Supplementary Information

## Dynamics and Yielding of Binary Self-Suspended Nanoparticle Fluids

Akanksha Agrawal<sup>1</sup>, Hsiu-Yu Yu<sup>2</sup>, Samanvaya Srivastava<sup>1</sup>, Snehashis Choudhury<sup>1</sup>, Suresh Narayanan<sup>3</sup>, Lynden A. Archer<sup>\*,1</sup>

<sup>1</sup>School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA <sup>2</sup>Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

<sup>3</sup>Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA \*Email: laa25@cornell.edu



**Figure S1.** Size distribution of particles as determine from SAXS analysis for **a**) 10nm **b**)25nm **c**) 50nm **d**) 80nm **e**) 200nm **f**) 360nm. The insets are the experimental scattering intensities (red dots) and the fit to data (black lines) for respective sizes.



**Figure S2.** Variation of particle core volume fraction,  $\Phi$  with  $x_L$  for different size ratios. The volume fraction is found to be around 0.10-0.15 for different systems.



**Figure S3.** Form factors for different systems at r = 0.4 on a log-log plot. The open symbols are experimental values and the black lines are mole fraction-weighted averages of the measured form factors for the pure species as used in literature.<sup>[45-47]</sup>



**Figure S4.** Comparison of S<sub>11</sub>, S<sub>12</sub> and S<sub>22</sub> components of S(q) for **a**)  $x_L = 0.7$  and **b**)  $x_L = 0.25$ .



**Figure S5 a)**Variation of G' and G" as a function of time after preshear by strain sweep. **b)** Comparison of  $g_2(q,t)$  measured initially and after 3600s for  $x_L=0.4$  at  $q\sim0.22$ nm<sup>-1</sup>. Since the moduli and the  $g_2(q,t)$  do not change with time, it indicates absence of any aging in the system.



**Figure S6.** Variation of stretching exponent,  $\beta$  with wave vector q at different  $x_L$  values.



**Figure S7.** Storage modulus G'(filled symbols) and loss modulus G''(open symbols) as a function of angular frequency  $\omega$  at a strain of  $\gamma = 0.5\%$  at different values of  $x_L$  for **a**) r = 0.4, **b**) r = 0.2, **c**) r = 0.125, **d**) r = 0.05 and **e**) r = 0.027.



**Figure S8.** Normalized loss modulus,  $G''/G''_{\gamma \to 0}$  at  $\omega = 10$  rad/s with lognormal fits (dotted lines) for r = 0.2