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1. Experimental results 

 

Figure S1: (a) Representative SEC chromatogram, obtained for a sample incubated 35 min at the 
protein concentration of 40 g/L. The portion of the chromatogram used for aggregate characterization 
by inline light scattering is comprised between the two dotted lines, i.e. between 15.1 and 17.7 min. 
(b) Correlation function measured by inline dynamic light scattering at the elution time of 16 min of 
the shown chromatogram. The minimum and maximum thresholds for data processing were set to 5 
and 300 nm, respectively. The fit of the autocorrelation function (line) is compared to experimental 
data (crosses) (c) Results from static light scattering measurements at the elution time of 16 min of the 
shown chromatogram analyzed with the Astra software. 
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Figure S2: SEC chromatograms of non-heated antibody samples at protein concentrations of 120 and 
160 g/L, showing that the antibody remains monomeric at high concentration under native conditions. 

 

 

 

Figure S3: Comparison between viscosity results obtained from the diffusion coefficient of 
tracer nanoparticles with DLS, and viscosity results obtained from rheological measurements. 
Rheological measurements were performed with a Physica MCR 300 rheometer (Paar 
Physica) by using a cone-and-plate geometry (12.5 mm radius, 2° angle). The gap was set to 
0.05 mm and the sample volume was 160 µL. The temperature was maintained at 25 °C by a 
Peltier element (TEK 150 PA-C). Viscosity measurements were performed at 1000 s-1 on 
three independent samples. 
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Figure S4: (a) Apparent hydrodynamic radius of the tracer nanoparticles (Nps) as a function of time in 
the buffer solution at 70 °C, and in a protein solution at the concentration of 40 g/L at 25 °C. It is seen 
that the nanoparticles are stable in both cases. (b) Apparent hydrodynamic radius of the tracer 
nanoparticles as a function of the dilution factor for a mAb sample that was incubated in the presence 
of the nanoparticles at 70 °C and at the protein concentration of 40 g/L. Measurements of the tracer 
particle size at various dilutions were performed at room temperature on the quenched sample. It seen 
that when the sample in sufficiently diluted in order to reach the solvent viscosity, a hydrodynamic 
radius of 100 nm is measured, which corresponds to the primary particle size. This shows that the 
nanoparticles are stable during mAb aggregation. 

 

 

Figure S5: Kinetics of the increase in viscosity measured with different nanoparticle concentrations (as 
indicated in the legends) at protein concentrations of (a) 20 g/L, (b) 40 g/L, (c) 60 g/L. This set of 
experiments shows that the viscosity results are independent of the concentration of nanoparticles (in 
the range of concentrations investigated). 
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Figure S6: Monomer depletion measured with SEC at three protein concentrations, as indicated in the 
legend. 

 

2. Boundaries for the volume fraction 

In the following, we show that the approximate volume fraction 𝜑𝜑 defined in the main 

text provides a lower bound of the exact volume fraction 𝜙𝜙 when the number average radius 

is considered. 

We recall that the exact and approximate volume fractions were defined respectively 

as: 

 𝜙𝜙 =
4
3
𝜋𝜋�𝑁𝑁𝑖𝑖𝑅𝑅ℎ,𝑖𝑖

3

𝑖𝑖

 (1) 

 𝜑𝜑 =
4
3
𝜋𝜋
𝑁𝑁0
𝑘𝑘𝑓𝑓
𝑅𝑅𝑝𝑝
𝑑𝑑𝑓𝑓〈𝑅𝑅ℎ〉3−𝑑𝑑𝑓𝑓 (2) 

Where 𝑁𝑁𝑖𝑖 and 𝑅𝑅ℎ,𝑖𝑖 are the number concentration and hydrodynamic radius, 

respectively, of the aggregates containing 𝑖𝑖 primary particles. 𝑅𝑅𝑝𝑝 denotes the primary particle 

radius, while 〈𝑅𝑅ℎ〉 stands for the average hydrodynamic radius. The parameters 𝑑𝑑𝑓𝑓 and 𝑘𝑘𝑓𝑓 are 

the aggregate fractal dimension and scaling prefactor, respectively. 𝑁𝑁0 denotes the initial 

protein concentration and is also equal to: 
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 𝑁𝑁0 = �𝑖𝑖𝑁𝑁𝑖𝑖
𝑖𝑖

 (3) 

The initial volume fraction is: 

 𝜙𝜙0 =
4
3
𝜋𝜋𝑅𝑅𝑝𝑝3𝑁𝑁0 (4) 

It can be noticed that: 

 𝜑𝜑 = 𝜙𝜙0
1
𝑘𝑘𝑓𝑓

× �
〈𝑅𝑅ℎ〉
𝑅𝑅𝑝𝑝

�
3−𝑑𝑑𝑓𝑓

 (5) 

