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Electronic Supplementary Information 

S1: Experimental Details 

 75 kg/mol PS-PDMS thin films were spin coated on ~1 cm
2
 silicon oxide substrates 

functionalized with hydroxyl-terminated 1 kg/mol PDMS (~2 nm thick brush layer)
1
. Various 

spin speeds were used to control the film thickness. A Filmetrics F20 UV-Vis spectral 

reflectometer was used to measure film thickness
2
. 

 A range of volumetric mixtures of toluene and heptane solvents were used to anneal 

block copolymer films. These ratios included 1:0, 10:1, 5:1, 4:1, 3:1, 5:2, and 3:2. Closed 

reservoir annealing was used with a total reservoir volume around 80 cm
3
 and the vapor pressure 

and evaporation rate of the liquid solvent varied by using a loose fitted lid on the reservoir. 

Approximately 6 cm
3
 volume of solvent liquid was used in the chamber and the sample was 

placed above on a glass slide support above the liquid solvent. The annealing took places at a 

temperature of 23 ± 2℃ at 83% humidity. The equilibrium swelling ratio was varied using 

different lids and chambers which altered the partial pressures during annealing. Equilibrium 

swelling was normally reached after around 3 hours indicated by a plateau in film thickness and 

the film was slowly dried in a four step process by slowly opening the lid in four equal areas 

every 5 minutes for a total time of 20 minutes. Each of these quenching steps roughly 

corresponds to an increase in areal evaporation rate of ~3 cm
3
/min. The actual rate of removal of 
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solvent from the substrate is within a few seconds as indicated by the colour change of the film 

upon the initial opening of the lid, but the four step process leads to full evaporation of the liquid 

reservoir. 

 Reactive ion etching was performed with a ~5 s CF4 plasma to remove the PDMS surface 

layer followed by ~20 s oxygen plasma to remove the PS matrix for imaging the samples in a 

scanning electron microscope. 

 

S2: Details of the SCFT Modelling 

SCFT allows the numerical prediction of BCP system phase behavior under a variety of 

thermodynamic control variable values and boundary conditions. The effects of additional 

components such as solvents, homopolymers, nanoparticles, and other BCPs can all also be 

explored through the framework of SCFT
3–8

. 

The key starting point with SCFT is the polymer partition function 𝑍. 𝑍 is a functional of 

a Hamiltonian 𝐻 that corresponds to the free energy of the system at a given field solution. 

Rather than write 𝐻 as a function of the positions of the monomers along the chain, one can write 

𝐻 as a function of density and chemical potential fields, 𝜌 and Ω, respectively, which are 

functions of spatial coordinates �⃗� = {𝒙, 𝒚, 𝒛}. 𝑍 is then given as 

𝑍 = ∫𝑒
−𝐻[𝜌,Ω]
𝑘𝑇 𝐷𝜌𝐷Ω  (ES1) 

where 𝑇 is the temperature, 𝑘 is the Boltzmann constant, and 𝐷 represents integration over a 

function. SCFT simulations thus seek to find the set of fields 𝜌∗ and Ω∗ that satisfy the mean-

field saddle point equations or SCFT conditions 

𝛿𝐻

𝛿𝜌
|
𝜌∗
= 0 and 

𝛿𝐻

𝛿Ω
|
Ω∗
= 0.  (ES2)  

𝜌∗ and Ω∗ thus represent either an equilibrium or metastable morphology the BCP can form 

under the specified simulation conditions. To verify this morphology solution is the global 

minimum structure, multiple simulations are normally performed and the energies of different 

saddle point solutions compared. However, non-global equilibrium structures are of interest as 

real systems can become kinetically trapped. 
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A continuous Gaussian chain model is used for the partition function since the material of 

interest, PS-PDMS, is a coil-coil polymer. For diblock copolymers (BCPs), the density field 

contribution to the partition function integrates out from the chemical potential field contribution 

and 𝑍 can be found as just a function of Ω. Ω consists of two independent contributions for BCPs 

that are factored out as Ω+, a pressure-like field contribution, and Ω−, an exchange interaction 

field contribution. 𝐻 for BCPs is thus given as  

𝐻[Ω+, Ω−] = 𝐶 (∫𝑑�⃗� ((2𝑓 − 1) Ω− +
Ω−
2

𝜒𝑁
− Ω+) − 𝑉ln(𝑄[Ω+, Ω−])).  (ES3) 

Here, 𝜒 is the Flory-Huggins interaction parameter, 𝑓 is the volume fraction of the minority 

component, 𝑁 is the degree of polymerization, 𝑉 is the volume of the simulation unit cell, and 𝐶 

is a dimensionless concentration constant of the monomers in the polymer chain such that 

𝐶 =
𝜌0𝑅𝑔

3

𝑁
 where 𝜌0 is the density of monomer in the chain and 𝑅𝑔 is the radius of gyration of the 

polymer. The single chain partition function 𝑄 under the mean field conditions is found by 

calculating the propagators 𝑞 along the chain under the current chemical field conditions such 

that  

𝑄[𝝁] =
1

𝑉
∫𝑑�⃗�𝑞(�⃗�, 𝑠 = 1, 𝝁)  (ES4) 

where 𝑞 is found solving the Fokker-Plank diffusion equations 

𝜕𝑞(�⃗�, 𝑠, 𝝁)

𝜕𝑠
=
𝑅𝑔
2

𝑁
∇2𝑞(�⃗�, 𝑠, 𝝁) − 𝝁(𝝓(�⃗�, 𝑠, 𝝁))𝑞(�⃗�, 𝑠, 𝝁)  (ES5) 

with initial conditions 𝑞(�⃗�, 0, 𝝁) = 1 where the measured position along the chain 𝑠 starts at 

𝑠 = 0 in the minority (PDMS) terminal and ends at 𝑠 = 1 in the majority (PS) terminal. The 

chemical potential field 𝝁 here corresponds to either the PS or PDMS chain such that 

𝝁 = {
Ω𝑃𝐷𝑀𝑆 = Ω+ + Ω− 𝑠 < 𝑓
Ω𝑃𝑆 = Ω+ − Ω− 𝑠 ≥ 𝑓

  (ES6) 

and the normalized densities 𝝓 are found as follows 

𝝓(�⃗�) =

{
 
 

 
 𝜙𝑃𝐷𝑀𝑆(�⃗�) =

𝜌(�⃗�)

𝜌0
=
1

𝑄
∫ 𝑑𝑠𝑞†(�⃗�, 1 − 𝑠, 𝝁)
𝑓

0

𝑞(�⃗�, 𝑠, 𝝁)

𝜙𝑃𝑆(�⃗�) =
𝜌(�⃗�)

𝜌0
=
1

𝑄
∫ 𝑑𝑠𝑞†(�⃗�, 1 − 𝑠, 𝝁)
1

𝑓

𝑞(�⃗�, 𝑠, 𝝁)

  (ES7) 
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with the backward propagator 𝑞† being calculated using by solving the Fokker-Planck diffusion 

equation starting at the 𝑠 = 1 (PS) end of the chain. The Fokker-Planck equation can be solved 

in many different ways, with a pseudo-spectral method being chosen for convenience, speed, 

stability, and no 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 assumptions needed on for the space groups in a given morphology 

solution
4
. 

 To start a simulation, an initial guess solution or random field values are assigned to Ω−. 

The SCFT equations are then solved iteratively finding new values for Ω− and Ω+ using a 

steepest descent complex Langevin relaxation scheme. Using the SCFT condition 

𝛿𝐻

𝛿Ω
|
Ω∗
= 0, (ES8) 

 a time evolution scheme of the fields is developed as follows 

𝛿Ω+
𝑑𝑡

= 𝜆+
𝛿𝐻

𝛿Ω+
 and 

𝛿Ω−
𝑑𝑡

= 𝜆−
𝛿𝐻

𝛿Ω−
  (ES9) 

where the constants 𝜆+ and 𝜆− are chosen to be large enough to make the system converge fast in 

as few iterations as possible but small enough to ensure the simulation is numerically stable. 

