## Supplementary Materials

## Numerical Implementation

The governing equation of this problem is equation (24):

$$
2 \pi \beta \bar{v}^{\prime \prime}(\bar{x})=\int_{1}^{\infty} \bar{v}^{\prime \prime}(\bar{x}) \ln \left|\bar{t}^{2}-\bar{x}^{2}\right| d \bar{t}+\left(2+\bar{x} \ln \left|\frac{\bar{x}-1}{\bar{x}+1}\right|-\ln \left|\bar{x}^{2}-1\right|\right), \quad|\bar{x}|>1
$$

Which is a Fredholm integral equation of the second kind defined on the interval $(1, \infty)$. To solve the equation numerically, we first change the interval to be finite by taking $\bar{t}=\tan \left(\frac{p}{2}\right), \bar{x}=\tan \left(\frac{q}{2}\right)$. Now, the integral is changed to:

$$
\int_{1}^{\infty} \bar{v} "(\bar{t}) \ln \left|\bar{t}^{2}-\bar{x}^{2}\right| d \bar{t}=\int_{\pi / 2}^{\pi} \frac{\bar{v}^{\prime \prime}\left(\tan \left(\frac{p}{2}\right)\right)}{2 \cos ^{2}\left(\frac{p}{2}\right)} \ln \left|\tan \left(\frac{p}{2}\right)^{2}-\tan \left(\frac{q}{2}\right)^{2}\right| d p \backslash * \text { MERGEFORMAT (A1) }
$$

Define $F(p)=\frac{\bar{v}^{\prime \prime}\left(\tan \left(\frac{p}{2}\right)\right)}{2 \cos ^{2}\left(\frac{p}{2}\right)}, G(q)=2+\tan \left(\frac{q}{2}\right) \ln \left|\frac{\tan \left(\frac{q}{2}\right)-1}{\tan \left(\frac{q}{2}\right)+1}\right|-\ln \left|\tan ^{2}\left(\frac{q}{2}\right)-1\right|$, equation (24) is changed
into:

$$
\int_{\pi / 2}^{\pi} F(p) \ln \left|\tan \left(\frac{p}{2}\right)^{2}-\tan \left(\frac{q}{2}\right)^{2}\right| d p-4 \pi \beta \cos ^{2}\left(\frac{q}{2}\right) \mathrm{F}(\mathrm{q})=-G(\mathrm{q}) \backslash * \text { MERGEFORMAT (A2) }
$$

The integral interval is now changed to $(\pi / 2, \pi)$. Divide this interval into $n$ subinterval $\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right], \ldots,\left[\mathrm{p}_{i}, \mathrm{p}_{i+1}\right], \ldots,\left[\mathrm{p}_{n}, \mathrm{p}_{n+1}\right)$ with equal length $\Delta=\pi /(2 \mathrm{n})$ and take $q_{i}=\frac{p_{i}+p_{j+1}}{2}$, where $p_{i}=(\mathrm{i}-1) \Delta$. Based on this discretization, the integral $\int_{\pi / 2}^{\pi} F(\mathrm{p}) \ln \left|\tan \left(\frac{p}{2}\right)^{2}-\tan \left(\frac{q}{2}\right)^{2}\right| d p$ can be evaluated approximately as:

$$
\begin{aligned}
& \int_{\pi / 2}^{\pi} F(p) \ln \left|\tan \left(\frac{p}{2}\right)^{2}-\tan \left(\frac{q}{2}\right)^{2}\right| d u \\
& \left.=\int_{\pi / 2}^{\pi} F(p) \ln \left|\frac{\left.\tan \left(\frac{p}{2}\right)^{2}-\tan \left(\frac{q}{2}\right)^{2} \right\rvert\,}{p-q} d p+\int_{\pi / 2}^{\pi} F(p) \ln \right| p-q \right\rvert\, d p \\
& \left.\approx \sum_{j=1}^{N} F\left(\mathrm{q}_{j}\right) \int_{p_{j}}^{p_{j+1}} \ln \left|\frac{\left.\tan \left(\frac{p}{2}\right)^{2}-\tan \left(\frac{q}{2}\right)^{2} \right\rvert\,}{p-q} d p+\sum_{j=1}^{N} F\left(\mathrm{q}_{j}\right) \int_{p_{j}}^{p_{j+1}} \ln \right| p-q \right\rvert\, d p
\end{aligned}
$$

According to \* MERGEFORMAT (A3), equation \* MERGEFORMAT (A2) can be changed into discretized form:

$$
\sum_{i=1}^{n} K_{i j} F\left(q_{j}\right)=-G\left(q_{i}\right)
$$

\* MERGEFORMAT (A4)

