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Repressilator models without spatial dependence 

 

In the deterministic repressilator model introduced by Elowitz and Leibler,
1
 a non-

dimensionalized system of ordinary differential equations describes the dynamics of populations 

of mRNA ( jm ) and proteins ( jp ), viz. 
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where the species index j runs from 1 to 3 and is to be interpreted modulo 3. The rate of 

transcription of mRNA j is regulated by the presence of its repressor protein 1−jp . When the 

repressor is present at high concentrations, the mRNA is transcribed at the ‘leaky’ rate 0α . In the 

absence of repressor, the transcription rate is ( )0αα + . The corresponding proteins are produced 

at a rate proportional to the mRNA concentrations. All components decay over time; mRNA 

species have unit decay constant in non-dimensionalized units and proteins have decay constant 

γ . 

 The authors reported that this deterministic repressilator system possesses a steady state 

that is either stable or unstable depending on the values of the model parameters. In particular, 

instability of the steady state, which results in the emergence of oscillatory solutions, is favored 

by large n , large α , small 0α  and small γ . 

For simplicity, consider the limit 00 =α , i.e. gene expression can be completely 

repressed under saturating repressor concentrations. We also make the common simplification of 

omitting the explicit mRNA level dynamics, assuming that the mRNA populations remain in 

quasi-equilibrium. This is usually justified since mRNA lifetimes are much shorter than protein 

lifetimes.
2
 With these considerations, our system of equations reduces to  
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 The dynamics of this simplified, single-step repressilator system were analyzed by 

Loinger and Biham.
3
 Consistently with results of Elowitz and Leibler,

1
 it was found that the 

possibility of sustained oscillatory solutions was dependent on the Hill coefficient, n . For 1=n  

and 2=n , no oscillatory solutions emerge irrespective of the values of other parameters. For 

3=n , sustained oscillations are possible. Thus, the sharpness of the repression modeled by the 

Hill function is important for determining the dynamics of the system. Notably, it was also found 

that oscillations were possible with 2=n  if the mRNA dynamics were explicitly included, as 

indicated by the earlier results by Elowitz and Leibler. Hence, the behavior of the model system 

can be sensitive to the assumption of quasi-steady mRNA dynamics in some cases. 

In the present work, we design a synthetic system based on the repressilator interaction 

network but not specifically modeling protein synthesis. We adopt the Hill function form of 
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repression from the single-step repressilator eqn (2) to model the production rates jP  of three 

chemical species from discrete sources, as described in the section below. 

 

 

Repressilator with discrete point sources: stability analysis 

 

Suppose we have three points, jX , 3,2,1=j , in three-dimensional space. Chemical 

species j  is produced at the point jX  at the rate jP . The chemical diffuses through the 

surrounding fluid medium, which is assumed to be quiescent, and degrades with a constant first 

order rate, γ . The concentration fields,  ),( tC j x , are described by 

 )(2

jjjjjt PCCDC Xx −+−∇=∂ δγ , (3) 

where D  is the diffusion constant and δ  denotes the Dirac delta function. The production rates 

jP  describe the repressilator network: production of species j  is reduced by the presence of 

chemical )1( −j  mod 3 at the point jX . Throughout this analysis, the species index is to be 

interpreted modulo 3. The form of repression is modeled by the Hill function corresponding to 

the simplified repressilator model, eqn (2): 
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Here, maxP  is the unrepressed production rate, and thresh
C  is the threshold concentration around 

which production drops from high to low. The parameter n  is known as the Hill coefficient or 

cooperativity and determines the sharpness of the transition (see main text, Fig. 1B). The sources 

are located on the impermeable surface at 0=z , and the no-flux boundary condition is imposed 

for the chemicals, 0
0

=∂
=zjzC . Finally, we focus on the symmetric configuration of the sources 

when they form a regular triangle of size l .  

 In order to obtain the conditions for the oscillatory behavior of the system, we determine 

the steady state and study its linear stability. It is convenient to introduce the dimensionless 

concentrations thresh/ CCc jj =  so the steady state equations take the form 

 0
)(1

)(

1

02 =
+

−
+−∇

− j
n
j

j
jj

c

P
ccD

X

Xxδ
γ   , (5) 

where threshmax
0 / CPP = . The above equation is solved using the Green’s function method to 

obtain 
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is the Green’s function, and )(11 jjj cc X−− = . Note that the factor 2 in eqn (6) is due to the non-

flux boundary conditions at the surface. Owing to the problem symmetry, all jc  are equal, 

cc j = , and satisfy the following equation [see eqn (6)]: 

 .)(2)1( 00 lGPcc
n =+  (8) 

The above equation can be easily solved analytically at 1=n  and numerically at arbitrary n . 

 Now consider small perturbations from equilibrium, jj ccc δ+= , and linearize the 

production rates in eqn (3) near the steady state value 1
0 )1( −+= n

cPP , writing 

,1−−= jj cSPP δ  where 

 .)1( 11 PccnS nn −− +=   (9) 

Assuming that )exp()(),( tctc jj λδδ xx = , the linearized eqn (3) is transformed to the eigenvalue 

problem  

 .)(1

2

jjjjj ccSccD δλδδδγδ =−−−∇ − Xx  (10) 

The steady state is unstable if there exists such eigenvalue λ  that 0)Re( >λ . Application of the 

Green’s function method to eqn (10) gives the following equation for the value )( 1+= jjj c Xδξ : 

 .)(2 1−−= jj lGS ξξ λ  (11) 

Here, λG  is the Green’s function 
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Applying eqn (11) three times, we obtain the equation for the eigenvalue λ : 

 1)(8 33 −=lGS λ  . (13) 