We define the number, surface and volume average hydrodynamic radii respectively 

as: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧ 〈𝑅𝑅𝑁𝑁〉 =

∑ 𝑁𝑁𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖

∑ 𝑁𝑁𝑖𝑖𝑖𝑖

〈𝑅𝑅𝑆𝑆〉 =
∑ 𝑁𝑁𝑖𝑖𝑅𝑅𝑖𝑖2𝑖𝑖

∑ 𝑁𝑁𝑖𝑖𝑖𝑖 𝑅𝑅𝑖𝑖 

〈𝑅𝑅𝑉𝑉〉 =
∑ 𝑁𝑁𝑖𝑖𝑅𝑅𝑖𝑖3𝑖𝑖

∑ 𝑁𝑁𝑖𝑖𝑖𝑖 𝑅𝑅𝑖𝑖2 

 (6) 

Moreover, we introduce 𝑟𝑟𝑖𝑖 and 𝑛𝑛𝑖𝑖 defined as: 

 

⎩
⎨

⎧ 𝑟𝑟𝑖𝑖 =
𝑅𝑅𝑖𝑖
〈𝑅𝑅𝑁𝑁〉

𝑛𝑛𝑖𝑖 =
𝑁𝑁𝑖𝑖
∑ 𝑁𝑁𝑖𝑖𝑖𝑖

 (7) 

 By combining equations (1) and (3)-(6), it follows that: 

 𝜙𝜙 = 𝜙𝜙0
〈𝑅𝑅𝑁𝑁〉〈𝑅𝑅𝑆𝑆〉〈𝑅𝑅𝑉𝑉〉

𝑅𝑅𝑝𝑝3
×
∑ 𝑁𝑁𝑖𝑖𝑖𝑖

∑ 𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖
 (8) 

 We try to find an upper bound for 𝐴𝐴 defined as: 



6 
 

 𝐴𝐴 =
∑ 𝑖𝑖𝑁𝑁𝑖𝑖𝑖𝑖

∑ 𝑁𝑁𝑖𝑖𝑖𝑖
= �𝑖𝑖𝑛𝑛𝑖𝑖

𝑖𝑖

 (9) 

According to the fractal scaling, aggregate mass is connected to aggregate radius by: 

 𝑖𝑖 = 𝑘𝑘𝑓𝑓 �
𝑅𝑅ℎ,𝑖𝑖

𝑅𝑅𝑝𝑝
�
𝑑𝑑𝑓𝑓

 (10) 

Therefore: 

 𝐴𝐴 = �𝑘𝑘𝑓𝑓 �
𝑅𝑅ℎ,𝑖𝑖

𝑅𝑅𝑝𝑝
�
𝑑𝑑𝑓𝑓

𝑛𝑛𝑖𝑖
𝑖𝑖

 (11) 

Let us recall the theorem of norm monotonicity. For a series of numbers 𝑥𝑥𝑖𝑖 weighted 

by coefficients 𝑤𝑤𝑖𝑖 such as ∑ 𝑤𝑤𝑖𝑖 = 1𝑖𝑖  and for two non-zero real numbers 𝑝𝑝 and 𝑞𝑞 such as 𝑝𝑝 ≤

𝑞𝑞: 

 ��𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖𝑝𝑝
𝑖𝑖

�
1/𝑝𝑝

≤ ��𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖
𝑞𝑞

𝑖𝑖

�
1/𝑞𝑞

 (12) 

 Since 𝑑𝑑𝑓𝑓 ≤ 3, and ∑ 𝑛𝑛𝑖𝑖 = 1𝑖𝑖 , it follows: 

 �𝑟𝑟𝑖𝑖𝑑𝑑𝑓𝑓𝑛𝑛𝑖𝑖
𝑖𝑖

≤ ��𝑟𝑟𝑖𝑖3𝑛𝑛𝑖𝑖
𝑖𝑖

�
𝑑𝑑𝑓𝑓/3

 (13) 

It follows that: 

 �𝑟𝑟𝑖𝑖𝑑𝑑𝑓𝑓𝑛𝑛𝑖𝑖
𝑖𝑖

≤ �𝑟𝑟𝑖𝑖3𝑛𝑛𝑖𝑖
𝑖𝑖

 (14) 
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 �𝑅𝑅𝑖𝑖𝑑𝑑𝑓𝑓𝑛𝑛𝑖𝑖
𝑖𝑖

≤ ��𝑅𝑅𝑖𝑖3𝑛𝑛𝑖𝑖
𝑖𝑖

� 〈𝑅𝑅𝑁𝑁〉𝑑𝑑𝑓𝑓−3 (15) 

 �𝑅𝑅𝑖𝑖𝑑𝑑𝑓𝑓𝑛𝑛𝑖𝑖
𝑖𝑖

≤ 〈𝑅𝑅𝑁𝑁〉〈𝑅𝑅𝑆𝑆〉〈𝑅𝑅𝑉𝑉〉〈𝑅𝑅𝑁𝑁〉𝑑𝑑𝑓𝑓−3 (16) 

