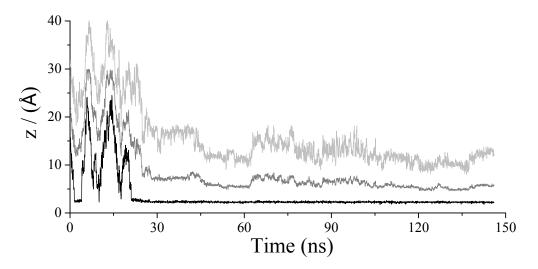
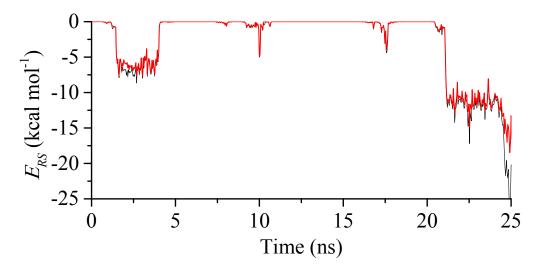
Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2015

Supporting Information


Molecular-level understanding of the adsorption mechanism of a graphite-binding peptide at the water/graphite interface

Matthew J. Penna^{a,b}, Milan Mijajlovic^a C. Tamerler, ^c and Mark J. Biggs^{a,d*}

- ^a School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia, Australia, 5005.
- ^b School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, GPO Box 2476, Victoria, Australia, 3001.
- ^c Department of Mechanical Engineering, University of Kansas, 1530 W 15th Street, 3138 Learned Hall, Lawrence, KS 66045, USA.
- ^d School of Science, Loughborough University, Leicestershire, United Kingdom, LE11 3 TU.


1. Additional relevant results and analysis.

1.1 Full trajectory for exemplar run.

Figure S1. Full trajectory for the exemplar run subdivided into Figure 3, Figure 4 and Figure 5. SSD_{MIN} (black), SSD_{CoM} (dark grey), SSD_{MAX} (light gray).

1.2 Peptide-surface interaction energy for exemplar run.

Figure S2. Total interaction energy between peptide and surface, E_{PS} , (black) and the interaction energy between residues Ile₁, Tyr₉ and Tyr₁₂ and the surface (red).

1.3 MSD data.

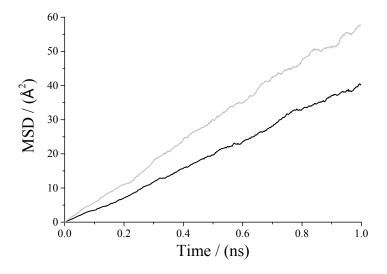


Figure S3. MSD for GrBP5 in the adsorbed (black) and bulk (light gray) states.