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Electronic Supplementary Information (ESI) where¢ x = 11— ¢ has been assumed to be small and the Frenet-
Serret equationtd= kn has been used. Thus
S.1 Splay energy

2 o 1 1 k<<1 K2
Here we show that the elastic splay energy density (Eq. 3) cos 5 =5(1- W) ~ T (S.4)
Eep = %AspKz cogé (s.1) andthe splay energy can be written as
Esp = 2AspCOS X (S.5)

can be conveniently expressed in terms of the angle betw8en B
and BB bond,x (see Fig. S.1). As observed from the Figure,
I-b=1Iy-b, thus S.2  Curvature, pitches, and radii of the helices

¢

cosy = cosé cos— (S.2) The curvature of an ideal helix with helical angteand radius
2 i sifa ; He i
B Ris k = *¢=. Hence, using eq. S.3, the radius is:
where¢ is the angle between two consecutiveectors.

sirfa
R= .
tang* (S-6)
and pitch of the helix® = 2rRcota):
2rcosa
tang* S.7)

Both, a and ¢* can be retrieved from the simulation data.
The distributions of pitch values obtained from eq. S.7 & pr
sented in Fig. S.2. As observed, the average pitch is almest i
dependent of the value of the internal twist of the individila
amentsAp. It oscillates between 2B85° and 2345°. Hence, it
was assumed to be constant in the simplified theoretical mode
presented in the main text.
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Fig. S.2 Distribution of pitch values of the tubular structures

Fig. S.1 Schematic illustrating the relation between the angleg obtained in the simulations for severg values.

and¢

) S.3  Force field parameters
Next, lett andt + dt be the two consecutive tangent vectors

along the backbone (corresponding, in our case, to the two céhe force field in the model is constructed analogously to tha
secutiveBB bonds). Then, from the lower panel of Fig. S.1, in Ref. 34. The total bond energy is the sum of four contribu-
tions:

tang* = |dt] =K, (S.3)

It Ubond = Ujss +Ujes +Up +Uy +Ug + U,, (S.8)




with: forms, additionally averaged over the simulation trajegtare
presented in Fig. S.3 below.

Ues = %(IBBASB)Z
S.4 Binding energies for different structural forms

Uss = H5(s_gs)2
2 As mentioned in the main text, the cohesive interactions be-
Uy = ﬁ(q& -~ ¢0)2 tween the filaments are relatively strong (compared to the en
2 ergy of elastic deformations), which leads us to assume that

U, — kl(X—Xo)z the energy of each contact between the beads is simply

X 2 (corresponding to the depth of the energy well). There are ap

Upg = 1+a0%°+06%+a6° proximately 450 contacts in 3-filament clusters of a tubatza
Ky ) helicoidal form (180 B-B contacts, 90 S-S contacts and 180 S-
Uy = (A =20) (S9) B contacts), which gives on the average 2.5 contacts per unit

2
length of each filament. An analogous calculation for the rib

wherel®® and|® are the distances between the neighborimgns gives the value of 1.67 contacts per unit length. Inifast
backbone beads and between héead and the adjace® gz rough estimate only, since it neglects the interactionsezn

bead respectively. Next, the bond angpeand are the angles the peads from different layers. Summing up:
between three successisebeads BBB) and betweers bead o
and twoB beads (as marked in Fig. S.1). Dihedral angles (see . —2.5¢ helicoid tubule
o ) Eint/L;= : (5.10)
Fig. 1 in the main text) are denoted hyandf. The parameters —1.67¢ ribbon
of the force field are given in Table S.1. The valuesagfind
ag were computed for eadBy to get the potential with minima S.5 Bending energies and splay

at£6p and a barrier height di& = 5/2. In Eq. 3 in the main text, the elastic energy has been put in the

term | beads affected parameters form
— BB _ L
Ujea B-B kee = 100,15% =1 By / (ALk?(S) + Apk®() COL(E) +C(1(s) — To)?)ds
Ujes B—S ks = 50,185 = 2 2Jo (5.11)
Uy S-B-B ky =200,¢0 = 11/2 with the first term standing for the isotropic bending, wizere
_ _ the second (splay) gives the extra energy which is assdciate
Ux B-B-B kx =50, X0 =1t with bending along one axis in comparison to the other. The
U S—BiBi;2—S ky =10 above terms are easily related to the energy contributions i
Us | SL-BiBi,1— =2 | a andag - see the text the numgrical mgdel: the isotropic par.t will be the one asso-
0 B c—los—4 ciated _Wlth b_endlng _of the backbon_e (i.¢. angles) whereas _
LJ Sl e=1,00=1 the anisotropic part is connected with the presence of the si
' ’ strand (i.e.x angles). Thus:
Table S.1 Force field parameters 1
Ar=ky Asp= ka (S.12)

The energy contributions presented in Figs. 12 and 14 in the o
main text are the mean values of the above terms over the ertfif® Sec. S.1 for the origin of the factor of 4).
3-filament cluster, e.g.

1 S.6  Twist rigidity constant

Uss =

Ues Twist elasticity enters the system Hamiltonian throughtthe

dihedral anglesf@ andA (see Eq. S.9 and Fig. 1 in the main
1 o
U = = %Ud: text). However, in different structures these angles are co
n strained in a different way:

n BB bonds

and analogously for other components. Here the sums ane takes For helicoidal structures in binding mode= 1 (Fig. 5a)
over all bonds, angles, dihedrals or bead pairs in the 3-fgm the interaction seam is maintained by every other back-
cluster. The sum is then divided by= 180, which is the num- bone bead, with their relative location controlled by

ber of elementary units in the system (3 chain8&@ads each) whereasf angles are effectively unconstrained. In this
to get the energy per unit length of the chain. The individ- case the angular elasticity is controlled by theterm in

ual contributions to the internal energy of different strual the Hamiltonian, henc€ =k, is assumed.



e For helicoidal structures in binding mode= 5 (Fig. 5b)

both side-strands participate in the interaction seam, 1()0:
which constraints the values of baffandA angles. How- o, * [ i
. .. AQ
ever, the curvature of theg potential at the minimum, <
Ko = 2Uj(6o) is much larger thak; , thusC ~ kg can be & 0.981 ]
assumed here 2
S 0960 ]
e In the twisted ribbon structures (Fig. 2c) each side strand I ——H
interact with its counterpart on the other filament, which g4/ ——T ]
again constraintd, thusC = k, can be taken here. The [
elastic energy of these structures is simigl§3. 50 5 30
e Tubular structures (Fig. 2d) are maintained by the contact Ao
involving both side-strands, hen€e= kg is assumed here. 90
S.7 Videos 220 — s a2
Two videos are available as a supplementary material to the+9 ]
. —s—H ,
present article: S L8p T 1
e helicoid to_tubule.mpg - a video illustrating the helicoid 1.6+ i
to tubule transition _ ]
. o . 1.4] 1
e tubuleto_helicoid.mpg - a video illustrating the tubule to W

helicoid transition
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Fig. S.3 Bond, angle, dihedral and LJ energies per monomer in the
tubule (black) and helicoidal (green) systems for different values of
internal twist of the filaments)g.




