSD(T)	/aug-cc-pVTZ	ZPE correct	ion=0.01285665					

	P_2N_3 , B_2 state												
	UB3LYP/aug-cc-	-pVTZ geomet	ry	UCCSD(T)/aug-cc-pVTZ geometry									
N	0.000000	0.000000	1.676220	N	0.000000	0.000000	1.686993						
N	0.000000	-1.057542	0.923277	N	0.000000	-1.064652	0.922816						
N	0.000000	1.057542	0.923277	N	0.000000	1.064652	0.922816						
Р	0.000000	-1.034960	-0.821981	Р	0.000000	-1.036584	-0.826907						
Р	0.000000	1.034960	-0.821981	Р	0.000000	1.036584	-0.826907						
UB3LYP/aug	-cc-pVTZ energ	y = -840	6.970269560	UCCSD(T)	/aug-cc-pVTZ	energy =	-845.73178216						
UB3LYP/aug	-cc-pVTZ ZPE d	correction= (0.011568	UCCSD(T)/aug-cc-pVTZ ZPE correction=0.01079250									

	P_2N_3 , 2A_2 state												
	UB3LYP/aug-cc-	-pVTZ geomet:	ry	UCCSD(T)/aug-cc-pVTZ geometry									
N	0.00000	0.00000	1.634662	N	0.000000	0.000000	1.64166437						
N	0.000000	-1.121935	0.990300	N	0.000000	-1.13096781	0.98665937						
N	0.000000	1.121935	0.990300	N	0.000000	1.13096781	0.98665937						
Р	0.000000	-1.015926	-0.843561	Р	0.000000	-1.02094292	-0.84342156						
Р	0.000000	1.015926	-0.843561	Р	0.000000	1.02094292	-0.84342156						
UB3LYP/aug	g-cc-pVTZ energ	y = -84	6.952784459	UCCSD(T)/aug-cc-pVTZ	energy =	-845.71574313						
UB3LYP/aug	g-cc-pVTZ ZPE d	correction=	0.013481										

P₂N₃, 2²A₁ state UB3LYP/aug-cc-pVTZ geometry TD-UB3LYP/aug-cc-pVTZ geometry 0.000000 0.000000 1.538110 N 0.000000 1 0.000000 1.148446 0.872565 N 0.000000 -1.146708 0

Ν

N

N

Ρ

Ρ

0.00000

0.000000

0.000000

1.536429

0.872431

0.872431

-0.765634

-0.765634

```
UB3LYP/aug-cc-pVTZ energy = -846.959080003
UB3LYP/aug-cc-pVTZ ZPE correction= 0.014348
UCCSD(T)/aug-cc-pVTZ energy = -845.72541483
```

 Table S2. Calculated Franck-Condon Factors.