Each time step 𝑡 corresponds to one forward simulation iteration. In the simulations performed in 

this study, time constant values were chosen as 𝜆+ = 5.0 and 𝜆− = 0.0033 through 

computational optimization trial and error. For the BCPs studied, the analytical expressions for 

these derivatives using the functional form of 𝐻 are given as 

𝛿Ω+
𝑑𝑡

= 𝜆+𝐶(1 − 𝜙+)  and 
𝛿Ω−
𝑑𝑡

= −𝜆−𝐶 (2𝑓 − 1 − 𝜙− −
2Ω−
𝜒𝑁

)  (ES10) 

or rewritten in terms of iteration numbers 

Ω+,𝑗+1 = Ω+,𝑗 + 𝜆+𝐶 (1 − 𝜙+,𝑗)

Ω−,𝑗+1 = Ω−,𝑗 − 𝜆−𝐶 (2𝑓 − 1 − 𝜙−,𝑗 −
2Ω−,𝑗

𝜒𝑁
) + 𝜆−𝜂(�⃗�)

 (ES11) 

where the 𝑗th iterations is denoted by 𝑗. The term 𝜂(�⃗�) is Gaussian distributed random noise 

added to the second update scheme equation for Ω_ in complex Lagevin dynamics that keeps the 

system out of shallow metastable solutions. SCFT simulations are normally performed on a 

discrete grid of size 𝑁𝑥 by 𝑁𝑦 by 𝑁𝑧 points with each point corresponding to a location in real 
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space. The number and size are chosen based on coarse-graining considerations as well as 

expectations of symmetries for unit cell calculations. Boundary conditions to enforce different 

surface wetting conditions are added by constraining the appropriate field values to stay constant 

at the interfaces. These conditions amount to having large Ω+ constraints at hard interfaces and 

negative values of the appropriate Ω field for PS or PDMS to attract a given polymer species for 

preferential surfaces. The actual values used are based on previous work
8,9

. 

 

S3: Effective Fraction Fit 

 Modelling the PS-PDMS solvent annealing with selective solvents toluene and heptane 

requires the accurate estimation of the effective control variables of the system, 𝜒𝑒𝑓𝑓 and 𝑓𝑒𝑓𝑓. 

𝜒𝑒𝑓𝑓 depends on the fraction of incorporated solvent Φ𝑠𝑜𝑙 or simply the inverse of the swelling 

ratio 𝑆𝑅. However, most BCP morphologies vary little with changing 𝜒 except when the weak 

segregation regime is approached. Thus in simulations usually just choosing a few representative 

𝜒 values to test allows one to get a general sense of what the actual 𝜒𝑒𝑓𝑓 is for comparison with 

experiments. Estimating 𝑓𝑒𝑓𝑓 from experiment is more difficult though, since the solvents used 

are not mutually selective to the two blocks and thus dividing the solvent into the appropriate 

phase regions in the film cannot be directly inferred from experiment. To find the best way of 

calculating 𝑓𝑒𝑓𝑓, two simple extreme models for the heptane and toluene system are first 

examined and then compared with a composite model based on homopolymer thin film swelling 

experiments from a previous study
10

. In this previous study, toluene was found to be slightly 

preferential to PS or neutral while heptane was very preferential to PDMS. Using these 

observations, the first extreme model (denoted Model 1) makes the assumption that 50% of the 

toluene in the swollen film enters the PDMS domains and 50% of the toluene enters the PS 

domains, and heptane swells only the PDMS domains. The 50% assumption is independent of 

PDMS volume fraction. To contrast this model, the extreme case where toluene is fully 

preferential to PS is considered (denoted Model 2). Experimentally this can occur when both 

heptane and toluene are present in the film in large concentrations with the heptane forcing the 

toluene to selectively swell only the PS.  

 The effective fraction for Model 1 is thus given in terms of the bulk PDMS volume 

fraction 𝑓, fraction of heptane solvent in the film 𝜃ℎ𝑒𝑝𝑡, and fraction of toluene solvent in the 

film 𝜃𝑡𝑜𝑙 as 



 6 

𝑓𝑒𝑓𝑓1 = 𝑓𝑆𝑅
−1 + (𝜃ℎ𝑒𝑝𝑡 +

𝜃𝑡𝑜𝑙
2
) (1 − 𝑆𝑅

−1)  (ES12) 

and for Model 2 as  

𝑓𝑒𝑓𝑓2 = 𝑓𝑆𝑅
−1 + 𝜃ℎ𝑒𝑝𝑡(1 − 𝑆𝑅

−1).  (ES13) 

Here 𝜃ℎ𝑒𝑝𝑡 + 𝜃𝑡𝑜𝑙 = 1 as the total fraction of all solvent types in the swollen film should 

be unity. A third model (denoted Model 3) is a general model that allows for a selectivity 

coefficient 𝜁 that is a function of 𝜃ℎ𝑒𝑝𝑡 and 𝜃𝑡𝑜𝑙 and is given as 

𝑓𝑒𝑓𝑓3 = 𝑓𝑆𝑅
−1 + 𝜁(𝜃𝑡𝑜𝑙 , 𝜃ℎ𝑒𝑝𝑡)(1 − 𝑆𝑅

−1).  (ES14) 

Model 3 thus  accounts for the non-ideal and nonlinear behavior between heptane and toluene
11

.  

 𝜁(𝜃𝑡𝑜𝑙 , 𝜃ℎ𝑒𝑝𝑡) can be determined by estimating 𝑓𝑒𝑓𝑓 from actual experimental data. While 

using only the swelling data of BCP films does not allow for such an estimation, combining BCP 

film swelling data with homopolymer swelling data can in principle give a decent estimation for 

𝑓𝑒𝑓𝑓 as follows: The bulk dry film volume fraction is written 𝑓 =
𝑉𝑃𝐷𝑀𝑆

𝑉0
 in terms of the initial 

volume of the thin film 𝑉0 and volume of PDMS in the dry film 𝑉𝑃𝐷𝑀𝑆. The PDMS effective 

volume fraction when swollen can then be written 𝑓𝑒𝑓𝑓 =
(𝑉𝑃𝐷𝑀𝑆+𝑉𝑠𝑜𝑙)

𝑉𝑆
 in terms of the swollen 

film volume 𝑉𝑆 and volume solvent present only in PDMS features 𝑉𝑠𝑜𝑙 in addition to 𝑉𝑃𝐷𝑀𝑆. By 

dividing the equation for 𝑓𝑒𝑓𝑓 by 𝑓, the relationship is found 𝑓𝑒𝑓𝑓 = 𝑓 (
𝑉𝑃𝐷𝑀𝑆+𝑉𝑠𝑜𝑙

𝑉𝑃𝐷𝑀𝑆
)
𝑉0

𝑉𝑆
 . Here the 

fraction 
𝑉0

𝑉𝑆
 is simply the inverse of the swelling ratio of the BCP film 𝑆𝑅,𝐵𝐶𝑃 such that 

𝑉0

𝑉𝑆
=

𝑆𝑅,𝐵𝐶𝑃
−1 . The fraction 

𝑉𝑃𝐷𝑀𝑆+𝑉𝑠𝑜𝑙

𝑉𝑃𝐷𝑀𝑆
 can be estimated from the swelling ratio of pure PDMS thin film 

𝑆𝑅,𝑃𝐷𝑀𝑆 (the limit where 𝑓𝑒𝑓𝑓 = 𝑓 = 1) such that 
𝑉𝑃𝐷𝑀𝑆+𝑉𝑠𝑜𝑙

𝑉𝑃𝐷𝑀𝑆
≅ 𝑆𝑅,𝑃𝐷𝑀𝑆. Fitting the data from the 

previous study
10

 using the swelling data PDMS and PS homopolymer thin films with the PS-

PDMS thin film data, a fit for 𝜁 using the form 

𝜁(𝜃𝑡𝑜𝑙 , 𝜃ℎ𝑒𝑝𝑡) = 𝛽𝑡𝑜𝑙(𝜃𝑡𝑜𝑙)𝜃𝑡𝑜𝑙 + 𝛽ℎ𝑒𝑝𝑡(𝜃𝑡𝑜𝑙)𝜃ℎ𝑒𝑝𝑡  (ES15) 

 with 𝛽ℎ𝑒𝑝𝑡(𝜃𝑡𝑜𝑙) and 𝛽𝑡𝑜𝑙(𝜃𝑡𝑜𝑙) as best fit functions was found. These two fit functions 

are plotted as a function of 𝜃𝑡𝑜𝑙 in Figure S1.  
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The original study presented swelling ratios as a function of 𝒚𝒕𝒐𝒍, the mole fraction 

toluene in the vapor. Since equilibrium is assumed to be met for the measured swelling ratios, the 

assumption is made that 𝒚𝒕𝒐𝒍 ≅ 𝜃𝑡𝑜𝑙 in this data fit. From the plots, the observation is made that 

𝛽ℎ𝑒𝑝𝑡 is almost equal to 1 for all 𝜃𝑡𝑜𝑙 while 𝛽𝑡𝑜𝑙 is almost equal to 0 for low 𝜃𝑡𝑜𝑙 and increases 

linearly to ≈ 0.25 for 𝜃𝑡𝑜𝑙 > 0.7 meaning toluene is selective to PS when heptane is in the film 

but does swell PDMS somewhat when less heptane is present. This means the real system’s 

Model 3 is closer to Model 2 for 𝜃𝑡𝑜𝑙 < 0.7 and somewhere between Model 1 and 2 for 𝜃𝑡𝑜𝑙 >

0.7 as the toluene is never completely neutral to the two blocks.  

 
Figure S1: Plots of the 𝛽 fit parameters for Model 3 versus 𝜃𝑡𝑜𝑙. 𝛽ℎ𝑒𝑝𝑡  is shown in blue and 𝛽𝑡𝑜𝑙 is shown in green. 

