Supporting Information for

Symmetry of Octacoordination Environment has a Substantial Influence on Dinuclear Tb^{III} Triple-Decker

Single-Molecule Magnets

Keiichi Katoh,^{a,b}* Brian K. Breedlove^{a,b} and Masahiro Yamashita^{a,b}*

^a Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
^b CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

CONTACT AUTHOR

Phone; +81-22-795-3878. Fax: +81-22-795-3878. E-mail: kkatoh@m.tohoku.ac.jp (KK)

Table of Contents

- 1 Spectroscopic data for 1: Fig. S1 and S2.
- 2 PXRD patterns of 1 and 2: Fig. S3-1 and S3-2.
- 3 Schematic illustration of the coordination site in the double-decker Ln^{III}-Pc complexes: Fig. S4.
- 4 Packing diagram of 1: Fig. S5.
- 5 Packing diagram of 2: Figs. S6-1 and S6-2.
- 6 Temperature dependence of $1/\chi_M$ for powder samples of 1 and 2 at 500 Oe: Fig. S7.
- 7 The field dependence of the magnetization (M- HT^{-1} and M-H) of **1**-**3**: Fig. S8.
- 8 Temperature dependence of $\chi_M T$ and *M*-*H* for solution samples of **1** and **2** at 1000 Oe: Figs. S9-1 and S9-2.
- 9 Ac measurements on 1 and 2 in several dc magnetic fields ($H_{dc} = \text{zero}-6000 \text{ Oe}$): Figs. S10–S20, S22–S23, S25–S27, and S28.
- 10 Arrhenius plots made by using parameters obtained from χ_M versus *v* plots plots for 1: Figs. S21 and S24.
- 11 Schematic representation of electronic structure of Tb^{III} ion (4 f^8) and $TbPc_2$ complexes: Fig. S29.
- 12 SMM properties of **3** (molecular structure, a dual magnetic relaxation process, micro-SQUID, and Zeeman diagrams of the doublet ground-state): **Fig. S30**.
- 13 Selected crystallographic data for 1–3: Table S1.
- 14 Selected values Δ and τ_0 of **1** and **2** by Kramers-Kronig equation: **Table S2** and **S3**.
- 15 τ values at 5 K for 1–3 in a several H_{dc} : Table S4.
- 16 Selected the geometry and SMM parameters of 1–3 and related SMM: Table S5.
- 17 Kramers-Kronig equation: eq. S1–S3.
- 18 Generalized Debye model: eq. S4–S6.
- 19 Arrhenius equation: eq. S7.
- 20 Extended Debye model: eq. S8–S10.

Fig. S1 Electronic spectra of (a) $\mathbf{1}$ and (b) $\mathbf{2}$ in CHCl₃ at 289 K.

Fig. S2 FT-IR spectra of (a) **1** and (b) **2** as KBr pellets at 289 K. Three main strong peaks (*) at 1330, 1062, 728 cm⁻¹ were assigned to the Pc^{2-.1}

Fig. S3-1 PXRD patterns of 1 at 293 K.

Fig. S3-2 PXRD patterns of 2 at 293 K.

Fig. S4 (a) Molecular structure of TbPc₂. (b) Schematic illustration of the square-antiprismatic (SAP) coordination environment of LnPc₂. (c) Twist angle φ in SAPs in multiple-decker Ln^{III}-Pc complexes. (d) The square-prismatic (SP) coordination environment have D_{4h} point symmetry. (e) The square-antiprismatic (SAP) coordination environment have D_{4d} symmetry.

	1 (CCDC 989974)	2 (CCDC 1041202)	3 (CCDC 753306)
Chemical formula	C ₁₂₄ H ₇₂ N ₁₆ Cl ₁₂ Tb ₂	C ₁₁₀ H ₆₂ N ₂₀ Cl ₆ Tb ₂	C ₁₉₆ H ₂₅₀ N ₂₄ O ₂₆ Tb ₂
Formula weight	2529.22	2194.34	3678.06
T/K	93	93	93
Crystal system	tetragonal	monoclinic	triclinic
Space group	I4/m	$P2_{1}/c$	<i>P</i> –1
a/ nm	1.4314(6)	1.3800(3)	1.31648(11)
<i>b/</i> nm	1.4314(6)	2.7638(6)	1.78266(17)
c/ nm	2.5736(12)	2.3522(5)	2.06226(19)
α / deg.	90.00	90.00	107.2150(10)
β/ deg.	90.00	98.391(3)	90.5010(10)
γ⁄ deg.	90.00	90.00	100.8480(10)
<i>V</i> / nm ³	5.273(4)	8.876(3)	4.5296(7)
Ζ	2	4	1
$R_1(I > 2s(I))$	0.0296	0.0761	0.0470
$wR_2(all)$	0.0888	0.1859	0.1357
GOF	1.219	1.109	1.088

