Supporting Information

Asymmetric Synthesis of Allylic Amines via Hydroamination of Allenes with Benzophenone Imine

Kun Xu, Yu-Hsuan Wang, Vahid Khakyzadeh and Bernhard Breit*

Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany

Table of Contents

General and Materials	S2
General Procedure for the Hydroamination of Allenes with Benzophenone Imine	S3
Synthesis and Characterization of Allylic Amides	S 3
One-pot Synthesis of Allylic Amides	S4
Hydroamination of Bioactive Moieties Containing Substrates	S5
Large Scale Synthesis of Primary Allylic Amines	S 6
Derivatization of Allylic Amides	S 7
Mechanistic Investigations	S 8
References	S9
NMR spectra	S10
HPLC data	S11

General

FCC (Flash Column Chromatography) was accomplished using MACHEREY-NAGEL silica gel 60[®] (230-400 mesh). TLC (Thin Layer Chromatography) was performed on aluminum plates pre-coated with silica gel (MERCK, 60F₂₅₄), which were visualized by UV fluorescence ($\lambda_{max} = 254$ nm) and/or by staining with 1% w/v KMnO₄ in 0.5 M aqueous K₂CO₃. NMR (Nuclear Magnetic Resonance) spectra were acquired on a BRUKER Avance spectrometer (300, 400, or 500 MHz and 100.6, 126 MHz for ¹H and ¹³C respectively). All ¹H NMR spectra are reported in parts per million (ppm) downfield of TMS and were measured relative to the signals at 7.26 ppm (CHCl₃) or 7.16 ppm (C₆D₆). All ¹³C NMR spectra were reported in ppm relative to residual CHCl₃ (77.16 ppm) and were obtained with ¹H-decoupling. Data for ¹H NMR are described as following: chemical shift (δ in ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sx, sextet; m, multiplet; app, apparent; br, broad signal), coupling constant (Hz), integration. Data for ¹³C NMR spectra are described in terms of chemical shift (δ in ppm). HRMS (High resolution mass spectra) were obtained on a FINNIGAN MAT 8200 instrument (CI/NH₃: 110 eV; EI: 70 eV). Chiral HPLC was performed on a MERCK HITACHI HPLC apparatus (pump: L-7100, UV detector: D-7400, oven: L-7360; columns: AD-H, AD-3, OD-3, OJ-H, L-C2, L-C3, AD-3R, OD-3R, OJ-R, and OJ-3R 15-25 cm 4.6 cm, DAICEL). The Optical Rotation of chiral compounds was determined on a PERKIN-ELMER PE 241 apparatus and transformed for a given temperature according to the following formula:

$$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\boldsymbol{T}} = \frac{\boldsymbol{\alpha} \cdot 100}{c \cdot d}$$

 α : measured value for optical rotation; *c*: concentration in g/100 ml; *d*: length of the cuvette in dm; T: temperature in °C.

Materials

Solvents: 1,2-Dichloroethane (DCE) was freshly distilled over CaH₂ and degassed by three Freeze-Pump-Thaw cycles prior to use. Solvents employed for work-up and column chromatography were purchased in technical grade quality and distilled by rotary evaporator before use.

Substrates: Benzophenone imine and allenes, if commercially available, were purchased from Sigma-Aldrich, ABCR, Alfa Aesar and used without further purification. Non-commercially available allenes were synthesized in our group according to literatures.^[1]

Ligands and catalysts: The ligands and [Rh(COD)Cl]₂ were purchased from Sigma-Aldrich, ABCR, Alfa Aesar and used without further purification.

Deuterated samples: $Ph_2C=ND$ was prepared by reaction of CD_3OD with $Ph_2C=NLi$, which was generated by reaction of n-BuLi with 1 equivalent of $Ph_2C=NH$ in THF at -78 °C.^[2] Deuterated pyridinium p-toluenesulfonate (D-PPTS) was prepared via deuterium exchange with CD_3OD for five times.

General procedure for the synthesis of allylic amides

Step 1, **Hydroamination**: To a Schlenk tube was added [Rh(COD)Cl]₂ (3.94 mg, 0.008 mmol, 2 mol%), Ligand L4 (9.70 mg, 0.016 mmol, 4 mol%), PPTS (20.10 mg, 0.08 mmol, 20%), benzophenone imine (72.5 mg, 0.4 mmol, 1.0 equiv), DCE (1.0 ml, 0.4 M) and allene (0.6 mmol, 1.5 equiv). The Schlenk tube was sealed and the mixture was stirred for 18 h at 80 °C. After cooling to room temperature, the solvent was removed under vacuum.

Step 2, **Hydrolysis**: To the hydroamination reaction mixture of *step 1* was added Et_2O (2.0 ml) and HCl aq. (2.0 ml, 2.0 M, 4 mmol) sequentially. The reaction was stirred at r.t for 24 hours. The volatiles were removed under vacuum.

Step 3, **Benzoyl protection**: To the resulting allylic amine HCl salt curde mixture of *step 2* was added CH_2Cl_2 (2.0 ml) and Et_3N (223 µl, 161.9 mg, 1.6 mmol, 4.0 equiv) and benzoyl chloride (84.3 mg, 0.6 mmol, 1.5 equiv) sequentially. The reaction mixture was stirred for 3 hours. The volatiles were removed and the residue was purified by FCC to obtain benzenphenone ketone and desired allylic amides.

Synthesis and characterization of allylic amides (1a-j)

1 (S)-N-(1-cyclohexylallyl)benzamide (1a)

The reaction was performed with cyclohexylallene (87 μ l, 73.3 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, R_f = 0.34) to afford the product as a white solid (70.0 mg, 72 %).

m.p.: 119 – 120 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.81 - 7.76 (m, 2 H), 7.52 - 7.41 (m, 3 H), 6.12 - 6.00 (m, 1 H), 5.85 (ddd, J = 6.1, 10.4, 17.2 Hz, 1 H), 5.25 - 5.15 (m, 2 H), 4.60 - 4.52 (m, 1 H), 1.84 - 1.73 (m, 4 H), 1.72 - 1.63 (m, 1 H), 1.63 - 1.52 (m, 1 H), 1.32 - 1.00 (m, 5 H); ¹³C **NMR** (100.6MHz, CDCl₃) δ = 166.9, 137.0, 135.1, 131.5, 128.7, 126.9, 115.9, 56.6, 42.4, 29.6, 29.0, 26.5, 26.24, 26.21; **HRMS-ESI** (MeOH, m/z): [M+H]⁺ calcd for C₁₆H₂₂NO, 244.17014; found, 244.17030; **HPLC** (CHIRALCEL[®] AD-H, *n*-heptane / ^{*i*}PrOH = 95:5, 1 mL/min) t_R = 7.22 min (minor), t_R = 8.34 min (major), 92% *ee* (*S*); [α]_D²⁵ = - 36.00 (c = 0.383, CHCl₃).

Recovery of benzophenone via FCC (EA/CH = 1/4, $R_f = 0.65$, Eluent: EA/CH = 1/15): 71.0 mg, 97%, analytical data is identical with literature.^[3]

2 (S)-N-(1-cyclopentylallyl)benzamide (1b)

The reaction was performed with propa-1,2-dien-1-ylcyclopentane (64.9 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, $R_f = 0.33$) to afford the product as a white solid (59.0 mg, 64 %).

m.p.: 86 – 87 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.80 - 7.75 (m, 2 H), 7.50 - 7.45 (m, 1 H), 7.44 - 7.38 (m, 2 H), 6.19 (d, *J* = 6.9 Hz, 1 H), 5.86 (ddd, *J* = 5.9, 10.4, 17.1 Hz, 1 H), 5.25 - 5.18 (m, 1 H), 5.13 (td, *J* = 1.4, 10.4 Hz, 1 H), 4.60 - 4.51 (m, 1 H), 2.08 (sxt, *J* = 8.2 Hz, 1 H), 1.82 - 1.70 (m, 2 H), 1.70 - 1.48 (m, 4 H), 1.44 - 1.28 (m, 2 H); ¹³**C NMR** (100.6MHz, CDCl₃) δ = 166.9, 137.8, 135.0, 131.4, 128.6, 127.0, 115.3, 56.0, 44.5, 29.5, 29.4, 25.6, 25.4; **HRMS-APCI** (MeOH, m/z): [M+H]⁺ calcd for C₁₅H₂₀NO, 230.15394; found, 230.15404; **HPLC** (CHIRALCEL[®] AD-H, *n*-heptane / ^{*i*}PrOH = 98:2, 1 mL/min) t_R = 39.90 min (minor), t_R = 47.15 min (major), 94% *ee* (*S*); [α]²⁵ = - 35.80 (c = 0.392, CHCl₃).