 To better compare the three models 1, 2, and 3, plots of 𝑓𝑒𝑓𝑓1, 𝑓𝑒𝑓𝑓2, and 𝑓𝑒𝑓𝑓3 

respectively as a function of 𝜃𝑡𝑜𝑙 for fixed values of 𝑆𝑅 and two 𝑓 volume fractions (𝑓 = 0.33 

corresponding to the 45.5 kg/mol PS-PDMS used in the previous study
10

 and 𝑓 = 0.41 

corresponding to the 75 kg/mol PS-PDMS) are shown in Figure S2. The values for 𝑓𝑒𝑓𝑓3 will 

provide the best fit to the experimental system, and 𝑓𝑒𝑓𝑓1 and 𝑓𝑒𝑓𝑓2 provide limiting cases such 

that 𝑓𝑒𝑓𝑓 ≅ 𝑓𝑒𝑓𝑓2
 for lower 𝜃𝑡𝑜𝑙 and 𝑓𝑒𝑓𝑓 ≅ 𝑓𝑒𝑓𝑓1

 for higher 𝜃𝑡𝑜𝑙. 𝑓𝑒𝑓𝑓3
 does indeed approach 

𝑓𝑒𝑓𝑓2
 for low 𝜃𝑡𝑜𝑙 but does not quite reach the 𝑓𝑒𝑓𝑓1

 limit as shown in Figure S2. 
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Figure S2: 𝑓𝑒𝑓𝑓 plotted versus 𝜃𝑡𝑜𝑙 for 𝑓 = 0.33 (left) and 𝑓 = 0.41 (right) for three swelling ratios 𝑆𝑅 =

1.5, 2, and 2.5. Model 1 𝑓𝑒𝑓𝑓1
 is shown in shades of red, Model 2 𝑓𝑒𝑓𝑓2

 is shown in shades of blue, and Model 3 

𝑓𝑒𝑓𝑓3
 is shown in shades of green 

 In the main text, Model 3 was used for comparing simulation results with experiments. 

There 𝛼(𝜃𝑡𝑜𝑙 , 𝜃ℎ𝑒𝑝𝑡) is replaced with 𝜉A,𝑠𝑜𝑙 in the context of the SCFT model with species A and 

B instead of PDMS and PS. Everything else in the model remains the same. 

 

S4: Simulation-Experiment Comparison  

In order to compare the simulation results with experimental results, the simulation 

variables need to be correlated to the experimental parameters with care. The experimental 

determination of microdomain morphology is based on etched samples after quenching whereas 

the implicit simulation results represent the morphology present before quenching the system. To 

account for this we assume that upon quenching, the morphologies in the simulation will be 

collapsed in the thickness direction by a factor approximately equal to 1/𝑆𝑅 assuming 𝐷0 = 𝐷𝑓. 

If the solvent selectivity is such that 𝑓𝑒𝑓𝑓 is very different from the bulk BCP 𝑓, there will also be 

some lateral shrinkage or growth of the minority features for 𝑓𝑒𝑓𝑓 > 𝑓 and 𝑓𝑒𝑓𝑓 < 𝑓, 

respectively. The presence or absence of a minority wetting surface layer that depends on the 

solvent preferentiality will affect the absolute 𝑆𝑅 at which commensurate morphologies are 

observed. The etching process itself may disturb the shape and size of the microdomains. 

Further, nonequilibrium processes such as film dewetting compete with the desired BCP 

microphase segregation, and kinetically trapped morphologies or local defects are expected in 

experiments. In the modelling, we therefore explore ranges of 𝑓𝑒𝑓𝑓, 𝜒𝑒𝑓𝑓, and 𝑆𝑅 to illustrate 

trends in the morphologies and give a qualitative comparison with experiment.  
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S5: Bulk Equilibrium Structure Simulations and Effective 𝝌𝑵  

 

 Before considering thin film simulations, an examination of bulk behavior of the BCP in 

simulations was performed using the appropriate volume fraction of the gyroid-forming BCP at 

𝑓 = 0.411. Three effective Flory-Huggins parameters of (𝜒𝑁)𝑒𝑓𝑓 = 14, 18, and 30 were 

examined which fall near the lower end of the range of (𝜒𝑁)𝑒𝑓𝑓 for the swelled 75.5 kg/mol 

BCP. Using a reduced degree of polymerization 𝑁 = 125 in the model (based on using Kuhn 

segments rather than chemical repeat units in the SCFT) and taking 𝜒 = 0.27, these would 

roughly correspond to swelling ratios of 𝑆𝑅 = 2.4, 1.9, and 1.1, respectively, for a thin film 

system. Fully periodic cubic unit cells with grid size 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 16 were performed with 

the side length of the unit cell varied from 2.43𝑅𝑔 to 7.30𝑅𝑔 in order to find the equilibrium 

lengths of the morphologies observed, where 𝑅𝑔 is the radius of gyration of the BCP. In these 

simulations, square packed cylinders, hexagonally packed cylinders, cubic gyroid structures, and 

double gyroid structures were all observed depending on the unit cell side length. Representative 

minority density isosurfaces results of these morphologies are shown in Figure S3.  

 In order to compare these morphologies, free energy curves for each were calculated as a 

function of the unit cell side length by holding the density fields constants in additional SCFT 

simulations, allowing the corresponding chemical potential fields to develop, and calculating the 

energies at those field solutions. These free energy curves are shown in Figure S4, S5, and S6 for 

(𝜒𝑁)𝑒𝑓𝑓 = 14, 18, and 30, respectively. For (𝜒𝑁)𝑒𝑓𝑓 = 14, cylinders had the lowest free energy 

while for the higher (𝜒𝑁)𝑒𝑓𝑓 the gyroid structures became favored with lower free energy. Since 

the system of interest is bulk gyroid, the thin film implicit simulation studies used the lowest 

(𝜒𝑁)𝑒𝑓𝑓 = 18 since gyroid was the dominant structure, and the corresponding 𝑆𝑅 ≅ 2 was used 

to obtain that effective interaction parameter. Additionally, the hexagonal cylinder phase was 

found to have a minimum free energy at a close packed spacing of 5.27𝑅𝑔 and thus this value 

was used as 𝐿0 for the length scale in the thin film simulations since it is a simpler measure of 

periodicity in the BCP system than lengths in the gyroid unit cell and corresponds better to a 

commensurate monolayer length in thin films. 
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Figure S3: Bulk equilibrium morphologies observed in SCFT simulations. 𝜙 = 0.5 minority isosurfaces density 

regions are coloured green with red regions being the minority rich regions. The top structures are single unit cells 

and the bottom structures are three unit cells repeated in each direction for extended clarity of the structure (total of 

27 unit cells). (Left) Hexagonally packed cylinders. (Middle Left) Square packed cylinders. (Middle Right) Cubic 

gyroid. (Right) Double gyroid.  

 
Figure S4: Plots of the normalized free energies relative to a disordered melt of the simulated SCFT equilibrium 

structures colour coded to match those in Figure S3 (i.e. dark blue: hexagonally packed cylinders; green: square 

packed cylinders; magneta: cubic gyroid; light blue: double gyroid) for (𝜒𝑁)𝑒𝑓𝑓 = 14 and 𝑓 = 0.411. 
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Figure S5: Plots of the normalized free energies relative to a disordered melt of the simulated SCFT equilibrium 

structures colour coded to match those in Figure S3 (i.e. dark blue: hexagonally packed cylinders; green: square 

packed cylinders; magneta: cubic gyroid; light blue: double gyroid) for (𝜒𝑁)𝑒𝑓𝑓 = 18 and 𝑓 = 0.411. 

 
Figure S6: Plots of the normalized free energies relative to a disordered melt of the simulated SCFT equilibrium 

structures colour coded to match those in Figure S3 (i.e. dark blue: hexagonally packed cylinders; green: square 

packed cylinders; magneta: cubic gyroid; light blue: double gyroid) for (𝜒𝑁)𝑒𝑓𝑓 = 30 and 𝑓 = 0.411. 
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S6: Full Set of Thin Film Simulations Performed 

 The thin film simulations used periodic boundary conditions in the in-plane 𝑥 and 𝑦 

directions and used hard wall boundary conditions with preferential surface wetting layers in the 

out-of-plane 𝑧 direction. The unit cells used had a grid size of 𝑁𝑥 = 32,𝑁𝑦 = 28, and 𝑁𝑧 = 18. 

The 𝑥 and 𝑦 side lengths were non-integer multiples of 𝐿0 such that the unit cell diagonal 

dimension was also non-integer. This avoids a bias towards forming specific commensurate 

morphologies. An alternative approach would have been to use a much larger unit cell, but this 

would have required longer computational time. The film thickness 𝑡 was varied from 1.62𝑅𝑔 to 

8.11𝑅𝑔 with (𝜒𝑁)𝑒𝑓𝑓 = 18.0.  