Table S1. Selected crystallographic data for 1–3

Fig. S5 Packing diagram of **1**. C_4 symmetrical disorder of the chloride atoms on chloroform is observed. The chloroform has C_{3v} symmetry. The unusual C_4 symmetry of chloroform observed in the single crystal of **1** is related to the strong intermolecular CH/n interactions between the chloroform and the point group D_4 (it has one C_4 axis) symmetric TTP ligand in **1**.

Fig. S6-1 Packing diagram for **2**.

Fig. S6-2 Packing diagram for **2**.

Fig. S7 $1/\chi_M$ versus *T* plots for (a) **1** and (b) **2**. Black solid lines are linear fits of the data. The fitting parameters are listed in the main text.

Fig. S8-1 Field dependence of the magnetization measured on powder samples of (a) **1**, (b) **2** and (c) **3**, corrected from 1.8 to 30 K. The solid lines are guides only.

Fig. S8-2 Field dependence of the magnetization measured on powder samples of 1–3, in which slight hystereses were observed at 1.8 K. The solid lines are guides only.

Fig. S9-1 (a) $\chi_M T$ versus *T* plots for **1**. The solution sample was prepare by mass ratio of **1** (5 mg) and toluene (1.8 mL). Open black circles are powder sample of **1**, and open red circles are solution sample of **1** (diluted sample). (b) The field dependence of the magnetization measured on powder (open black circles) and solution samples of **1** (open red circles). The solid lines are guides only.

Fig. S9-2 (a) $\chi_M T$ versus *T* plots for **2**. Solution samples were prepared by using mass ratio of **2** (5 mg) and toluene (1.8 mL). Open black circles are powder sample of **2**, and open red circles are solution sample of **2** (diluted sample). (b) The field dependence of the magnetization was measured on powder (open black circles) and solution sample of **2** (open red circles). The solid lines are guides only.

Fig. S10 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') ac magnetic susceptibilities of **1** in a zero dc field. The solid lines are guides only.

Fig. S11 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M ') and (b) out-of-phase (χ_M '') ac magnetic susceptibilities of **2** at zero dc field. The solid lines are guides only.

The Kramers-Kronig equation^{2–5}

$$\frac{\chi'}{\chi"} = \omega\tau \qquad (eq. S1)$$

$$\frac{\chi'}{\chi"} = \omega \tau_0 + exp\left(\frac{\Delta}{k_B T}\right) \qquad (eq. S2)$$

$$\ln\left(\frac{\chi'}{\chi''}\right) = \ln(\omega\tau_0) + \frac{\Delta}{k_B T} \qquad (eq. S3)$$

 χ' : real part of ac magnetic susceptibility χ'' : imaginary part of ac magnetic susceptibility ω : the experimental ac field exciting frequency Δ : the effective energy barrier

 τ : the magnetic relaxation time

k_B: Boltzmann constant

			0		
ν/Hz	198	398	598	797	996
⊿/cm ⁻¹	18.7	17.8	20.9	21.1	23.4
τ_0/s	1.35×10^{-6}	1.26×10^{-6}	8.1×10^{-7}	7.5×10^{-7}	5.7×10^{-7}

Table S2. Selected values of Δ and τ_0 for **1**

Table S3. Selected values of Δ and τ_0 for **2**

ν/Hz	198	398	598	797	996
Δ/cm^{-1}	37.8	38.0	37.8	36.4	36.0
τ_0/s	4.52×10^{-6}	3.48×10^{-6}	2.92×10^{-6}	2.82×10^{-6}	2.61×10^{-6}

Fig. S12 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') ac magnetic susceptibilities of **1** at 996 Hz in several dc magnetic fields. The solid lines are guides only.