Determination of absolute configuration

Absolute configuration was determined by comparing the specific rotation of **1b** with literature.^[4] Absolute configurations for other allylation products were assigned by analogy.

(S)-N-(1-cyclopentylallyl)benzamide

Observed Specific Rotation: $[\alpha]_D^{25} = -35.80 \text{ (c} = 0.392, \text{CHCl}_3), 94\% \text{ ee}$ Literature value [(S)-enantiomer]: $[\alpha]_D^{22} = -16.7 \text{ (c} = 1, \text{CHCl}_3), 82\% \text{ ee}$

The reaction was performed with hexadeca-1,2-diene (133.4 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, $R_f = 0.33$) to afford the product as a white solid (117.0 mg, 85 %).

m.p.: 85 – 86 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.81 - 7.75 (m, 2 H), 7.53 - 7.48 (m, 1 H), 7.47 - 7.41 (m, 2 H), 6.01 - 5.92 (m, 1 H), 5.86 (ddd, J = 5.6, 10.4, 17.2 Hz, 1 H), 5.23 (td, J = 1.4, 17.2 Hz, 1 H), 5.15 (td, J = 1.4, 10.4 Hz, 1 H), 4.73 - 4.61 (m, 1 H), 1.72 - 1.55 (m, 2 H), 1.44 - 1.20 (m, 22 H), 0.91 - 0.85 (m, 3 H); ¹³**C NMR** (100.6MHz, CDCl₃) δ = 166.9, 138.6, 135.0, 131.5, 128.7, 127.0, 115.0, 51.9, 35.2, 32.0, 29.81, 29.78, 29.77, 29.76, 29.70, 29.65, 29.6, 29.5, 25.9, 22.8, 14.2; **HRMS-APCI** (MeOH, m/z): [M+H]⁺ calcd for C₂₃H₃₈NO, 344.2948; found, 344.2950; **HPLC** (CHIRALCEL[®] OD3, *n*-heptane / ^{*i*}PrOH = 95:5, 1 mL/min) t_R = 5.66 min (major), t_R = 7.51 min (minor), 96% *ee* (**R**); [α]_D²⁵ = -19.30 (c = 0.351, CHCl₃).

4 (R)-N-(5-phenylpent-1-en-3-yl)benzamide (1d)

The reaction was performed with penta-3,4-dien-1-ylbenzene (86.5 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, $R_f = 0.32$) to afford the product as a white solid (84.9 mg, 80 %).

m.p.: 71 – 72 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.74 - 7.68 (m, 2 H), 7.51 - 7.46 (m, 1 H), 7.43 - 7.38 (m, 2 H), 7.31 - 7.27 (m, 2 H), 7.23 - 7.17 (m, 3 H), 6.23 (d, *J* = 8.5 Hz, 1 H), 5.90 (ddd, *J* = 5.6, 10.4, 17.2 Hz, 1 H), 5.25 (td, *J* = 1.4, 17.2 Hz, 1 H), 5.19 (td, *J* = 1.4, 10.4 Hz, 1 H), 4.80 - 4.71 (m, 1 H), 2.74 (t, *J* = 7.9 Hz, 2 H), 2.06 - 1.94 (m, 2 H); ¹³**C NMR** (100.6MHz, CDCl₃) δ = 166.8, 141.6, 138.1, 134.6, 131.4, 128.6, 128.5, 128.4, 126.9, 126.0, 115.4, 51.7, 36.4, 32.2; **HRMS-ESI** (MeOH, m/z): [M+Na]⁺ calcd for C₁₈H₁₉NONa, 288.13589; found, 288.13606; **HPLC** (CHIRALCEL[®] L-C2, *n*-heptane / ^{*i*}PrOH = 95:5, 1 mL/min) t_{*R*} = 32.89 min (major), t_{*R*} = 52.67 min (minor), 95% *ee* (*R*); [α]²⁵ = - 26.70 (c = 0.570, CHCl₃).

5 (*R*)-*N*-(6-phenylhex-1-en-3-yl)benzamide (1e)

The reaction was performed in a 0.2 mmol scale, all the materials used were halved. Hexa-4,5-dien-1-ylbenzene (47.5 mg, 0.3 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, $R_f = 0.31$) to afford the product as a white solid (47.5 mg, 85 %).

m.p.: 110 - 111 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.79 - 7.73 (m, 2 H), 7.53 - 7.47 (m, 1 H), 7.46 - 7.40 (m, 2 H), 7.30 - 7.25 (m, 2 H), 7.21 - 7.15 (m, 3 H), 5.96 (d, *J* = 8.3 Hz, 1 H), 5.84 (ddd, *J* = 5.7, 10.4, 17.2 Hz, 1 H), 5.26 - 5.19 (m, 1 H), 5.15 (td, *J* = 1.4, 10.4 Hz, 1 H), 4.77 - 4.68 (m, 1 H), 2.73 - 2.60 (m, 2 H), 1.81 - 1.61 (m, 4 H); ¹³**C NMR** (100.6MHz, CDCl₃) δ = 166.9, 142.1, 138.4, 134.8, 131.5, 128.7, 128.5, 128.4, 126.9, 125.9, 115.3, 51.7, 35.7, 34.5, 27.7; **HRMS-APCI** (MeOH, m/z): [M+H]⁺ calcd for C₁₉H₂₂NO, 280.17014; found, 280.17020; **HPLC** (CHIRALCEL[®] L-C2, *n*-heptane / ^{*i*}PrOH = 98:2, 1 mL/min) t_R = 37.28 min (major), t_R = 45.39 min (minor), 95% *ee* (**R**); [α]_D²⁵ = -14.50 (c = 0.400, CHCl₃).

6 (R)-N-(9-(1,3-dioxoisoindolin-2-yl)non-1-en-3-yl)benzamide (1f)

The reaction was performed with 2-(nona-7,8-dien-1-yl)isoindoline-1,3-dione (161.6 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/2, $R_f = 0.30$) to afford the product as a white solid (133.0 mg, 85 %).

m.p.: 119 – 120 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.86 - 7.75 (m, 4 H), 7.73 - 7.66 (m, 2 H), 7.51 - 7.34 (m, 3 H), 6.01 (d, *J* = 7.6 Hz, 1 H), 5.90 - 5.79 (m, 1 H), 5.22 (dd, *J* = 0.9, 17.2 Hz, 1 H), 5.14 (dd, *J* = 0.9, 10.5 Hz, 1 H), 4.66 (quin, *J* = 6.8 Hz, 1 H), 3.67 (t, *J* = 7.3 Hz, 2 H), 1.73 - 1.53 (m, 4 H), 1.47 - 1.28 (m, 6 H); ¹³**C NMR** (100.6MHz, CDCl₃) δ = 168.5, 166.9, 138.5, 134.9, 133.9, 132.3, 131.5, 128.7, 127.0, 123.3, 115.1, 51.8, 38.0, 35.0, 29.1, 28.6, 26.8, 25.7; **HRMS-ESI** (MeOH, m/z): [M+Na]⁺ calcd for C₂₄H₂₇N₂O₃, 391.20162; found, 391.20123; **HPLC** (CHIRALCEL[®] OD3, *n*-heptane / EtOH = 85:15, 1 mL/min) t_R = 5.94 min (major), t_R = 7.21 min (minor), 84% *ee* (*R*); [*α*]²⁵_{*D*} = - 13.30 (c = 0.565, CHCl₃).