Where $K_{i j}=\int_{p_{j}}^{p_{j+1}} \ln \left|\frac{\tan \left(\frac{p}{2}\right)^{2}-\tan \left(\frac{q_{i}}{2}\right)^{2}}{p-q_{i}}\right| d p+\int_{p_{j}}^{p_{j+1}} \ln \left|p-q_{i}\right| d p-4 \pi \beta \cos ^{2}\left(\frac{q_{i}}{2}\right) \delta_{i j}$ (no sum on i). The
integral can be easily evaluated and therefore $K_{i j}$ can be expressed as:

$$
K_{i j}=\left\{\begin{array}{l}
\left(p_{j+1}-p_{j}\right) \ln \left|\frac{\tan ^{2}\left(\mathrm{q}_{j} / 2\right)-\tan ^{2}\left(\mathrm{q}_{i} / 2\right)}{q_{j}-q_{i}}\right| \\
-\left(\mathrm{p}_{j+1}-p_{j}\right)+\left(\mathrm{p}_{j+1}-q_{j}\right) \ln \left|p_{j+1}-q_{i}\right|+\left(\mathrm{q}_{i}-p_{j}\right) \ln \left|p_{j}-q_{i}\right|, \mathrm{i} \neq \mathrm{j} \\
\left(\mathrm{p}_{j+1}-p_{j}\right) \ln \left|\frac{\left.\tan \left(\frac{q_{i}}{2}\right) \right\rvert\,}{\cos ^{2}\left(\frac{q_{i}}{2}\right)}\right|-4 \pi \beta \cos ^{2}\left(\frac{q_{i}}{2}\right) \quad \quad \text { *MERGEFORMAT (A5) } \\
-\left(\mathrm{p}_{j+1}-p_{j}\right)+\left(\mathrm{p}_{j+1}-q_{j}\right) \ln \left|p_{j+1}-q_{i}\right|+\left(\mathrm{q}_{i}-p_{j}\right) \ln \left|p_{j}-q_{i}\right|, \mathrm{i}=\mathrm{j}
\end{array}\right.
$$

Substitute equation \* MERGEFORMAT (A5) into equation ** $^{*} \operatorname{MERGEFORMAT}(A 4), F\left(q_{j}\right)$ can be solved numerically and $\bar{v}^{\prime \prime}\left(\tan \left(q_{j} / 2\right)\right)=2 F\left(q_{j}\right) \cos ^{2}\left(q_{j} / 2\right)$.

## Calculation of $\bar{\Lambda}_{H}$ :

First, we need to calculate the Compliance C :

$$
\begin{align*}
& C=\frac{d \delta_{H}}{d P_{H}}=\frac{d \delta_{H} / d a}{d P_{H} / d a} \\
& =\frac{d\left(\overline{\delta_{H}} a^{2} / R\right) / \mathrm{d}(\bar{a} \mathrm{R})}{d\left(\overline{P_{H}} \pi \mu a^{2} / R\right) / \mathrm{d}(\bar{a} \mathrm{R})}=\frac{1}{\pi \mu} \frac{\bar{a} d \overline{\delta_{H}} / d \bar{a}+2 \overline{\delta_{H}}}{\overline{P_{H}} / d \bar{a}+2 \overline{P_{H}}} \tag{A6}
\end{align*}
$$

Where $\bar{a}=a / R$. It is easy to show that $\overline{\Lambda_{H}}=2 \pi \mu a \Lambda_{H}$ is calculated as:

$$
\begin{equation*}
\overline{\Lambda_{H}}=-2 \frac{\left(2 \overline{P_{H}}-\beta \frac{d \overline{P_{H}}}{d \beta}\right)\left(\beta^{2} \frac{\partial^{2} \overline{\delta_{H}}}{\partial \beta^{2}}+2 \beta \bar{c} \frac{\partial^{2} \overline{\delta_{H}}}{\partial \beta \partial \bar{c}}+\bar{c}^{2} \frac{\partial^{2} \overline{\delta_{H}}}{\partial \bar{c}^{2}}-\beta \frac{\partial \overline{\delta_{H}}}{\partial \beta}-\bar{c} \frac{\partial \overline{\delta_{H}}}{\partial \bar{c}}\right)+\left(\beta \frac{\partial \overline{\delta_{H}}}{\partial \beta}+\bar{c} \frac{\partial \overline{\delta_{H}}}{\partial \bar{c}}-2 \overline{\delta_{H}}\right)\left(\beta^{2} \frac{d^{2} \overline{P_{H}}}{d \beta^{2}}-\beta \frac{d \overline{P_{H}}}{d \beta}\right)}{\left(2 \overline{P_{H}}-\beta \frac{d \overline{P_{H}}}{d \beta}\right)^{2}} \tag{A7}
\end{equation*}
$$

Since $\overline{P_{H}}$ is only a function of $\beta$ and $\overline{\delta_{H}}$ is a function of $\beta$ and $\bar{c}, \overline{\Lambda_{H}}$ is at most a function of $\beta$ and $\bar{c}$ (or equivalently, $\beta, c / R, \bar{a}$ ). However, since the general JKR solution can't depend on where we select our dictum plane, $\overline{\Lambda_{H}}$ can only be a function of $\beta$. To prove this point, different values of $c / R$ and $a / R$ are taken to compute $\overline{\Lambda_{H}}$ :


From the plot shown above, it can be seen that different value of $c / R$ and $a / R$ result in almost same $\overline{\Lambda_{H}}-\beta$ curve. This curve can be fitted by:

$$
\begin{equation*}
\bar{\Lambda}_{H}(\beta)=\frac{\pi \beta^{2}+9.102 \beta+1}{4 \beta^{3}+20.82 \beta^{2}+12.75 \beta+1} \tag{A8}
\end{equation*}
$$