 To examine different selective solvent ratio conditions, four effective fractions were used 

with values 𝑓𝑒𝑓𝑓 = 0.25, 0.35, 0.41, and 0.45. The complete phase diagram results for these four 

effective fractions are shown in Figures S7, S8, S9, and S10 with colour coding that corresponds 

to the free energy diagrams in the main text Figure 4. 

 

 
Figure S7: Thin film equilibrium morphologies observed in SCFT simulations as a function of normalized thickness 
𝑡

𝐿0
 for 𝑓𝑒𝑓𝑓 = 0.25. Structures include spheres (red background) and double layers of spheres (pink). 
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Figure S8: Thin film equilibrium morphologies observed in SCFT simulations as a function of normalized thickness 
𝑡

𝐿0
 for 𝑓𝑒𝑓𝑓 = 0.35. Structures include spheres (red), perforated lamellae (green), cylinders (orange), lamellae 

(yellow), and double layered structures (blue, magenta, purple, light blue). 

 
Figure S9: Thin film equilibrium morphologies observed in SCFT simulations as a function of normalized thickness 
𝑡

𝐿0
 for 𝑓𝑒𝑓𝑓 = 0.411. Structures include perforated lamellae, cylinders, lamellae, and double layered structures. 
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Figure S10: Thin film equilibrium morphologies observed in SCFT simulations as a function of normalized 

thickness 
𝑡

𝐿0
 for 𝑓𝑒𝑓𝑓 = 0.45. Structures include perforated lamellae, cylinders, lamellae, and double layered 

structures. 

S7: Comparison of Implicit Thin Film Simulations with Previous Studies 

 Since the implicit thin film simulations are equivalent to the standard BCP SCFT model, 

the results can be compared to previous thin film simulation studies. Previous work by Li et al
12 

produced a phase diagram of BCP morphologies as a function of normalized film thickness 𝑡/𝑅𝑔 

and volume fraction 𝑓. A comparison of their phase diagram with our results for the four 𝑓 

examined is shown in Figure S11. In the figure, the approximate phase boundaries found by Li et 

al are shown as dashed lines and their letter coding for different morphologies are represented by 

similar letter coding that they used (S1 for a single layer of close-packed spheres, S2 for double 

layers of close-packed spheres, SC for a single layer of close-packed spheres elongated in the 

out-of-plane direction, C1 for a single layer of cylinders, C2 for a double layer of cylinders, C⊥for 

out-of-plane oriented cylinders connecting to the surface layers, PL1 for a single layer of 

perforated lamellae, PL2 for a double layer of perforated lamellae, L⊥ for out-of-plane standing 

lamellae, 𝐿‖,⊥ for out-of-plane lamellae not connected to the surface layer, L1 for a single layer of 

in-plane lamellae, and L2for double layers of in-plane lamellae).The morphologies found in our 

simulations are shown as colour coded symbols with colours analogous to those of representative 

morphologies in Figures S7 through S10. 
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  A few differences in our simulations and those of Li should be noted: Li used a higher 

𝜒𝑁 value of 20 whereas our 𝜒𝑁 was 18; they modeled preferential surfaces as an exponential 

decay function with average strength of 0.22𝜒𝑁 whereas we used a step function potential with 

strength value of 0.56𝜒𝑁 which results in much higher preferentiality for the majority block (this 

corresponds in our simulations to a fixed Ω_ value of 10 versus average value in Li’s simulations 

of ≈ 4.4, so over a factor of 2 times more preferential in our simulations);  Li’s phase diagram is 

a result of comparing the minimum free energy of all the candidate morphologies for the phase 

space explored whereas we found the morphologies from forward steepest decent simulations 

meaning some morphologies may be local equilibrium solutions rather than global solutions. 

Taking these differences into account and comparing the observed morphologies with their phase 

diagram, the results show qualitative similarities with many phase regions and transition 

boundaries overlapping.. 

 For the morphologies with 𝑓 = 0.25, disordered homogenous internal structure (black 

stars) (i.e. wetting layer only) is observed as opposed to a single layer of spheres which is likely 

due to the higher surface preferentiality in our simulations. As the film thickness increases, the 

single layer of spheres (red circles) appears in the region that the single layers of cylinders 

appeared in Li’s simulations, likely due to our lower 𝜒𝑁 in conjunction with the higher surface 

preferentiality. Upon further increase in thickness, the region with double layers of spheres (pink 

circles) appears instead of Li’s region of double layers of cylinders, again likely due to the 

slightly lower 𝜒𝑁 and higher surface preferentiality.  

 For the 𝑓 = 0.35 morphologies, spheres (red circles) appear in the region where Li 

observed perpendicular cylinders connected to the surface. Due to the higher surface 

preferentiality in our simulations, spheres connected to the surface were never observed. The 

single layer of perforated lamellae (green plus signs) and single layer lamellae (yellow squares) 

fall in the expected regions from Li’s model. Transitional bicontinuous cylinders (blue squares) 

and double layers of cylinders (magenta stars) appear around the L‖,⊥ region, again likely due to 

the stronger surface preferentiality and lower 𝜒𝑁. Double layer perforated lamellae (purple plus 

signs) and double layer in-plane lamellae (cyan squares) both appear near their predicted regions. 

 For the higher 𝑓 = 0.41 and 0.45 morphologies, the thickest films showed double layer 

parallel lamellae (cyan squares) in the predicted region. Decreasing the thickness, double layer 

perforated lamellae (purple plus signs) appeared as well as bicontinous cylinders (blue squares) 
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and single layer cylinders (orange stars), instead of the expected L‖,⊥. Decreasing thickness 

further, single layer lamellae (yellow squares) agreed with Li’s model. The lowest thickness 

phases here were primarily single layer cylinders (orange stars) in a region where perpendicular 

standing lamellae were predicted. The stronger surface preferentiality is likely the primary factor 

in this observed difference, destabilizing standing lamellae. 

 Overall our simulation results agree quite well with Li et al. All the observed differences 

are reasonably explained by the higher surface boundary preferences coupled with the lower 𝜒𝑁, 

with the additional possibility of some phases being local equilibrium structures.  

 
Figure S11: Results of thin film equilibrium morphologies observed in SCFT simulations overlayed on a phase 

diagram from a previous confined thickness simulation study of Li et al., the main differences being that our 

simulations have twice the surface preference for the majority block and a slightly lower 𝜒𝑁 = 18. Dashed lines 

indicate calculated phase boundaries from Li et al. Superposed are data points from our study, colour coded to match 

figures S7 through S10 with * being no internal morphology, O being spheres, + being perforated lamellae, stars 

being cylinders, and squares being either in-plane lamellae or bicontinuous cylinders. 
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S8: Comparison of Implicit and Explicit Models – 2D Phase Diagram 

 In order to more accurately compare the morphologies predicted by the implicit and 

explicit solvent SCFT models as well as determine how well the models compare with 

experimental conditions, additional simulations were performed in 2D over a range of 𝜒𝑁, 𝑓, 

𝑓𝑠𝑜𝑙A, and 𝑓𝑠𝑜𝑙B. For the case that 𝑓𝑠𝑜𝑙A = 𝑓𝑠𝑜𝑙B = 0, this corresponds to the standard BCP model 

which is also the implicit model where 𝜒 and 𝑓 are mapped to their appropriate 𝜒𝑒𝑓𝑓 and 𝑓𝑒𝑓𝑓 

parameters. Simulations were performed on unit cells with size roughly 2𝐿0 by 2𝐿0 (depending 

on the morphology at those conditions). 𝜒𝑁 was varied with values 12, 14, 16, 18, 20, 24, 28, 

and 32. 𝑓 was varied with values 0.25, 0.29, 0.33, 0.38, 0.42, 0.46, and 0.50. 𝑓𝑠𝑜𝑙A and 𝑓𝑠𝑜𝑙B were 

both varied over a range of values from 0 to 0.60 in steps of 0.05 in a similar fashion to those 

shown in the main text in Figure 5 (where in the main text 𝑓 = 0.40 and 𝜒𝑁 = 28 but here many 

more values were examined and unit cells were a larger 4𝐿0 by 4𝐿0). 

 From these simulations, various phases were observed consistent with previous studies of 

BCP systems. These phases are detailed with representative density profiles in Figures S12 

through S15. The simulation parameters where the example density profiles were obtained are 

detailed in the figure captions. Phase diagrams for constant total solvent volume fraction (i.e. 

𝑓𝑠𝑜𝑙A + 𝑓𝑠𝑜𝑙B = Φ𝑠𝑜𝑙 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) for Φ𝑠𝑜𝑙 = 0, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 are shown 

in Figures S16 through S22. For the cases with Φ𝑠𝑜𝑙 > 0, a side by side comparison phase 

diagram is presented where the data is replotted with 𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
𝛼 with 𝛼 = −1 for a 

theoretical case of the explicit preferential solvent increasing the effective 𝜒𝑒𝑓𝑓. In the phase 

diagrams, curves representing the approximate boundaries between disordered, spherical, 

cylindrical, and lamellar morphologies are shown as guides. 

