## **Electronic Supplementary Information**

## Multi-responsible Chameleon Molecule with Chiral Naphthyl and Azobenzene Moieties

Dae-Yoon Kim,<sup>a</sup> Sang-A Lee,<sup>a</sup> Minwook Park,<sup>a</sup> Yu-Jin Choi,<sup>a</sup> Shin-Woong Kang,<sup>b</sup>

Kwang-Un Jeong\*a

<sup>a</sup> Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Korea. E-mail: kujeong@jbnu.ac.kr

<sup>b</sup> Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Korea.

## **Characterization data**

Chemical structures and purities of NCA<sub>2</sub>M and its intermediates were confirmed by thin layer chromatography (TLC), <sup>1</sup>H NMR, and <sup>13</sup>C NMR in deuterated chloroform (CDCl<sub>3</sub>). All the chemical compounds synthesized in this research were purified by recrystallization and/or column chromatography using the silica gel. Chemical shifts were quoted in part per million (ppm) with a reference of tetramethylsilane (TMS).

Chemical structure of compound 4-(4-pentylphenylazo)phenol (1) was identified by increased integration of protons at azobenzene groups (7.76-6.92 ppm, 8H). The protons of ether (-O-CH<sub>2</sub>-, 2H) in compound 4-(6-bromohexyloxy)phenyl-(4-pentylphenyl)diazene (2) 4.04 ppm. Chemical structure compound appeared at of 3,5-bis[6-(4-(4pentylphenylazo)phenoxy)hexyloxy]benzoic acid ethyl ester (3) was identified by new peak at 7.16 ppm (-C-CH-C- 2H), 6.64 ppm (-C-CH-C-, 1H) and 3.89 ppm (-O-CH<sub>3</sub>, 3H) as a singlet from methyl benzoate. Chemical structure of compound 3,5-bis[6-(4-(4pentylphenylazo)phenoxy)hexyloxy]benzoic acid (4) was confirmed from the disappearance of methyl group in ester adjacent to the benzoate. Chemical structure of NCA<sub>2</sub>M was identified by increased integration of protons and a new peak at around 1.84 ppm (-CH-CH<sub>3</sub>, 3H) corresponding to the chiral naphthyl group.



Fig. S1 <sup>1</sup>H NMR spectrum of compound 1



Fig. S2 <sup>1</sup>H NMR spectrum of compound 2



Fig. S3 <sup>1</sup>H NMR spectrum of compound **3** 



Fig. S4 <sup>1</sup>H NMR spectrum of compound 4



Fig. S5 <sup>1</sup>H NMR spectrum of compound NCA<sub>2</sub>M



Fig. S6  $^{13}\text{C}$  NMR spectrum of compound NCA2M



Fig. S7 MALDI-ToF MS spectrum of compound NCA $_2$ M

|   | Experimental<br>Content (%) | Calculated<br>Content (%) |
|---|-----------------------------|---------------------------|
| с | 76.57                       |                           |
|   | 76.67                       | 77.42                     |
|   | 77.06                       |                           |
| н | 7.78                        |                           |
|   | 7.49                        | 7.70                      |
|   | 7.71                        |                           |
| Ν | 6.98                        |                           |
|   | 6.95                        | 6.95                      |
|   | 6.94                        |                           |

Fig. S8 Elemental analysis of compound NCA<sub>2</sub>M



Fig. S9. The first-order plots of the *trans-cis* (a) and *cis-trans* photo-isomerization (b) of  $NCA_2M$  in chloroform solution



Fig. S10. Energy-minimized geometric dimensions of NCA<sub>2</sub>M