Organogel formation rationalized by Hansen solubility parameters: influence of gelator structure

Julien Bonnet, Gad Suissa, Matthieu Raynal and Laurent Bouteiller

ELECTRONIC SUPPLEMENTARY INFORMATION

Gelation data

Liquid	δ^s_d (MPa ^{1/2})	δ_p^s (MPa ^{1/2})	δ_h^s (MPa ^{1/2})	C4	C8	C12	C18
acetonitrile	15.3	18	6.1	G	G	Ι	Ι
benzyl alcohol	18.4	6.3	13.7	S	Ι	Ι	Ι
1-butanol	16	5.7	15.8	S	Ι	Ι	Ι
t-butyl acetate	15	3.7	6	G	G	G	Ι
1-chloropentane	16	6.9	1.9	G	G	G	G
chlorobenzene	19	4.3	2	G	G	G	G
cyclohexane	16.8	0	0.2	G	G	G	Ι
cyclohexanone	17.8	8.4	5.1	G	G	G	Ι
diacetone alcohol	15.8	8.2	10.8	G	G	Ι	Ι
dimethylformamide (DMF)	17.4	13.7	11.3	Ι	G	Ι	G
dimethylsulfoxide (DMSO)	18.4	16.4	10.2	Ι	Ι	Ι	G
1,4-dioxane	17.5	1.8	9	G	G	G	Ι
ethanolamine	17	15.5	21	Ι	Ι	Ι	Ι
hexadecane	16.3	0	0	G	Ι	Ι	Ι
methanol	14.7	12.3	22.3	S	Ι	Ι	Ι
methylethylketone (MEK)	16	9	5.1	G	G	G	Ι
N,N-diethyl acetamide	16.4	11.3	7.5	S	Ι	Ι	Ι
propylene carbonate	20	18	4.1	G	Ι	Ι	G
propylene glycol	16.8	10.4	21.3	S	Ι	Ι	Ι
toluene	18	1.4	2	G	G	G	G
water	15.5	16	42.3	Ι	Ι	Ι	Ι

Table S1 Gelation tests for LMWG C4 to C18. First step: pure liquids.^{a-c}

^a Gelation is tested by introducing 20 mg of gelator and 1 mL of liquid in a screw-cap vial, heating until dissolution and leaving the vial to cool on the bench.

^b G: gel; S: soluble; I: insoluble or formation of a precipitate after cooling.

^c Minor differences can be noted between these data and previous data reported for LMWG **C12**¹ because several samples initially formed homogeneous solutions (one or two days after preparation) but turned out to precipitate slowly over time. The present solubility data was established several weeks after preparation, while taking care to avoid evaporation. Whether the gelation data is determined after one day or after a few weeks, does not change the trends and conclusions described in the article.

Liquid 1	Liquid 2	Composition	C4	C8	C12	C18
		0/100	G	G	G	Ι
		20/80	G	G	G	Ι
chlorobenzene	t-butyl	40/60	G	G	G	Ι
	acetate	60/40	G	G	G	Ι
		80/20	G	G	G	Ι
		100/0	G	G	G	G
		0/100	Ι	Ι	Ι	G
		20/80	Ι	G	Ι	Ι
1-	DMSO	40/60	S	Ι	Ι	Ι
chloropentane		60/40	S	S	Ι	Ι
		80/20	S	Ι	Ι	Ι
		100/0	G	G	G	G
		0/100	G	G	G	Ι
		20/80	G	G	G	Ι
1-	t-butyl	40/60	G	G	G	Ι
chloropentane	acetate	60/40	G	G	G	Ι
		80/20	G	G	G	Ι
		100/0	G	G	G	G
		0/100	S	Ι	Ι	Ι
		20/80	S	Ι	Ι	Ι
cyclohexanone	benzyl	40/60	S	G	Ι	Ι
	alcohol	60/40	Ι	G	Ι	Ι
		80/20	Ι	G	Ι	Ι
		100/0	G	G	G	Ι
		0/100	S	Ι	Ι	Ι
		20/80	S	Ι	Ι	Ι
cyclohexanone	butanol	40/60	S	Ι	Ι	Ι
		60/40	S	Ι	Ι	Ι
		80/20	S	Ι	Ι	Ι
		100/0	G	G	G	Ι
		0/100	Ι	Ι	Ι	Ι
		20/80	Ι	Ι	Ι	G
cyclohexanone	ethanolamine	40/60	Ι	G	Ι	G
		60/40	Ι	G	Ι	Ι
		80/20	Ι	G	Ι	Ι
		100/0	G	G	G	Ι
		0/100	G	G	G	G
		20/80	G	G	G	Ι
1,4-dioxane	1-	40/60	G	G	G	Ι
	chloropentane	60/40	G	G	G	Ι
		80/20	G	G	G	Ι
		100/0	G	G	G	Ι