7 (R)-N-(5-phenoxypent-1-en-3-yl)benzamide (1g)

The reaction was performed with (penta-3,4-dien-1-yloxy)benzene (96.1 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, $R_f = 0.26$) to afford the product as a white solid (90.0 mg, 78 %).

m.p.: 94 – 95 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.85 - 7.79 (m, 2 H), 7.53 - 7.35 (m, 3 H), 7.32 - 7.25 (m, 2 H), 6.99 - 6.87 (m, 4 H), 5.92 (ddd, *J* = 5.3, 10.5, 17.2 Hz, 1 H), 5.27 (td, *J* = 1.4, 17.2 Hz, 1 H), 5.20 (td, *J* = 1.3, 10.5 Hz, 1 H), 5.00 - 4.89 (m, 1 H), 4.24 - 4.07 (m, 2 H), 2.32 - 2.22 (m, 1 H), 2.17 - 2.06 (m, 1 H); ¹³**C NMR** (100.6MHz, CDCl₃) δ = 166.8, 158.5, 137.3, 134.8, 131.5, 129.6, 128.6, 127.0, 121.2, 115.7, 114.6, 65.3, 50.4, 33.6; **HRMS-APCI** (MeOH, m/z): [M+H]⁺ calcd for C₁₈H₂₀NO₂, 282.1489; found, 282.1490; **HPLC** (CHIRALCEL[®] AD-H, *n*-heptane / ^{*i*}PrOH = 90:10, 1 mL/min) t_R = 14.53 min (major), t_R = 16.34 min (minor), 97% *ee* (**R**); [α]²⁵₂ = - 38.70 (c = 0.470, CHCl₃).

8 (R)-N-(6-(phenylthio)hex-1-en-3-yl)benzamide (1h)

The reaction was performed with hexa-4,5-dien-1-yl(phenyl)sulfane (114.2 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, $R_f = 0.20$) to afford the product as a yellowish solid (74.7 mg, 60 %).

m.p.: 59 – 60 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.76 - 7.71 (m, 2 H), 7.52 - 7.47 (m, 1 H), 7.45 - 7.39 (m, 2 H), 7.33 - 7.30 (m, 2 H), 7.27 - 7.22 (m, 2 H), 7.17 - 7.13 (m, 1 H), 6.00 (d, *J* = 8.0 Hz, 1 H), 5.84 (ddd, *J* = 5.7, 10.5, 17.2 Hz, 1 H), 5.23 (ddd, *J* = 1.0, 1.6, 17.2 Hz, 1 H), 5.15 (td, *J* = 1.3, 10.4 Hz, 1 H), 4.75 - 4.62 (m, 1 H), 3.04 - 2.91 (m, 2 H), 1.90 - 1.68 (m, 4 H); ¹³**C NMR** (100.6MHz, CDCl₃) δ = 166.9, 138.1, 136.4, 134.7, 131.6, 129.4, 129.0, 128.7, 127.0, 126.1, 115.5, 51.4, 33.9, 33.6, 25.5; **HRMS-APCI** (MeOH, m/z): [M+H]⁺ calcd for C₁₉H₂₂NOS, 312.14166; found, 312.14169; **HPLC** (CHIRALCEL[®] AD-3, *n*-heptane / EtOH = 85:15, 1 mL/min) t_R = 6.32 min (major), t_R = 6.90 min (minor), 96% *ee* (**R**); [α]_D²⁵ = - 6.70 (c = 0.420, CHCl₃).

9 (R)-N-(6-(phenylsulfonyl)hex-1-en-3-yl)benzamide (1i)

The reaction was performed with (hexa-4,5-dien-1-ylsulfonyl)benzene (133.4 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/2, $R_f = 0.16$) to afford the product as a yellowish oil (116.8 mg, 85 %).

¹**H** NMR (400MHz, CDCl₃) δ = 7.89 - 7.85 (m, 2 H), 7.75 - 7.71 (m, 2 H), 7.63 - 7.59 (m, 1 H), 7.54 - 7.49 (m, 3 H), 7.45 - 7.41 (m, 2 H), 6.08 (d, *J* = 8.7 Hz, 1 H), 5.82 (ddd, *J* = 5.8, 10.5, 17.2 Hz, 1 H), 5.26 - 5.20 (m, 1 H), 5.17 (td, *J* = 1.2, 10.4 Hz, 1 H), 4.67 - 4.58 (m, 1 H), 3.25 - 3.05 (m, 2 H), 1.93 - 1.61 (m, 4 H); ¹³C NMR (100.6MHz, CDCl₃) δ = 167.0, 139.2, 137.5, 134.4, 133.8, 131.7, 129.4, 128.7, 128.1, 127.0, 116.2, 55.7, 51.1, 33.3, 19.4; **HRMS-APCI** (MeOH, m/z): $[M+H]^+$ calcd for C₁₉H₂₂NO₃S, 344.13149; found, 344.13165; **HPLC** (CHIRALCEL[®] AD3, *n*-heptane / ^{*i*}PrOH = 85:15, 1 mL/min) t_R = 16.53 min (major), t_R = 17.96 min (minor), 93% *ee* (**R**); $[\boldsymbol{\alpha}]_D^{25} = + 11.10$ (c = 0.345, CHCl₃).

One-pot Synthesis of Allylic Amides

Step 1, **Hydroamination**: To a Schlenk tube was added [Rh(COD)Cl]₂ (3.94 mg, 0.008 mmol, 2 mol%), Ligand L4 (9.70 mg, 0.016 mmol, 4 mol%), PPTS (20.1 mg, 0.08 mmol, 20%), benzophenone imine (72.5 mg, 0.4 mmol, 1.0 equiv), DCE (1.0 ml, 0.4 M) and Hexa-4,5-dien-1-ylbenzene (47.5 mg, 0.6 mmol, 1.5 equiv). The Schlenk tube was sealed and the mixture was stirred for 18 h at 80 °C. After cooling to room temperature, the solvent was removed under vacuum.

Step 2, **Hydrolysis**: To the hydroamination reaction mixture of *step 1* was added Et_2O (2.0 ml) and HCl aq. (2.0 ml, 2.0 M, 4 mmol) sequentially. The reaction was stirred at r.t for 24 hours. The volatiles were removed under vacuum.

Step 3, **Amide formation**: To the resulting allylic amine HCl salt curde mixture of *step 2* was added CH_2Cl_2 (2.0 ml) and Et_3N (223 µl, 161.9 mg, 1.6 mmol, 4.0 equiv) and corresponding acyl/sulfonyl chlorides or anhydride (0.6 mmol, 1.5 equiv) sequentially. The reaction mixture was stirred for 3 hours. The volatiles were removed and the residue was purified by FCC to give the desired allylic amides.

Synthesis and characterization of allylic amides (2a-d)

1 (R)-tert-butyl (6-phenylhex-1-en-3-yl)carbamate (2a)

The reaction was performed with di-*tert*-butyl dicarbonate (130.9 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/20, $R_f = 0.30$) to afford the product as a white solid (88.2 mg, 80 %).

m.p.: 35 – 36 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.30 - 7.25 (m, 2 H), 7.21 - 7.15 (m, 3 H), 5.73 (ddd, J = 5.7, 10.4, 17.1 Hz, 1 H), 5.14 (td, J = 1.4, 17.2 Hz, 1 H), 5.08 (td, J = 1.4, 10.4 Hz, 1 H), 4.41 (br. s., 1 H), 4.21 - 4.04 (m, 1 H), 2.70 - 2.57 (m, 2 H), 1.73 - 1.64 (m, 2 H), 1.62 - 1.47 (m, 2 H), 1.45 - 1.44 (m, 9 H); ¹³C **NMR** (100.6MHz, CDCl₃) δ = 155.5, 142.3, 139.1, 128.5, 128.4, 125.9, 114.5, 35.7, 34.9, 28.5, 27.6; **HRMS-APCI** (MeOH, m/z): [M+NH₄]⁺ calcd for C₁₇H₂₉N₂O₂, 293.22235; found, 293.22235; **HPLC** (CHIRALCEL[®] L-A2, *n*-heptane / EtOH = 98:2, 1 mL/min) t_R = 10.14 min (major), t_R = 12.74 min (minor), 95% *ee* (**R**); [α]²⁵_D = - 13.90 (c = 0.392, CHCl₃).