	B3LYP simulations											
$^{1}A_{1} \rightarrow$	² A ₁	¹ A ₁ -	² B ₁		$^{1}A_{1} \rightarrow$	» ² В ₂		¹ A ₁ -	a^2A_2		$^{1}A_{1} \rightarrow$	2^2A_1
Energy,eV	Intensity	Energy,eV	Intensity		Energy,eV	Intensity		Energy,eV	Intensity		Energy,eV	Intensity
3.7400	0.0136	4.0500	0.0323		4.0800	0.0067		4.6200	0.0155		4.3600	0.2115
3.7976	0.0027	4.0990	0.1086		4.1452	0.0032		4.6765	0.0669		4.4123	0.1704
3.8319	0.0311	4.1287	0.0036		4.1619	0.0025		4.7275	0.0041		4.4329	0.0019
3.8895	0.0065	4.1466	0.0044		4.1819	0.0276		4.7330	0.1342		4.4600	0.1282
3.8925	0.0256	4.1479	0.1696		4.2471	0.0135		4.7840	0.0180		4.4645	0.0539
3.9238	0.0330	4.1777	0.0120		4.2638	0.0106		4.7895	0.1648		4.4852	0.0015
3.9501	0.0050	4.1955	0.0153		4.2783	0.0020		4.8396	0.0012		4.4919	0.0114
3.9814	0.0071	4.1969	0.1629		4.2838	0.0561		4.8405	0.0368		4.5123	0.1071
3.9844	0.0580	4.2266	0.0188		4.3123	0.0034		4.8461	0.1377		4.5168	0.0080
4.0158	0.0215	4.2319	0.0015		4.3290	0.0040		4.8915	0.0023		4.5329	0.0011
4.0420	0.0117	4.2445	0.0249		4.3456	0.0018		4.8962	0.0052		4.5383	0.0026
4.0450	0.0253	4.2459	0.1071		4.3490	0.0282		4.8971	0.0459		4.5441	0.0092
4.0685	0.0014	4.2533	0.0010		4.3656	0.0217		4.9026	0.0821		4.5600	0.0471
4.0733	0.0048	4.2564	0.0020		4.3802	0.0040		4.9241	0.0019		4.5645	0.0354
4.0764	0.0610	4.2743	0.0017		4.3856	0.0749		4.9384	0.0014		4.5906	0.0021
4.0891	0.0011	4.2756	0.0181		4.4142	0.0073		4.9481	0.0048		4.5919	0.0084
4.1026	0.0047	4.2808	0.0025		4.4309	0.0084		4.9527	0.0105		4.5920	0.0015
4.1077	0.0096	4.2921	0.0018		4.4454	0.0020		4.9536	0.0391		4.5964	0.0029
4.1339	0.0127	4.2935	0.0250		4.4475	0.0037		4.9591	0.0356		4.6123	0.0405
4.1370	0.0567	4.2948	0.0506		4.4508	0.0385		4.9806	0.0026		4.6168	0.0056
4.1604	0.0013	4,2961	0.0011		4.4620	0.0015		4,9949	0.0017		4.6383	0.0016
4.1652	0.0023	4.3023	0.0010		4.4675	0.0292		5.0037	0.0014		4.6441	0.0070
4.1683	0.0394	4.3053	0.0031		4.4794	0.0013		5.0046	0.0061		4.6443	0.0012
4.1810	0.0011	4.3232	0.0028		4.4820	0.0053		5.0092	0.0129		4.6600	0.0133
4.1945	0.0110	4.3246	0.0119		4.4875	0.0737		5.0101	0.0239		4.6645	0.0139
4.1976	0.0174	4.3298	0.0026		4.4923	0.0012		5.0156	0.0111		4.6906	0.0013
4.1996	0.0031	4.3411	0.0030		4.4961	0.0016		5.0371	0.0022		4.6919	0.0035
4.2210	0.0014	4.3425	0.0172		4.5127	0.0010		5.0409	0.0016		4.6964	0.0023
4.2259	0.0086	4.3438	0.0176		4.5161	0.0102		5.0514	0.0014		4.7122	0.0118
4.2289	0.0592	4.3450	0.0011		4.5263	0.0010		5.0556	0.0011		4.7168	0.0023
4.2416	0.0010	4.3543	0.0030		4.5327	0.0116		5.0602	0.0029		4.7441	0.0031
4.2551	0.0031	4.3722	0.0028		4.5473	0.0027		5.0611	0.0053		4.7600	0.0032
4.2602	0.0174	4.3735	0.0056		4.5494	0.0051		5.0657	0.0107		4.7645	0.0042
4.2865	0.0120	4.3788	0.0018		4.5527	0.0388		5.0666	0.0106		4.7665	0.0099
4.2895	0.0387	4.3901	0.0031		4.5639	0.0021		5.0721	0.0024		4.7919	0.0011
4.3129	0.0013	4.3914	0.0086		4.5694	0.0290		5.0936	0.0012		4.7964	0.0010
4.3178	0.0040	4.3928	0.0045		4.5813	0.0019		5.0974	0.0032		4.8122	0.0029
4.3208	0.0379	4.4033	0.0020		4.5839	0.0053		5.1167	0.0036		4.8188	0.0080
4.3335	0.0011	4.4212	0.0019		4.5894	0.0570		5.1176	0.0033		4.8645	0.0010
4.3471	0.0073	4.4225	0.0019		4.5941	0.0012		5.1222	0.0064		4.8665	0.0060
4.3501	0.0093	4.439	0.0022		4.5979	0.0023		5.1231	0.0034		4.871	0.0026
4.3521	0.0055	4.4404	0.0032		4.6146	0.0014		5.1539	0.0039		4.9188	0.0051
4.3784	0.0080	4.4424	0.0031		4.6179	0.0105		5.1723	0.0012		4.9665	0.0022
4.3814	0.0401	4.488	0.0011		4.6281	0.0010	1	5.1732	0.0031		4.971	0.0017
4.4077	0.0016	4.4914	0.0103		4.6346	0.0118		5.1741	0.0015		5.0188	0.0019
4.4097	0.0013	4.5403	0.0161		4.6491	0.0028		5.1787	0.0028			
4.4127	0.0166	4.5701	0.0011		4.6513	0.0051	1	5.2105	0.0033			1
4.4390	0.0079	4.588	0.0015		4.6546	0.0307	1	5.2288	0.0015			1
4.4420	0.0206	4.5893	0.0155		4.6658	0.0021	1	5.2297	0.0019			1
4.4440	0.0013	4.6191	0.0018		4.6713	0.0227	1	5.2615	0.0011			1
4.4703	0.0037	4.6369	0.0024		4.6832	0.0020		5.267	0.0020			