Table S2 Gelation tests for LMWG C4 to C18. Second step: mixtures.^{a-c}

		0/100	Ι	Ι	Ι	Ι
	ethanolamine	20/80	Ι	Ι	Ι	Ι
DMSO		40/60	Ι	Ι	Ι	Ι
		60/40	Ι	Ι	Ι	G
		80/20	Ι	Ι	Ι	G
		100/0	Ι	Ι	Ι	G
		0/100	S	Ι	Ι	Ι
		20/80	Ι	Ι	Ι	G
DMSO	propylene	40/60	Ι	Ι	Ι	G
	glycol	60/40	Ι	Ι	Ι	G
		80/20	Ι	Ι	Ι	G
		100/0	Ι	Ι	Ι	G
		0/100	I	I	I	G
		20/80	I	G	I	G
MEK	DMSO	40/60	I	G	I	G
	21120	60/40	I	G	I	I
		80/20	I	I	I	I
		100/0	G	G	G	I
		0/100	G	I	I	G
		20/80	G	G	G	G
MEK	propylene	40/60	G	G	G	G
	carbonate	60/40	G	G	G	G
		80/20	G	G	G	I
		100/0	G	G	G	Ι
		0/100	G	G	G	Ι
		20/80	G	G	G	Ι
propylene	t-butyl	40/60	G	G	G	Ι
carbonate	acetate	60/40	G	G	G	G
		80/20	G	G	G	G
		100/0	G	Ι	Ι	G
		0/100	Ι	Ι	Ι	G
		20/80	Ι	Ι	Ι	G
propylene	DMSO	40/60	Ι	G	Ι	G
carbonate		60/40	Ι	G	Ι	G
		80/20	Ι	Ι	Ι	G
		100/0	G	Ι	Ι	G
		0/100	G	G	G	G
		20/80	G	G	G	Ι
propylene carbonate	toluene	40/60	G	G	G	Ι
		60/40	G	G	G	Ι
		80/20	G	G	G	G
		100/0	G	Ι	Ι	G
		0/100	S	Ι	Ι	Ι
		20/80	S	S	Ι	Ι
toluene	benzyl	40/60	S	S	S	Ι
	alcohol	60/40	S	S	S	Ι
		80/20	S	S	Ι	Ι
		100/0	G	G	G	G

		0/100	S	Ι	Ι	Ι
		20/80	S	S	Ι	Ι
toluene	butanol	40/60	S	S	S	Ι
		60/40	S	S	S	Ι
	80/20	S	G	Ι	Ι	
		100/0	G	G	G	G
		0/100	G	G	Ι	Ι
toluene diacetone alcohol	20/80	Ι	G	Ι	Ι	
	40/60	Ι	G	Ι	Ι	
	60/40	G	G	Ι	Ι	
		80/20	G	G	Ι	G
		100/0	G	G	G	G

^a Gelation is tested by introducing 20 mg of gelator and 1 mL of liquid in a screw-cap vial, heating until dissolution and leaving the vial to cool on the bench.

^b G: gel; S: soluble; I: insoluble or formation of a precipitate after cooling.

^c Minor differences can be noted between these data and previous data reported for LMWG **C12**¹ because several samples initially formed homogeneous solutions (one or two days after preparation) but turned out to precipitate slowly over time. The present solubility data was established several weeks after preparation, while taking care to avoid evaporation. Whether the gelation data is determined after one day or after a few weeks, does not change the trends and conclusions described in the article.

	δ_d	δ_p	δ_h
	$(MPa^{1/2})$	$(MPa^{1/2})$	$(MPa^{1/2})$
C4	17.4	8.5	6.8
C8	17.5	7.4	5.7
C12	17.6	6.6	5.1
C18	17.7	5.8	4.4

Table S3 Hansen solubility parameters for LMWG **C4** to **C18** estimated by Hoy's group contribution method.²

Table S4 Centroid of the solubility domain for LMWG C4 to C12. The centroid is defined as $\delta_d = \frac{1}{n} \sum_{i=1}^n (\delta_d^s)_i$, $\delta_p = \frac{1}{n} \sum_{i=1}^n (\delta_p^s)_i$, $\delta_h = \frac{1}{n} \sum_{i=1}^n (\delta_h^s)_i$ where δ_d^s , δ_p^s and δ_h^s are the solubility parameters of the liquids in which the gelator is soluble.

	δ_d (MPa ^{1/2})	δ_p (MPa ^{1/2})	δ_h (MPa ^{1/2})
C4	17.2	6.8	10.3
C8	17.5	4.8	8.4
C12	17.6	3.7	8.4

Table S5 Centroid of the gelation domain for LMWG C4 to C18. The centroid is defined as $\delta_d = \frac{1}{n} \sum_{i=1}^n (\delta_d^s)_i, \delta_p = \frac{1}{n} \sum_{i=1}^n (\delta_p^s)_i, \delta_h = \frac{1}{n} \sum_{i=1}^n (\delta_h^s)_i$ where δ_d^s, δ_p^s and δ_h^s are the solubility parameters of the gelled liquids.

