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I. SYMBOL LIST

φ - Protein volume-fraction.

η - Number-fraction of proteins in the non-native state.

ηeq - Equilibrium number-fraction of proteins in the non-native state.

φηeq - Equilibrium protein volume-fraction for a given value of ηeq.

kB - Boltzmann constant.

T - Temperature.

χ - Dimensionless free energy (scaled on thermal energy, kBT) expressing the strength

of attractive interaction between pairs of nearby proteins in the non-native state.

ǫ - Dimensionless free energy difference (scaled to thermal energy, kBT)

between the native and the non-native state.

N - Number of proteins in the dispersion.

v0 - Volume of a single protein.

f - Dimensionless free energy density scaled to the volume of a single protein, v0,

and in units of thermal energy, kBT.

fentr - Entropic contribution to the dimensionless free energy density

of the two-state protein model.

fenth - Enthalpic contribution to the dimensionless free energy density

of the two-state protein model.

f2s - Dimensionless free energy density of the two-state protein model.

fFH - Dimensionless free energy density of the Flory-Huggins-based solution model.

fCS - Dimensionless free energy density of the Carnahan-Starling solution model.

f2sFH - Dimensionless free energy density of the Flory-Huggins-based solution model

and the two-state protein model combined.

f2sCS - Dimensionless free energy density of the Carnahan-Starling solution model

and the two-state protein model combined.

µ - Dimensionless chemical potential (scaled to thermal energy, kBT).

rt - Ratio of self-diffusion time scale of a protein and

the time scale at which conformational changes occur in a protein.

∆φS - Width of the concentration interval for which phase separation occurs

by spinodal decomposition in a solution of initially native proteins.
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II. CONDITIONS FOR THE EXISTENCE OF THE FIRST-ORDER

CONFORMATIONAL PHASE TRANSITION

In section III a relation, given by eq. (4) , between the equilibrium fraction of proteins

in the non-native state, ηeq, and protein concentration, φ, and the energetic parameters χ,

giving the strength of interactions between proteins in the non-native state, and ǫ, which is

the free energy penalty associated with the non-native state was derived. Furthermore, we

showed there that this relation predicts the existence of a van der Waals-like loop separating

dispersion states with proteins mostly in their native and proteins mostly in their non-native

state by a first-order conformational phase transition.

Here, we investigate under which conditions this van der Waals-like loop and the phase

transition exists. To do so, we rewrite eq. (4) to yield an explicit solution for the protein

concentration as a function of ηeq,

φηeq =
1

χηeq

[

ln

(

ηeq
1− ηeq

)

+ ǫ

]

. (1)

This relation is plotted for χ = 10 kBT and ǫ = 3 kBT in fig. 2b . From this figure it is

clear that concentration-interval where the van der Waals-like loop is observed corresponds

to the region bound by the points corresponding to a maximum and minimum in φηeq (η).

These points obey ∂ηeqφηeq = 0, which can be rewritten to yield a relation between the value

of ηeq at these extrema as a function of ǫ,

ǫ = ln

(

1− ηeq
ηeq

)

+
1

1− ηeq
. (2)

This equation has a minimum of ǫ = 2 at η = 0.5, meaning that ǫ = 2 is the smallest free

energy difference between the native and non-native state for which the van der Waals-like

loop exists. Substitution of ǫ = 2 and ηeq = 0.5 into eq. (1) yields φηeq = 4/χ, so the lowest

value of χ for ǫ = 2 for which the van der Waals-like loop is observed, that is for φηeq = 1,

is χ = 4.

For larger values of ǫ, the minimum value of χ for which the loop is observed must be

determined numerically. Given a value of ǫ, the corresponding two values of ηeq bounding the

van der Waals-like loop, must be determined by numerically solving eq. (2). Subsequently,

one must numerically solve eq. (1) for φηeq = 1, using the larger of the two previously

determined values of ηeq, to determine the value of χ for which the loop is first observed for

φηeq ≤ 1.
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The presence of the (partial) van der Waals-like loop does not guarantee the existence

of the first-order conformational phase transition. The first order conformational phase

transition occurs between two dispersion states at equal concentration and free energy, but

different average protein conformation, η. For any ǫ ≥ 2, it is first observed for χ = 2ǫ

when there is an Ising-like coexistence between dispersion states of different average protein

conformation and of equal free energy at a concentration of φ = 1. This point coincides

with the critical “point” for liquid-liquid phase separation for the given value of ǫ.

III. SUPPORTING FIGURES AND TABLES

1st order transition
0.0 0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

Φ

Fr
ee

E
ne

rg
y

FIG. 1: The dimensionless Flory-Huggins-based free energy density along the ηeq curve, as shown in fig.