 In 2D, certain observed phases can correspond to different cross-sections of normal 3D 

morphologies, thus one should take care when comparing these simulations to the theoretical 

phase diagram for bulk BCPs. Circular structures in 2D can correspond to both spheres and 

cylinder cross-sections in 3D; similarly line structures can correspond to cross-sections of either 

cylinders or lamellae. From the phase diagrams, the morphologies observed for the implicit 

model or standard BCP model fall right within ranges expected from previous studies
3
. As Φ𝑠𝑜𝑙 

is increased, using the input 𝜒𝑁 values as a guide, the range for observing sphere-like 

morphologies appears to go out into the normally disordered region. If a higher 𝜒𝑒𝑓𝑓 is assumed 

in these cases, the phase diagram appears to start overlaying the standard phase diagram again, 
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although an exact match is not observed or expected for all cases. In particular, as the ratio of 

solvent in the system increases above Φ𝑠𝑜𝑙 =0.30, more two phase morphologies begin to appear 

where solvent no longer coexists homogeneously with the BCP. In these cases, morphologies 

such as micelles and vesicles of various shapes and sizes begin to appear. Since the BCP and 

solvent density profile no longer coexist spatially in these regions, the results in these regions 

cannot be taken for quantitative accuracy due to the mean field approximation breaking down for 

pure solvent (i.e. as long as the solvent is well dispersed in the BCP regions, the simulations give 

insightful results, but once macrophase segregation of solvent and BCP occur the model breaks 

down and only qualitative behavior can be deduced from the results). 
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Figure S12: Example 2D density profiles of phases observed in explicit solvent simulations. Profiles are arranged 

with normalized A block densities in the upper-left corner, B block densities in the upper-right corner, A solvent 

densities in the lower-left corner, and B solvent densities in the lower-right corner. Colour bar scale is on the right. 

For the following, the simulation parameters in parentheses are for the particular example morphologies shown. In 

general these morphologies occurred over a range of parameters as detailed in the phase diagrams in Figures S16 

through S22. (Top Left) Disordered homogenous phase (𝑓 = 0.29 𝜒𝑁 = 12 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙B = 0.05 𝑓𝑒𝑓𝑓 = 0.2755). 

(Top Right) Close-packed circle phase (𝑓 = 0.38 𝜒𝑁 = 18 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙B = 0.05 𝑓𝑒𝑓𝑓 = 0.361). (Bottom Left) 

Circular phase (𝑓 = 0.29 𝜒𝑁 = 18 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙B = 0.05 𝑓𝑒𝑓𝑓 = 0.2755). (Bottom Right) Mixed line and circle 

phase (𝑓 = 0.38 𝜒𝑁 = 12 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A = 0.10 𝑓𝑒𝑓𝑓 = 0.442). 
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Figure S13: (Top Left) Ellipsoidal phase(𝑓 = 0.50 𝜒𝑁 = 28 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙B = 0.10 𝑓𝑒𝑓𝑓 = 0.45). (Top Right) Lines 

phase (𝑓 = 0.46 𝜒𝑁 = 16 𝑓𝑠𝑜𝑙A = 𝑓𝑠𝑜𝑙B = 0.05 → Φ𝑠𝑜𝑙 = 0.10 𝑓𝑒𝑓𝑓 = 0.464). (Bottom Left) Wavy lines phase 

(𝑓 = 0.46 𝜒𝑁 = 12 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A = 0.10 𝑓𝑒𝑓𝑓 = 0.514). (Bottom Right) Fingerprint pattern phase (𝑓 = 0.50 

𝜒𝑁 = 24 𝑓𝑠𝑜𝑙A = 0.05 & 𝑓𝑠𝑜𝑙B = 0.10 → Φ𝑠𝑜𝑙 = 0.15 𝑓𝑒𝑓𝑓 = 0.475). 
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Figure S14: (Top Left) Ellipsoidal phase with B block (𝑓 = 0.50 𝜒𝑁 = 32 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A = 0.15 𝑓𝑒𝑓𝑓 = 0.575). 

(Top Right) Mixed line and circle phase with B block (𝑓 = 0.46 𝜒𝑁 = 20 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A = 0.15 𝑓𝑒𝑓𝑓 = 0.541). 

(Bottom Left) Close-packed circle phase with B block (𝑓 = 0.46 𝜒𝑁 = 20 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A = 0.30 𝑓𝑒𝑓𝑓 = 0.622). 

(Bottom Right) Circular phase with B block (𝑓 = 0.50 𝜒𝑁 = 32 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A = 0.25 𝑓𝑒𝑓𝑓 = 0.625).
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Figure S15: Examples of two phase morphologies. The solvent density no longer homogenously coincides with the 

polymer densities. (Left) Simulation conditions are 𝑓 = 0.38 𝜒𝑁 = 24 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A = 0.30 𝑓𝑒𝑓𝑓 = 0.566. (Right) 

Simulation conditions are 𝑓 = 0.25 𝜒𝑁 = 12 Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A = 0.25 𝑓𝑒𝑓𝑓 = 0.4375. 

 
Figure S16: Phase diagram for 2D implicit model (aka standard BCP model where 𝜒 and 𝑓 are replaced with their 

effective values (i.e. 𝜒 = 𝜒𝑒𝑓𝑓 and 𝑓 = 𝑓𝑒𝑓𝑓). Symbols correspond to the symbols above observed phases in Figures 

S12 through S15. Lines show approximate boundaries for the standard BCP phase diagram phases of lamellae, 

cylinders, spheres, and disorder (other phases such as gyroid are omitted since only 2D morphologies were 

examined). 
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Figure S17: Phase diagrams for explicit solvent model with Φ𝑠𝑜𝑙 = 0.05. (Left) 𝜒𝑁 as input into simulation. (Right) 

𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
−1 replaces 𝜒. 

 
Figure S18: Phase diagrams for explicit solvent model with Φ𝑠𝑜𝑙 = 0.10. (Left) 𝜒𝑁 as input into simulation. (Right) 

𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
−1 replaces 𝜒. 

 

 
Figure S19: Phase diagrams for explicit solvent model with Φ𝑠𝑜𝑙 = 0.15. (Left) 𝜒𝑁 as input into simulation. (Right) 

𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
−1 replaces 𝜒. 
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Figure S20: Phase diagrams for explicit solvent model with Φ𝑠𝑜𝑙 = 0.20. (Left) 𝜒𝑁 as input into simulation. (Right) 

𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
−1 replaces 𝜒. 

 
Figure S21: Phase diagrams for explicit solvent model with Φ𝑠𝑜𝑙 = 0.25. (Left) 𝜒𝑁 as input into simulation. (Right) 

𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
−1 replaces 𝜒. 

 
Figure S22: Phase diagrams for explicit solvent model with Φ𝑠𝑜𝑙 = 0.30. (Left) 𝜒𝑁 as input into simulation. (Right) 

𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
−1 replaces 𝜒. 

 For cases where macrophase segregation does not occur, it is expected a mapping of the 

morphologies observed with effective parameters can in principle be done, but the parameter 𝛼 
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relating 𝜒𝑒𝑓𝑓 to the input 𝜒 will in principle be a function of the ratio of the selective solvents 

𝑓𝑠𝑜𝑙A to 𝑓𝑠𝑜𝑙B as will be demonstrated in the following section, describing the dependency of 𝐿0 

on the solvent incorporated. Where in the preceding phase diagrams 𝛼 = −1 was assumed, the 

actual value will vary with both selectivity and amount of solvent incorporated into the system. 

In fact, the simple model 𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
𝛼 appears to break down at high solvent fraction 

depending on the ratio of selective solvent fractions. For the experimental system of PS-PDMS 

in toluene and heptane, only heptane is nearly fully selective to one of the blocks, implying the 

explicit model presented here is inadequate to fully model the system due to the neutral 

selectivity of toluene mitigating interfacial interactions (i.e. reducing 𝜒𝑒𝑓𝑓 with added solvent). 

From these additional simulations, the observation is made that purely selective solvents only 

increase 𝜒𝑒𝑓𝑓 (under the assumption of 𝜒𝑒𝑓𝑓 = 𝜒(1 − Φ𝑠𝑜𝑙)
𝛼) due to the solvents swelling the 

regions inside the corresponding block. 