4.4733	0.0255	4.6383	0.0102		4.6858	0.0041	5.2853	0.0013		
4.4996	0.0038	4.668	0.0017		4.6913	0.0360				
4.5026	0.0042	4.6859	0.0024		4.6998	0.0024				
4.5046	0.0052	4.6873	0.0048		4.7165	0.0015				
4.5309	0.0052	4.717	0.0011		4.7198	0.0085				
4.5339	0.0212	4.7349	0.0016		4.7365	0.0095				
4.5622	0.0012	4.7362	0.0017		4.751	0.0022				
4.5652	0.0110	4.8838	0.0015		4.7531	0.0040				
4.5915	0.0040	4.9328	0.0023		4.7565	0.0199				
4.5945	0.0092	4.9817	0.0022		4.7677	0.0016				
4.5966	0.0012	5.0307	0.0015		4.7731	0.0145				
4.6228	0.0024				4.785	0.0016				
4.6258	0.0134				4.7877	0.0026				
4.6521	0.0016				4.7931	0.0192				
4.6551	0.0016				4.8017	0.0020				
4.6572	0.0034				4.8184	0.0012				
4.6834	0.0027				4.8217	0.0057				
4.6865	0.0093				4.8384	0.0063				
4.7178	0.0057				4.855	0.0026				
4.7440	0.0017				4.8583	0.0109				
4.7471	0.0035				4.875	0.0078				
4.7753	0.0012				4.895	0.0087				
4.7784	0.0058									
4.8097	0.0018									
4.8359	0.0011									
4.8390	0.0036									
4.8703	0.0025									
4.8996	0.0012									
4.9309	0.0022									
4.9915	0.0012			1		1		1		

	CCSD(T) simulations												
¹ A ₁	² A ₁		¹ A ₁ -	² B ₁		¹ A ₁ -	² B ₂		¹ A ₁ -	² A ₂		$^{1}A_{1} \rightarrow$	2 ² A ₁
Energy,eV	Intensity		Energy,eV	Intensity		Energy,eV	Intensity		Energy,eV	Intensity		Energy,eV	Intensity
3.7400	0.0077		4.0500	0.0579		4.0800	0.0063					N.4	۹.
3.8005	0.0014		4.1016	0.1691		4.1470	0.0026		Ν.	Α.		Geometry	
3.8331	0.0219		4.1456	0.0083		4.1616	0.0027		Frequency	y analysis		optimizat	tion and
3.8866	0.0152		4.1532	0.2280		4.1801	0.0268		was not s	uccessful		frequency	' analysis
3.8936	0.0040		4.1758	0.0011		4.2471	0.0113					were not s	uccessful
3.9262	0.0297		4.1807	0.0015		4.2617	0.0117						
3.9471	0.0026		4.1972	0.0256		4.2801	0.0560						
3.9797	0.0429		4.2048	0.1874		4.3141	0.0025						
3.9867	0.0055		4.2273	0.0014		4.3287	0.0041						
4.0193	0.0255		4.2323	0.0048		4.3433	0.0023						
4.0333	0.0157		4.2487	0.0366		4.3471	0.0241						
4.0402	0.0076		4.2563	0.1041		4.3617	0.0247						
4.0728	0.0575		4.2789	0.0012		4.3725	0.0011						
4.0798	0.0049		4.2839	0.0069		4.3802	0.0767						
4.0938	0.0026		4.2927	0.0030		4.4142	0.0054						
4.1124	0.0154		4.3003	0.0321		4.4287	0.0088						
4.1264	0.0439		4.3079	0.0410		4.4433	0.0048						
4.1333	0.0104		4.3278	0.0011		4.4472	0.0336						
4.1659	0.0487		4.3354	0.0062		4.4618	0.0342						
4.1729	0.0030		4.3443	0.0045		4.4726	0.0015						
4.1799	0.0113		4.3519	0.0191		4.4803	0.0776						
4.1869	0.0075		4.3595	0.0116		4.4835	0.0013						
4.2055	0.0070		4.3794	0.0017		4.4957	0.0016						
4.2195	0.0581		4.3870	0.0037		4.5067	0.0012						
4.2264	0.0090		4.3959	0.0041		4.5103	0.0013						
4.2404	0.0018		4.4035	0.0081		4.5142	0.0076						
4.2590	0.0291		4.4111	0.0023		4.5224	0.0011						

