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1 Supporting Information

1.0.1 Size and nmax convergence

The investigated systems display a rather slow convergence, in terms of size, and the number
of included reflections. We will discuss the problems of choosing an odd-numbered value for
nmax below, but even when this is even, a rather large value is typically required. In Figure
1, we illustrate the poor convergence properties that these systems display. Here we see that
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Figure 1: Evaluating dependence on system size, as well as the number of included image reflections, in simu-
lations at 99 mM salt.

a very large number of reflections are needed, as well, a surprisingly large system size is often
required. A single reliable pressure data point measurement required single-processor simulation
times of the order of weeks! We were surprised by the computational demands for a, seemingly
simple, primitive model system. It is likely that these two requirements are linked. That is, large
numbers of reflections means that relevant distances perpendicular to the walls is large. These
long-range reflections will exert their influence over large distances in the lateral directions.
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1.0.2 Comparing results for hard and softly repulsive surfaces

One problem with hard wall models is that the wall pressure evaluations require density extrap-
olations. This can lead to poorer statistics (especially at low salt concentrations), and possibly
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Figure 2: Comparing simulation results obtained with hard (A+ = A− = 0) and softly repulsive (A+ = A− =
50) conducting walls, respectively.

also systematic errors, since the curvature of the density profile might change with separation.
It is therefore of interest to consider the use of softly repulsive surfaces, with negligible contact
densities. In Figure 2 we verify that one obtains similar interactions with hard as with softly
repulsive walls.

1.0.3 Long-range tail part, with ion-specific surfaces

For completeness, we present the long-ranged tail, also for the cases with ion-specific surface
interactions. As we can see in Figure 3, the latter will lead to a slower convergence towards the
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Figure 3: iPB predictions for the long-range part of the interactions between ion-discriminating (A+ = −A− =
4.5) and conducting surfaces, i.e. those shown at short separations in Figure ??.

limiting long-range (continuum-electrostatic) behaviour. Nevertheless, this limit is approached
at sufficiently large separations. The existence of this salt-independent long-range interaction
relies upon our intial ansatz for Rd, eq. (??).
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1.1 Poor convergence with odd-numbered reflections.

Here we will try to illustrate how and why the convergence, in terms of total reflection number,
is poor when this number is odd. In other words, if nmax is an odd number, then n has to be
very large to produce convergent results. This is worse than it might first appear, because the
“non-convergent” results one obtains for modest and odd values of nmax are very far from being
convergent. In fact, if we use our standard grand canonical simulations, these systems fill up with
an absurd amount of salt, orders of magnitude too high. If we instead constrain the system to have
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Figure 4: x, y-coordinate snapshots, from simulations using an odd, and not very large, value of nmax.
(a) Canonical system, with nmax = 5. The number of salt pairs is constrained to be 100, which is a typical
average value fro grand canonical simulations with an even-valued nmax.
(b) Grand canonical simulations, with nmax = 11. This is not a system in complete grand canonical equilibrium.
If continued, the grand canonical steps would lead to an even further increase of N . We stopped at this stage,
because this suffices for illustrative puroposes, and the simulations naturally become very sluggish.

the same average salt concentration as a grand canonical simulation with an even nmax would
give, we still end up with highly unphysical results. Specifically, the system demixes, forming
separate phases only containing cat- and anions, respectively. This is illustrated in graph(a) of
Figure 4, where nmax = 5. In graph (b) of the same Figure, we see how the simulation box
is filled up seemingly without bounds 1. This is for nmax = 11, which actually is high enough
to produce reasonable values provided that the number of salt pairs is constrained, i.e. that the
simulation is performed canonically. We also note how the system spontaneously splits up into
separate positively and negatively charge phases, in a clearly unphysical manner. The periodic
boundary conditions playe a role, but this phase separation also occurs in an analogous “closed”
system, without periodic boundary conditions (not, shown, but the phase boundary is then along
the diagonal).

Converged results canbe obtained also with an odd nmax, but then nmax needs to be very
large. In graph(a) of Figure 5 we see how nmax = 41 is large enough to produce sensible results,
even from grand canonical runs. However, as seen in graph (a), we get reasonable, though not
fully converged, data also with nmax = 2, where the crucial aspect of course is that this is an
even number.

So, how can these results be rationalized? We have constructed very simplified system to
illustrate what we believe i the origin of these problems. Let us simply consider the bare self-
interaction, Vself (z, h). In Figure 6, we have plotted how the self-interaction varies with z, at
h = 10 Å, depending upon the choice of nmax. We see how the limiting values of Vself (z, h)

1If the simulation had continued, even more salt pairs would have been added
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Figure 5: Density profile dependencies on nmax, using grand canonical simulations.
(a) Even-valued nmax.
(b) Comparing profiles for nmax = 8 and nmax = 41. In the latter case, nmax is large enough to provide
reasonable density profiles, even from grand canonical simulations.
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Figure 6: Self-interaction energies, for various choices of nmax, at h = 10 Å. Hard, non-discriminating (A+ =
A− = 0) and conducting surfaces.

are approach, as nmax increases, which of course is expected. However, for odd values of nmax

the strength self-interaction is always overestimated, whereas the opposite is true for even values
of nmax. This problem is alleviated by a similar overestimation (for odd nmax) of repulsive
interactions with images stemming from ions of opposite sign, but only partly so. Furthermore,
the observed overestimations, for odd values of nmax combine to form a strong driving force for
phase separation, where positive and negative ions condense into separate regions at the surfaces
(Figure 4. This driving force is absent for even-numbered values of nmax.

1.2 Consistency checks of iPB predictions.

Here, we briefly report an important thermodynamic consistency check for the iPB calculations,
namely that pressures evaluated at the mid plane, ∆P (mid), across a wall, ∆P (wall), and via
discrete free energy differentiation, −∂∆gs/∂h all agree. An example is given in Figure 7, for
ion-discriminating conducting surfaces, at a bulk salt concentration of about 19 mM. This is just
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Figure 7: Checking agreememt between various ways to calculate the normal pressure. Ion-discriminating
(A+ = −A− = 4.5) condicting surfaces, immersed in a 19 mM 1:1 salt solution. Only salt-induced pressures, Ps,
are shown.

one illustrative example; similar agreements are of course found for all other cases.
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