 

S9: 1D Study of Explicit Model with Natural Periodicity 

 To understand better how 𝐿0 is affected by solvent uptake, explicit model simulations 

were performed in 1D over a range of 𝜒𝑁 with 𝑓 = 0.5 and two ranges of Φ𝑠𝑜𝑙. For one range, 

Φ𝑠𝑜𝑙 was varied as 𝑓𝑠𝑜𝑙A = 0.02 in steps of 0.02 up to 0.50; for the other range, Φ𝑠𝑜𝑙 was varied 

as 𝑓𝑠𝑜𝑙A = 𝑓𝑠𝑜𝑙B = 0.01 in steps of 0.01 up to 0.25 such that the total solvent fraction Φ𝑠𝑜𝑙 varied 

from 0.02 up to 0.50. These two cases covered the two extreme possibilities of fully selective 

solvents (the first case being only having one selective solvent preferential to one block and the 

other case equal amounts preferential to both blocks). Unit cell calculations were performed with 

the length of the box 𝐿 varied around the expected 𝐿0 based on the strong segregation 

relationship 𝐿0 ≅ 𝜆𝜒1/6𝑁2/3. From these simulation results, density profiles were extracted 

corresponding to the first period minimum in free energy with respect to period spacing. 

Example density profiles for all species present are shown in Figure S23 for the equal A and B 

mix case and Figure S24 for the A solvent only case. 
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Figure S23: 1D 𝜙 density plots of normalized species densities as a function of normalized simulation cell position 

𝑥/𝐿 in the explicit solvent model for representative 𝜒𝑁 and Φ𝑠𝑜𝑙 . Here 𝑓𝑠𝑜𝑙A = 𝑓𝑠𝑜𝑙B with Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A + 𝑓𝑠𝑜𝑙B. 

Densities are colour coded with red for the A polymer block 𝜙A, blue for the B polymer block 𝜙B, magenta for the A 

solvent 𝜙𝑠𝑜𝑙A, and cyan for the B solvent 𝜙𝑠𝑜𝑙B. The total density 𝜙+ = 𝜙A + 𝜙B + 𝜙𝑠𝑜𝑙A + 𝜙𝑠𝑜𝑙B is colour coded 

black and should be very close to 1 with some deviations due to numerical integration error as well as higher 𝜒𝑁 

causing the equilibrated chains to be slightly compressed.  

 For the A and B equal mix case with Φ𝑠𝑜𝑙 close to 0, the polymer densities resemble the 

profiles of pure BCP with some perturbation at the center of the of the polymer domain. For 

moderate concentrations (e.g. Φ𝑠𝑜𝑙 = 0.20) this perturbation increases and leads to solvent 

displacing polymer density at the center of the block profiles causing their density curves to 

flatten or bevel downwards in some cases. Note that the A and B densities look different in some 

cases, which is due to the fact two different 𝜆 values were used such that 𝜆A/𝜆B = 1.2 as PDMS 
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has a slight larger Kuhn length than PS. For large solvent concentrations, macrophase separation 

is observed at higher 𝜒𝑁 values with the block copolymer density profiles being compressed in 

the cell length direction and the solvent occupying the surrounding space. In these regions, there 

is great discontinuity in the A solvent and B solvent density profiles which is likely because the 

mean field theory is not applicable for this solvent range. Thus the exact density profiles in these 

regions should not be taken quantitatively but only qualitatively at best. One other observation is 

that for high 𝜒𝑁, the solvent profile inside the block domains does appear to start mediating BCP 

surface interactions, because the solvent profiles increase from the center of the domain until a 

sudden drop at the interface. A neutral solvent would be expected to behave similarly but without 

the drop off, rather decreasing toward the center of the other domain. This suggests the model 

may be qualitatively adequate for modeling neutral-like solvents in the high 𝜒𝑁, moderate Φ𝑠𝑜𝑙 

regime, if the identity of the solvent is ignored. 

 For the case of only A solvent with Φ𝑠𝑜𝑙 close to 0, the polymer densities again resemble 

the profiles of pure BCP with some perturbation at the center of the of the A polymer domain. 

For moderate concentrations (e.g. Φ𝑠𝑜𝑙 = 0.20) this perturbation now leads to the A domain 

becoming bimodal with the solvent occupying the center area. For large A solvent 

concentrations, the A density becomes spread out over a very large region suggesting the 

formation of some kind of micellar structure. The B domains at these high Φ𝑠𝑜𝑙 values are 

compressed into a small region which would indicate something similar to the formation of 

micelles with a B center surrounded by A solvent. 
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Figure S24: 1D density plots of normalized species densities as a function of normalized simulation cell position 

𝑥/𝐿 in the explicit solvent model for representative 𝜒𝑁 and Φ𝑠𝑜𝑙 . Here 𝑓𝑠𝑜𝑙B = 0 with Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A. Densities are 

colour coded with red for the A polymer block 𝜙A, blue for the B polymer block 𝜙B, magenta for the A solvent 

𝜙𝑠𝑜𝑙A, and cyan for the B solvent 𝜙𝑠𝑜𝑙B. The total density 𝜙+ = 𝜙A + 𝜙B + 𝜙𝑠𝑜𝑙A + 𝜙𝑠𝑜𝑙B is colour coded black and 

should be very close to 1 with some deviations due to numerical integration error as well as higher 𝜒𝑁 causing the 

equilibrate chains to be slightly compressed.  

 Having obtained these profiles corresponding to roughly one natural period of a 3D 

equivalent lamellar morphology (in 1D of course just being  represented by sinusoidal-like 

density profiles), free energy calculations for the morphology were performed by holding those 

density fields constant and calculating the corresponding chemical potential fields necessary for 

those profiles to satisfy the SCFT saddle point equations. This produced free energy curves with 

respect to the unit cell length 𝐿 that were then fit with the relationship 
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𝐹(𝐿) = Γ𝐿2 +
𝜎

𝐿
− ϵ  (ES16) 

which is the normal form of the strain energy contribution to the free energy (which should be 

the dominant energy term for the strained unit cells). 𝐿0 for a given solvent incorporation amount 

was then determined as the 𝐿 corresponding to the minimum of these curves,  

𝐿0 = (𝜎/2Γ)
1/3 .  (ES17) 

 Figure S25 shows a representative curve with data and fit. 

 
Figure S25: Representative free energy plot (normalized to 𝑘𝑇 and shifted such that the ODT energy is 0 (negative 

energy is ordered microphase separated, positive is disordered) plotted versus the normalized unit cell length to the 

radius of gyration 𝑅𝑔 for an 𝑁 = 125 chain.  Blue stars are the calculated energy values for fixed 𝜙− and 𝜙+ and red 

curve is the fit with form 𝐹(𝐿) = Γ𝐿2 + 𝜎/𝐿 − ϵ. 
 

 Having obtained these values for 𝐿0 as a function of 𝑓𝑠𝑜𝑙A and 𝑓𝑠𝑜𝑙B over a range of 𝜒𝑁 

for 𝑓 = 0.5, fits were found for 𝐿0 as a function of 𝜒, 𝑁, and Φ𝑠𝑜𝑙 with two functional forms. 

The first functional form  

𝐿0 ≅ 𝜆𝜒
𝛿0𝑁𝛽0(1 − Φ𝑠𝑜𝑙)

𝛾  (ES18) 
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was found by first finding a best fit for 𝛿0 and 𝛽0 from simulations with Φ𝑠𝑜𝑙 = 0. This fit is 

shown in Figure S26 for the implicit solvent or standard BCP model case (Φ𝑠𝑜𝑙 = 0).  

𝛾(Φ𝑠𝑜𝑙) = −𝛼(𝛷𝑠𝑜𝑙)𝛿0  (ES19) 

was found by fitting each constant value of Φsol. The strong segregation limit is known to have 

𝛿0 = 1/6 and 𝛽0 = 2/3, and here in the weak segregation regime values slightly less than those 

values were found for the implicit or standard BCP case (Φ𝑠𝑜𝑙 = 0)
13

.  

 
Figure S26: Plot of normalized 𝐿0 by Kuhn segment length 𝜆 versus χ𝑁 for Φ𝑠𝑜𝑙 = 0 (standard BCP system or 

implicit model with 𝜒 → 𝜒𝑒𝑓𝑓  and  𝑓 → 𝑓𝑒𝑓𝑓  for 𝑓 = 0.50.  𝜒𝑁 is in the weak segregation regime, so 𝛿0 < 1/6 and 

𝛽0 < 2/3 but very close to those values as expected from previous work
13

. The green line is the best fit to the 

simulated data and the black stars the calculated 𝐿0 values.  