Fig. S13-1 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M ') and (b) out-of-phase (χ_M '') ac magnetic susceptibilities of **1** at 1500 Oe. The solid lines are guides only.

Fig. S13-2 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') ac magnetic susceptibilities of **1** at 3000 Oe. The solid lines are guides only.

Fig. S14 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') ac magnetic susceptibilities of **2** at 996 Hz in several dc magnetic fields. The solid lines are guides only.

Fig. S15 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') ac magnetic susceptibilities of **2** at 1000 Oe. The solid lines are guides only.

Fig. S16 Frequency (ν) and temperature (*T*) dependences of the ac magnetic susceptibilities of **2** at 1000 Oe: (a) $\chi_M T$ and (b) $\chi_M T$. The solid lines are guides only.

Fig. S17 Frequency (ν) and temperature (*T*) dependences of the (a) in-phase (χ_M') and (b) out-of-phase (χ_M'') ac magnetic susceptibilities of **2** at 3000 Oe. The solid lines are guides only.

Fig. S18 Frequency (ν) and temperature (*T*) dependences of χ_M " of **2** (SAP = Site A, SAP* = Site B). (a) $H_{dc} = 0$, (b) 1000, and (c) 3000 Oe. The solid lines are guides only.

Fig. S19 Frequency (ν) dependence of (a) the real (χ_M) and (b) imaginary (χ_M ") parts of the ac susceptibilities of **1** measured between 4 and 16 K in an H_{dc} of zero. (c) Argand plot of **1**. The solid lines are guides only.

Fig. S20 Frequency (ν) dependence of (a) the real (χ_M) and (b) imaginary (χ_M ") parts of the ac susceptibilities of **1** measured between 0 and 6000 Oe at 5 K. (c) Argand plot of **1** measured between 0 and 6000 Oe at 5 K. The solid lines are guides only.

Fig. S21 Arrhenius plots for **1** in a zero H_{dc} . Estimates of τ from Fig. S20b (see main text). The solid line is guide only.

	de	
Complexes	τ/s at 5 K	$H_{ m dc}$ / Oe
[(TTP)Tb(Pc)Tb(TTP)] (1)	4.1×10 ⁻⁵	0
	2.0×10 ⁻³	1500
[(Pc)Tb(Pc)Tb(TTP)] (2)	5.6×10 ⁻⁴	0
	$5.2 \times 10^{-4} (\tau_1)$	1000
	$1.2 imes 10^{-2} (au_2)$	1000
	$4.0 imes 10^{-4} (\tau_1)$	3000
	$2.4 imes 10^{-3} (au_2)$	3000
[(obPc)Tb(obPc)Tb(obPc)] (3)	1.8×10^{-2}	0
	$4.8 imes 10^{-3} (au_1)$	3000
	$4.5 imes 10^{-2} (\tau_2)$	3000

Table S4. τ values at 5 K for 1–3 in several H_{dc}

The experimental data of **3** from ref. 7e (see main text).

Fig. S22 Frequency (ν) dependence of (a) the real (χ_M ') and (b) imaginary (χ_M ") parts of the ac susceptibilities of **1** measured between 4 and 16 K in an H_{dc} of 1500 Oe. (c) Argand plot for **1**. The solid lines are guides only.

Fig. S23 Frequency (ν) dependence of (a) the real (χ_M ') and (b) imaginary (χ_M ") parts of the ac susceptibilities of **1** measured between 4 and 16 K in a H_{dc} of 3000 Oe. (c) Argand plot for **1**. The solid lines are guides only.

The generalized Debye model (eq. S4)⁶

The real (χ_M') and imaginary parts (χ_M'') are given by eqs. S5 and S6, respectively.

$$\chi_{total}(\omega) = \chi_S + \frac{\chi_T - \chi_S}{1 + (i\omega\tau)^{1-\alpha}}$$
(eq. S4)

$$\chi'(\omega) = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin(\pi\alpha/2)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\pi\alpha/2) + (\omega\tau)^{2-2\alpha}} \quad (eq. S5)$$

$$\chi''(\omega) = (\chi_T - \chi_S) \frac{(\omega \tau)^{1-\alpha} \cos(\pi \alpha/2)}{1 + 2(\omega \tau)^{1-\alpha} \sin(\pi \alpha/2) + (\omega \tau)^{2-2\alpha}}$$
(eq. S6)

The Arrhenius equation

From the ν dependence of T_B at each T, it is possible to estimate Δ and τ_0 , which is the average τ in response to thermal fluctuation, from the generalized Debye model by using the Arrhenius equation (eq. S7). This linear relation between $\ln(\tau)$ and T^{-1} indicates that the Orbach process (spin-phonon interactions), which approximately correspond to the Δ for thermal relaxation of the reversal of the magnetic moment, is dominant in high-*T* ranges (see main text).