4.2660	0.0014		4.4310	0.0016		4.5288	0.0124						
4.2730	0.0311		4.4386	0.0016		4.5381	0.0011						
4.2800	0.0102		4.4475	0.0025		4.5434	0.0067						
4.2986	0.0025		4.4551	0.0025		4.5473	0.0346						
4.3126	0.0485		4.4991	0.0011		4.5619	0.0349						
4.3195	0.0056					4.5727	0.0016						
4.3266	0.0063				1	4.5803	0.0618						
4.3335	0.0052				1	4.5812	0.0012						
4.3521	0.0131				1	4.5835	0.0013						
4.3661	0.0407					4.5958	0.0023						
4.3731	0.0088					4.6067	0.0012						
4.4057	0.0286					4.6104	0.0019						1
4,4126	0.0026					4.6143	0.0080						
4 4 197	0.0020					4 6224	0.0011						
4.4266	0.0070					4.6289	0.0011						
4.4200	0.00/0					4.6281	0.0130						
4.4452	0.0045					4.0381	0.0011						
4.4552	0.0555					4.0433	0.0005			1			
4.4002	0.0033					4.0473	0.0201						
4.4732	0.0029					4.6619	0.0281						
4.4802	0.0028					4.6727	0.0012		-				
4.4988	0.0126					4.6804	0.0402						
4.5128	0.0221					4.6813	0.0013						
4.5197	0.0059					4.6836	0.0010						
4.5383	0.0012					4.6959	0.0025						
4.5523	0.0195					4.7105	0.0020						
4.5593	0.0024					4.7144	0.0066						
4.5663	0.0078					4.7289	0.0106						
4.5733	0.0037					4.7435	0.0056						
4.5919	0.0043					4.7474	0.0186						
4.6059	0.0180					4.7620	0.0185						
4.6128	0.0035					4.7805	0.0221						
4.6199	0.0011					4.7814	0.0011						
4.6268	0.0012					4.7959	0.0021						
4.6454	0.0085					4.8105	0.0017						
4.6594	0.0100					4.8144	0.0045						
4.6664	0.0031					4.8290	0.0071						
4.685	0.0012					4.8436	0.0037						
4.6990	0.0104					4.8475	0.0104						
4.7059	0.0016					4.8621	0.0102						
4.7130	0.0031					4.8805	0.0104						
4.7199	0.0016												
4.7385	0.0029												
4.7525	0.0080												
4.7595	0.0018												
4.7921	0.0045												
4.8061	0.0039												
4.8130	0.0013	1			1		1	1			l	İ	<u> </u>
4.8456	0.0046	1			1						1		
4.8596	0.0011	1			1								1
4,8852	0.0015	1		1	1		1		<u> </u>				
4 8992	0.0031	1			1								
4.0392	0.0031				+			<u> </u>					
4.5507	0.0019				<u> </u>		<u> </u>						
4.5527	0.0013				<u> </u>		<u> </u>						
4.9923	0.0017	<u> </u>		+			+						
5.0458	0.0011	1	1	1	1	1	1	1	1	1	1	1	1