 

 The second functional form assumes that the exponents 𝛿 = 𝛿(𝛷𝑠𝑜𝑙) and 𝛽 = 𝛽(𝛷𝑠𝑜𝑙) 

and thus accounts for the effective increase in 𝜒 from the selective solvents implicitly such that  

𝐿0 = 𝜆𝜒
𝛿(𝛷𝑠𝑜𝑙)𝑁𝛽(𝛷𝑠𝑜𝑙).  (ES20) 

Results of both fits for different 𝜒𝑁 and Φ𝑠𝑜𝑙 for both the A only selective solvent case and the A 

and B mixture case are shown in Figures S27 through S30 plotted versus both 𝜒𝑁 for constant 

Φ𝑠𝑜𝑙 and against Φ𝑠𝑜𝑙 for constant 𝜒𝑁. For the A and B mixture case, both fits matched the data 

relatively well with the second model varying 𝛿 and 𝛽 with Φ𝑠𝑜𝑙 having slightly better fits. The 
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first model with 𝛼 works better for higher 𝜒𝑁 in general. For the A only solvent, the first model 

with 𝛼 appears to break down for Φ𝑠𝑜𝑙 > ~0.20 with goodness of fits values rapidly increasing 

with increasing Φ𝑠𝑜𝑙, whereas the second model fits the data well for most of the data range. In 

this case, the first model fits best in the intermediate 𝜒𝑁 regime and has a very poor goodness of 

fit for low and high 𝜒𝑁. This suggests that the values extracted for 𝛼 for the A only solvent 

systems should not be taken as completely accurate but rather as general trends on how the 

exponent varies. Additionally, the second model is just a mathematical fit to the data using the 

standard scaling form of the natural period with the assumption 𝛿 and 𝛽 are a function of Φ𝑠𝑜𝑙 

which may not be entirely true (i.e. just because allowing those parameters to vary produces a 

good fit to the data, the values obtained from their fits are empirical at best). 

 
Figure S27: Plot of normalized 𝐿0 by Kuhn segment length 𝜆 versus χ𝑁 for A and B equal solvent mix with 

Φ𝑠𝑜𝑙 = 0.02, 0.18, 0.34, and 0.50 and 𝑓 = 0.50. The black stars are the calculated 𝐿0 values. The red lines are the 

best fit to the simulated data using the model equation 𝐿0/𝜆 = 𝜒
𝛿0(1 − Φ𝑠𝑜𝑙)

−𝛿0𝛼(Φ𝑠𝑜𝑙)𝑁𝛽0 , where 𝛿0 and 𝛽0 are the 

Φ𝑠𝑜𝑙 = 0 fit parameters for 𝐿0/𝜆 as a function of 𝜒 and 𝑁. The green lines use the model equation 𝐿/𝜆 =

𝜒𝛿(Φ𝑠𝑜𝑙)𝑁𝛽(Φ𝑠𝑜𝑙). 
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Figure S28: Plot of normalized 𝐿0 by Kuhn segment length 𝜆 versus Φsol for A and B equal solvent mix with 

𝜒𝑁 = 12, 20, 26, and 32 and 𝑓 = 0.50. The black stars are the calculated 𝐿0 values. The red lines are the best fit to 

the simulated data using the model equation 𝐿0/𝜆 = 𝜒𝛿0(1 − Φ𝑠𝑜𝑙)
−𝛿0𝛼(Φ𝑠𝑜𝑙)𝑁𝛽0 , where 𝛿0 and 𝛽0 are the Φ𝑠𝑜𝑙 = 0 

fit parameters for 𝐿0/𝜆 as a function of 𝜒 and 𝑁. The green lines use the model equation 𝐿/𝜆 = 𝜒𝛿(Φ𝑠𝑜𝑙)𝑁𝛽(Φ𝑠𝑜𝑙). 
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Figure S29: Plot of normalized 𝐿0 by Kuhn segment length 𝜆 versus χ𝑁 for A solvent only with Φ𝑠𝑜𝑙 =
0.02, 0.18, 0.34, and 0.50 and 𝑓 = 0.50. The black stars are the calculated 𝐿0 values. The red lines are the best fit to 

the simulated data using the model equation 𝐿0/𝜆 = 𝜒𝛿0(1 − Φ𝑠𝑜𝑙)
−𝛿0𝛼(Φ𝑠𝑜𝑙)𝑁𝛽0 , where 𝛿0 and 𝛽0 are the Φ𝑠𝑜𝑙 = 0 

fit parameters for 𝐿0/𝜆 as a function of 𝜒 and 𝑁. The green lines use the model equation 𝐿/𝜆 = 𝜒𝛿(Φ𝑠𝑜𝑙)𝑁𝛽(Φ𝑠𝑜𝑙). 
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Figure S30: Plot of normalized 𝐿0 by Kuhn segment length 𝜆 versus Φsol for A solvent only with 𝜒𝑁 =
12, 20, 26, and 32 and 𝑓 = 0.50. The black stars are the calculated 𝐿0 values. The red lines are the best fit to the 

simulated data using the model equation 𝐿0/𝜆 = 𝜒
𝛿0(1 − Φ𝑠𝑜𝑙)

−𝛿0𝛼(Φ𝑠𝑜𝑙)𝑁𝛽0, where 𝛿0 and 𝛽0 are the Φ𝑠𝑜𝑙 = 0 fit 

parameters for 𝐿0/𝜆 as a function of 𝜒 and 𝑁. The green lines use the model equation 𝐿/𝜆 = 𝜒𝛿(Φ𝑠𝑜𝑙)𝑁𝛽(Φ𝑠𝑜𝑙). 

 

 To better characterize the fitting parameters, plots of their values as function of Φ𝑠𝑜𝑙 are 

shown in Figures S31 through S34. For the A and B mixture, 𝛼 decreased with increasing Φ𝑠𝑜𝑙 

for the first model and the parameters 𝛿 and 𝛽 remained relatively constant with values slightly 

higher than the implicit model or standard BCP results for the second model. For the A solvent 

only case, 𝛼 decreased initially then gradually increased with Φ𝑠𝑜𝑙 for the first model whereas 𝛿 

and 𝛽 increased rapidly with increasing Φ𝑠𝑜𝑙 for the second model. 
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Figure S31: Plot of fit parameter 𝛼 as a function of solvent fraction Φ𝑠𝑜𝑙  for the case that both A and B selective 

solvent is incorporated into the system (𝑓𝑠𝑜𝑙A = 𝑓𝑠𝑜𝑙B such that Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A + 𝑓𝑠𝑜𝑙B). For low Φ𝑠𝑜𝑙 , 𝛼 starts out 

large, decreases rapidly, and then gradually decreases with increasing Φ𝑠𝑜𝑙 . 
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Figure S32: Plot of fit parameters 𝛿(Φ𝑠𝑜𝑙) in red and 𝛽(Φ𝑠𝑜𝑙) in green as a function of solvent fraction Φ𝑠𝑜𝑙  for the 

case that both A and B selective solvents are incorporated into the system (𝑓𝑠𝑜𝑙A = 𝑓𝑠𝑜𝑙B with Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A + 𝑓𝑠𝑜𝑙B). 

In contrast to the A solvent only case, the parameters start out close to their Φ𝑠𝑜𝑙 = 0 values of 𝛿0 and 𝛽0 but 

slightly higher staying relatively close to that value with an average value of 𝛿𝑎𝑣𝑔 = 0.162 ± 0.008 and 𝛽𝑎𝑣𝑔 =

0.661 ± 0.006 where the error here is the standard deviation. 
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Figure S33: Plot of fit parameter 𝛼 as a function of solvent fraction Φ𝑠𝑜𝑙  for the case that only A selective solvent is 

incorporated into the system (𝑓𝑠𝑜𝑙B = 0 such that Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A). For low Φ𝑠𝑜𝑙 , 𝛼 starts out large, decreases rapidly, 

and then gradually increases with increasing Φ𝑠𝑜𝑙  in contrast to the equal selective A and B solvent mix where the 

parameter decreased. 
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Figure S34: Plot of fit parameters 𝛿(Φ𝑠𝑜𝑙) in red and 𝛽(Φ𝑠𝑜𝑙) in green as a function of solvent fraction Φ𝑠𝑜𝑙  for the 

case that only A selective solvent is incorporated into the system (𝑓𝑠𝑜𝑙B = 0 such that Φ𝑠𝑜𝑙 = 𝑓𝑠𝑜𝑙A). For low Φ𝑠𝑜𝑙 , 

the parameters start out close to their Φ𝑠𝑜𝑙 = 0 values of 𝛿0 and 𝛽0 (shown as horizontal black lines for reference) 

and gradually increase to higher values as Φ𝑠𝑜𝑙  increases. 

