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PROCESS INDICATORS

We discuss here in more detail the process indicators
introduced in Subsec. IV C. These are functions of the
adjustable operation parameters and here in particular
of the volume fraction, φ0, of colloidal particles in the
homogeneous feed dispersion. For inside-out cross-flow
UF in a hollow cylindrical fiber membrane (see Fig. S1)
the indicators are obtained from the calculated spatial
distributions of the local particle volume fraction, φ(r, z),
and the dispersion velocity,

v(r, z) = ur(r, z)er + uz(r, z)ez , (S.1)

expressed in cylindrical coordinates, (r, z), with the ra-
dial velocity component ur along the unit vector er and
the axial velocity component uz along the unit vector ez.
In this global coordinate frame, the velocity components
at the inner membrane surface, r = R, are ur(R, z) =
u(x, y = 0) and uz(R, z) = v(x, y = 0) = −vw(x) for
x = z, where u(x, y) and v(x, y) are the longitudinal and
axial velocity components measured, respectively, in the
membrane surface anchored local coordinate frame used
in our CP layer analysis (see Eq. (7) and Fig. 2).
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FIG. S1. Global cylindrical coordinate system (r, z). The z-
coordinate line extends along the axis of the hollow cylindrical
fiber membrane of length L and inner radius R.

A. Final product efficiency

The final product is identified in the present work
with the retentate dispersion of mean volume concen-
tration φf , flowing through the outlet cross-section at
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z = L into a final reservoir. The particle advective flux
through the outlet cross-section is

∫
S
dS φ(r, z)uz(r, L)

where
∫
S
dS = 2π

∫ R
0
rdr. Hence, φf is given by the ratio

of the longitudinal particle advective to the longitudinal
dispersion volume flux,

φf =

∫
S
dSφ(r, L)uz(r, L)∫
S
dSuz(r, L)

, (S.2)

where we have neglected the very small longitudinal dif-
fusion flux contribution.

For a steady-state UF process where ∇ · J = 0 is valid
according to Eq. (2) and for a fully particle retentive
membrane where Eq. (18) applies to, the longitudi-
nal particle fluxes through different fiber cross-sections
should be equal. In particular,∫

S

dSφ(r, L)uz(r, L) = φ0

∫
S

dSuz(r, 0) (S.3)

where we have ignored once again the small longitudinal
diffusion flux contribution. The right-hand-side of Eq.
(S.3) is the inlet particle flux of the feed dispersion of
uniform volume fraction φ(r, 0) = φ0. By combining Eqs.
(S.2) and (S.3), the expression

α =
φf
φ0

=

∫
S
dSuz(r, 0)∫

S
dSuz(r, L)

(S.4)

for the Degree of Concentration factor α is obtained,
equal to the ratio of inlet to outlet dispersion volume
flux.

Another expression for α, particularly suitable for the
presented boundary layer analysis, is obtained from dis-
persion volume conservation (∇ · v = 0),∫

S

dSuz(r, 0) =

∫
S

dSuz(r, L)

+ 2πR

∫ L

0

dzur(R, z) , (S.5)

stating that the volume inflow through the inlet cross-
section is equal to the sum of the volume outflows
through the outlet cross-section and the cylindrical mem-
brane of area 2πRL. The combination of Eqs. (S.4) and
(S.5) yields

α =
1

1− β
, (S.6)
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with the Solvent Recovery indicator,

β =
2πR

∫ L
0
dzur(R, z)∫

S
dSuz(r, 0)

, (S.7)

equal to the fraction of initial dispersion volume recov-
ered in the permeate compartment. Using ur(R, z) =
−vw(x) together with Eq. (54) for 〈vw〉 and the cylindri-
cal Pouiseuille flow profile for uz(r, 0), the Eq. (57) for β
in the main text is obtained.

The logical way of calculating the final product effi-
ciency indicators is to determine first β using Eq. (S.7),
with α and φf determined subsequently using Eq. (S.6).

B. Productivity per unit membrane area

The indicator of Productivity per Unit Membrane
Area, θ, is defined here as the retentate flux divided by
the membrane area,

θ =

∫
S
dSuz(r, L)

2πRL
, (S.8)

giving this indicator the dimension of a velocity. Using
Eqs. (S.4)-(S.6), θ can be related to β by

θ =

∫
S
dSuz(r, 0)

(1− β)2πRL
=

∫ L
0
dzur(R, z)

β(1− β)L
. (S.9)

The integral in the second equality is proportional to
the fiber-length-averaged permeate velocity. Using Eqs.
(54) and (56) in the previous expression, Eq. (58) in the
main text is obtained.

C. Energy cost

We discuss first the indicator of Specific Energy Con-
sumption, ω, defined as the energy consumed to produce
a unit volume of final product which, in our case, is the
retentate dispersion of volume fraction φf . Thus, for a
steady-state process, ω is equal to the ratio of consumed
power to the outlet volume per unit time. Assuming that
basically the whole external power is spent in pressing the
solvent through the membrane, this implies

ω =
2πR

∫ L
0
dz∆P (z)ur(R, z)∫
S
dSuz(r, L)

, (S.10)

where ∆P (z) is the local transmembrane pressure differ-
ence which in general depends on the axial distance z
from the inlet. In our calculations, the TMP has been
taken as constant. Note that the physical dimension of
ω is energy per volume.

In general, one can expect that variations of ∆P (z)
along the hollow fiber membrane are much smaller than
the mean pressure value, denoted here as ∆P , so that
∆P (z) approximated by ∆P can be shifted out of the
integral in Eq. (S.10). Consequently, by using in addi-
tion Eqs. (S.4) and (S.6), Eq. (59) in the main text is
obtained wherein ω is expressed by the product of the
fiber-length-averaged TMP ∆P and (α− 1).

As discussed in Subsec. IV C, the Specific Energy Effi-
ciency indicator, ε, is defined as the ratio of the thermo-
dynamically necessary minimal reverse-osmosis compres-
sion work, ωmin, required to produce a unity of retentate
dispersion to the Specific Energy Consumption ω. Ac-
cording to Eq. (60), ε can be expressed in terms of φ0,
∆P , and osmotic pressure Π(z) along the membrane sur-
face as

ε =
αφ0

(α− 1) ∆P

∫ φf

φ0

dφ

(
Π(φ)

φ2

)
. (S.11)

Substituting Π(φ) as described by the CS Eq. (37)
for colloidal hard spheres into Eq. (S.11), we obtain the
analytic expression

ε =
3kBT

4πa3
αφ0

(α− 1)∆P

[
ln (α) +

3− 2φf

(1− φf )
2 −

3− 2φ0

(1− φ0)
2

]
(S.12)

for ε in terms of the input parameters φ0, ∆P , and hard-
core radius a, and also in terms of α = φf/φ0 which
must be determined prior to ε. The factor to the left
of the bracket in Eq. (S.12) can be recast into the sug-
gestive form (kBTnb/∆P ) (α/(α− 1)) invoking the ratio
of the van’t Hoff pressure kBTnb and the TMP, where
nb is the number density of the injected feed dispersion.
Note further the explicit 1/a3 dependence of ε which ren-
ders this indicator very small for larger colloidal particles
where the osmotic pressure buildup along the membrane
is small.
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