2 (R)-4-methyl-N-(6-phenylhex-1-en-3-yl)benzenesulfonamide (2b)

The reaction was performed with 4-methylbenzene-1-sulfonyl chloride (114.0 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, $R_f = 0.40$) to afford the product as a white solid (98.8 mg, 75 %).

m.p.: 40 – 41 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.74 - 7.69 (m, 2 H), 7.29 - 7.23 (m, 4 H), 7.20 - 7.15 (m, 1 H), 7.11 - 7.06 (m, 2 H), 5.53 (ddd, J = 6.4, 10.5, 17.1 Hz, 1 H), 5.00 - 4.93 (m, 2 H), 4.50 - 4.36 (m, 1 H), 3.85 - 3.73 (m, 1 H), 2.56 - 2.50 (m, 2 H), 2.41 (s, 3 H), 1.66 - 1.45 (m, 4 H); ¹³C **NMR** (101MHz, CDCl₃) δ = 143.3, 141.9, 138.3, 137.8, 129.6, 128.45, 128.42, 127.3, 125.9, 116.1, 56.3, 35.4, 35.2, 27.1, 21.6; **HRMS-ESI** (MeOH, m/z): [M+Na]⁺ calcd for C₁₉H₂₃NO₂SNa, 352.13417; found, 352.13437; **HPLC** (CHIRALCEL[®] AD-3, *n*-heptane / EtOH = 90:10, 1 mL/min) t_R = 7.94 min (major), t_R = 9.65 min (minor), 95% *ee* (**R**); [**\alpha**]²⁵ = - 20.00 (c = 0.522, CHCl₃).

3 (*R*)-*N*-(6-phenylhex-1-en-3-yl)acrylamide (2c)

The reaction was performed with acryloyl chloride (54.0 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/2, $R_f = 0.36$) to afford the product as a yellowish oil (64.2 mg, 70 %).

¹**H** NMR (400MHz, CDCl₃) δ = 7.35 - 7.27 (m, 2 H), 7.21 - 7.14 (m, 3 H), 6.28 (dd, *J* = 1.4, 16.9 Hz, 1 H), 6.12 - 6.04 (m, 1 H), 5.76 (ddd, *J* = 5.8, 10.4, 17.2 Hz, 1 H), 5.64 (dd, *J* = 1.5, 10.3 Hz, 1 H), 5.38 (br. s., 1 H), 5.21 - 5.14 (m, 1 H), 5.11 (td, *J* = 1.3, 10.4 Hz, 1 H), 4.63 - 4.53 (m, 1 H), 2.67 - 2.61 (m, 2 H), 1.72 - 1.55 (m, 4 H); ¹³C NMR (100.6MHz, CDCl₃) δ = 164.9, 142.1, 138.2, 131.0, 128.53, 128.46, 126.6, 126.0, 115.3, 51.4, 35.7, 34.5, 27.6; **HRMS-ESI** (MeOH, m/z): [M+H]⁺ calcd for C₁₅H₂₀NO, 230.15394; found, 230.15413; **HPLC** (CHIRALCEL[®] L-A2, *n*-heptane / EtOH = 95:5, 1 mL/min) t_R = 17.09 min (major), t_R = 23.61 min (minor), 95% *ee* (**R**); [*α*]²_D⁵ = + 13.30 (c = 0.541, CHCl₃).

4 (R)-N-(6-phenylhex-1-en-3-yl)pent-4-enamide (2d)

HN Ph

The reaction was performed with pent-4-enoyl chloride (71.1 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/2, $R_f = 0.32$) to afford the product as a yellowish oil (77.2 mg, 75 %).

¹**H NMR** (400MHz, CDCl₃) δ = 7.30 - 7.26 (m, 2 H), 7.20 - 7.14 (m, 3 H), 5.88 - 5.69 (m, 2 H), 5.32 (d, *J* = 8.3 Hz, 1 H), 5.16 - 5.04 (m, 3 H), 5.00 (tdd, *J* = 1.2, 2.0, 10.2 Hz, 1 H), 4.51 (ttdd, *J* = 1.5, 6.0, 7.4, 8.8 Hz, 1 H), 2.70 - 2.56 (m, 2 H), 2.44 - 2.36 (m, 2 H), 2.31 - 2.24 (m, 2 H), 1.71 - 1.47 (m, 4 H); ¹³**C NMR** (100.6MHz, CDCl₃) δ = 171.6, 142.1, 138.5, 137.2, 128.5, 128.4, 125.9, 115.8, 115.0, 51.1, 36.2, 35.7, 34.5, 29.8, 27.6;

HRMS-ESI (MeOH, m/z): $[M+H]^+$ calcd for C₁₇H₂₄NO, 258.18524; found, 258.18546; **HPLC** (CHIRALCEL[®] AD-3, *n*-heptane / EtOH = 97:3, 1 mL/min) t_R = 11.33 min (major), t_R = 15.00 min (minor), 95% *ee* (**R**); $[\alpha]_D^{25} = -8.20$ (c = 0.511, CHCl₃).

Hydroamination of Bioactive Moieties Containing Substrates

Following the scope conditions, late-stage hydroamination with bioactive moiety containing substrates resulted in the desired branched allylic amines (**3a-d**). The *ee* values of compounds (**3a**, **3b**, **3c** and **3d**) were measured via their derivatives (**3aee**, **3bee**, **3cee** and **3dee** respectively), which were derived from (**3a-3d**) according to the literature procedure via transesterification with ethanol.^[5]

1 (*R*)-(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 4-benzamidohex-5-enoate (3a)

The reaction was performed with (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl hexa-4,5-dienoate (150.2 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, R_f = 0.30) to afford the product as a yellowish oil (116.0 mg, 78 %).

¹**H NMR** (500MHz, CDCl₃, mixture of diastereoisomers) $\delta = 7.82 - 7.78$ (m, 2 H), 7.51 - 7.47 (m, 1 H), 7.45 - 7.40 (m, 2 H), 6.48 (d, J = 7.3 Hz, 1 H), 5.86 (ddd, J = 5.6, 10.4, 17.2 Hz, 1 H), 5.29 - 5.23 (m, 1 H), 5.18 (td, J = 1.3, 10.4 Hz, 1 H), 4.73 - 4.65 (m, 2 H), 2.51 - 2.37 (m, 2 H), 2.07 - 1.95 (m, 3 H), 1.85 - 1.73 (m, 1 H), 1.71 - 1.63 (m, 2 H), 1.53 - 1.43 (m, 1 H), 1.39 - 1.32 (m, 1 H), 1.09 - 0.92 (m, 2 H), 0.91 - 0.89 (m, 3 H), 0.86 - 0.83 (m, 3 H), 0.67 (d, J = 7.0 Hz, 3 H); ¹³**C NMR** (126MHz, CDCl₃, mixture of diastereoisomers) $\delta = 173.7$, 166.9, 137.7, 134.5, 131.6, 128.6, 127.1, 115.7, 74.8, 51.9, 47.0, 41.0, 34.3, 31.5, 31.3, 29.2, 26.4, 23.5, 22.1, 20.8, 16.3; **HRMS-APCI** (MeOH, m/z): [M+H]⁺ calcd for C₂₃H₃₄O₃N, 372.25332; found, 372.25345. [α]²⁵_D = - 16.20 (c = 0.420, CHCl₃).

The *ee* value of **3a** was measured via its derivative (*R*)-ethyl 4-benzamidohex-5-enoate (**3aee**).

¹**H** NMR (400MHz, CDCl₃) δ = 7.83 - 7.78 (m, 2 H), 7.53 - 7.41 (m, 3 H), 6.45 (d, *J* = 7.8 Hz, 1 H), 5.91 - 5.80 (m, 1 H), 5.29 - 5.22 (m, 1 H), 5.20 - 5.16 (m, 1 H), 4.76 - 4.66 (m, 1 H), 4.17 - 4.03 (m, 2 H), 2.56 - 2.37 (m, 2 H), 2.10 - 1.92 (m, 2 H), 1.20 (t, *J* = 7.1 Hz, 3 H); ¹³**C** NMR (101MHz, CDCl₃) δ = 174.1, 166.8, 137.7, 134.5, 131.6, 128.7, 127.0, 115.7, 60.8, 51.8, 31.0, 29.3, 14.3; **HRMS-APCI** (MeOH, m/z): [M+H]⁺ calcd for C₁₅H₂₀O₃N, 262.14377; found, 262.14383. **HPLC** (CHIRALCEL[®] OD3, n-Heptane / ^{*i*}PrOH = 90:10, 1.0 mL/min) t_R = 6.12 min (major), t_R = 7.60 min (minor), 92% *ee* (**R**); [α]_D²⁵ = - 14.70 (c = 0.380, CHCl₃).