 

 Using the resulting fit parameters for both solvent selectivity cases and model fits, 

functional variance of 𝜒𝑒𝑓𝑓 from each model and solvent combination are deduced. Plots for the 

first model plotting the ratio of  

𝜒𝑒𝑓𝑓

𝜒
= (1 − Φ𝑠𝑜𝑙)

−𝛼  (ES21) 

are shown in Figure S35 and for the second model plots of   

log 𝜒𝑒𝑓𝑓 / log 𝜒 = Δ(Φ𝑠𝑜𝑙) = 𝛿(Φ𝑠𝑜𝑙)/𝛿0  (ES22) 

are shown in Figure S36 and plots of  

log𝑁𝑒𝑓𝑓 / log𝑁 = Β(Φ𝑠𝑜𝑙) = 𝛽(Φ𝑠𝑜𝑙)/𝛽0  (ES23) 

 are shown in Figure S37. From these plots, the first model shows that as Φ𝑠𝑜𝑙 increases, for the 

A and B mixed case 𝜒𝑒𝑓𝑓 gradually increases up to a factor of 2 times the normal value at 
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Φ𝑠𝑜𝑙 = 0.50 while for the A only solvent case 𝜒𝑒𝑓𝑓 appears to start increasing almost 

exponentially with increasing Φ𝑠𝑜𝑙. Recalling that this model did not give a great fit to the data 

for 𝐿0/𝜆 for the A only selective solvent case, this apparent large increase of 𝜒𝑒𝑓𝑓 should be 

considered only qualitatively correct. The second model shows different behavior for 𝜒𝑒𝑓𝑓 

depending on if 𝜒 < 1 or 𝜒 > 1. Since most reported 𝜒 values are less than 1 and the ratio 

log 𝜒𝑒𝑓𝑓 / log 𝜒 > 1 for all Φ𝑠𝑜𝑙 > 0, this suggests 𝜒𝑒𝑓𝑓 will be smaller than 𝜒 for Φ𝑠𝑜𝑙 = 0 

which is opposite behavior to the first model. However, one must recall this model also produces 

an effective 𝑁 as well. Similarly the ratio log𝑁𝑒𝑓𝑓 / log𝑁 is always greater than 1 meaning since 

𝑁 = 125 is greater than 1, 𝑁𝑒𝑓𝑓 > 𝑁 and thus the overall (𝜒𝑁)𝑒𝑓𝑓 can be greater than the 

Φ𝑠𝑜𝑙 = 0 case. If one goes on to compare these values for (𝜒𝑁)𝑒𝑓𝑓 between the models, the 

model with parameter 𝛼 generally has a 1 to 2 times larger (𝜒𝑁)𝑒𝑓𝑓 than the 𝛿 and 𝛽 model. 

Thus the models do not predict the same (𝜒𝑁)𝑒𝑓𝑓 values, but keep in mind that the second model 

is empirical and is not expected to be realistic in predicting the effective parameters, simply 

yielding a very good fit to the 𝐿0/𝜆 versus 𝜒 and 𝑁  data.  

 Overall, the general conclusion from the data is that inclusion of selective solvents 

increases 𝜒𝑒𝑓𝑓 with equally mixed solutions doing so only slightly but as Φ𝑠𝑜𝑙 because composed 

more of one species over the other, this effect is enhanced greatly with very large increases in 

𝜒𝑒𝑓𝑓 for large Φ𝑠𝑜𝑙. An exact quantitative prediction is not possible because the fits above 

Φ𝑠𝑜𝑙 > 0.20 start to get progressively worse, as well as the fact that more macrophase 

segregation is expected in this regime for A only solvent as opposed to the A and B mixed case 

where phase segregation does not start to dominate until around Φ𝑠𝑜𝑙 > 0.40. 
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Figure S35: Plot of 𝜒𝑒𝑓𝑓 normalized by 𝜒 versus Φ𝑠𝑜𝑙  for the model where 𝛼 was fitted using 𝛿0 and 𝛽0 from the 

implicit model (the standard BCP model). Black curve is for the case of A solvent only incorporated into the system 

and green curve is for the case of equal amounts of A and B selective solvents. 
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Figure S36: Plot of log 𝜒𝑒𝑓𝑓 normalized by log 𝜒 versus Φ𝑠𝑜𝑙  for the model where 𝛿 and 𝛽 were both fitted as a 

function of Φ𝑠𝑜𝑙 . Black curve is for the case of A solvent only incorporated into the system and green curve is for 

the case of equal amounts of A and B selective solvents. 
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Figure S37: Plot of log𝑁𝑒𝑓𝑓  normalized by log𝑁 versus Φ𝑠𝑜𝑙  for the model where 𝛿 and 𝛽 were both fitted as a 

function of Φ𝑠𝑜𝑙 . Black curve is for the case of A solvent only incorporated into the system and green curve is for 

the case of equal amounts of A and B selective solvents. 

 

S10: Comparison of Implicit and Explicit Models – 1D Density Profiles 

 To compare the density profiles for the implicit model, two density profiles were chosen 

and plotted side by side in Figure S38 such that (𝜒𝑁)𝑒𝑓𝑓 for the explicit case equals the 𝜒𝑁 for 

the implicit simulation. In the plots, the explicit simulation shows the densities of both the BCP 

species densities, solvent densities, total densities of A solvent and BCP and B solvent and BCP, 

and overall total density. The implicit simulation only shows the overall A species and B species 

density since this corresponds to just the BCP in the implicit simulation. As seen at these 

conditions for 𝜒𝑁 = 20 for the implicit case and 𝜒𝑁 = 12 → (𝜒𝑁)𝑒𝑓𝑓 ≅ 20 for Φ𝑠𝑜𝑙 = 0.28 for 

equal A and B solvent incorporated, the total species density profiles in the explicit case do 

appear to have similar shape at these conditions to the implicit model profiles. This gives 

credence to the implicit model being valid for at least explicit solvent cases, though further work 
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should be done to validate the model with various degrees of solvent with different selectivity 

which would require comparison with a four component model, beyond the scope of the present 

manuscript.  

 
Figure S38: Plots of 1D 𝜙 density profiles as a function of normalized simulation cell position 𝑥/𝐿0 for (Left) 

explicit model with equal amounts A and B selective solvents with 𝜒𝑁 = 12 → (𝜒𝑁)𝑒𝑓𝑓 = 20 and Φ𝑠𝑜𝑙 = 0.28 and 

(Right) implicit model with 𝜒𝑁 = 20. In both cases 𝑓 = 𝑓𝑒𝑓𝑓 = 0.5. (Left) The explicit model has 7 density profiles 

plotted over a space of 𝐿 = 𝐿0. Yellow curve is 𝜙𝑠𝑜𝑙A, green curve is 𝜙𝑠𝑜𝑙B, red curve is 𝜙A for the A polymer, blue 

curve is 𝜙B for the B polymer, magenta curve is the total of the two A species 𝜙𝑡𝑜𝑡A (solvent and polymer), cyan 

curve is the total for the two B species 𝜙𝑡𝑜𝑡B (solvent and polymer), and black line is the total overall density 𝜙+. 

(Right) The implicit model has 3 density profiles plotted over a space of 𝐿 = 𝐿0. Red curve is 𝜙A, blue curve is 𝜙B, 

and the black curve is the total density 𝜙+. Comparing the two plots, the blue curve in the implicit model matches 

well with the cyan curve in the explicit model as too does the implicit model red curve with the explicit model 

magenta curve. 

 

S11: Additional Explicit Quasi-Static SVA Simulations 

 

 Besides traditional equilibrium structure SCFT simulations, quasi-static simulations were 

performed where solutions from a given film thickness were seeded into another simulation with 

a new film thickness and solvent fraction explicitly added to represent incremental swelling. In 

these simulations, a range of volume fractions 𝑓 = 0.3 to 0.5 were examined with a fixed 

(𝜒𝑁)𝑒𝑓𝑓 = 14. The initial grid size in these simulations was 𝑁𝑋 by 𝑁𝑌 by 𝑁𝑍 = 34 by 20 by 16 

points. The side lengths in these simulations were given values of 2√3𝐿0 by 2𝐿0 by 1.6𝐿0 to bias 

the simulations to form planar hexagonally close packed structures to specifically investigate the 

swelling behavior of such morphologies. An initial set of bulk simulations with full periodic 
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boundary conditions in all three directions were performed to ensure bulk canonical BCP 

morphologies were observed. As shown in Figure S39, a transition from spheres to cylinders to 

gyroid to mixed lamellae structures was indeed observed and consistent with previous block 

copolymer thermodynamic phase diagrams
3
. Pure lamellae were not observed due to metastable 

mixing of different commensurate lamellae in the non-cubic unit cell. 

 
Figure S39: SCFT simulation results using bulk full periodic boundary conditions. Upper panels:  3D side view; 

Lower panels: a top down view. (Left) Hexagonally close-packed spheres. (Middle Left) Hexagonally close-packed 

cylinders. (Middle) strained gyroid. (Middle Right) Perforated lamellae. (Right) Mixed lamellae. 

 From the bulk simulation results, various corresponding thin film simulations with 

different surface energy conditions, and quasi-static swelling simulations, were performed. For 

each quasi-static swelling simulation, the result of the previous slightly thinner film was seeded 

into a unit cell 2 grid points thicker, and equal amounts of PS and PDMS preferential solvent 

were added to the system. The simplest case, shown in Figure S40, had neutral top and bottom 

surfaces and show that as solvent is added to the system the microdomains become enriched in 

solvent and extended in the vertical direction. In all these cases, the initial film thickness was 

1.5𝐿0. 
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Figure S40: Various quasi-static thin film simulation results with neutral surface boundary conditions.  

Perpendicular cylinders were observed for 𝑓 = 0.32 to 0.36. Perpendicular perforated lamellae were observed for 

𝑓 = 0.38 to 0.40. Perpendicular lamellae were observed for 𝑓 = 0.42 to 0.46. 
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