2b. The location of the first-order conformational phase transition is indicated. Furthermore, this figure

shows that the van der-Waals like loop as shown in fig. 2b leads to a similar type of loop in the

dimensionless free energy density.
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FIG. 2: See fig. 3, same plots but now for the Carnahan-Starling-based free energy. a) Unlike the

Flory-Huggins-based free energy no phase separation occurs for χ = 6 and ǫ = 1.5 for the

Carnahan-Starling-based free energy. b) For χ = 10 and ǫ = 3 phase separation can occur. The location of

“equilibrium” spinodal points and binodal points is different from their position for the

Flory-Huggins-based free energy.
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FIG. 3: Phase and stability diagrams for our two-state protein model as a function of the interaction

parameter χ, protein volume fraction φ and average protein conformation η. The binodal is depicted as a

blue line, the spinodal is given by the green line. a) Results from Flory-Huggins-based model for free

energy difference between native and non-native states of ǫ = 0 in units of thermal energy. b)

Flory-Huggins-based model for ǫ = 2. c) Carnahan-Starling-based model for ǫ = 0. d)

Carnahan-Starling-based model for ǫ = 2.
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FIG. 4: a) The equilibrium fraction of proteins in the non-native state, ηeq, as a function of φ for χ = 6

and ǫ = 1.5 calculated from the Carnahan-Starling based model. Unlike the Flory-Huggins-based model,

no phase separation occurs for these values of the energetic parameters. b) Dimensionless

Carnahan-Starling-based free energy density along the ηeq curve for χ = 6 and ǫ = 1.5, as a function of φ.

c) same plot as a but for χ = 20 and ǫ = 1.5, now phase separation does occur, “equilibrium” spinodal

points are shown as green dots and binodal points as blue squares. Regions I, II and III are defined as in

fig. 4.
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FIG. 5: The phase and stability diagram for ǫ = 3 for the Carnahan-Starling-based free energy. The blue

line represents the binodal, coexisting states are joined by horizontal tie-lines, the green dotted line

represents the spinodal. Ten regions, each with distinct phase behaviour are indicated, but with identical

behaviour as the same regions for the Flory-Huggins based free energy. Regions VIII, IX and XI are

located at higher values of χ and not shown here. A 3D version of the diagram is shown in fig. S-5b.
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FIG. 6: 3D phase and stability diagrams for ǫ = 3. The blue line represents the binodal, coexisting states

are joined by tie-lines at constant χ. The green line represents the spinodal. Note that there is no real

critical point, at χ = 6 there are two phases in Ising-like coexistence at φ = 1 with different average protein

conformation. a) Diagram for the Flory-Huggins-based free energy. b) Diagram for the

Carnahan-Starling-based free energy.
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FIG. 7: Phase and stability diagrams for ǫ = 4 for a) the Flory-Huggins based free energy and b) the

Carnahan-Starling based free energy. The blue line represents the binodal, coexisting states are joined by

tie-lines at constant χ. The green line represents the spinodal. Note that these diagrams have been

projected onto the φ-χ plane and the η dimension is not shown. The structure of the diagrams is identical

to that for ǫ = 3.0 as shown in fig. 6 and fig. S-4, however it has shifted to increased values of χ and some

features of the diagram are not visible for the shown values of χ.
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FIG. 8: a) Mapping of phase behaviour in φ-η space for χ = 7 and ǫ = 3.0 for the Flory-Huggins-based

free energy, showing the ηeq curve (red), “equilibrium” spinodal point (green dot). The regions denoted in

the figure are situated in the corresponding regions in fig. 6, the behaviour in each of these regions is

summarised in table S-1. b) The dimensionless Flory-Huggins-based free energy density along the ηeq

curve for χ = 7 and ǫ = 3.0.
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FIG. 9: a) Mapping of phase behaviour in φ-η space for χ = 8.5 and ǫ = 3.0 for the Flory-Huggins-based

free energy, showing the ηeq curve (red), “equilibrium” spinodal point (green dot). An inset schematically

shows the rapid transition between different regions close to φ = 1. The regions denoted in the figure are

situated in the corresponding regions in fig. 6, the behaviour in each of these regions is summarised in

table S-1. b) The dimensionless Flory-Huggins-based free energy density along the ηeq curve for χ = 8.5

and ǫ = 3.0.
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FIG. 10: a) Mapping of phase behaviour in φ-η space for χ = 9 and ǫ = 3.0 for the Flory-Huggins-based

free energy, showing the ηeq curve (red), “equilibrium” spinodal point (green dot). The regions denoted in

the figure are situated in the corresponding regions in fig. 6, the behaviour in each of these regions is

summarised in table S-1. b) The dimensionless Flory-Huggins-based free energy density along the ηeq

curve for χ = 9 and ǫ = 3.0.

13



Region a) Lower part of loop b) Upper part of loop

I Homogeneous Homogeneous

II Homogeneous Meta-stable

III Homogeneous Meta-stable & spinodal decomposition

IV Phase separation by nucleation and growth Not present

V Phase separation by nucleation and growth Phase separation by spinodal decomposition

VI Phase separation by nucleation and growth Phase separation by nucleation and growth

VII Meta-stable Homogeneous

VIII Not present Phase separation by spinodal decomposition

IX Not present Phase separation by nucleation and growth

X Not present Homogeneous

XI Phase separation by spinodal decomposition Phase separation by spinodal decomposition

XII Phase separation by spinodal decomposition Phase separation by nucleation and growth

XIII Meta-stable and spinodal decomposition Homogeneous

TABLE I: Overview of phase and stability behaviour in regions I-XIII as shown in fig. 6

and fig. S-4. The lower part of the loop refers to the stable portion of the ηeq curve below

the unstable part of the van der Waals-like loop while the upper part refers to part of the

loop above it, see fig. 2b. Note that in region I the van der Waals-like loop in the ηeq curve

does not exist.
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