2 (R)-(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 5-benzamidohept-6-enoate (3b)

The reaction was performed with (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl hepta-5,6-dienoate (158.6 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, R_f = 0.30) to afford the product as a yellowish oil (140.3 mg, 91 %).

¹**H** NMR (500MHz, CDCl₃, mixture of diastereoisomers) $\delta = 7.82 - 7.77$ (m, 2 H), 7.52 - 7.47 (m, 1 H), 7.45 - 7.41 (m, 2 H), 6.19 (d, J = 7.9 Hz, 1 H), 5.85 (ddd, J = 5.6, 10.4, 17.2 Hz, 1 H), 5.24 (td, J = 1.3, 17.2 Hz, 1 H), 5.16 (td, J = 1.3, 10.4 Hz, 1 H), 4.72 - 4.63 (m, 2 H), 2.39 - 2.29 (m, 2 H), 2.00 - 1.93 (m, 1 H), 1.87 - 1.80 (m, 1 H), 1.79 - 1.62 (m, 5 H), 1.54 - 1.43 (m, 1 H), 1.39 - 1.31 (m, 1 H), 1.09 - 0.92 (m, 2 H), 0.91 - 0.72 (m, 10 H); 1³C NMR (126MHz, CDCl₃, mixture of diastereoisomers) $\delta = 173.1$, 167.0, 138.1, 134.7, 131.6, 128.7, 127.0, 115.4, 74.3, 51.6, 47.1, 41.1, 34.4, 34.2, 31.5, 26.4, 23.5, 22.1, 21.3, 20.8, 16.4; HRMS-APCI (MeOH, m/z): [M+H]⁺ calcd for C₂₄H₃₆O₃N, 386.26897; found, 386.26892. [α]²⁵_{*p*} = -13.10 (c = 0.477, CHCl₃).

The *ee* value of **3b** was measured via its derivative (*R*)-ethyl 5-benzamidohept-6-enoate (**3bee**).

¹**H** NMR (400MHz, CDCl₃) $\delta = 7.82 - 7.78$ (m, 2 H), 7.52 - 7.48 (m, 1 H), 7.46 - 7.41 (m, 2 H), 6.13 (d, J = 8.1 Hz, 1 H), 5.86 (ddd, J = 5.7, 10.4, 17.2 Hz, 1 H), 5.29 - 5.22 (m, 1 H), 5.16 (td, J = 1.3, 10.4 Hz, 1 H), 4.73 - 4.63 (m, 1 H), 4.13 (q, J = 7.1 Hz, 2 H), 2.40 - 2.33 (m, 2 H), 1.79 - 1.59 (m, 4 H), 1.25 (t, J = 7.1 Hz, 3 H); ¹³C NMR (101MHz, CDCl₃) $\delta = 173.5$, 167.0, 138.2, 134.8, 131.6, 128.7, 127.0, 115.5, 60.5, 51.6, 34.2, 33.9, 21.2, 14.4; HRMS-APCI (MeOH, m/z): [M+H]⁺ calcd for C₁₆H₂₂O₃N, 276.15942; found, 276.15930. HPLC (CHIRALCEL[®] L-C1, n-Heptane / ^{*i*}PrOH = 95:5, 1.0 mL/min) t_R = 17.02 min (major), t_R = 20.81 min (minor), 97% *ee* (**R**); [α]²⁵ = - 12.00 (c = 0.500, CHCl₃).

3 (*R*)-(1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 5-benzamidohept-6-enoate (**3c**)

The reaction was performed with (1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl hepta-5,6-dienoate (157.4 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, R_f = 0.23) to afford the product as a yellowish oil (130.4 mg, 85 %).

¹**H** NMR (500MHz, CDCl₃, mixture of diastereoisomers) $\delta = 7.83 - 7.77$ (m, 2 H), 7.52 - 7.47 (m, 1 H), 7.45 - 7.39 (m, 2 H), 6.45 - 6.37 (m, 1 H), 5.87 - 5.74 (m, 1 H), 5.26 - 5.10 (m, 2 H), 4.69 - 4.59 (m, 2 H), 2.38 - 2.24 (m, 2 H), 1.83 - 1.46 (m, 9 H), 1.16 - 0.99 (m, 2 H), 0.91 (s, 3 H), 0.80 - 0.77 (m, 6 H); ¹³C NMR (126MHz, CDCl₃, mixture of diastereoisomers) $\delta = 173.0$, 167.0, 138.1, 134.7, 131.5, 128.6, 127.0, 115.4, 81.1, 51.6, 48.7, 47.0,

45.1, 38.9, 34.3, 34.2, 33.8, 27.1, 21.3, 20.2, 20.0, 11.6; **HRMS-APCI** (MeOH, m/z): $[M+Na]^+$ calcd for C₂₄H₃₃O₃NNa, 406.23527; found, 406.23532. $[\alpha]_D^{25} = -13.20$ (c = 0.431, CHCl₃).

The *ee* value of **3c** was measured via its derivative **3cee**.

HPLC (CHIRALCEL[®] L-C1, n-Heptane / ^{*i*}PrOH = 95:5, 1.0 mL/min) $t_R = 16.66 \text{ min (major)}, t_R = 20.39 \text{ min (minor)}, 95\% ee ($ **R** $); <math>[\alpha]_D^{25} = -14.30 \text{ (c} = 0.560, \text{CHCl}_3).$

4 (R) - (3R, 5R, 8S, 9R, 10R, 13S, 14R, 17S) - 10, 13 - dimethyl - 17 - ((S) - 6 - methyl heptan - 2 - yl)hexadecahydro - 1H - cyclopenta[a]phenanthren - 3 - yl 5 - benzamidohept - 6 - enoate (3d)

The reaction was performed with (3R,5R,8S,9R,10R,13S,14R,17S)-10,13-dimethyl-17-((*S*)-6-methylheptan-2-yl)hexadecahydro-1*H*-cyclopenta[a]phenanthren-3-yl hepta-5,6-dienoate (298.1 mg, 0.6 mmol). The crude product was purified by FCC on silica gel (EA/CH = 1/4, R_f = 0.30) to afford the product as a yellowish oil (173.0 mg, 70 %).

¹**H NMR** (500MHz, CDCl₃, mixture of diastereoisomers) $\delta = 7.84 - 7.79$ (m, 2 H), 7.54 - 7.49 (m, 1 H), 7.47 - 7.41 (m, 2 H), 6.43 - 6.36 (m, 1 H), 5.88 - 5.77 (m, 1 H), 5.27 - 5.10 (m, 2 H), 4.72 - 4.58 (m, 2 H), 3.62 - 3.52 (m, 1 H), 2.39 - 2.25 (m, 2 H), 1.96 - 1.88 (m, 2 H), 1.81 - 0.57 (m, 47 H); ¹³**C NMR** (126MHz, CDCl₃, mixture of diastereoisomers) $\delta = 173.1$, 167.0, 138.2, 134.7, 131.6, 128.7, 127.0, 115.4, 73.9, 71.5, 56.6, 56.5, 56.4, 56.4, 54.5, 54.3, 51.6, 45.0, 44.8, 42.7, 40.2, 40.1, 39.6, 38.4, 37.1, 36.9, 36.3, 35.9, 35.6, 35.6, 34.2, 34.2, 34.2, 32.2, 32.1, 31.7, 28.9, 28.7, 28.4, 28.1, 27.6, 24.3, 24.3, 24.0, 22.9, 22.7, 21.4, 21.3, 21.3, 18.8, 12.5, 12.3, 12.2; **HRMS-APCI** (MeOH, m/z): $[M+H]^+$ calcd for C₄₁H₆₄O₃N, 618.48807; found, 618.48755. $[\alpha]_D^{25} = -42.10$ (c = 0.421, CHCl₃).