$\tau = \tau_0 exp(\Delta E/k_B T)$	(eq. S7-1)
$\ln(\tau) = ln(\tau_0) + \Delta E/k_B T$	(eq. S7-2)

Fig. S24 An Arrhenius plot of **1**, where the τ were obtained from $\chi_{\rm M}$ " versus ν plots at *T* between 4 and 16 K in an $H_{\rm dc}$ of 1500 (Fig. S22b) and 3000 Oe (Fig. S23b). The solid lines were fitted using an Arrhenius law. The fitting parameters are listed in the main text.

Fig. S25 Frequency (ν) dependence of (a) the real (χ_M') and (b) imaginary (χ_M'') parts of the ac susceptibilities of **2** measured between 1.8 and 20 K in an H_{dc} of zero. (c) Argand plot for **2**. The solid lines are guides only.

Fig. S26 Frequency (ν) dependence of (a) the real (χ_M') and (b) imaginary (χ_M'') parts of the ac susceptibilities of **2** measured between 1.8 and 20 K in an H_{dc} of 1000 Oe. (c) Argand plot for **2**. The solid lines are guides only.

Fig. S27 Frequency (ν) dependence of (a) the real (χ_M) and (b) imaginary (χ_M) parts of the ac susceptibilities of **2** measured between 1.8 and 20 K in a H_{dc} of 3000 Oe. (c) Argand plot for **2**. The solid lines are guides only.

Fig. S28 Frequency (ν) dependence of (a) the real (χ_M ') and (b) imaginary (χ_M ") parts of the ac susceptibilities of **2** measured between 0 and 6000 Oe at 5 K. Argand plot for **2** measured between 0 and 6000 Oe at 5 K. The solid lines are guides only.

Fig. S29 Schematic representation of electronic structure of Tb^{III} ion $(4f^8)$ and TbPc_2 complexes. Magnetic dipole-dipole interactions are important for Tb^{III} dinuclear complexes.

The extended Debye model $(eq. S8)^7$

$$\chi_{total}(\omega) = \chi_{s} + (\chi_{T} - \chi_{S}) \left[\frac{\beta}{1 + (i\omega\tau_{1})^{1-\alpha_{1}}} + \frac{1-\beta}{1 + (i\omega\tau_{2})^{1-\alpha_{2}}} \right]$$
(eq. S8)

$$\chi' = \chi_{S} + (\chi_{T} - \chi_{S}) \left\{ \frac{\beta \left[1 + (\omega\tau_{1})^{1-\alpha_{1}} \sin \frac{1}{2} \alpha_{1} \pi \right]}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin \frac{1}{2} \alpha_{1} \pi + (\omega\tau_{1})^{2(1-\alpha_{1})}} + \frac{(1-\beta) \left[1 + (\omega\tau_{2})^{1-\alpha_{2}} \sin \frac{1}{2} \alpha_{2} \pi \right]}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin \frac{1}{2} \alpha_{2} \pi + (\omega\tau_{2})^{2(1-\alpha_{2})}} \right\}$$
(eq. S9)

$$\chi'' = (\chi_T - \chi_S) \left\{ \frac{\beta(\omega\tau_1)^{1-\alpha_1} \cos \frac{1}{2} \alpha_1 \pi}{1 + 2(\omega\tau_1)^{1-\alpha_1} \sin \frac{1}{2} \alpha_1 \pi + (\omega\tau_1)^{2(1-\alpha_1)}} + \frac{(1-\beta)(\omega\tau_2)^{1-\alpha_2} \cos \frac{1}{2} \alpha_2 \pi}{1 + 2(\omega\tau_2)^{1-\alpha_2} \sin \frac{1}{2} \alpha_2 \pi + (\omega\tau_2)^{2(1-\alpha_2)}} \right\}$$
(eq. S10)

where χ_S is the adiabatic susceptibility, χ_T is the isothermal susceptibility, $^{40,50} \omega (= 2\pi \nu)$ is the angular frequency, τ_1 and τ_2 are the magnetization relaxation times, τ_1 and τ_2 describe the distributions of the relaxation processes, β is the weight of the first relaxation process, and $(1-\beta)$ corresponds to the second one. The real part and the imaginary part are given by equations (eq. S9) and (eq. S10), respectively.

