Supporting Information

Multi-stimuli-responsive chiral organogels based on peptide

derivatives

Chang-Wei Liu, Ming Su, Xue-Liang Li, Teng Xue, Na Liu, Jun Yin, Yuan-Yuan Zhu,* and Zong-Quan Wu*

School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices, Anhui Province, Hefei University of Technology, Hefei, Anhui, 230009, China. E-mail: yyzhu@hfut.edu.cn; zqwu@hfut.edu.cn

Figure S1. ¹H NMR spectrum of compound 1^{L} (400 MHz) in CDCl₃ (10 mM).

Figure S2. ¹H NMR spectrum of compound 1^D (600 MHz) in CDCl₃ (5 mM).

Figure S3. ¹H NMR spectrum of compound 1^A (600 MHz) in CDCl₃ (10 mM).

Figure S4. ¹H NMR spectrum of compound 9^{L} (600 MHz) in DMSO- d_{6} (10 mM).

Figure S5. ¹H NMR spectrum of compound 9^{L} (150 MHz) in DMSO- d_{6} (10 mM).

Figure S6. ¹H NMR spectrum of compound 2^{L,L} (400 MHz) in CDCl₃ (2 mM).

Figure S7. ¹H NMR spectrum of compound $2^{L,L}$ (150 MHz) in DMSO- d_6 (30 mM).

Figure S8. ¹H NMR spectrum of compound $2^{D,L}$ (600 MHz) in DMSO- d_6 (10 mM).

Figure S9. ¹³C NMR spectrum of compound $2^{D,L}$ (150 MHz) in DMSO- d_6 (30 mM).

Figure S10. ¹H NMR spectrum of compound 3^L (600 MHz) in CDCl₃ (10 mM).

Figure S11. ¹³C NMR spectrum of compound 3^{L} (150 MHz) in CDCl₃ (50 mM).

Figure S12. ¹H NMR spectrum of compound 4^L (600 MHz) in CDCl₃ (10 mM).

Figure S13. ¹³C NMR spectrum of compound 4^{L} (150 MHz) in CDCl₃ (50 mM).

Figure S14. The organogel of 1^{L} (2.0% wt), 3^{L} (1.4% wt), and 4^{L} (1.0% wt) in toluene.

Figure S15. FT-IR spectra of powdered and xerogel samples of 1^{L} and $2^{L,L}$ (KBr pallet, 25 °C).

Figure S16. Partial ¹H NMR spectra (600 MHz) of $2^{L,L}$ in methanol- d_4 with different concentrations. (a) 0.01 M (0.73% wt); (b) 0.02 M (1.5% wt); (c) 0.03 M (2.2% wt); and (d) 0.04 M (2.9% wt). When the concentration of $2^{L,L}$ is 0.03 M and 0.04 M, opaque organogel forms in the NMR tube.

Figure S17. SEM images of chiral helix fibers obtained from the xerogel of $2^{L,L}$ in dichloroethane.

Figure S18. SEM images of chiral helix fibers obtained from the xerogel of $2^{L,L}$ in ethanol.

Figure S19. The multi-stimuli-responsiveness behaviour of gel of $2^{L,L}$ in toluene by thermal, pH value, and floride ion.

Figure S20. The transition cycle repeated for seven times when acid (TFA) and base (Et₃N) were added alternately. In the seventh cycle, 2.0 equivalent of Et_3N was needed to reform the gel.

Figure S21. UV-vis titration of 1^{L} (5 × 10⁻⁵ M) with *n*-Bu₄NF in *o*-dichlorobenzene solution.