It follows from the above equation that the eigenvalue is a complex number as it obeys the 

equation 
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Through using the timescale γ/1* =t , lengthscale γ/4* Dl = , and production scale 
thresh2/12/3

2
1 )4(* CDP

−= γπ , we convert the above equation into the following final form:  

 ( ) 312/1 112exp −=+−− λπ llS  . (14) 

 Taking the complex logarithm of both sides of eqn (14) gives 

 3/)21(12 kibl +−=+ πλ  , (15) 

where )log( 12/1 −= lSb π  and k  is some integer number. It is important to note that the square 

root of a complex number on the left hand size of the above equation is treated as the principal 

square root, so solution of eqn (15) requires 0≥b . For a given integer k , the solution kλ  of eqn 

(15) is 

 [ ] 13/)21(29/)21()2( 2222 −+−+−= −
kbikblk ππλ  . (16) 
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The equilibrium state is linearly stable if and only if ( ) 0Re ≤kλ  for every integer k . By 

inspection of eqn (16), we see that )Re()Re( 0λλ ≤k  for any integer k . Hence, to determine 

stability of the equilibrium, we need only check the sign of )Re( 0λ , which is given by 

 1)9/()2()Re( 222
0 −−= − πλ bl  . 

Recalling that no solution exists if 0<b , we can express the condition for linear instability of 

the equilibrium state as 9/4 22 π+> lb , or equivalently,  

 




 +>− 9/4exp 2212/1 ππ llS   . (17) 

After introducing the characteristic time- and length-scales, eqn (8) and (9) are rewritten 

as 

 )()1( max
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where ( )l
l

l 2exp)( −=Θ
π

. Considering n  to be fixed, the stability is therefore determined by 

the parameters maxP  and l . Note that both sides of the inequality eqn (17) vary smoothly with 
maxP  and l . There are no singular points in phase space so we expect regions of ( )lP ,max  space 

that yield stable equilibrium states to be separated from regions where the equilibrium is unstable 

by a boundary curve on which 0)Re( 0 =λ , i.e., 
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 +=− 9/4exp 2212/1 ππ llS  . (20) 

Let )(crit lP  denote the critical value of the maximum production rate, such that eqn (20) 

is satisfied for a given separation l . Substituting eqn (19) into eqn (20) and rearranging gives 
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We can insert this into the equilibrium condition eqn (18) to obtain 
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This leads to the expression 
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from which we derive the formula for the critical maximum production rate 
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eqn (23) is the equation of the boundary curve separating stable from unstable behavior near the 

equilibrium state. These curves are plotted for 5,4,3,2=n  in Fig. 2A of the main text. Note, 
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however, that eqn (22) only has positive real solutions for critP  if ( ) 01 >−ζ . This constraint can 

be expressed as 129/4exp)( 221 <




 −+= −

llnl πζ , or equivalently, 

 ( )lln 29/4exp 22 −+> π . (24) 

 We now consider different values of n  to highlight qualitative sensitivity when n  is 

small. 

 

Case 1=n : 

The condition expressed by eqn (24) is not met for any 0>l . Hence, there is no point in phase 

space lying on the boundary between stability and instability of the equilibrium state. Since there 

are no discontinuities in phase space, the equilibrium state is either always stable or always 

unstable. Arbitrarily choosing 1max == Pl , we find 
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and therefore conclude that the equilibrium state is always stable when 1=n . 

 

Case 2=n : 

For any 1>n , constraint (24) is equivalent to 
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which means that for 2=n , there is no point in phase space at which 0)Re( 0 =λ  when  
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Examining any point below this minimum separation reveals that the equilibrium state is stable. 

Hence, for 2=n , the source separation must be greater than min
l  for sustained oscillations. This 

constraint gives rise to an asymptote ∞→crit
P  as l  approaches min

l  from above, as seen in Fig. 

2A of the main text. 

 

Case 3=n : 

The critical production rate )(crit lP  exists whenever 
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which is satisfied for any separation 0>l . Unlike the 2=n  case, there is no lower limit to the 

separation; given any separation between the chemical sources, the equilibrium state can be 

made unstable, leading to sustained oscillations, by choosing a sufficiently large critmax PP > . 

The same is also true for any 3>n . 

 



6 

Finite adsorption on boundary 

The lower plane boundary 0=z  adsorbs some of the chemicals from the fluid with finite 

capacity. If the total fractional surface coverage is θ , then the rate of adsorption of species j  is 

 ( )
0

ads 1
=

−=
z

jj CKf θ , (25) 

and the boundary condition for the chemical field is 
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We use a finite difference scheme to evolve the chemical fields on a Cartesian grid with spacing 

x∆ . For the purposes of treating the adsorbing boundary condition, consider a one-dimensional 

subset of the field k

jC , K,3,2,1=k corresponding to grid points with constant x - and y -

coordinates and z -coordinates ( ) xkz
k ∆+=

2

1 . Using this grid definition, we do not have a grid 

point exactly on the boundary 0=z  but we can write a first order approximation 
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The boundary condition eqn (26) gives an expression for the normal derivative at the boundary, 

which we substitute into eqn (27) to find the concentration at 0=z ,  
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From this, we derive an expression for the adsorption term in the discretized model, 
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At each time step, this adsorption rate is used to update the concentrations at the grid point 

adjacent to the boundary according to 

 1ads11 /)()( jjjj FxtftCttC +∆∆−=∆+ , (30) 

where 1

jF  is the change in concentration over a time step t∆  due to all other processes, such as 

diffusion from neighboring grid points, chemical production and decay. The surface density of 

adsorbed chemicals s

jC  is likewise updated according to 

 sadsss )()( jjjj FtftCttC +∆+=∆+ , (31) 

where s

jF  includes the first order decay of the adsorbed chemicals. 
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