The ee value of 3d was measured via its derivative 3dee.

HPLC (CHIRALCEL[®] L-C1, n-Heptane / ^{*i*}PrOH = 95:5, 1.0 mL/min) $t_R = 16.66$ min (major), $t_R = 2.36$ min (minor), 96% *ee* (**R**); $[\alpha]_D^{25} = -36.40$ (c = 0.440, CHCl₃).

Large Scale Synthesis of Primary Allylic Amines

Step 1, **Hydroamination**: To a Schlenk tube was added $[Rh(COD)CI]_2$ (59.2 mg, 0.12 mmol, 2 mol%), Ligand L4 (145.6 mg, 0.24 mmol, 4 mol%), PPTS (301.6 mg, 1.2 mmol, 20%), benzophenone imine (1.09 g, 6.0 mmol, 1.0 equiv), DCE (15 ml, 0.4 M) and hexa-4,5-dien-1-ylbenzene (1.42 g, 9.0 mmol, 1.5 equiv). The Schlenk tube was sealed and the mixture was stirred for 18 h at 80 °C. After cooling to room temperature, the solvent was removed under vacuum.

Step 2, **Hydrolysis**: To the hydroamination reaction mixture of *step 1* was added Et_2O (30 ml) and HCl aq. (30 ml, 2.0 M, 4 mmol) sequentially. The reaction was stirred at r.t for 24 hours. The volatiles were removed under vacuum.

Step 3, **Purification**: The two phase mixture was separated, the aqueous phase was extracted with Et₂O (20 ml x 3). 1) The combined organic phase was concentrated via rotary evaporation, and the organic residue was purified via FCC to recycle the benzophenone (EA/CH = 1/15, 1.05 g, 96% yield). 2) Water in the aqueous phase was removed via azeotropic distillation with toluene. The resulted solid was washed with cold Et₂O then pentane to obtain the desired HCl salt (*R*)-6-phenylhex-1-en-3-aminium chloride (**4**) as a white solid (1.10 g, 86% yield). The *ee* value of compound **4** was measured via its amide derivative (**4ee**) after benzoyl protection following the scope condition. The enantiomeric excess of compound **4ee** is the same with **1e** (95% *ee*).

m.p.: 135-136 °C; ¹**H NMR** (400MHz, CDCl₃) $\delta = 8.58$ (br. s., 3 H), 7.31 - 7.23 (m, 2 H), 7.21 - 7.12 (m, 3 H), 5.86 (ddd, J = 7.6, 10.1, 17.3 Hz, 1 H), 5.44 (d, J = 17.2 Hz, 1 H), 5.35 (d, J = 10.5 Hz, 1 H), 3.71 (m, 1 H), 2.70 - 2.55 (m, 2 H), 2.01 - 1.91 (m, 1 H), 1.87 - 1.79 (m, 1 H), 1.77 - 1.68 (m, 2 H); ¹³**C NMR** (101MHz, CDCl₃) $\delta = 141.5, 133.4, 128.5, 128.5, 126.1, 121.0, 54.6, 35.4, 33.0, 27.2;$ **HRMS-ESI** $(MeOH, m/z): [M-Cl]⁺ calcd for C₁₂H₁₈N, 176.14338; found, 176.14349. <math>[\boldsymbol{\alpha}]_{D}^{25} = -10.80$ (c = 0.300, CHCl₃).

Derivatization of Allylic Amides

1 Synthesis of (*R*)-*tert*-butyl (1-hydroxy-5-phenylpentan-2-yl)carbamate (5a)

The reaction was performed according to the modified literature procedure.^[6a] Allylic amine **2a** (110.2 mg, 0.4 mmol) was dissolved in CH₂Cl₂ (4.0 ml, 0.1 M) and cooled to -78 °C. Ozone was directly bubbled in the solution. When the solution remained light blue about 5 min, indicating excess ozone, the ozone flow was stopped and N₂ was bubbled for 15 min to remove excess of ozone. The solvent was removed via rotary evaporation, the resulted ozonide was dissolved in methanol (4.0 ml), then NaBH₄ (454.0 mg, 12 mmol) was added at 0 °C. The resulting slurry was stirred at r.t. for 10 hours, then HCl (aq. 1.0 M) was slowly added to the mixture at 0 °C to quenched excess NaBH₄. Water and Et₂O were added and the aqueous phase was separated, and extracted with Et₂O. The combined organic phases were washed with brined, MgSO₄, then filtered and concentrated under vacuum. The crude product was purified by FCC on silica gel (EA/CH = 1/4, R_f = 0.33) to afford the product as a white solid (100.6 mg, 90 %).

m.p.: 67 – 68 °C; ¹**H NMR** (500MHz, CDCl₃) δ = 7.30 - 7.25 (m, 2 H), 7.21 - 7.14 (m, 3 H), 4.62 (d, *J* = 7.9 Hz, 1 H), 3.65 (d, *J* = 8.7 Hz, 2 H), 3.58 - 3.48 (m, 1 H), 2.70 - 2.57 (m, 2 H), 1.77 - 1.62 (m, 2 H), 1.60 - 1.51 (m, 1 H), 1.49 - 1.40 (m, 10 H); ¹³**C NMR** (126MHz, CDCl₃) δ = 156.6, 142.1, 128.5, 128.4, 125.9, 79.8, 66.1, 52.8, 35.7, 31.2, 28.0; **HRMS-ESI** (MeOH, m/z): [M+Na]⁺ calcd for C₁₆H₂₅NO₃Na, 302.17266; found, 302.17282; **HPLC** (CHIRALCEL[®] LC-1, *n*-heptane / ^{*i*}PrOH = 95:5, 1 mL/min) t_{*R*} = 8.95 min (minor), t_{*R*} = 10.15 min (major), 95% *ee* (*R*); [α]_{*D*}²⁵ = -4.50 (c = 0.375, CHCl₃).

2 Synthesis of (*R*)-tert-butyl (1-oxo-5-phenylpentan-2-yl)carbamate (5b)

Ph____O

The reaction was performed according to the modified literature procedure.^[6a] Allylic amine **2a** (110.2 mg, 0.4 mmol) was dissolved in CH₂Cl₂ (4.0 ml, 0.1 M) and cooled to -78 °C. Ozone was directly bubbled in the solution. When the solution remained light blue about 5 min, indicating excess ozone, the ozone flow was stopped and N₂ was bubbled for 15 min to remove excess of ozone. To the reaction mixture was added PPh₃ (104.9 mg, 0.4 mmol) at -78 °C, and the resulting solution was stirred at r.t. for 2 hours. The crude reaction mixture was concentrated and purified by FCC on silica gel (EA/CH = 1/4, R_f = 0.33) to afford the product as a yellowish solid (94.3 mg, 85 %). The *ee* value of **5b** was obtained according to the *ee* of its derivative (**5a**).

m.p.: 50 – 51 °C; ¹**H NMR** (500MHz, CDCl₃) δ = 9.55 (s, 1 H), 7.30 - 7.26 (m, 2 H), 7.21 - 7.14 (m, 3 H), 5.06 (m, 1 H), 4.25 (m, 1 H), 2.73 - 2.57 (m, 2 H), 1.96 - 1.86 (m, 1 H), 1.78 - 1.64 (m, 2 H), 1.62 - 1.53 (m, 1 H), 1.45 (s, 9 H); ¹³**C NMR** (126MHz, CDCl₃) δ = 199.8, 155.6, 141.5, 128.5, 128.4, 126.1, 80.2, 59.8, 35.5, 28.8, 28.4, 27.0; **HRMS-ESI** (MeOH, m/z): [M+Na]⁺ calcd for C₁₆H₂₃NO₃Na, 300.15701; found, 300.15714; $[\alpha]_D^{25} = -137.60$ (c = 0.300, CHCl₃).