	δ_d (MPa ^{1/2})	δ_p (MPa ^{1/2})	δ_h (MPa ^{1/2})
C4	17.2	7.3	4.4
C8	17.3	8.3	5.8
C12	17.2	7.1	4.2
C18	18.2	13.3	8.5

Table S6 Centre and radius of the gelation sphere for LMWG **C4** to **C18** determined with HSPiP software.^{1,3}

	δ_d	δ_p	δ_h	R
	$(MPa^{1/2})$	$(MPa^{1/2})$	$(MPa^{1/2})$	$(MPa^{1/2})$
C4	15.8	6.2	0.3	6.9
C8	16.3	11.2	2.6	9.6
C12	16.4	9.0	0.0	7.5
C18	21.3	16.8	12.4	10.3

$$\begin{split} \delta_d &= 15.8, \, \delta_p = 6.2, \, \delta_h = 0.3 \\ \mathrm{R} &= 6.9 \end{split}$$

Wrong In= 1 Chloropentane:DMSO 80:20 Wrong Out= 12 Acetonitrile Diacetone alcohol 1,4-Dioxane Propylene carbonate (Pc) Methylethylketone (MEK):Pc 60:40 MEK:Pc 40:60 MEK:Pc 20:80 Chloropentane:1,4-Dioxane 20:80 Pc:*t*-butylacetate (tBA) 80:20 Pc:tBA 60:40 Pc:Toluene 80:20 Pc:Toluene 60:40

$$\begin{split} &\delta_{d1} = 15.8, \, \delta_{p1} = 6.2, \, \delta_{h1} = 0.4 \\ & R_1 = 6.9 \\ & \delta_{d2} = 17.2, \, \delta_{p2} = 16.1, \, \delta_{h2} = 1.3 \\ & R_2 = 6.5 \end{split}$$

Wrong In= 1 Chloropentane:DMSO 80:20 Wrong Out= 3 Diacetone alcohol 1,4-Dioxane Chloropentane:1,4-Dioxane 20:80

Fig. S1 Gelation data for amide C4 (20g/L), represented in Hansen space. The gelated liquids (G) are represented by blue points; both good solvents (S) and non-solvents (I) are represented by red points. Upper figure: a single gelation sphere is used. Lower figure: two gelation spheres are used. The plots are generated with the HSPiP software.^{1,3}

Fig. S2 Gelation data for amide C8 (20g/L), represented in Hansen space. The gelated liquids (G) are represented by blue points; both good solvents (S) and non-solvents (I) are represented by red points. A single gelation sphere (green) is used. The plots are generated with the HSPiP software.^{1,3}

Fig. S3 Gelation data for amide **C12** (20g/L), represented in Hansen space. The gelated liquids (G) are represented by blue points; both good solvents (S) and non-solvents (I) are represented by red points. A single gelation sphere (green) is used. The plots are generated with the HSPiP software.^{1,3}

Fig. S4 Gelation data for amide **C18** (20g/L), represented in Hansen space. The gelated liquids (G) are represented by blue points; both good solvents (S) and non-solvents (I) are represented by red points. A single gelation sphere (green) is used. The plots are generated with the HSPiP software.^{1,3}

Synthesis

The synthesis and characterization of C12 was previously described.¹

Ξ.	•		
		[M+Na] ⁺	theoretical
	C4	378.3341	378.3342
	C8	434.3967	434.3968
	C18	574.5529	574.5533

Mass ESI-TOF:

FTIR, ¹H and ¹³C NMR: see pages S9-S20.

REFERENCES

- 1. J. Bonnet, G. Suissa, M. Raynal and L. Bouteiller, Soft Matter, 2014, 10, 3154.
- 2. J. Brandrup, E. H. Immergut and E. A. Grulke, Polymer Handbook, Wiley, New York, fourth edn, 1999.
- 3. S. J. Abbott, C. M. Hansen, H. Yamamoto, Hansen Solubility Parameters in Practice software, eBook, datasets, www.hansen-solubility.com

¹³C{¹H}-NMR (CDCl₃) C4

DEPT 135 (CDCl₃) C4

IR C4

S14

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 f1 (ppm)

IR **C8**

C18 is contaminated by residual amounts of octadecylamine (CH₂NH₂ triplet at δ = 2.75 ppm, approximately 7%).

¹³C{¹H}-NMR (CDCl₃) C18

DEPT 135 (CDCl₃) C18

10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
22.	14 2 2 2 2 2 3 6 2 3 2 3 2 3 3 3 3 3 3

IR C18