Electronic Supplementary Information

Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts

Timothy E. Rosser^a, Manuela A. Gross^a, Yi-Hsuan Lai^a and Erwin Reisner^{a,*}

^aChristian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB1 2EW, U.K.

*Corresponding author: *reisner@ch.cam.ac.uk*

Figure S1. SEM images of (a) mesoporous TiO_2 and (b) WO_3 nanosheets.

Figure S2. UV-vis spectra of (a) an unmodified and (b) a **NiP**-modified mesoTiO₂ electrode at $E_{appl} = -0.43$ V and -0.03 V vs RHE in an aqueous Na₂SO₄ solution (0.1 M) at pH 3.

Figure S3. Chronoamperograms of (a) $TiO_2|NiP$ and (b) ITO|NiP at $E_{appl} = -0.25$ V vs RHE, using a freshly-prepared electrode for each experiment. Conditions: Aqueous Na₂SO₄ solution (0.1 M) at pH 3 with a Ag/AgCl reference electrode and a Pt mesh counter electrode.

Figure S4. (a) UV-vis spectra of an aqueous NaOH solution (0.1 M) obtained after treating **NiP**-modified mesoTiO₂ electrodes before and after CPE for 8 h. Reference spectra of **NiP** (13 μ M) and Ni(NO₃)₂ (13 μ M) dissolved in NaOH (0.1 M) is shown for comparison. The spectrum of **NiP** is significantly different to that of Ni(NO₃)₂ in NaOH, suggesting that this is not just evidence of unassigned Ni on the electrode surface. (b) ATR-IR spectroscopy of **NiP**-modified mesoTiO₂ electrodes before and after 4 h CPE. Reference spectra of **NiP** and TiO₂ treated with 0.1 M Na₂SO₄ are also shown. CPE conditions: $E_{app} = -0.25$ V vs RHE, 0.1 M Na₂SO₄ (pH 3), Pt CE, Ag/AgCI RE.

Figure S5. CVs of **NiP**-modified (solid traces) and unmodified mesoITO (dashed traces) at $v = 100 \text{ mV s}^{-1}$. Conditions: Aqueous Na₂SO₄ (0.1 M) solution at pH 3 and pH 4 with a Ag/AgCl reference electrode and a Pt mesh counter electrode. Oxidative waves in the CV at pH 3 stem from the re-oxidation of degraded ITO.

Figure S6. (a) CV of **NiP**-modified (solid trace) and unmodified (dashed trace) mesoTiO₂ in an aqueous Na₂SO₄ solution at pH 4 (ν = 100 mV s⁻¹). The arrow indicates the initial scan direction. Reductive wave at –0.2 V due to **NiP** reduction (b) Theoretical and measured H₂ after 2 h CPE of **NiP**-modified and unmodified electrodes at $E_{app} = -0.33$ V vs RHE at pH 2, 3 and 4 (0.1 M Na₂SO₄).

Figure S7. Theoretical (red) and measured (black) amount of H₂ after 4 h CPE with $TiO_2|NiP$ (solid line) and TiO_2 (dashed line) at $E_{appl} = -0.25$ V vs RHE under air. Conditions: Aqueous Na₂SO₄ solution (0.1 M) at pH 3 with a Ag/AgCl reference electrode and a Pt mesh counter electrode.

Figure S8. ESI-MS (positive ion mode) of FeP in MeOH.

Figure S9. (a) CV of **FeP** on mesoITO at scan rates from $v = 10 \text{ mV s}^{-1}$ to 200 mV s⁻¹ alongside the scan-rate-dependence of the peak current Conditions: aqueous Na₂SO₄ (0.1 M) solution at pH 3 with a Ag/AgCl reference electrode and a Pt mesh counter electrode.

Figure S10 (a) UV/vis spectra (reflectance mode) (black line) and incident photon-to-current efficiency (IPCE, blue lines) of WO₃|**FeP** (solid lines) and WO₃ (dashed lines). Conditions for IPCE: pH 3 Na₂SO₄ (0.1 M), $E_{appl} = 1.0$ V vs RHE, Pt CE, Ag/AgCl RE, monochromatic irradiation (FWHM = 5 nm). (b) UV/vis spectrum of **FeP** in MeOH.

Figure S11. Examples of O₂ detection experiments for the $TiO_2|NiP / WO_3|FeP$ PEC cell with an applied bias (U_{appl}) of 1.1 V for 1 h under solar illumination. Vertical lines indicate light on and off.

Figure S12. XPS spectrum in the Fe 2p region of WO₃|**FeP** before (black line) and after (blue line) 1 h PEC electrolysis in combination with TiO_2 |**NiP** at U_{appl} = 1.1 V under solar illumination.

Figure S13 XPS spectrum in the (a) P 2p and (b) N 1s regions of $TiO_2|NiP$ before (black line) and after (blue line) 1 h PEC electrolysis in combination with WO₃|FeP at U_{appl} = 1.1 V under solar illumination.

	Before electrolysis		After electrolysis	
	WO ₃ FeP	TiO ₂ NiP	WO ₃ FeP	TiO ₂ NiP
Ni	n/a	1	n/a	1
Fe	1	n/a	0	n/a
Ρ	1	8.10	0	7.96
Ν	3.82	4.09	0	4.58

Table S1. Relative elemental abundances of $WO_3|FeP$ and $TiO_2|NiP$ before and after photoelectrolysis for 1 h with an applied bias of 1.1 V derived from XPS data.

Table S2. XPS peak positions (in eV) of WO_3 |**FeP** and TiO_2 |**NiP** before and after photoelectrolysis for 1 h with an applied bias of 1.1 V.

	Bef	ore electrolysis	After electrolysis	
	WO ₃ FeP	TiO ₂ NiP	WO ₃ FeP	TiO ₂ NiP
Ni	n/a	851.5, 868.9	n/a	851.5,869.1
Fe	706.5, 720	n/a	-	n/a
Р	129	129.4	-	129.0
Ν	396.3	396.4	-	396.2

End of Electronic Supporting Information