3 Synthesis of (*R*)-2-((tert-butoxycarbonyl)amino)-5-phenylpentanoic acid (**5c**)

Ph OH

The reaction was performed according to the modified literature procedure.^[6b] Allylic amine **2a** (70.0 mg, 0.25 mmol) was dissolved in a mixture of CH₃CN/CCl₄/H₂O (2.0 ml/2.0 ml/3.0 ml), then NaIO₄ (219.2 mg, 1.025 mmol, 4.1 equiv) and ruthenium trichloride hydrate (1.1 mg, 0.0055 mmol, 2.2%) were added subsequently. The reaction mixture was vigorously stirred at room temperature for 2 hours. The CH₂Cl₂ (10 ml) was added and the phases were separated. The upper aqueous phase was extracted three times with CH₂Cl₂. The combined organic extracts were dried over MgSO₄, filtered and concentrated. The crude mixture was purified by FCC on silica gel (CH₃OH/CH₂Cl₂ = 1/16, R_f = 0.30) to afford the product as a yellowish oil (60.0 mg, 82 %). The *ee* value of **5c** was obtained according to the *ee* of its derivative (**5a**).

¹**H** NMR (400MHz, CDCl₃) δ = 7.30 - 7.25 (m, 2 H), 7.21 - 7.14 (m, 3 H), 4.94 (br. s., 1 H), 4.41 - 4.26 (m, 1 H), 2.72 - 2.57 (m, 2 H), 1.97 - 1.83 (m, 1 H), 1.80 - 1.63 (m, 3 H), 1.44 (s, 9 H); ¹³C NMR (101MHz, CDCl₃) δ = 177.2, 155.8, 141.7, 128.5, 126.1, 80.4, 53.3, 35.4, 32.0, 28.4, 27.2; **HRMS-APCI** (MeOH, m/z): [M+NH₄]⁺ calcd for C₁₆H₂₇N₂O₄, 311.19653; found, 311.19638; $[\alpha]_D^{25} = + 3.10$ (c = 0.315, CHCl₃).

4 Synthesis of (R)-tert-butyl (1-hydroxy-6-phenylhexan-3-yl)carbamate (5d)

The reaction was performed according to the modified literature procedure.^[6a] Allylic amine **2a** (251.0 mg, 0.9 mmol) was dissolved in THF (10 ml) and cooled to -78 °C, then 9-BBN (4.6 ml, 272.5 mg, 2.25 mmol, 0.5 M in THF) was slowly added. The reaction was stirred for 15 min at 0 °C, and then slowly warmed up to room temperature, at which it was stirred overnight. The reaction mixture was cooled to -10 °C, then EtOH (1.0 ml), NaOH (1.0 ml, 2 M) and H₂O₂ (1.0 ml, 30% in H₂O) were added slowly in the given order. The reaction was warmed up to room temperature and stirred for 3 hours. The reaction mixture was diluted with dichloromethane and transferred into a separation funnel. The aqueous phase was extracted with dichloromethane (3x), the combined organic layers were dried over Na₂SO₄, filtered and concentrated by rotary evaporation. The crude product was purified by FCC on silica gel (EA/CH = 1/2, R_f = 0.33) to afford the product as a white solid (252.0 mg, 95 %).

m.p.: 67 – 68 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.31 - 7.25 (m, 2 H), 7.22 - 7.14 (m, 3 H), 4.31 (br. s., 1 H), 3.85 - 3.72 (m, 1 H), 3.67 - 3.55 (m, 2 H), 2.72 - 2.27 (m, 3 H), 1.87 - 1.61 (m, 3 H), 1.57 - 1.35 (m, 11 H), 1.34 - 1.20 (m, 1 H); ¹³**C NMR** (101MHz, CDCl₃) δ = 157.2, 142.1, 128.50, 128.46, 125.9, 79.9, 58.9, 47.3, 39.2, 35.7, 35.3, 28.5, 28.1; **HRMS-ESI** (MeOH, m/z): [M]⁺ calcd for C₁₇H₂₇NO₃Na, 316.18831; found, 316.18848; **HPLC** (CHIRALCEL[®] AD-3, *n*-heptane / EtOH = 90:10, 1 mL/min) t_R = 3.79 min (minor), t_R = 4.58 min (major), 95% *ee* (**R**); [α]²⁵ = - 6.40 (c = 0.375, CHCl₃).

5 Synthesis of (*R*)-tert-butyl (1-oxo-6-phenylhexan-3-yl)carbamate (**5e**)

The reaction was performed according to the modified literature procedure.^[6c] To a solution of **5d** (58.7 mg, 0.2 mmol) in DMSO (0.5 ml) was added Et₃N (80 µl, 0.6 mmol). The solution was cooled to 0 °C and sulfur trioxide pyridine complex (95.0 mg, 0.6 mmol) in DMSO (0.5 ml) was added. The mixture was stirred at r.t. for 1 hour, then poured into ice-water and extracted with ethyl acetate. The combined organic layers were washed with acetic acid (10%), water, NaHCO₃ (5%) and brine. The organic residue was dried over MgSO₄, filtered and concentrated. The crude reaction mixture was purified by FCC on silica gel (EA/CH = 1/4, $R_f = 0.30$) to afford the product as a colorless oil (51.3 mg, 88 %). The *ee* value of **5e** was obtained according to the *ee* of its derivative (**5d**).

¹**H** NMR (400MHz, CDCl₃) δ = 9.75 - 9.73 (m, 1 H), 7.30 - 7.24 (m, 2 H), 7.21 - 7.14 (m, 3 H), 4.71 - 4.53 (m, 1 H), 4.12 - 3.99 (m, 1 H), 2.69 - 2.50 (m, 4 H), 1.78 - 1.51 (m, 4 H), 1.43 (s, 9 H); ¹³**C** NMR (101MHz, CDCl₃) δ = 201.1, 155.5, 142.0, 128.5, 126.0, 79.7, 49.3, 46.5, 35.5, 34.7, 28.5, 28.0; **HRMS-APCI** (MeOH, m/z): [M+H]⁺ calcd for C₁₇H₂₆NO₃, 292.19072; found, 292.19061; $[\alpha]_D^{25} = +10.00$ (c = 0.350, CHCl₃).

6 Synthesis of (R)-3-((tert-butoxycarbonyl)amino)-6-phenylhexanoic acid (5f)

Ph____CO₂H

The reaction was performed according to the modified literature procedure.^[6d] A mixture of **5c** (234.7 mg, 0.8 mmol), PhI(OAc)₂ (515.4 mg, 1.6 mmol), and TEMPO (37.5 mg, 0.24 mmol) was stirred in aq. CH₃CN (1/1, 1.5 ml) at room temperature overnight. The mixture was extracted with ethyl acetate, then the organic phase was extracted with aq. NaHCO₃. The aqueous solution was acidified to pH 3 using aq. Citric acid (5%), then extracted with EA. The combined organic phases was dried over MgSO₄ and concentrated. The crude product was purified by FCC on silica gel (MeOH/CH₂Cl₂ = 1/16, R_f = 0.30) to afford the product as a white solid (118.0 mg, 48 %). The *ee* value of **5f** was obtained according to the *ee* of its precursor (**5d**).

m.p.: 109 – 110 °C; ¹**H NMR** (400MHz, CDCl₃) δ = 7.30 - 7.25 (m, 2 H), 7.20 - 7.14 (m, 3 H), 4.89 (br. s., 1 H), 4.05 - 3.77 (m, 1 H), 2.72 - 2.44 (m, 4 H), 1.77 - 1.52 (m, 4 H), 1.44 (s, 9 H); ¹³**C NMR** (101MHz, CDCl₃) δ = 176.6, 155.8, 142.1, 128.5, 128.4, 125.9, 79.7, 47.4, 39.4, 35.6, 34.2, 28.5, 28.0; **HRMS-ESI** (MeOH, m/z): [M]⁺ calcd for C₁₇H₂₅NO₄Na, 330.16758; found, 330.16776; $[\alpha]_D^{25} = +7.70$ (c = 0.330, CHCl₃).

Mechanistic Investigations

1 Isotopic-labeling experiments

NH/D	/D _ Ph.	[Rh(COD)Cl] ₂ (2.0 mmol%) L4 (4.0 mmol%) H/D-PPTS (20 mmol%)	Et ₂ O, HCl aq. (10 equiv.)	1) Et ₃ N (4.0 equiv.) 2) BzCl (1.5 equiv.)	BzHN H/D (℃)
Ph Ph	· () ₃	DCE (0.4 M), 80 °C, 18 h	r t	DCM (0.2 M, 2.0 ml)	Ph $H/D(b)$
1.0 equiv.	1.5 equiv.			0 °C to r.t	μ/D(a)

The reactions were performed according to the scope procedure using deuterated samples. The crude products were purified by flash column chromatography on silica gel (EA / CH = 1:30, $R_f = 0.35$) to afford the deuterated products.