 𝐴𝐴 ≤
𝑘𝑘𝑓𝑓
𝑅𝑅𝑝𝑝
𝑑𝑑𝑓𝑓
〈𝑅𝑅𝑁𝑁〉〈𝑅𝑅𝑆𝑆〉〈𝑅𝑅𝑉𝑉〉〈𝑅𝑅𝑁𝑁〉𝑑𝑑𝑓𝑓−3 (17) 

Therefore, 

 
𝜙𝜙 ≥ 𝜙𝜙0

〈𝑅𝑅𝑁𝑁〉〈𝑅𝑅𝑆𝑆〉〈𝑅𝑅𝑉𝑉〉
𝑅𝑅𝑝𝑝3

×
1

𝑘𝑘𝑓𝑓
𝑅𝑅𝑝𝑝
𝑑𝑑𝑓𝑓
〈𝑅𝑅𝑁𝑁〉〈𝑅𝑅𝑆𝑆〉〈𝑅𝑅𝑉𝑉〉〈𝑅𝑅𝑁𝑁〉𝑑𝑑𝑓𝑓−3

 
(18) 

 𝜙𝜙 ≥ 𝜙𝜙0
1
𝑘𝑘𝑓𝑓

× �
〈𝑅𝑅𝑁𝑁〉
𝑅𝑅𝑝𝑝

�
3−𝑑𝑑𝑓𝑓

 (19) 

Equations (5) and (19) show that 𝜙𝜙 ≥ 𝜑𝜑 provided that 〈𝑅𝑅ℎ〉 = 〈𝑅𝑅𝑁𝑁〉. In other words, 

the estimated occupied volume fraction is underestimated when computed from the number 

average hydrodynamic radius. 

Using a similar procedure, it is possible to provide an upper boundary to the volume 

fraction. In order to obtain the required result, we can proceed as follows. We introduce 𝑟𝑟𝑖𝑖 and 

𝑛𝑛𝑖𝑖 defined now as: 

 

⎩
⎨

⎧ 𝑟𝑟𝑖𝑖 =
𝑅𝑅𝑖𝑖
〈𝑅𝑅𝑉𝑉〉

𝑛𝑛𝑖𝑖 =
𝑁𝑁𝑖𝑖
∑ 𝑁𝑁𝑖𝑖𝑖𝑖

 (20) 

This time, we will find a lower boundary for the quantity A, defined by Equation (11). 
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By applying equation (12) to 𝑟𝑟𝑖𝑖 between 1 and 𝑑𝑑𝑓𝑓, it follows: 

 �𝑟𝑟𝑖𝑖𝑑𝑑𝑓𝑓𝑛𝑛𝑖𝑖
𝑖𝑖

≥ ��𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖
𝑖𝑖

�
𝑑𝑑𝑓𝑓

≥ ��𝑟𝑟𝑖𝑖𝑛𝑛𝑖𝑖
𝑖𝑖

� (21) 

This implies that: 

 �𝑅𝑅𝑖𝑖𝑑𝑑𝑓𝑓𝑛𝑛𝑖𝑖
𝑖𝑖

≥ ��𝑅𝑅𝑖𝑖𝑛𝑛𝑖𝑖
𝑖𝑖

� �𝑅𝑅𝑉𝑉⟩𝑑𝑑𝑓𝑓−1 = ⟨𝑅𝑅𝑁𝑁⟩�𝑅𝑅𝑉𝑉⟩𝑑𝑑𝑓𝑓−1 (22) 

Therefore:  

 
𝐴𝐴 ≥

𝑘𝑘𝑓𝑓
𝑅𝑅𝑝𝑝
𝑑𝑑𝑓𝑓
⟨𝑅𝑅𝑁𝑁⟩�𝑅𝑅𝑉𝑉⟩𝑑𝑑𝑓𝑓−1 (23) 

By inserting this inequality in Equation (8), we obtain:  

 𝜙𝜙 ≤
𝜙𝜙0
𝑘𝑘
〈𝑅𝑅𝑆𝑆〉〈𝑅𝑅𝑉𝑉〉2−𝑑𝑑𝑓𝑓

𝑅𝑅𝑝𝑝
3−𝑑𝑑𝑓𝑓

 (24) 

Finally, the surface average size is smaller than the volume average size. Therefore: 

 𝜙𝜙 ≤
𝜙𝜙0
𝑘𝑘𝑓𝑓

〈𝑅𝑅𝑉𝑉〉3−𝑑𝑑𝑓𝑓

𝑅𝑅𝑝𝑝
3−𝑑𝑑𝑓𝑓

 (25) 

To conclude, the real value of the volume fraction is comprised between the one 

evaluated using the number-average size and the one evaluated using the volume average size. 

 

 

 

 



9 
 

 


