Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2015 ## Supporting Material (ESI) for "Equilibrium and nonequilibrium dynamics of soft sphere fluids" Yajun Ding and Jeetain Mittal¹ Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015^a) ^{a)}Electronic mail: jeetain@lehigh.edu TABLE I. The state points (density ρ and temperatures T) employed in simulations for different particle softness, n, and values of the coupling paramter at the freezing point, $\Gamma_{\rm f}$, from Refs. 15 and 16 in the main text. | \overline{n} | Density range | Temperature | $\Gamma_{ m f}$ | |----------------|---------------|-------------|-----------------| | 36 | 0.01-1.00 | 1.0 | 0.942 | | 24 | 0.01-1.00 | 1.0 | 0.970 | | 12 | 0.01-1.20 | 1.0 | 1.167 | | 10 | 0.01-1.40 | 1.0 | 1.300 | | 8 | 0.01-1.70 | 1.0 | 1.579 | | 6 | 0.01-2.50 | 1.0 | 2.331 | | 4 | 0.01-5.80 | 1.0 | 5.685 | Figure S 1. Diffusion coefficient D versus the coupling parameter Γ (left panel) and the reduced coupling parameter Γ/Γ_f (right panel) for different particle softness, n, as indicated in the legend. Figure S 2. Viscosity η versus the coupling parameter Γ (left panel) and the reduced coupling parameter $\Gamma/\Gamma_{\rm f}$ (right panel) for different particle softness, n, as indicated in the legend Figure S 3. First normal stress difference, N_1 , and second normal stress difference, N_2 as function of shear rate for different particle softness, n, as indicated in the legend