2 Results

Nr.	Ph ₂ C=NH/D	H/D-PPTS	Yield	Deuterium Distribution
1	Ph ₂ C=NH	D-PPTS	84%	$H_a=8\%$, $H_b=H_c=0$
2	Ph ₂ C=ND	H-PPTS	79%	$H_a = 29\%, H_b = H_c = 0$
3	Ph ₂ C=ND	D-PPTS	75%	$H_a = 34\%, H_b = H_c = 0$
4	Ph ₂ C=ND	-	34%	$H_a = 32\%, H_b = H_c = 0$

3 ¹H NMR of isotopic labeling experiments

4 Proposed mechanism

References

1 a) Kuang, J.; Ma, S. J. Org. Chem. 1999, 74, 1763-1765. b) Xu, K.; Thieme, N.; Breit, B. Angew. Chem. Int. Ed. 2014, 53, 2162-2165.

2 Hou, Z.; Yoda, C.; Koizumi, T.; Nishiura, M.; Wakatsuki, Y.; Fukuzawa, S.; Takats, J. Organometallics. 2003, 22, 3586-3592.

3 Manley, D. W.; Walton, J. C. Org. Lett. 2014, 16, 5394-5397.

4 Lafrance, M.; Roggen, M.; Carreira, E. M. Angew. Chem. Int. Ed. 2012, 51, 3470-3473.

5 Veitch, G. E.; Bridgwood, K. L.; Ley, S. V. Org. Lett. 2008, 10, 3623-3625.

6 a) Xu, K.; Thieme, N.; Breit, B. *Angew. Chem. Int. Ed.* **2014**, *53*, 7268-7271. b) Singh, O. V.; Han, H. *Tetrahedron Lett.* **2007**, *48*, 7094-7098. c) Panek, J. S.; Masse, C. E. J. Org. Chem. **1997**, *62*, 8290-8291. d) Bollans, L.; Bacsa, J.; O'Farrell, D. A.; Waterson, S.; Stachulski, A. V. Tetrahedron. Lett. **2010**, *51*, 2160-2163.

¹H NMR and ¹³C NMR spectra

(S)-N-(1-cyclohexylallyl)benzamide (1a)

(S)-N-(1-cyclopentylallyl)benzamide (1b)

(*R*)-*N*-(hexadec-1-en-3-yl)benzamide (1c)

(*R*)-*N*-(5-phenylpent-1-en-3-yl)benzamide (1d)

(*R*)-*N*-(6-phenylhex-1-en-3-yl)benzamide (1e)

(R)-N-(9-(1,3-dioxoisoindolin-2-yl)non-1-en-3-yl)benzamide (1f)

(*R*)-*N*-(5-phenoxypent-1-en-3-yl)benzamide (**1g**)

(*R*)-*N*-(6-(phenylthio)hex-1-en-3-yl)benzamide (1h)

(R)-N-(6-(phenylsulfonyl)hex-1-en-3-yl)benzamide (1i)

(*R*)-*tert*-butyl (6-phenylhex-1-en-3-yl)carbamate (2a)

(*R*)-4-methyl-*N*-(6-phenylhex-1-en-3-yl)benzenesulfonamide (2b)

(*R*)-*N*-(6-phenylhex-1-en-3-yl)acrylamide (**2c**)

(R)-N-(6-phenylhex-1-en-3-yl)pent-4-enamide (2d)

(R) - (1R, 2S, 5R) - 2 - is opropyl - 5 - methylcyclohexyl 4 - benzamidohex - 5 - enoate (3a)

(*R*)-ethyl 4-benzamidohex-5-enoate (**3aee**)

(*R*)-(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 5-benzamidohept-6-enoate (**3b**)

(*R*)-ethyl 5-benzamidohept-6-enoate (3bee)

(R)-(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl 5-benzamidohept-6-enoate (3c)

(R)-(3R,5R,8S,9R,10R,13S,14R,17S)-10,13-dimethyl-17-((S)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 5-benzamidohept-6-enoate (**3d**)

(*R*)-6-phenylhex-1-en-3-aminium chloride (4)

(*R*)-*tert*-butyl (1-hydroxy-5-phenylpentan-2-yl)carbamate (**5a**)

(*R*)-*tert*-butyl (1-oxo-5-phenylpentan-2-yl)carbamate (**5b**)

(*R*)-2-((tert-butoxycarbonyl)amino)-5-phenylpentanoic acid (**5c**)

(*R*)-*tert*-butyl (1-hydroxy-6-phenylhexan-3-yl)carbamate (**5d**)

(*R*)-tert-butyl (1-oxo-6-phenylhexan-3-yl)carbamate (**5e**)

(*R*)-3-((*tert*-butoxycarbonyl)amino)-6-phenylhexanoic acid (**5f**)

mAU

Page 1/\$P AGECOUNT

Page 1/\$P AGECOUNT

	2:25 rum F			1: 23	, , , , , , , , , , , , , , , , , , , 	50	mAU 	150	200-	Vial: Run Tir	E:\EZDa a.met	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sh-800
ユ d w 4 n o l w	0 nm, 4 Results 9k #	יממיי שי הי שי או	#	0 nm, 4 lesults						190 me: 20.08	atenOC\War	Albe: Institut	38-rac
2,693 3,693 4,080 6,290 6,290 6,290 6,290 7,947 2,947 1,333	Retention Time	7,947 7,947 9,640 11,187 12,320 13,673	Retention Time					4	ac 2	Injection Volume (µ1 3.2015 11:41:37 A	ng\Method\AD-3, Hept_	rt-Ludwigs-Un t für Organische	
0,195 0,284 0,284 0,860 0,860 0,860 48,411 48,411 48,120 1,838	Area Percent	48,336 0,264 48,617 1,180 0,688 0,396	Area Percent	Minutes	7 7					.): 1 .nalysis Time: 02.11		iversität Fre Chemie und Bi	
2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 3 0 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Lambda Max	2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2	Lambda Max							2015 14:01:27	200-300 nm, 1 ml	eiburg lochemie	Page 1 of 3
	I		I	:	g <u> </u>	50	mAU	1 1 5 0 0	200				
					10 11 13	900-70	ע איינט א	DAD-210 nm Results Pk #	ى م	ა ი თ	4 3 2 H	Spectrum Maa Plot Result Pk #	sh-8038-rac
					19,393 20,447 22,653 26,253	13,667 15,140 15,873 18,387	7,947 9,640 11,187 12,320	Retention Tim	13,627 29,607	9,640 11,187 12,333	2,073 6,287 7,947	r s Retention Tim	

Area Percent 0,550 46,884 47,213 1,529 0,558 0,857 0,433 0,410 0,529 0,145 0,145 0,145 0,145 0,145

Lambda Max 232 203 223 223 232 279 232 279 232 279 232 279 232 279 232 279 232 279 239

Area Percent 0,217 47,786 0,332 48,261 1,694 0,897 0,597 0,141

Page 2 of 3

S11-17

S11-18

ò

mAU

Page 2 of 2

Lambda Max

З

ċ

100

300

400

- 200

mAU

Page 1/\$P AGECOUNT

H Dto	2	1	Index	
	UNKNOWN	NMONNN	Name	
	20,56	16,75	Time [Min]	
100 00	1,99	98,01	Quantity [% Area]	
140 1	3,2	166.9	Height [mAU]	
	1,9	93.2	Area [mAU.Min]	
100 000	1,991	98,009	Area % [%]	

S11-26

Page 1/\$P AGECOUNT

Page 1/\$P AGECOUNT

Acquired : 24.09.2015 11:02:43 Processed : 24.09.2015 11:16:26 Printed : 24.09.2015 11:16:39 ORGPC119 Project1 System 1 (Normal Phase)

Page 1/\$P AGECOUNT

Page 1/\$P AGECOUNT

113,5 100,000

4

U

Min 6 7

œ

9

10

1

12

