Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2015

Supporting Material (ESI) for

"Equilibrium and nonequilibrium dynamics of soft sphere fluids"

Yajun Ding and Jeetain Mittal¹

Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015^a)

^{a)}Electronic mail: jeetain@lehigh.edu

TABLE I. The state points (density ρ and temperatures T) employed in simulations for different particle softness, n, and values of the coupling paramter at the freezing point, $\Gamma_{\rm f}$, from Refs. 15 and 16 in the main text.

\overline{n}	Density range	Temperature	$\Gamma_{ m f}$
36	0.01-1.00	1.0	0.942
24	0.01-1.00	1.0	0.970
12	0.01-1.20	1.0	1.167
10	0.01-1.40	1.0	1.300
8	0.01-1.70	1.0	1.579
6	0.01-2.50	1.0	2.331
4	0.01-5.80	1.0	5.685

Figure S 1. Diffusion coefficient D versus the coupling parameter Γ (left panel) and the reduced coupling parameter Γ/Γ_f (right panel) for different particle softness, n, as indicated in the legend.

Figure S 2. Viscosity η versus the coupling parameter Γ (left panel) and the reduced coupling parameter $\Gamma/\Gamma_{\rm f}$ (right panel) for different particle softness, n, as indicated in the legend

Figure S 3. First normal stress difference, N_1 , and second normal stress difference, N_2 as function of shear rate for different particle softness, n, as indicated in the legend