Complexes	$\phi_{\mathrm{A}}^{/\mathrm{o}}$	$\phi_{ m B}/^{ m o}$	Site geometry	Δ /cm ⁻¹	$ au_0/{ m s}$	$H_{\rm dc}$ / Oe
[(TTP)Tb(Pc)Tb(TTP)] (1)	4	4	SP-SP	18–24	10-6-10-7	0
	-	-	-	32	3.97×10 ⁻⁶	1500
[(Pc)Tb(Pc)Tb(TTP)] (2)	14	38	SAP-SAP*	15	4.77×10 ⁻⁵	0
SAP (site A)	14	—	_	60	3.48×10 ⁻⁶	1000
SAP* (site B)	_	38	_	162	3.16×10 ⁻⁸	1000
	14	38	_	43	5.02×10 ⁻⁷	3000
[(obPc)Tb(obPc)Tb(obPc)] (3)	32	32	SAP-SAP	206	3.8×10 ⁻¹⁰	0
${[Tb(TTP)_2](H-DBU)}^8$	45	_	SAP	269	1.6×10 ⁻¹¹	0
	_	_	-	283	6.8×10 ⁻¹²	2000
[(Pc)Tb(Pc)Tb(T(pOMe)PP)] ⁹	1	45	SP-SAP*	None	None	

 Table S5. Selected geometry and SMM parameters for 1–3 and a related SMM

The experimental data of **3** from ref. 7e (see main text).

Fig. S30¹⁰ (a) Crystal structure of Tb₂(obPc)₃. The *n*-butoxy chains have been omitted for clarity. (b) Hysteresis loops for a single crystal of Tb₂(obPc)₃. (c) Relaxation time (τ) versus magnetic field plot for Tb₂(obPc)₃ made by using parameters obtained from Argand plots. (d) Zeeman diagram of the doublet ground state for Tb₂(obPc)₃ which was obtained from magnetic heat capacity (C_m) in an H_{dc} .

References

- 1. J. Jiang, D. P. Arnold and H. Yu, *Polyhedron*, 1999, 18, 2129 and references therein.
- F. Luis, J. Bartolomé, J. F. Fernández, J. Tejada, J. M. Hernández, X. X. Zhang and R. Ziolo, *Phys. Rev. B*, 1997, 55, 11448.
- J. Bartolomé, G. Filoti, V. Kuncser, G. Schinteie, V. Mereacre, C. E. Anson, A. K. Powell, D. Prodius and C. Turta, *Phys. Rev. B*, 2009, 80, 014430.
- J. Ferrando-Soria, D. Cangussu, M. Eslava, Y. Journaux, R. Lescouëzec, M. Julve, F. Lloret, J. Pasán, C. Ruiz-Pérez, E. Lhotel, C. Paulsen and E. Pardo, *Chem. Eur. J.*, 2011, **17**, 12482.
- I. A. Gass, B. Moubaraki, S. K. Langley, S. R. Batten and K. S. Murray, *Chem. Commun.*, 2012, 48, 2089.
- 6. K. S. Cole and R. H. Cole, J. Chem. Phys., 1941, 9, 341.
- N. Domingo, F. Luis, M. Nakano, M. Muntó, J. Gómez, J. Chaboy and N. Ventosa, Phys. Rev. B, 2009, 79, 214404-1.
- D. Tanaka, T. Inose, H. Tanaka, S. Lee, N. Ishikawa and T. Ogawa, *Chem. Commun.*, 2012, 48, 7796.
- 9. S. Sakaue, A. Fuyuhiro, T. Fukuda and N. Ishikawa, Chem. Commun., 2012, 48, 5337.
- 10.K. Katoh, T. Kajiwara, M. Nakano, Y. Nakazawa, W. Wernsdorfer, N. Ishikawa, B. K. Breedlove and M. Yamashita, *Chem. Eur. J.*, 2011, **17**, 117.